Datasets:
Tasks:
Text Generation
Modalities:
Text
Sub-tasks:
language-modeling
Languages:
English
Size:
100K - 1M
License:
/- | |
Copyright (c) 2020 Patrick Stevens. All rights reserved. | |
Released under Apache 2.0 license as described in the file LICENSE. | |
Authors: Patrick Stevens, Bolton Bailey | |
-/ | |
import data.nat.choose.factorization | |
import number_theory.primorial | |
import analysis.convex.specific_functions | |
/-! | |
# Bertrand's Postulate | |
This file contains a proof of Bertrand's postulate: That between any positive number and its | |
double there is a prime. | |
The proof follows the outline of the ErdΕs proof presented in "Proofs from THE BOOK": One considers | |
the prime factorization of `(2 * n).choose n`, and splits the constituent primes up into various | |
groups, then upper bounds the contribution of each group. This upper bounds the central binomial | |
coefficient, and if the postulate does not hold, this upper bound conflicts with a simple lower | |
bound for large enough `n`. This proves the result holds for large enough `n`, and for smaller `n` | |
an explicit list of primes is provided which covers the remaining cases. | |
As in the [Metamath implementation](carneiro2015arithmetic), we rely on some optimizations from | |
[Shigenori Tochiori](tochiori_bertrand). In particular we use the cleaner bound on the central | |
binomial coefficient given in `nat.four_pow_lt_mul_central_binom`. | |
## References | |
* [M. Aigner and G. M. Ziegler _Proofs from THE BOOK_][aigner1999proofs] | |
* [S. Tochiori, _Considering the Proof of βThere is a Prime between n and 2nβ_][tochiori_bertrand] | |
* [M. Carneiro, _Arithmetic in Metamath, Case Study: Bertrand's Postulate_][carneiro2015arithmetic] | |
## Tags | |
Bertrand, prime, binomial coefficients | |
-/ | |
open_locale big_operators | |
section real | |
open real | |
namespace bertrand | |
/-- | |
A reified version of the `bertrand.main_inequality` below. | |
This is not best possible: it actually holds for 464 β€ x. | |
-/ | |
lemma real_main_inequality {x : β} (n_large : (512 : β) β€ x) : | |
x * (2 * x) ^ (sqrt (2 * x)) * 4 ^ (2 * x / 3) β€ 4 ^ x := | |
begin | |
let f : β β β := Ξ» x, log x + sqrt (2 * x) * log (2 * x) - log 4 / 3 * x, | |
have hf' : β x, 0 < x β 0 < x * (2 * x) ^ sqrt (2 * x) / 4 ^ (x / 3) := | |
Ξ» x h, div_pos (mul_pos h (rpow_pos_of_pos (mul_pos two_pos h) _)) (rpow_pos_of_pos four_pos _), | |
have hf : β x, 0 < x β f x = log (x * (2 * x) ^ sqrt (2 * x) / 4 ^ (x / 3)), | |
{ intros x h5, | |
have h6 := mul_pos two_pos h5, | |
have h7 := rpow_pos_of_pos h6 (sqrt (2 * x)), | |
rw [log_div (mul_pos h5 h7).ne' (rpow_pos_of_pos four_pos _).ne', log_mul h5.ne' h7.ne', | |
log_rpow h6, log_rpow zero_lt_four, β mul_div_right_comm, β mul_div, mul_comm x] }, | |
have h5 : 0 < x := lt_of_lt_of_le (by norm_num1) n_large, | |
rw [β div_le_one (rpow_pos_of_pos four_pos x), β div_div_eq_mul_div, β rpow_sub four_pos, | |
β mul_div 2 x, mul_div_left_comm, β mul_one_sub, (by norm_num1 : (1 : β) - 2 / 3 = 1 / 3), | |
mul_one_div, β log_nonpos_iff (hf' x h5), β hf x h5], | |
have h : concave_on β (set.Ioi 0.5) f, | |
{ refine ((strict_concave_on_log_Ioi.concave_on.subset (set.Ioi_subset_Ioi _) | |
(convex_Ioi 0.5)).add ((strict_concave_on_sqrt_mul_log_Ioi.concave_on.comp_linear_map | |
((2 : β) β’ linear_map.id)).subset | |
(Ξ» a ha, lt_of_eq_of_lt _ ((mul_lt_mul_left two_pos).mpr ha)) (convex_Ioi 0.5))).sub | |
((convex_on_id (convex_Ioi 0.5)).smul (div_nonneg (log_nonneg _) _)); norm_num1 }, | |
suffices : β x1 x2, 0.5 < x1 β§ x1 < x2 β§ x2 β€ x β§ 0 β€ f x1 β§ f x2 β€ 0, | |
{ obtain β¨x1, x2, h1, h2, h0, h3, h4β© := this, | |
exact (h.right_le_of_le_left'' h1 ((h1.trans h2).trans_le h0) h2 h0 (h4.trans h3)).trans h4 }, | |
refine β¨18, 512, by norm_num1, by norm_num1, le_trans (by norm_num1) n_large, _, _β©, | |
{ have : sqrt (2 * 18) = 6 := | |
(sqrt_eq_iff_mul_self_eq_of_pos (by norm_num1)).mpr (by norm_num1), | |
rw [hf, log_nonneg_iff (hf' 18 _), this]; norm_num1 }, | |
{ have : sqrt (2 * 512) = 32, | |
{ exact (sqrt_eq_iff_mul_self_eq_of_pos (by norm_num1)).mpr (by norm_num1) }, | |
rw [hf, log_nonpos_iff (hf' _ _), this, div_le_one (rpow_pos_of_pos four_pos _), | |
β rpow_le_rpow_iff _ (rpow_pos_of_pos four_pos _).le three_pos, β rpow_mul]; norm_num1 }, | |
end | |
end bertrand | |
end real | |
section nat | |
open nat | |
/-- | |
The inequality which contradicts Bertrand's postulate, for large enough `n`. | |
-/ | |
lemma bertrand_main_inequality {n : β} (n_large : 512 β€ n) : | |
n * (2 * n) ^ sqrt (2 * n) * 4 ^ (2 * n / 3) β€ 4 ^ n := | |
begin | |
rw β @cast_le β, | |
simp only [cast_bit0, cast_add, cast_one, cast_mul, cast_pow, β real.rpow_nat_cast], | |
have n_pos : 0 < n := (dec_trivial : 0 < 512).trans_le n_large, | |
have n2_pos : 1 β€ 2 * n := mul_pos dec_trivial n_pos, | |
refine trans (mul_le_mul _ _ _ _) (bertrand.real_main_inequality (by exact_mod_cast n_large)), | |
{ refine mul_le_mul_of_nonneg_left _ (nat.cast_nonneg _), | |
refine real.rpow_le_rpow_of_exponent_le (by exact_mod_cast n2_pos) _, | |
exact_mod_cast real.nat_sqrt_le_real_sqrt }, | |
{ exact real.rpow_le_rpow_of_exponent_le (by norm_num1) (cast_div_le.trans (by norm_cast)) }, | |
{ exact real.rpow_nonneg_of_nonneg (by norm_num1) _ }, | |
{ refine mul_nonneg (nat.cast_nonneg _) _, | |
exact real.rpow_nonneg_of_nonneg (mul_nonneg zero_le_two (nat.cast_nonneg _)) _, }, | |
end | |
/-- | |
A lemma that tells us that, in the case where Bertrand's postulate does not hold, the prime | |
factorization of the central binomial coefficent only has factors at most `2 * n / 3 + 1`. | |
-/ | |
lemma central_binom_factorization_small (n : β) (n_large : 2 < n) | |
(no_prime: Β¬β (p : β), p.prime β§ n < p β§ p β€ 2 * n) : | |
central_binom n = β p in finset.range (2 * n / 3 + 1), p ^ ((central_binom n).factorization p) := | |
begin | |
refine (eq.trans _ n.prod_pow_factorization_central_binom).symm, | |
apply finset.prod_subset, | |
{ exact finset.range_subset.2 (add_le_add_right (nat.div_le_self _ _) _) }, | |
intros x hx h2x, | |
rw [finset.mem_range, lt_succ_iff] at hx h2x, | |
rw [not_le, div_lt_iff_lt_mul' three_pos, mul_comm x] at h2x, | |
replace no_prime := not_exists.mp no_prime x, | |
rw [βand_assoc, not_and', not_and_distrib, not_lt] at no_prime, | |
cases no_prime hx with h h, | |
{ rw [factorization_eq_zero_of_non_prime n.central_binom h, pow_zero] }, | |
{ rw [factorization_central_binom_of_two_mul_self_lt_three_mul n_large h h2x, pow_zero] }, | |
end | |
/-- | |
An upper bound on the central binomial coefficient used in the proof of Bertrand's postulate. | |
The bound splits the prime factors of `central_binom n` into those | |
1. At most `sqrt (2 * n)`, which contribute at most `2 * n` for each such prime. | |
2. Between `sqrt (2 * n)` and `2 * n / 3`, which contribute at most `4^(2 * n / 3)` in total. | |
3. Between `2 * n / 3` and `n`, which do not exist. | |
4. Between `n` and `2 * n`, which would not exist in the case where Bertrand's postulate is false. | |
5. Above `2 * n`, which do not exist. | |
-/ | |
lemma central_binom_le_of_no_bertrand_prime (n : β) (n_big : 2 < n) | |
(no_prime : Β¬β (p : β), nat.prime p β§ n < p β§ p β€ 2 * n) : | |
central_binom n β€ (2 * n) ^ sqrt (2 * n) * 4 ^ (2 * n / 3) := | |
begin | |
have n_pos : 0 < n := (nat.zero_le _).trans_lt n_big, | |
have n2_pos : 1 β€ 2 * n := mul_pos two_pos n_pos, | |
let S := (finset.range (2 * n / 3 + 1)).filter nat.prime, | |
let f := Ξ» x, x ^ n.central_binom.factorization x, | |
have : β (x : β) in S, f x = β (x : β) in finset.range (2 * n / 3 + 1), f x, | |
{ refine finset.prod_filter_of_ne (Ξ» p hp h, _), | |
contrapose! h, dsimp only [f], | |
rw [factorization_eq_zero_of_non_prime n.central_binom h, pow_zero] }, | |
rw [central_binom_factorization_small n n_big no_prime, β this, | |
β finset.prod_filter_mul_prod_filter_not S (β€ sqrt (2 * n))], | |
apply mul_le_mul', | |
{ refine (finset.prod_le_prod'' (Ξ» p hp, (_ : f p β€ 2 * n))).trans _, | |
{ exact pow_factorization_choose_le (mul_pos two_pos n_pos) }, | |
have : (finset.Icc 1 (sqrt (2 * n))).card = sqrt (2 * n), | |
{ rw [card_Icc, nat.add_sub_cancel] }, | |
rw finset.prod_const, | |
refine pow_le_pow n2_pos ((finset.card_le_of_subset (Ξ» x hx, _)).trans this.le), | |
obtain β¨h1, h2β© := finset.mem_filter.1 hx, | |
exact finset.mem_Icc.mpr β¨(finset.mem_filter.1 h1).2.one_lt.le, h2β© }, | |
{ refine le_trans _ (primorial_le_4_pow (2 * n / 3)), | |
refine (finset.prod_le_prod' (Ξ» p hp, (_ : f p β€ p))).trans _, | |
{ obtain β¨h1, h2β© := finset.mem_filter.1 hp, | |
refine (pow_le_pow (finset.mem_filter.1 h1).2.one_lt.le _).trans (pow_one p).le, | |
exact nat.factorization_choose_le_one (sqrt_lt'.mp $ not_le.1 h2) }, | |
refine finset.prod_le_prod_of_subset_of_one_le' (finset.filter_subset _ _) _, | |
exact Ξ» p hp _, (finset.mem_filter.1 hp).2.one_lt.le } | |
end | |
namespace nat | |
/-- | |
Proves that Bertrand's postulate holds for all sufficiently large `n`. | |
-/ | |
lemma exists_prime_lt_and_le_two_mul_eventually (n : β) (n_big : 512 β€ n) : | |
β (p : β), p.prime β§ n < p β§ p β€ 2 * n := | |
begin | |
-- Assume there is no prime in the range. | |
by_contradiction no_prime, | |
-- Then we have the above sub-exponential bound on the size of this central binomial coefficient. | |
-- We now couple this bound with an exponential lower bound on the central binomial coefficient, | |
-- yielding an inequality which we have seen is false for large enough n. | |
have H1 : n * (2 * n) ^ sqrt (2 * n) * 4 ^ (2 * n / 3) β€ 4 ^ n := bertrand_main_inequality n_big, | |
have H2 : 4 ^ n < n * n.central_binom := | |
nat.four_pow_lt_mul_central_binom n (le_trans (by norm_num1) n_big), | |
have H3 : n.central_binom β€ (2 * n) ^ sqrt (2 * n) * 4 ^ (2 * n / 3) := | |
central_binom_le_of_no_bertrand_prime n (lt_of_lt_of_le (by norm_num1) n_big) no_prime, | |
rw mul_assoc at H1, exact not_le.2 H2 ((mul_le_mul_left' H3 n).trans H1), | |
end | |
/-- | |
Proves that Bertrand's postulate holds over all positive naturals less than n by identifying a | |
descending list of primes, each no more than twice the next, such that the list contains a witness | |
for each number β€ n. | |
-/ | |
lemma exists_prime_lt_and_le_two_mul_succ {n} (q) | |
{p : β} (prime_p : nat.prime p) (covering : p β€ 2 * q) | |
(H : n < q β β (p : β), p.prime β§ n < p β§ p β€ 2 * n) | |
(hn : n < p) : β (p : β), p.prime β§ n < p β§ p β€ 2 * n := | |
begin | |
by_cases p β€ 2 * n, { exact β¨p, prime_p, hn, hβ© }, | |
exact H (lt_of_mul_lt_mul_left' (lt_of_lt_of_le (not_le.1 h) covering)) | |
end | |
/-- | |
**Bertrand's Postulate**: For any positive natural number, there is a prime which is greater than | |
it, but no more than twice as large. | |
-/ | |
theorem exists_prime_lt_and_le_two_mul (n : β) (hn0 : n β 0) : | |
β p, nat.prime p β§ n < p β§ p β€ 2 * n := | |
begin | |
-- Split into cases whether `n` is large or small | |
cases lt_or_le 511 n, | |
-- If `n` is large, apply the lemma derived from the inequalities on the central binomial | |
-- coefficient. | |
{ exact exists_prime_lt_and_le_two_mul_eventually n h, }, | |
replace h : n < 521 := h.trans_lt (by norm_num1), | |
revert h, | |
-- For small `n`, supply a list of primes to cover the initial cases. | |
([317, 163, 83, 43, 23, 13, 7, 5, 3, 2].mmap' $ Ξ» n, | |
`[refine exists_prime_lt_and_le_two_mul_succ %%(reflect n) (by norm_num1) (by norm_num1) _]), | |
exact Ξ» h2, β¨2, prime_two, h2, nat.mul_le_mul_left 2 (nat.pos_of_ne_zero hn0)β©, | |
end | |
alias nat.exists_prime_lt_and_le_two_mul β bertrand | |
end nat | |
end nat | |