Datasets:
Tasks:
Text Generation
Modalities:
Text
Sub-tasks:
language-modeling
Languages:
English
Size:
100K - 1M
License:
/- | |
Copyright (c) 2022 Kexing Ying. All rights reserved. | |
Released under Apache 2.0 license as described in the file LICENSE. | |
Authors: Kexing Ying, Rémy Degenne | |
-/ | |
import probability.stopping | |
/-! | |
# Hitting time | |
Given a stochastic process, the hitting time provides the first time the process ``hits'' some | |
subset of the state space. The hitting time is a stopping time in the case that the time index is | |
discrete and the process is adapted (this is true in a far more general setting however we have | |
only proved it for the discrete case so far). | |
## Main definition | |
* `measure_theory.hitting`: the hitting time of a stochastic process | |
## Main results | |
* `measure_theory.hitting_is_stopping_time`: a discrete hitting time of an adapted process is a | |
stopping time | |
## Implementation notes | |
In the definition of the hitting time, we bound the hitting time by an upper and lower bound. | |
This is to ensure that our result is meaningful in the case we are taking the infimum of an | |
empty set or the infimum of a set which is unbounded from below. With this, we can talk about | |
hitting times indexed by the natural numbers or the reals. By taking the bounds to be | |
`⊤` and `⊥`, we obtain the standard definition in the case that the index is `with_top ℕ` or `ℝ≥0∞`. | |
-/ | |
open filter order topological_space | |
open_locale classical measure_theory nnreal ennreal topological_space big_operators | |
namespace measure_theory | |
variables {Ω β ι : Type*} {m : measurable_space Ω} | |
/-- Hitting time: given a stochastic process `u` and a set `s`, `hitting u s n m` is the first time | |
`u` is in `s` after time `n` and before time `m` (if `u` does not hit `s` after time `n` and | |
before `m` then the hitting time is simply `m`). | |
The hitting time is a stopping time if the process is adapted and discrete. -/ | |
noncomputable def hitting [preorder ι] [has_Inf ι] (u : ι → Ω → β) (s : set β) (n m : ι) : Ω → ι := | |
λ x, if ∃ j ∈ set.Icc n m, u j x ∈ s then Inf (set.Icc n m ∩ {i : ι | u i x ∈ s}) else m | |
section inequalities | |
variables [conditionally_complete_linear_order ι] {u : ι → Ω → β} {s : set β} {n i : ι} {ω : Ω} | |
lemma hitting_of_lt {m : ι} (h : m < n) : hitting u s n m ω = m := | |
begin | |
simp_rw [hitting], | |
have h_not : ¬ ∃ (j : ι) (H : j ∈ set.Icc n m), u j ω ∈ s, | |
{ push_neg, | |
intro j, | |
rw set.Icc_eq_empty_of_lt h, | |
simp only [set.mem_empty_eq, is_empty.forall_iff], }, | |
simp only [h_not, if_false], | |
end | |
lemma hitting_le {m : ι} (ω : Ω) : hitting u s n m ω ≤ m := | |
begin | |
cases le_or_lt n m with h_le h_lt, | |
{ simp only [hitting], | |
split_ifs, | |
{ obtain ⟨j, hj₁, hj₂⟩ := h, | |
exact (cInf_le (bdd_below.inter_of_left bdd_below_Icc) (set.mem_inter hj₁ hj₂)).trans hj₁.2 }, | |
{ exact le_rfl }, }, | |
{ rw hitting_of_lt h_lt, }, | |
end | |
lemma le_hitting {m : ι} (hnm : n ≤ m) (ω : Ω) : n ≤ hitting u s n m ω := | |
begin | |
simp only [hitting], | |
split_ifs, | |
{ refine le_cInf _ (λ b hb, _), | |
{ obtain ⟨k, hk_Icc, hk_s⟩ := h, | |
exact ⟨k, hk_Icc, hk_s⟩, }, | |
{ rw set.mem_inter_iff at hb, | |
exact hb.1.1, }, }, | |
{ exact hnm }, | |
end | |
lemma le_hitting_of_exists {m : ι} (h_exists : ∃ j ∈ set.Icc n m, u j ω ∈ s) : | |
n ≤ hitting u s n m ω := | |
begin | |
refine le_hitting _ ω, | |
by_contra, | |
rw set.Icc_eq_empty_of_lt (not_le.mp h) at h_exists, | |
simpa using h_exists, | |
end | |
lemma hitting_mem_Icc {m : ι} (hnm : n ≤ m) (ω : Ω) : hitting u s n m ω ∈ set.Icc n m := | |
⟨le_hitting hnm ω, hitting_le ω⟩ | |
lemma hitting_mem_set [is_well_order ι (<)] {m : ι} (h_exists : ∃ j ∈ set.Icc n m, u j ω ∈ s) : | |
u (hitting u s n m ω) ω ∈ s := | |
begin | |
simp_rw [hitting, if_pos h_exists], | |
have h_nonempty : (set.Icc n m ∩ {i : ι | u i ω ∈ s}).nonempty, | |
{ obtain ⟨k, hk₁, hk₂⟩ := h_exists, | |
exact ⟨k, set.mem_inter hk₁ hk₂⟩, }, | |
have h_mem := Inf_mem h_nonempty, | |
rw [set.mem_inter_iff] at h_mem, | |
exact h_mem.2, | |
end | |
lemma hitting_le_of_mem {m : ι} (hin : n ≤ i) (him : i ≤ m) (his : u i ω ∈ s) : | |
hitting u s n m ω ≤ i := | |
begin | |
have h_exists : ∃ k ∈ set.Icc n m, u k ω ∈ s := ⟨i, ⟨hin, him⟩, his⟩, | |
simp_rw [hitting, if_pos h_exists], | |
exact cInf_le (bdd_below.inter_of_left bdd_below_Icc) (set.mem_inter ⟨hin, him⟩ his), | |
end | |
lemma hitting_le_iff_of_exists [is_well_order ι (<)] {m : ι} | |
(h_exists : ∃ j ∈ set.Icc n m, u j ω ∈ s) : | |
hitting u s n m ω ≤ i ↔ ∃ j ∈ set.Icc n i, u j ω ∈ s := | |
begin | |
split; intro h', | |
{ exact ⟨hitting u s n m ω, ⟨le_hitting_of_exists h_exists, h'⟩, hitting_mem_set h_exists⟩, }, | |
{ have h'' : ∃ k ∈ set.Icc n (min m i), u k ω ∈ s, | |
{ obtain ⟨k₁, hk₁_mem, hk₁_s⟩ := h_exists, | |
obtain ⟨k₂, hk₂_mem, hk₂_s⟩ := h', | |
refine ⟨min k₁ k₂, ⟨le_min hk₁_mem.1 hk₂_mem.1, min_le_min hk₁_mem.2 hk₂_mem.2⟩, _⟩, | |
exact min_rec' (λ j, u j ω ∈ s) hk₁_s hk₂_s, }, | |
obtain ⟨k, hk₁, hk₂⟩ := h'', | |
refine le_trans _ (hk₁.2.trans (min_le_right _ _)), | |
exact hitting_le_of_mem hk₁.1 (hk₁.2.trans (min_le_left _ _)) hk₂, }, | |
end | |
lemma hitting_le_iff_of_lt [is_well_order ι (<)] {m : ι} (i : ι) (hi : i < m) : | |
hitting u s n m ω ≤ i ↔ ∃ j ∈ set.Icc n i, u j ω ∈ s := | |
begin | |
by_cases h_exists : ∃ j ∈ set.Icc n m, u j ω ∈ s, | |
{ rw hitting_le_iff_of_exists h_exists, }, | |
{ simp_rw [hitting, if_neg h_exists], | |
push_neg at h_exists, | |
simp only [not_le.mpr hi, set.mem_Icc, false_iff, not_exists, and_imp], | |
exact λ k hkn hki, h_exists k ⟨hkn, hki.trans hi.le⟩, }, | |
end | |
lemma hitting_lt_iff [is_well_order ι (<)] {m : ι} (i : ι) (hi : i ≤ m) : | |
hitting u s n m ω < i ↔ ∃ j ∈ set.Ico n i, u j ω ∈ s := | |
begin | |
split; intro h', | |
{ have h : ∃ j ∈ set.Icc n m, u j ω ∈ s, | |
{ by_contra, | |
simp_rw [hitting, if_neg h, ← not_le] at h', | |
exact h' hi, }, | |
exact ⟨hitting u s n m ω, ⟨le_hitting_of_exists h, h'⟩, hitting_mem_set h⟩, }, | |
{ obtain ⟨k, hk₁, hk₂⟩ := h', | |
refine lt_of_le_of_lt _ hk₁.2, | |
exact hitting_le_of_mem hk₁.1 (hk₁.2.le.trans hi) hk₂, }, | |
end | |
lemma hitting_eq_hitting_of_exists | |
{m₁ m₂ : ι} (h : m₁ ≤ m₂) (h' : ∃ j ∈ set.Icc n m₁, u j ω ∈ s) : | |
hitting u s n m₁ ω = hitting u s n m₂ ω := | |
begin | |
simp only [hitting, if_pos h'], | |
obtain ⟨j, hj₁, hj₂⟩ := h', | |
rw if_pos, | |
{ refine le_antisymm _ (cInf_le_cInf bdd_below_Icc.inter_of_left ⟨j, hj₁, hj₂⟩ | |
(set.inter_subset_inter_left _ (set.Icc_subset_Icc_right h))), | |
refine le_cInf ⟨j, set.Icc_subset_Icc_right h hj₁, hj₂⟩ (λ i hi, _), | |
by_cases hi' : i ≤ m₁, | |
{ exact cInf_le bdd_below_Icc.inter_of_left ⟨⟨hi.1.1, hi'⟩, hi.2⟩ }, | |
{ exact ((cInf_le bdd_below_Icc.inter_of_left ⟨hj₁, hj₂⟩).trans (hj₁.2.trans le_rfl)).trans | |
(le_of_lt (not_le.1 hi')) } }, | |
exact ⟨j, ⟨hj₁.1, hj₁.2.trans h⟩, hj₂⟩, | |
end | |
end inequalities | |
/-- A discrete hitting time is a stopping time. -/ | |
lemma hitting_is_stopping_time | |
[conditionally_complete_linear_order ι] [is_well_order ι (<)] [encodable ι] | |
[topological_space β] [pseudo_metrizable_space β] [measurable_space β] [borel_space β] | |
{f : filtration ι m} {u : ι → Ω → β} {s : set β} {n n' : ι} | |
(hu : adapted f u) (hs : measurable_set s) : | |
is_stopping_time f (hitting u s n n') := | |
begin | |
intro i, | |
cases le_or_lt n' i with hi hi, | |
{ have h_le : ∀ ω, hitting u s n n' ω ≤ i := λ x, (hitting_le x).trans hi, | |
simp [h_le], }, | |
{ have h_set_eq_Union : {ω | hitting u s n n' ω ≤ i} = ⋃ j ∈ set.Icc n i, u j ⁻¹' s, | |
{ ext x, | |
rw [set.mem_set_of_eq, hitting_le_iff_of_lt _ hi], | |
simp only [set.mem_Icc, exists_prop, set.mem_Union, set.mem_preimage], }, | |
rw h_set_eq_Union, | |
exact measurable_set.Union (λ j, measurable_set.Union_Prop $ | |
λ hj, f.mono hj.2 _ ((hu j).measurable hs)) } | |
end | |
lemma stopped_value_hitting_mem [conditionally_complete_linear_order ι] [is_well_order ι (<)] | |
{u : ι → Ω → β} {s : set β} {n m : ι} {ω : Ω} (h : ∃ j ∈ set.Icc n m, u j ω ∈ s) : | |
stopped_value u (hitting u s n m) ω ∈ s := | |
begin | |
simp only [stopped_value, hitting, if_pos h], | |
obtain ⟨j, hj₁, hj₂⟩ := h, | |
have : Inf (set.Icc n m ∩ {i | u i ω ∈ s}) ∈ set.Icc n m ∩ {i | u i ω ∈ s} := | |
Inf_mem (set.nonempty_of_mem ⟨hj₁, hj₂⟩), | |
exact this.2, | |
end | |
/-- The hitting time of a discrete process with the starting time indexed by a stopping time | |
is a stopping time. -/ | |
lemma is_stopping_time_hitting_is_stopping_time | |
[conditionally_complete_linear_order ι] [is_well_order ι (<)] [encodable ι] | |
[topological_space ι] [order_topology ι] [first_countable_topology ι] | |
[topological_space β] [pseudo_metrizable_space β] [measurable_space β] [borel_space β] | |
{f : filtration ι m} {u : ι → Ω → β} {τ : Ω → ι} (hτ : is_stopping_time f τ) | |
{N : ι} (hτbdd : ∀ x, τ x ≤ N) {s : set β} (hs : measurable_set s) (hf : adapted f u) : | |
is_stopping_time f (λ x, hitting u s (τ x) N x) := | |
begin | |
intro n, | |
have h₁ : {x | hitting u s (τ x) N x ≤ n} = | |
(⋃ i ≤ n, {x | τ x = i} ∩ {x | hitting u s i N x ≤ n}) ∪ | |
(⋃ i > n, {x | τ x = i} ∩ {x | hitting u s i N x ≤ n}), | |
{ ext x, | |
simp [← exists_or_distrib, ← or_and_distrib_right, le_or_lt] }, | |
have h₂ : (⋃ i > n, {x | τ x = i} ∩ {x | hitting u s i N x ≤ n}) = ∅, | |
{ ext x, | |
simp only [gt_iff_lt, set.mem_Union, set.mem_inter_eq, set.mem_set_of_eq, | |
exists_prop, set.mem_empty_eq, iff_false, not_exists, not_and, not_le], | |
rintro m hm rfl, | |
exact lt_of_lt_of_le hm (le_hitting (hτbdd _) _) }, | |
rw [h₁, h₂, set.union_empty], | |
exact measurable_set.Union (λ i, measurable_set.Union_Prop | |
(λ hi, (f.mono hi _ (hτ.measurable_set_eq i)).inter (hitting_is_stopping_time hf hs n))), | |
end | |
section complete_lattice | |
variables [complete_lattice ι] {u : ι → Ω → β} {s : set β} {f : filtration ι m} | |
lemma hitting_eq_Inf (ω : Ω) : hitting u s ⊥ ⊤ ω = Inf {i : ι | u i ω ∈ s} := | |
begin | |
simp only [hitting, set.mem_Icc, bot_le, le_top, and_self, exists_true_left, set.Icc_bot, | |
set.Iic_top, set.univ_inter, ite_eq_left_iff, not_exists], | |
intro h_nmem_s, | |
symmetry, | |
rw Inf_eq_top, | |
exact λ i hi_mem_s, absurd hi_mem_s (h_nmem_s i), | |
end | |
end complete_lattice | |
section conditionally_complete_linear_order_bot | |
variables [conditionally_complete_linear_order_bot ι] [is_well_order ι (<)] | |
variables {u : ι → Ω → β} {s : set β} {f : filtration ℕ m} | |
lemma hitting_bot_le_iff {i n : ι} {ω : Ω} (hx : ∃ j, j ≤ n ∧ u j ω ∈ s) : | |
hitting u s ⊥ n ω ≤ i ↔ ∃ j ≤ i, u j ω ∈ s := | |
begin | |
cases lt_or_le i n with hi hi, | |
{ rw hitting_le_iff_of_lt _ hi, | |
simp, }, | |
{ simp only [(hitting_le ω).trans hi, true_iff], | |
obtain ⟨j, hj₁, hj₂⟩ := hx, | |
exact ⟨j, hj₁.trans hi, hj₂⟩, }, | |
end | |
end conditionally_complete_linear_order_bot | |
end measure_theory | |