Datasets:
Tasks:
Text Generation
Modalities:
Text
Sub-tasks:
language-modeling
Languages:
English
Size:
100K - 1M
License:
/- | |
Copyright © 2020 Nicolò Cavalleri. All rights reserved. | |
Released under Apache 2.0 license as described in the file LICENSE. | |
Authors: Nicolò Cavalleri, Sebastien Gouezel, Heather Macbeth, Patrick Massot, Floris van Doorn | |
-/ | |
import analysis.normed_space.bounded_linear_maps | |
import topology.fiber_bundle | |
/-! | |
# Topological vector bundles | |
In this file we define topological vector bundles. | |
Let `B` be the base space. In our formalism, a topological vector bundle is by definition the type | |
`bundle.total_space E` where `E : B → Type*` is a function associating to | |
`x : B` the fiber over `x`. This type `bundle.total_space E` is just a type synonym for | |
`Σ (x : B), E x`, with the interest that one can put another topology than on `Σ (x : B), E x` | |
which has the disjoint union topology. | |
To have a topological vector bundle structure on `bundle.total_space E`, one should | |
additionally have the following data: | |
* `F` should be a normed space over a normed field `R`; | |
* There should be a topology on `bundle.total_space E`, for which the projection to `B` is | |
a topological fiber bundle with fiber `F` (in particular, each fiber `E x` is homeomorphic to `F`); | |
* For each `x`, the fiber `E x` should be a topological vector space over `R`, and the injection | |
from `E x` to `bundle.total_space F E` should be an embedding; | |
* There should be a distinguished set of bundle trivializations (which are continuous linear equivs | |
in the fibres), the "trivialization atlas" | |
* There should be a choice of bundle trivialization at each point, which belongs to this atlas. | |
If all these conditions are satisfied, and if moreover for any two trivializations `e`, `e'` in the | |
atlas the transition function considered as a map from `B` into `F →L[R] F` is continuous on | |
`e.base_set ∩ e'.base_set` with respect to the operator norm topology on `F →L[R] F`, we register | |
the typeclass `topological_vector_bundle R F E`. | |
We define constructions on vector bundles like pullbacks and direct sums in other files. | |
Only the trivial bundle is defined in this file. | |
## Tags | |
Vector bundle | |
-/ | |
noncomputable theory | |
open bundle set | |
open_locale classical | |
variables (R 𝕜 : Type*) {B : Type*} (F : Type*) (E : B → Type*) | |
section topological_vector_space | |
variables [semiring R] [∀ x, add_comm_monoid (E x)] [∀ x, module R (E x)] | |
[topological_space F] [add_comm_monoid F] [module R F] [topological_space B] | |
/-- A pretrivialization for a (yet to be defined) topological vector bundle `total_space E` is a | |
local equiv between sets of the form `proj ⁻¹' base_set` and `base_set × F` which respects the | |
first coordinate, and is linear in each fiber. -/ | |
@[ext, nolint has_nonempty_instance] | |
structure topological_vector_bundle.pretrivialization extends to_fiber_bundle_pretrivialization : | |
topological_fiber_bundle.pretrivialization F (@total_space.proj B E) := | |
(linear' : ∀ x ∈ base_set, is_linear_map R (λ y : E x, (to_fun (total_space_mk x y)).2)) | |
instance : has_coe_to_fun (topological_vector_bundle.pretrivialization R F E) _ := ⟨λ e, e.to_fun⟩ | |
instance : has_coe (topological_vector_bundle.pretrivialization R F E) | |
(topological_fiber_bundle.pretrivialization F (@total_space.proj B E)) := | |
⟨topological_vector_bundle.pretrivialization.to_fiber_bundle_pretrivialization⟩ | |
namespace topological_vector_bundle.pretrivialization | |
open topological_vector_bundle | |
variables {R F E} (e : pretrivialization R F E) {x : total_space E} {b : B} {y : E b} | |
protected lemma linear (hb : b ∈ e.base_set) : | |
is_linear_map R (λ y : E b, (e (total_space_mk b y)).2) := | |
e.linear' b hb | |
@[simp, mfld_simps] lemma coe_coe : ⇑e.to_local_equiv = e := rfl | |
@[simp, mfld_simps] lemma coe_fst (ex : x ∈ e.source) : (e x).1 = x.proj := e.proj_to_fun x ex | |
lemma mem_source : x ∈ e.source ↔ x.proj ∈ e.base_set := by rw [e.source_eq, mem_preimage] | |
lemma coe_mem_source : ↑y ∈ e.source ↔ b ∈ e.base_set := e.mem_source | |
lemma coe_fst' (ex : x.proj ∈ e.base_set) : (e x).1 = x.proj := | |
e.coe_fst (e.mem_source.2 ex) | |
protected lemma eq_on : eq_on (prod.fst ∘ e) total_space.proj e.source := λ x hx, e.coe_fst hx | |
lemma mk_proj_snd (ex : x ∈ e.source) : (x.proj, (e x).2) = e x := | |
prod.ext (e.coe_fst ex).symm rfl | |
@[simp, mfld_simps] lemma coe_coe_fst (hb : b ∈ e.base_set) : (e y).1 = b := | |
e.coe_fst (e.mem_source.2 hb) | |
lemma mk_proj_snd' (ex : x.proj ∈ e.base_set) : (x.proj, (e x).2) = e x := | |
prod.ext (e.coe_fst' ex).symm rfl | |
lemma mem_target {x : B × F} : x ∈ e.target ↔ x.1 ∈ e.base_set := | |
e.to_fiber_bundle_pretrivialization.mem_target | |
lemma mk_mem_target {x : B} {y : F} : (x, y) ∈ e.target ↔ x ∈ e.base_set := | |
e.mem_target | |
lemma proj_symm_apply {x : B × F} (hx : x ∈ e.target) : (e.to_local_equiv.symm x).proj = x.1 := | |
e.to_fiber_bundle_pretrivialization.proj_symm_apply hx | |
lemma proj_symm_apply' {b : B} {x : F} (hx : b ∈ e.base_set) : | |
(e.to_local_equiv.symm (b, x)).proj = b := | |
e.proj_symm_apply (e.mem_target.2 hx) | |
lemma apply_symm_apply {x : B × F} (hx : x ∈ e.target) : e (e.to_local_equiv.symm x) = x := | |
e.to_local_equiv.right_inv hx | |
lemma symm_apply_apply {x : total_space E} (hx : x ∈ e.source) : e.to_local_equiv.symm (e x) = x := | |
e.to_local_equiv.left_inv hx | |
lemma apply_symm_apply' {b : B} {x : F} (hx : b ∈ e.base_set) : | |
e (e.to_local_equiv.symm (b, x)) = (b, x) := | |
e.apply_symm_apply (e.mem_target.2 hx) | |
@[simp, mfld_simps] lemma symm_apply_mk_proj (ex : x ∈ e.source) : | |
e.to_local_equiv.symm (x.proj, (e x).2) = x := | |
by rw [← e.coe_fst ex, prod.mk.eta, ← e.coe_coe, e.to_local_equiv.left_inv ex] | |
@[simp, mfld_simps] lemma preimage_symm_proj_base_set : | |
(e.to_local_equiv.symm ⁻¹' (total_space.proj ⁻¹' e.base_set)) ∩ e.target = e.target := | |
e.to_fiber_bundle_pretrivialization.preimage_symm_proj_base_set | |
lemma symm_coe_proj {x : B} {y : F} (e : pretrivialization R F E) (h : x ∈ e.base_set) : | |
(e.to_local_equiv.symm (x, y)).1 = x := | |
e.proj_symm_apply' h | |
/-- A fiberwise inverse to `e`. This is the function `F → E b` that induces a local inverse | |
`B × F → total_space E` of `e` on `e.base_set`. It is defined to be `0` outside `e.base_set`. -/ | |
protected def symm (e : pretrivialization R F E) (b : B) (y : F) : E b := | |
if hb : b ∈ e.base_set | |
then cast (congr_arg E (e.proj_symm_apply' hb)) (e.to_local_equiv.symm (b, y)).2 | |
else 0 | |
lemma symm_apply (e : pretrivialization R F E) {b : B} (hb : b ∈ e.base_set) (y : F) : | |
e.symm b y = cast (congr_arg E (e.symm_coe_proj hb)) (e.to_local_equiv.symm (b, y)).2 := | |
dif_pos hb | |
lemma symm_apply_of_not_mem (e : pretrivialization R F E) {b : B} (hb : b ∉ e.base_set) (y : F) : | |
e.symm b y = 0 := | |
dif_neg hb | |
lemma coe_symm_of_not_mem (e : pretrivialization R F E) {b : B} (hb : b ∉ e.base_set) : | |
(e.symm b : F → E b) = 0 := | |
funext $ λ y, dif_neg hb | |
lemma mk_symm (e : pretrivialization R F E) {b : B} (hb : b ∈ e.base_set) (y : F) : | |
total_space_mk b (e.symm b y) = e.to_local_equiv.symm (b, y) := | |
by rw [e.symm_apply hb, total_space.mk_cast, total_space.eta] | |
lemma symm_proj_apply (e : pretrivialization R F E) (z : total_space E) | |
(hz : z.proj ∈ e.base_set) : e.symm z.proj (e z).2 = z.2 := | |
by rw [e.symm_apply hz, cast_eq_iff_heq, e.mk_proj_snd' hz, | |
e.symm_apply_apply (e.mem_source.mpr hz)] | |
lemma symm_apply_apply_mk (e : pretrivialization R F E) {b : B} (hb : b ∈ e.base_set) (y : E b) : | |
e.symm b (e (total_space_mk b y)).2 = y := | |
e.symm_proj_apply (total_space_mk b y) hb | |
lemma apply_mk_symm (e : pretrivialization R F E) {b : B} (hb : b ∈ e.base_set) (y : F) : | |
e (total_space_mk b (e.symm b y)) = (b, y) := | |
by rw [e.mk_symm hb, e.apply_symm_apply (e.mk_mem_target.mpr hb)] | |
/-- A fiberwise linear inverse to `e`. -/ | |
@[simps] protected def symmₗ (e : pretrivialization R F E) (b : B) : F →ₗ[R] E b := | |
begin | |
refine is_linear_map.mk' (e.symm b) _, | |
by_cases hb : b ∈ e.base_set, | |
{ exact (((e.linear hb).mk' _).inverse (e.symm b) (e.symm_apply_apply_mk hb) | |
(λ v, congr_arg prod.snd $ e.apply_mk_symm hb v)).is_linear }, | |
{ rw [e.coe_symm_of_not_mem hb], exact (0 : F →ₗ[R] E b).is_linear } | |
end | |
/-- A pretrivialization for a topological vector bundle defines linear equivalences between the | |
fibers and the model space. -/ | |
@[simps {fully_applied := ff}] def linear_equiv_at (e : pretrivialization R F E) (b : B) | |
(hb : b ∈ e.base_set) : | |
E b ≃ₗ[R] F := | |
{ to_fun := λ y, (e (total_space_mk b y)).2, | |
inv_fun := e.symm b, | |
left_inv := e.symm_apply_apply_mk hb, | |
right_inv := λ v, by simp_rw [e.apply_mk_symm hb v], | |
map_add' := λ v w, (e.linear hb).map_add v w, | |
map_smul' := λ c v, (e.linear hb).map_smul c v } | |
/-- A fiberwise linear map equal to `e` on `e.base_set`. -/ | |
protected def linear_map_at (e : pretrivialization R F E) (b : B) : E b →ₗ[R] F := | |
if hb : b ∈ e.base_set then e.linear_equiv_at b hb else 0 | |
lemma coe_linear_map_at (e : pretrivialization R F E) (b : B) : | |
⇑(e.linear_map_at b) = λ y, if b ∈ e.base_set then (e (total_space_mk b y)).2 else 0 := | |
by { rw [pretrivialization.linear_map_at], split_ifs; refl } | |
lemma coe_linear_map_at_of_mem (e : pretrivialization R F E) {b : B} (hb : b ∈ e.base_set) : | |
⇑(e.linear_map_at b) = λ y, (e (total_space_mk b y)).2 := | |
by simp_rw [coe_linear_map_at, if_pos hb] | |
lemma linear_map_at_apply (e : pretrivialization R F E) {b : B} (y : E b) : | |
e.linear_map_at b y = if b ∈ e.base_set then (e (total_space_mk b y)).2 else 0 := | |
by rw [coe_linear_map_at] | |
lemma linear_map_at_def_of_mem (e : pretrivialization R F E) {b : B} (hb : b ∈ e.base_set) : | |
e.linear_map_at b = e.linear_equiv_at b hb := | |
dif_pos hb | |
lemma linear_map_at_def_of_not_mem (e : pretrivialization R F E) {b : B} (hb : b ∉ e.base_set) : | |
e.linear_map_at b = 0 := | |
dif_neg hb | |
lemma linear_map_at_eq_zero (e : pretrivialization R F E) {b : B} (hb : b ∉ e.base_set) : | |
e.linear_map_at b = 0 := | |
dif_neg hb | |
lemma symmₗ_linear_map_at (e : pretrivialization R F E) {b : B} (hb : b ∈ e.base_set) (y : E b) : | |
e.symmₗ b (e.linear_map_at b y) = y := | |
by { rw [e.linear_map_at_def_of_mem hb], exact (e.linear_equiv_at b hb).left_inv y } | |
lemma linear_map_at_symmₗ (e : pretrivialization R F E) {b : B} (hb : b ∈ e.base_set) (y : F) : | |
e.linear_map_at b (e.symmₗ b y) = y := | |
by { rw [e.linear_map_at_def_of_mem hb], exact (e.linear_equiv_at b hb).right_inv y } | |
end topological_vector_bundle.pretrivialization | |
variable [topological_space (total_space E)] | |
/-- | |
A structure extending local homeomorphisms, defining a local trivialization of the projection | |
`proj : total_space E → B` with fiber `F`, as a local homeomorphism between `total_space E` | |
and `B × F` defined between two sets of the form `proj ⁻¹' base_set` and `base_set × F`, | |
acting trivially on the first coordinate and linear in the fibers. | |
-/ | |
@[ext, nolint has_nonempty_instance] | |
structure topological_vector_bundle.trivialization extends to_fiber_bundle_trivialization : | |
topological_fiber_bundle.trivialization F (@total_space.proj B E) := | |
(linear' : ∀ x ∈ base_set, is_linear_map R (λ y : E x, (to_fun (total_space_mk x y)).2)) | |
open topological_vector_bundle | |
instance : has_coe_to_fun (trivialization R F E) (λ _, total_space E → B × F) := ⟨λ e, e.to_fun⟩ | |
instance : has_coe (trivialization R F E) | |
(topological_fiber_bundle.trivialization F (@total_space.proj B E)) := | |
⟨topological_vector_bundle.trivialization.to_fiber_bundle_trivialization⟩ | |
namespace topological_vector_bundle.trivialization | |
variables {R F E} (e : trivialization R F E) {x : total_space E} {b : B} {y : E b} | |
/-- Natural identification as `topological_vector_bundle.pretrivialization`. -/ | |
def to_pretrivialization (e : trivialization R F E) : | |
topological_vector_bundle.pretrivialization R F E := { ..e } | |
protected lemma linear (hb : b ∈ e.base_set) : | |
is_linear_map R (λ y : E b, (e (total_space_mk b y)).2) := | |
e.linear' b hb | |
protected lemma continuous_on : continuous_on e e.source := e.continuous_to_fun | |
lemma to_pretrivialization_injective : | |
function.injective (λ e : trivialization R F E, e.to_pretrivialization) := | |
by { intros e e', rw [pretrivialization.ext_iff, trivialization.ext_iff, | |
← topological_fiber_bundle.trivialization.to_pretrivialization_injective.eq_iff], exact id } | |
@[simp, mfld_simps] lemma coe_coe : ⇑e.to_local_homeomorph = e := rfl | |
@[simp, mfld_simps] lemma coe_fst (ex : x ∈ e.source) : (e x).1 = x.proj := e.proj_to_fun x ex | |
lemma mem_source : x ∈ e.source ↔ x.proj ∈ e.base_set := by rw [e.source_eq, mem_preimage] | |
lemma coe_mem_source : ↑y ∈ e.source ↔ b ∈ e.base_set := e.mem_source | |
lemma coe_fst' (ex : x.proj ∈ e.base_set) : (e x).1 = x.proj := | |
e.coe_fst (e.mem_source.2 ex) | |
protected lemma eq_on : eq_on (prod.fst ∘ e) total_space.proj e.source := λ x hx, e.coe_fst hx | |
lemma mk_proj_snd (ex : x ∈ e.source) : (x.proj, (e x).2) = e x := | |
prod.ext (e.coe_fst ex).symm rfl | |
lemma mk_proj_snd' (ex : x.proj ∈ e.base_set) : (x.proj, (e x).2) = e x := | |
prod.ext (e.coe_fst' ex).symm rfl | |
lemma open_target : is_open e.target := | |
by { rw e.target_eq, exact e.open_base_set.prod is_open_univ } | |
@[simp, mfld_simps] lemma coe_coe_fst (hb : b ∈ e.base_set) : (e y).1 = b := | |
e.coe_fst (e.mem_source.2 hb) | |
lemma source_inter_preimage_target_inter (s : set (B × F)) : | |
e.source ∩ (e ⁻¹' (e.target ∩ s)) = e.source ∩ (e ⁻¹' s) := | |
e.to_local_homeomorph.source_inter_preimage_target_inter s | |
lemma mem_target {x : B × F} : x ∈ e.target ↔ x.1 ∈ e.base_set := | |
e.to_pretrivialization.mem_target | |
lemma mk_mem_target {y : F} : (b, y) ∈ e.target ↔ b ∈ e.base_set := | |
e.to_pretrivialization.mem_target | |
lemma map_target {x : B × F} (hx : x ∈ e.target) : e.to_local_homeomorph.symm x ∈ e.source := | |
e.to_local_homeomorph.map_target hx | |
lemma proj_symm_apply {x : B × F} (hx : x ∈ e.target) : | |
(e.to_local_homeomorph.symm x).proj = x.1 := | |
e.to_pretrivialization.proj_symm_apply hx | |
lemma proj_symm_apply' {b : B} {x : F} (hx : b ∈ e.base_set) : | |
(e.to_local_homeomorph.symm (b, x)).proj = b := | |
e.to_pretrivialization.proj_symm_apply' hx | |
lemma apply_symm_apply {x : B × F} (hx : x ∈ e.target) : e (e.to_local_homeomorph.symm x) = x := | |
e.to_local_homeomorph.right_inv hx | |
lemma apply_symm_apply' {b : B} {x : F} (hx : b ∈ e.base_set) : | |
e (e.to_local_homeomorph.symm (b, x)) = (b, x) := | |
e.to_pretrivialization.apply_symm_apply' hx | |
lemma symm_apply_apply {x : total_space E} (hx : x ∈ e.source) : | |
e.to_local_homeomorph.symm (e x) = x := | |
e.to_local_equiv.left_inv hx | |
@[simp, mfld_simps] lemma symm_coe_proj {x : B} {y : F} | |
(e : trivialization R F E) (h : x ∈ e.base_set) : | |
(e.to_local_homeomorph.symm (x, y)).1 = x := e.proj_symm_apply' h | |
/-- A fiberwise inverse to `e`. The function `F → E x` that induces a local inverse | |
`B × F → total_space E` of `e` on `e.base_set`. It is defined to be `0` outside `e.base_set`. -/ | |
protected def symm (e : trivialization R F E) (b : B) (y : F) : E b := | |
e.to_pretrivialization.symm b y | |
lemma symm_apply (e : trivialization R F E) {b : B} (hb : b ∈ e.base_set) (y : F) : | |
e.symm b y = cast (congr_arg E (e.symm_coe_proj hb)) (e.to_local_homeomorph.symm (b, y)).2 := | |
dif_pos hb | |
lemma symm_apply_of_not_mem (e : trivialization R F E) {b : B} (hb : b ∉ e.base_set) (y : F) : | |
e.symm b y = 0 := | |
dif_neg hb | |
lemma mk_symm (e : trivialization R F E) {b : B} (hb : b ∈ e.base_set) (y : F) : | |
total_space_mk b (e.symm b y) = e.to_local_homeomorph.symm (b, y) := | |
e.to_pretrivialization.mk_symm hb y | |
lemma symm_proj_apply (e : trivialization R F E) (z : total_space E) | |
(hz : z.proj ∈ e.base_set) : e.symm z.proj (e z).2 = z.2 := | |
e.to_pretrivialization.symm_proj_apply z hz | |
lemma symm_apply_apply_mk (e : trivialization R F E) {b : B} (hb : b ∈ e.base_set) (y : E b) : | |
e.symm b (e (total_space_mk b y)).2 = y := | |
e.symm_proj_apply (total_space_mk b y) hb | |
lemma apply_mk_symm (e : trivialization R F E) {b : B} (hb : b ∈ e.base_set) (y : F) : | |
e (total_space_mk b (e.symm b y)) = (b, y) := | |
e.to_pretrivialization.apply_mk_symm hb y | |
lemma continuous_on_symm (e : trivialization R F E) : | |
continuous_on (λ z : B × F, total_space_mk z.1 (e.symm z.1 z.2)) (e.base_set ×ˢ univ) := | |
begin | |
have : ∀ (z : B × F) (hz : z ∈ e.base_set ×ˢ (univ : set F)), | |
total_space_mk z.1 (e.symm z.1 z.2) = e.to_local_homeomorph.symm z, | |
{ rintro x ⟨hx : x.1 ∈ e.base_set, _⟩, simp_rw [e.mk_symm hx, prod.mk.eta] }, | |
refine continuous_on.congr _ this, | |
rw [← e.target_eq], | |
exact e.to_local_homeomorph.continuous_on_symm | |
end | |
/-- A trivialization for a topological vector bundle defines linear equivalences between the | |
fibers and the model space. -/ | |
def linear_equiv_at (e : trivialization R F E) (b : B) (hb : b ∈ e.base_set) : | |
E b ≃ₗ[R] F := | |
e.to_pretrivialization.linear_equiv_at b hb | |
@[simp] | |
lemma linear_equiv_at_apply (e : trivialization R F E) (b : B) (hb : b ∈ e.base_set) (v : E b) : | |
e.linear_equiv_at b hb v = (e (total_space_mk b v)).2 := rfl | |
@[simp] | |
lemma linear_equiv_at_symm_apply (e : trivialization R F E) (b : B) (hb : b ∈ e.base_set) (v : F) : | |
(e.linear_equiv_at b hb).symm v = e.symm b v := rfl | |
/-- A fiberwise linear inverse to `e`. -/ | |
protected def symmₗ (e : trivialization R F E) (b : B) : F →ₗ[R] E b := | |
e.to_pretrivialization.symmₗ b | |
lemma coe_symmₗ (e : trivialization R F E) (b : B) : ⇑(e.symmₗ b) = e.symm b := | |
rfl | |
/-- A fiberwise linear map equal to `e` on `e.base_set`. -/ | |
protected def linear_map_at (e : trivialization R F E) (b : B) : E b →ₗ[R] F := | |
e.to_pretrivialization.linear_map_at b | |
lemma coe_linear_map_at (e : trivialization R F E) (b : B) : | |
⇑(e.linear_map_at b) = λ y, if b ∈ e.base_set then (e (total_space_mk b y)).2 else 0 := | |
e.to_pretrivialization.coe_linear_map_at b | |
lemma coe_linear_map_at_of_mem (e : trivialization R F E) {b : B} (hb : b ∈ e.base_set) : | |
⇑(e.linear_map_at b) = λ y, (e (total_space_mk b y)).2 := | |
by simp_rw [coe_linear_map_at, if_pos hb] | |
lemma linear_map_at_apply (e : trivialization R F E) {b : B} (y : E b) : | |
e.linear_map_at b y = if b ∈ e.base_set then (e (total_space_mk b y)).2 else 0 := | |
by rw [coe_linear_map_at] | |
lemma linear_map_at_def_of_mem (e : trivialization R F E) {b : B} (hb : b ∈ e.base_set) : | |
e.linear_map_at b = e.linear_equiv_at b hb := | |
dif_pos hb | |
lemma linear_map_at_def_of_not_mem (e : trivialization R F E) {b : B} (hb : b ∉ e.base_set) : | |
e.linear_map_at b = 0 := | |
dif_neg hb | |
lemma symmₗ_linear_map_at (e : trivialization R F E) {b : B} (hb : b ∈ e.base_set) (y : E b) : | |
e.symmₗ b (e.linear_map_at b y) = y := | |
e.to_pretrivialization.symmₗ_linear_map_at hb y | |
lemma linear_map_at_symmₗ (e : trivialization R F E) {b : B} (hb : b ∈ e.base_set) (y : F) : | |
e.linear_map_at b (e.symmₗ b y) = y := | |
e.to_pretrivialization.linear_map_at_symmₗ hb y | |
/-- A coordinate change function between two trivializations, as a continuous linear equivalence. | |
Defined to be the identity when `b` does not lie in the base set of both trivializations. -/ | |
def coord_change (e e' : trivialization R F E) (b : B) : F ≃L[R] F := | |
{ continuous_to_fun := begin | |
by_cases hb : b ∈ e.base_set ∩ e'.base_set, | |
{ simp_rw [dif_pos hb], | |
refine (e'.continuous_on.comp_continuous _ _).snd, | |
exact e.continuous_on_symm.comp_continuous (continuous.prod.mk b) | |
(λ y, mk_mem_prod hb.1 (mem_univ y)), | |
exact (λ y, e'.mem_source.mpr hb.2) }, | |
{ rw [dif_neg hb], exact continuous_id } | |
end, | |
continuous_inv_fun := begin | |
by_cases hb : b ∈ e.base_set ∩ e'.base_set, | |
{ simp_rw [dif_pos hb], | |
refine (e.continuous_on.comp_continuous _ _).snd, | |
exact e'.continuous_on_symm.comp_continuous (continuous.prod.mk b) | |
(λ y, mk_mem_prod hb.2 (mem_univ y)), | |
exact (λ y, e.mem_source.mpr hb.1) }, | |
{ rw [dif_neg hb], exact continuous_id } | |
end, | |
.. if hb : b ∈ e.base_set ∩ e'.base_set then | |
(e.linear_equiv_at b (hb.1 : _)).symm.trans (e'.linear_equiv_at b hb.2) | |
else linear_equiv.refl R F } | |
lemma coe_coord_change (e e' : trivialization R F E) {b : B} | |
(hb : b ∈ e.base_set ∩ e'.base_set) : | |
⇑(coord_change e e' b) = (e.linear_equiv_at b hb.1).symm.trans (e'.linear_equiv_at b hb.2) := | |
congr_arg linear_equiv.to_fun (dif_pos hb) | |
lemma coord_change_apply (e e' : trivialization R F E) {b : B} | |
(hb : b ∈ e.base_set ∩ e'.base_set) (y : F) : | |
coord_change e e' b y = (e' (total_space_mk b (e.symm b y))).2 := | |
congr_arg (λ f, linear_equiv.to_fun f y) (dif_pos hb) | |
lemma mk_coord_change (e e' : trivialization R F E) {b : B} | |
(hb : b ∈ e.base_set ∩ e'.base_set) (y : F) : | |
(b, coord_change e e' b y) = e' (total_space_mk b (e.symm b y)) := | |
begin | |
ext, | |
{ rw [e.mk_symm hb.1 y, e'.coe_fst', e.proj_symm_apply' hb.1], | |
rw [e.proj_symm_apply' hb.1], exact hb.2 }, | |
{ exact e.coord_change_apply e' hb y } | |
end | |
/-- A version of `coord_change_apply` that fully unfolds `coord_change`. The right-hand side is | |
ugly, but has good definitional properties for specifically defined trivializations. -/ | |
lemma coord_change_apply' (e e' : trivialization R F E) {b : B} | |
(hb : b ∈ e.base_set ∩ e'.base_set) (y : F) : | |
coord_change e e' b y = (e' (e.to_local_homeomorph.symm (b, y))).2 := | |
by rw [e.coord_change_apply e' hb, e.mk_symm hb.1] | |
lemma coord_change_symm_apply (e e' : trivialization R F E) {b : B} | |
(hb : b ∈ e.base_set ∩ e'.base_set) : | |
⇑(coord_change e e' b).symm = (e'.linear_equiv_at b hb.2).symm.trans (e.linear_equiv_at b hb.1) := | |
congr_arg linear_equiv.inv_fun (dif_pos hb) | |
end topological_vector_bundle.trivialization | |
end topological_vector_space | |
section | |
open topological_vector_bundle | |
variables (B) | |
variables [nontrivially_normed_field R] [∀ x, add_comm_monoid (E x)] [∀ x, module R (E x)] | |
[normed_add_comm_group F] [normed_space R F] [topological_space B] | |
[topological_space (total_space E)] [∀ x, topological_space (E x)] | |
/-- The valid transition functions for a topological vector bundle over `B` modelled on | |
a normed space `F`: a transition function must be a local homeomorphism of `B × F` with source and | |
target both `s ×ˢ univ`, which on this set is of the form `λ (b, v), (b, ε b v)` for some continuous | |
map `ε` from `s` to `F ≃L[R] F`. Here continuity is with respect to the operator norm on | |
`F →L[R] F`. -/ | |
def continuous_transitions (e : local_equiv (B × F) (B × F)) : Prop := | |
∃ s : set B, e.source = s ×ˢ univ ∧ e.target = s ×ˢ univ | |
∧ ∃ ε : B → (F ≃L[R] F), continuous_on (λ b, (ε b : F →L[R] F)) s | |
∧ ∀ b ∈ s, ∀ v : F, e (b, v) = (b, ε b v) | |
variables {B} | |
/-- The space `total_space E` (for `E : B → Type*` such that each `E x` is a topological vector | |
space) has a topological vector space structure with fiber `F` (denoted with | |
`topological_vector_bundle R F E`) if around every point there is a fiber bundle trivialization | |
which is linear in the fibers. -/ | |
class topological_vector_bundle := | |
(total_space_mk_inducing [] : ∀ (b : B), inducing (@total_space_mk B E b)) | |
(trivialization_atlas [] : set (trivialization R F E)) | |
(trivialization_at [] : B → trivialization R F E) | |
(mem_base_set_trivialization_at [] : ∀ b : B, b ∈ (trivialization_at b).base_set) | |
(trivialization_mem_atlas [] : ∀ b : B, trivialization_at b ∈ trivialization_atlas) | |
(continuous_on_coord_change [] : ∀ (e e' ∈ trivialization_atlas), continuous_on | |
(λ b, trivialization.coord_change e e' b : B → F →L[R] F) (e.base_set ∩ e'.base_set)) | |
export topological_vector_bundle (trivialization_atlas trivialization_at | |
mem_base_set_trivialization_at trivialization_mem_atlas continuous_on_coord_change) | |
variables {R F E} [topological_vector_bundle R F E] | |
namespace topological_vector_bundle | |
namespace trivialization | |
/-- Forward map of `continuous_linear_equiv_at` (only propositionally equal), | |
defined everywhere (`0` outside domain). -/ | |
@[simps apply {fully_applied := ff}] | |
def continuous_linear_map_at (e : trivialization R F E) (b : B) : | |
E b →L[R] F := | |
{ to_fun := e.linear_map_at b, -- given explicitly to help `simps` | |
cont := begin | |
dsimp, | |
rw [e.coe_linear_map_at b], | |
refine continuous_if_const _ (λ hb, _) (λ _, continuous_zero), | |
exact continuous_snd.comp (e.to_local_homeomorph.continuous_on.comp_continuous | |
(total_space_mk_inducing R F E b).continuous (λ x, e.mem_source.mpr hb)) | |
end, | |
.. e.linear_map_at b } | |
/-- Backwards map of `continuous_linear_equiv_at`, defined everywhere. -/ | |
@[simps apply {fully_applied := ff}] | |
def symmL (e : trivialization R F E) (b : B) : F →L[R] E b := | |
{ to_fun := e.symm b, -- given explicitly to help `simps` | |
cont := begin | |
by_cases hb : b ∈ e.base_set, | |
{ rw (topological_vector_bundle.total_space_mk_inducing R F E b).continuous_iff, | |
exact e.continuous_on_symm.comp_continuous (continuous_const.prod_mk continuous_id) | |
(λ x, mk_mem_prod hb (mem_univ x)) }, | |
{ refine continuous_zero.congr (λ x, (e.symm_apply_of_not_mem hb x).symm) }, | |
end, | |
.. e.symmₗ b } | |
lemma symmL_continuous_linear_map_at (e : trivialization R F E) {b : B} (hb : b ∈ e.base_set) | |
(y : E b) : | |
e.symmL b (e.continuous_linear_map_at b y) = y := | |
e.symmₗ_linear_map_at hb y | |
lemma continuous_linear_map_at_symmL (e : trivialization R F E) {b : B} (hb : b ∈ e.base_set) | |
(y : F) : | |
e.continuous_linear_map_at b (e.symmL b y) = y := | |
e.linear_map_at_symmₗ hb y | |
/-- In a topological vector bundle, a trivialization in the fiber (which is a priori only linear) | |
is in fact a continuous linear equiv between the fibers and the model fiber. -/ | |
@[simps apply symm_apply {fully_applied := ff}] | |
def continuous_linear_equiv_at (e : trivialization R F E) (b : B) | |
(hb : b ∈ e.base_set) : E b ≃L[R] F := | |
{ to_fun := λ y, (e (total_space_mk b y)).2, -- given explicitly to help `simps` | |
inv_fun := e.symm b, -- given explicitly to help `simps` | |
continuous_to_fun := continuous_snd.comp (e.to_local_homeomorph.continuous_on.comp_continuous | |
(total_space_mk_inducing R F E b).continuous (λ x, e.mem_source.mpr hb)), | |
continuous_inv_fun := (e.symmL b).continuous, | |
.. e.to_pretrivialization.linear_equiv_at b hb } | |
lemma coe_continuous_linear_equiv_at_eq (e : trivialization R F E) {b : B} (hb : b ∈ e.base_set) : | |
(e.continuous_linear_equiv_at b hb : E b → F) = e.continuous_linear_map_at b := | |
(e.coe_linear_map_at_of_mem hb).symm | |
lemma symm_continuous_linear_equiv_at_eq (e : trivialization R F E) {b : B} (hb : b ∈ e.base_set) : | |
((e.continuous_linear_equiv_at b hb).symm : F → E b) = e.symmL b := | |
rfl | |
@[simp] lemma continuous_linear_equiv_at_apply' (e : trivialization R F E) | |
(x : total_space E) (hx : x ∈ e.source) : | |
e.continuous_linear_equiv_at x.proj (e.mem_source.1 hx) x.2 = (e x).2 := by { cases x, refl } | |
lemma apply_eq_prod_continuous_linear_equiv_at (e : trivialization R F E) (b : B) | |
(hb : b ∈ e.base_set) (z : E b) : | |
e.to_local_homeomorph ⟨b, z⟩ = (b, e.continuous_linear_equiv_at b hb z) := | |
begin | |
ext, | |
{ refine e.coe_fst _, | |
rw e.source_eq, | |
exact hb }, | |
{ simp only [coe_coe, continuous_linear_equiv_at_apply] } | |
end | |
lemma symm_apply_eq_mk_continuous_linear_equiv_at_symm (e : trivialization R F E) (b : B) | |
(hb : b ∈ e.base_set) (z : F) : | |
e.to_local_homeomorph.symm ⟨b, z⟩ | |
= total_space_mk b ((e.continuous_linear_equiv_at b hb).symm z) := | |
begin | |
have h : (b, z) ∈ e.to_local_homeomorph.target, | |
{ rw e.target_eq, | |
exact ⟨hb, mem_univ _⟩ }, | |
apply e.to_local_homeomorph.inj_on (e.to_local_homeomorph.map_target h), | |
{ simp only [e.source_eq, hb, mem_preimage]}, | |
simp_rw [e.apply_eq_prod_continuous_linear_equiv_at b hb, e.to_local_homeomorph.right_inv h, | |
continuous_linear_equiv.apply_symm_apply], | |
end | |
lemma comp_continuous_linear_equiv_at_eq_coord_change (e e' : trivialization R F E) {b : B} | |
(hb : b ∈ e.1.base_set ∩ e'.1.base_set) : | |
(e.continuous_linear_equiv_at b hb.1).symm.trans (e'.continuous_linear_equiv_at b hb.2) | |
= coord_change e e' b := | |
by { ext v, rw [coord_change_apply e e' hb], refl } | |
end trivialization | |
section | |
instance {B : Type*} {F : Type*} [add_comm_monoid F] (b : B) : | |
add_comm_monoid (bundle.trivial B F b) := ‹add_comm_monoid F› | |
instance {B : Type*} {F : Type*} [add_comm_group F] (b : B) : | |
add_comm_group (bundle.trivial B F b) := ‹add_comm_group F› | |
instance {B : Type*} {F : Type*} [add_comm_monoid F] [module R F] (b : B) : | |
module R (bundle.trivial B F b) := ‹module R F› | |
end | |
namespace trivial_topological_vector_bundle | |
variables (R B F) | |
/-- Local trivialization for trivial bundle. -/ | |
def trivialization : trivialization R F (bundle.trivial B F) := | |
{ to_fun := λ x, (x.fst, x.snd), | |
inv_fun := λ y, ⟨y.fst, y.snd⟩, | |
source := univ, | |
target := univ, | |
map_source' := λ x h, mem_univ (x.fst, x.snd), | |
map_target' := λ y h, mem_univ ⟨y.fst, y.snd⟩, | |
left_inv' := λ x h, sigma.eq rfl rfl, | |
right_inv' := λ x h, prod.ext rfl rfl, | |
open_source := is_open_univ, | |
open_target := is_open_univ, | |
continuous_to_fun := by { rw [←continuous_iff_continuous_on_univ, continuous_iff_le_induced], | |
simp only [prod.topological_space, induced_inf, induced_compose], exact le_rfl, }, | |
continuous_inv_fun := by { rw [←continuous_iff_continuous_on_univ, continuous_iff_le_induced], | |
simp only [bundle.total_space.topological_space, induced_inf, induced_compose], | |
exact le_rfl, }, | |
base_set := univ, | |
open_base_set := is_open_univ, | |
source_eq := rfl, | |
target_eq := by simp only [univ_prod_univ], | |
proj_to_fun := λ y hy, rfl, | |
linear' := λ x hx, ⟨λ y z, rfl, λ c y, rfl⟩ } | |
lemma trivialization.coord_change (b : B) : | |
(trivialization R B F).coord_change | |
(trivialization R B F) b = continuous_linear_equiv.refl R F := | |
begin | |
ext v, | |
rw [trivialization.coord_change_apply'], | |
exacts [rfl, ⟨mem_univ _, mem_univ _⟩] | |
end | |
@[simp] | |
lemma trivialization_source : (trivialization R B F).source = univ := rfl | |
@[simp] | |
lemma trivialization_target : (trivialization R B F).target = univ := rfl | |
instance topological_vector_bundle : | |
topological_vector_bundle R F (bundle.trivial B F) := | |
{ trivialization_atlas := {trivial_topological_vector_bundle.trivialization R B F}, | |
trivialization_at := λ x, trivial_topological_vector_bundle.trivialization R B F, | |
mem_base_set_trivialization_at := mem_univ, | |
trivialization_mem_atlas := λ x, mem_singleton _, | |
total_space_mk_inducing := λ b, ⟨begin | |
have : (λ (x : trivial B F b), x) = @id F, by { ext x, refl }, | |
simp only [total_space.topological_space, induced_inf, induced_compose, function.comp, | |
total_space.proj, induced_const, top_inf_eq, trivial.proj_snd, id.def, | |
trivial.topological_space, this, induced_id], | |
end⟩, | |
continuous_on_coord_change := begin | |
intros e he e' he', | |
rw [mem_singleton_iff.mp he, mem_singleton_iff.mp he'], | |
simp_rw [trivial_topological_vector_bundle.trivialization.coord_change], | |
exact continuous_const.continuous_on | |
end } | |
end trivial_topological_vector_bundle | |
/- Not registered as an instance because of a metavariable. -/ | |
lemma is_topological_vector_bundle_is_topological_fiber_bundle : | |
is_topological_fiber_bundle F (@total_space.proj B E) := | |
λ x, ⟨(trivialization_at R F E x).to_fiber_bundle_trivialization, | |
mem_base_set_trivialization_at R F E x⟩ | |
include R F | |
lemma continuous_total_space_mk (x : B) : continuous (@total_space_mk B E x) := | |
(topological_vector_bundle.total_space_mk_inducing R F E x).continuous | |
variables (R B F) | |
@[continuity] lemma continuous_proj : continuous (@total_space.proj B E) := | |
begin | |
apply @is_topological_fiber_bundle.continuous_proj B F, | |
apply @is_topological_vector_bundle_is_topological_fiber_bundle R, | |
end | |
end topological_vector_bundle | |
/-! ### Constructing topological vector bundles -/ | |
variables (R B F) | |
/-- Analogous construction of `topological_fiber_bundle_core` for vector bundles. This | |
construction gives a way to construct vector bundles from a structure registering how | |
trivialization changes act on fibers. -/ | |
structure topological_vector_bundle_core (ι : Type*) := | |
(base_set : ι → set B) | |
(is_open_base_set : ∀ i, is_open (base_set i)) | |
(index_at : B → ι) | |
(mem_base_set_at : ∀ x, x ∈ base_set (index_at x)) | |
(coord_change : ι → ι → B → (F →L[R] F)) | |
(coord_change_self : ∀ i, ∀ x ∈ base_set i, ∀ v, coord_change i i x v = v) | |
(coord_change_continuous : ∀ i j, continuous_on (coord_change i j) (base_set i ∩ base_set j)) | |
(coord_change_comp : ∀ i j k, ∀ x ∈ (base_set i) ∩ (base_set j) ∩ (base_set k), ∀ v, | |
(coord_change j k x) (coord_change i j x v) = coord_change i k x v) | |
/-- The trivial topological vector bundle core, in which all the changes of coordinates are the | |
identity. -/ | |
def trivial_topological_vector_bundle_core (ι : Type*) [inhabited ι] : | |
topological_vector_bundle_core R B F ι := | |
{ base_set := λ ι, univ, | |
is_open_base_set := λ i, is_open_univ, | |
index_at := default, | |
mem_base_set_at := λ x, mem_univ x, | |
coord_change := λ i j x, continuous_linear_map.id R F, | |
coord_change_self := λ i x hx v, rfl, | |
coord_change_comp := λ i j k x hx v, rfl, | |
coord_change_continuous := λ i j, continuous_on_const } | |
instance (ι : Type*) [inhabited ι] : inhabited (topological_vector_bundle_core R B F ι) := | |
⟨trivial_topological_vector_bundle_core R B F ι⟩ | |
namespace topological_vector_bundle_core | |
variables {R B F} {ι : Type*} (Z : topological_vector_bundle_core R B F ι) | |
/-- Natural identification to a `topological_fiber_bundle_core`. -/ | |
def to_topological_fiber_bundle_core : topological_fiber_bundle_core ι B F := | |
{ coord_change := λ i j b, Z.coord_change i j b, | |
coord_change_continuous := λ i j, is_bounded_bilinear_map_apply.continuous.comp_continuous_on | |
((Z.coord_change_continuous i j).prod_map continuous_on_id), | |
..Z } | |
instance to_topological_fiber_bundle_core_coe : has_coe (topological_vector_bundle_core R B F ι) | |
(topological_fiber_bundle_core ι B F) := ⟨to_topological_fiber_bundle_core⟩ | |
include Z | |
lemma coord_change_linear_comp (i j k : ι): ∀ x ∈ (Z.base_set i) ∩ (Z.base_set j) ∩ (Z.base_set k), | |
(Z.coord_change j k x).comp (Z.coord_change i j x) = Z.coord_change i k x := | |
λ x hx, by { ext v, exact Z.coord_change_comp i j k x hx v } | |
/-- The index set of a topological vector bundle core, as a convenience function for dot notation -/ | |
@[nolint unused_arguments has_nonempty_instance] | |
def index := ι | |
/-- The base space of a topological vector bundle core, as a convenience function for dot notation-/ | |
@[nolint unused_arguments, reducible] | |
def base := B | |
/-- The fiber of a topological vector bundle core, as a convenience function for dot notation and | |
typeclass inference -/ | |
@[nolint unused_arguments has_nonempty_instance] | |
def fiber (x : B) := F | |
instance topological_space_fiber (x : B) : topological_space (Z.fiber x) := | |
by delta_instance topological_vector_bundle_core.fiber | |
instance add_comm_monoid_fiber : ∀ (x : B), add_comm_monoid (Z.fiber x) := | |
by delta_instance topological_vector_bundle_core.fiber | |
instance module_fiber : ∀ (x : B), module R (Z.fiber x) := | |
by delta_instance topological_vector_bundle_core.fiber | |
instance add_comm_group_fiber [add_comm_group F] : ∀ (x : B), add_comm_group (Z.fiber x) := | |
by delta_instance topological_vector_bundle_core.fiber | |
/-- The projection from the total space of a topological fiber bundle core, on its base. -/ | |
@[reducible, simp, mfld_simps] def proj : total_space Z.fiber → B := total_space.proj | |
/-- The total space of the topological vector bundle, as a convenience function for dot notation. | |
It is by definition equal to `bundle.total_space Z.fiber`, a.k.a. `Σ x, Z.fiber x` but with a | |
different name for typeclass inference. -/ | |
@[nolint unused_arguments, reducible] | |
def total_space := bundle.total_space Z.fiber | |
/-- Local homeomorphism version of the trivialization change. -/ | |
def triv_change (i j : ι) : local_homeomorph (B × F) (B × F) := | |
topological_fiber_bundle_core.triv_change ↑Z i j | |
@[simp, mfld_simps] lemma mem_triv_change_source (i j : ι) (p : B × F) : | |
p ∈ (Z.triv_change i j).source ↔ p.1 ∈ Z.base_set i ∩ Z.base_set j := | |
topological_fiber_bundle_core.mem_triv_change_source ↑Z i j p | |
variable (ι) | |
/-- Topological structure on the total space of a topological bundle created from core, designed so | |
that all the local trivialization are continuous. -/ | |
instance to_topological_space : topological_space (Z.total_space) := | |
topological_fiber_bundle_core.to_topological_space ι ↑Z | |
variables {ι} (b : B) (a : F) | |
@[simp, mfld_simps] lemma coe_coord_change (i j : ι) : | |
topological_fiber_bundle_core.coord_change ↑Z i j b = Z.coord_change i j b := rfl | |
/-- Extended version of the local trivialization of a fiber bundle constructed from core, | |
registering additionally in its type that it is a local bundle trivialization. -/ | |
def local_triv (i : ι) : topological_vector_bundle.trivialization R F Z.fiber := | |
{ linear' := λ x hx, | |
{ map_add := λ v w, by simp only [continuous_linear_map.map_add] with mfld_simps, | |
map_smul := λ r v, by simp only [continuous_linear_map.map_smul] with mfld_simps}, | |
..topological_fiber_bundle_core.local_triv ↑Z i } | |
variables (i j : ι) | |
@[simp, mfld_simps] lemma mem_local_triv_source (p : Z.total_space) : | |
p ∈ (Z.local_triv i).source ↔ p.1 ∈ Z.base_set i := iff.rfl | |
@[simp, mfld_simps] lemma base_set_at : Z.base_set i = (Z.local_triv i).base_set := rfl | |
@[simp, mfld_simps] lemma local_triv_apply (p : Z.total_space) : | |
(Z.local_triv i) p = ⟨p.1, Z.coord_change (Z.index_at p.1) i p.1 p.2⟩ := rfl | |
@[simp, mfld_simps] lemma mem_local_triv_target (p : B × F) : | |
p ∈ (Z.local_triv i).target ↔ p.1 ∈ (Z.local_triv i).base_set := | |
topological_fiber_bundle_core.mem_local_triv_target Z i p | |
@[simp, mfld_simps] lemma local_triv_symm_fst (p : B × F) : | |
(Z.local_triv i).to_local_homeomorph.symm p = | |
⟨p.1, Z.coord_change i (Z.index_at p.1) p.1 p.2⟩ := rfl | |
@[simp, mfld_simps] lemma local_triv_symm_apply {b : B} (hb : b ∈ Z.base_set i) (v : F) : | |
(Z.local_triv i).symm b v = Z.coord_change i (Z.index_at b) b v := | |
by apply (Z.local_triv i).symm_apply hb v | |
@[simp, mfld_simps] lemma local_triv_coord_change_eq {b : B} (hb : b ∈ Z.base_set i ∩ Z.base_set j) | |
(v : F) : | |
(Z.local_triv i).coord_change (Z.local_triv j) b v = Z.coord_change i j b v := | |
begin | |
rw [trivialization.coord_change_apply', local_triv_symm_fst, local_triv_apply, | |
coord_change_comp], | |
exacts [⟨⟨hb.1, Z.mem_base_set_at b⟩, hb.2⟩, hb] | |
end | |
/-- Preferred local trivialization of a vector bundle constructed from core, at a given point, as | |
a bundle trivialization -/ | |
def local_triv_at (b : B) : topological_vector_bundle.trivialization R F Z.fiber := | |
Z.local_triv (Z.index_at b) | |
@[simp, mfld_simps] lemma local_triv_at_def : | |
Z.local_triv (Z.index_at b) = Z.local_triv_at b := rfl | |
@[simp, mfld_simps] lemma mem_source_at : (⟨b, a⟩ : Z.total_space) ∈ (Z.local_triv_at b).source := | |
by { rw [local_triv_at, mem_local_triv_source], exact Z.mem_base_set_at b } | |
@[simp, mfld_simps] lemma local_triv_at_apply (p : Z.total_space) : | |
((Z.local_triv_at p.1) p) = ⟨p.1, p.2⟩ := | |
topological_fiber_bundle_core.local_triv_at_apply Z p | |
@[simp, mfld_simps] lemma local_triv_at_apply_mk (b : B) (a : F) : | |
((Z.local_triv_at b) ⟨b, a⟩) = ⟨b, a⟩ := | |
Z.local_triv_at_apply _ | |
@[simp, mfld_simps] lemma mem_local_triv_at_base_set : | |
b ∈ (Z.local_triv_at b).base_set := | |
topological_fiber_bundle_core.mem_local_triv_at_base_set Z b | |
instance : topological_vector_bundle R F Z.fiber := | |
{ total_space_mk_inducing := λ b, ⟨ begin refine le_antisymm _ (λ s h, _), | |
{ rw ←continuous_iff_le_induced, | |
exact topological_fiber_bundle_core.continuous_total_space_mk ↑Z b, }, | |
{ refine is_open_induced_iff.mpr ⟨(Z.local_triv_at b).source ∩ (Z.local_triv_at b) ⁻¹' | |
((Z.local_triv_at b).base_set ×ˢ s), (continuous_on_open_iff | |
(Z.local_triv_at b).open_source).mp (Z.local_triv_at b).continuous_to_fun _ | |
((Z.local_triv_at b).open_base_set.prod h), _⟩, | |
rw [preimage_inter, ←preimage_comp, function.comp], | |
simp only [total_space_mk], | |
refine ext_iff.mpr (λ a, ⟨λ ha, _, λ ha, ⟨Z.mem_base_set_at b, _⟩⟩), | |
{ simp only [mem_prod, mem_preimage, mem_inter_eq, local_triv_at_apply_mk] at ha, | |
exact ha.2.2, }, | |
{ simp only [mem_prod, mem_preimage, mem_inter_eq, local_triv_at_apply_mk], | |
exact ⟨Z.mem_base_set_at b, ha⟩, } } end⟩, | |
trivialization_atlas := set.range Z.local_triv, | |
trivialization_at := Z.local_triv_at, | |
mem_base_set_trivialization_at := Z.mem_base_set_at, | |
trivialization_mem_atlas := λ b, ⟨Z.index_at b, rfl⟩, | |
continuous_on_coord_change := begin | |
rintros _ ⟨i, rfl⟩ _ ⟨i', rfl⟩, | |
refine (Z.coord_change_continuous i i').congr (λ b hb, _), | |
ext v, | |
simp_rw [continuous_linear_equiv.coe_coe, Z.local_triv_coord_change_eq i i' hb], | |
end } | |
/-- The projection on the base of a topological vector bundle created from core is continuous -/ | |
@[continuity] lemma continuous_proj : continuous Z.proj := | |
topological_fiber_bundle_core.continuous_proj Z | |
/-- The projection on the base of a topological vector bundle created from core is an open map -/ | |
lemma is_open_map_proj : is_open_map Z.proj := | |
topological_fiber_bundle_core.is_open_map_proj Z | |
end topological_vector_bundle_core | |
end | |
/-! ### Topological vector prebundle -/ | |
section | |
variables [nontrivially_normed_field R] [∀ x, add_comm_monoid (E x)] [∀ x, module R (E x)] | |
[normed_add_comm_group F] [normed_space R F] [topological_space B] | |
open topological_space | |
open topological_vector_bundle | |
/-- This structure permits to define a vector bundle when trivializations are given as local | |
equivalences but there is not yet a topology on the total space or the fibers. | |
The total space is hence given a topology in such a way that there is a fiber bundle structure for | |
which the local equivalences are also local homeomorphisms and hence vector bundle trivializations. | |
The topology on the fibers is induced from the one on the total space. | |
The field `exists_coord_change` is stated as an existential statement (instead of 3 separate | |
fields), since it depends on propositional information (namely `e e' ∈ pretrivialization_atlas`). | |
This makes it inconvenient to explicitly define a `coord_change` function when constructing a | |
`topological_vector_prebundle`. -/ | |
@[nolint has_nonempty_instance] | |
structure topological_vector_prebundle := | |
(pretrivialization_atlas : set (pretrivialization R F E)) | |
(pretrivialization_at : B → pretrivialization R F E) | |
(mem_base_pretrivialization_at : ∀ x : B, x ∈ (pretrivialization_at x).base_set) | |
(pretrivialization_mem_atlas : ∀ x : B, pretrivialization_at x ∈ pretrivialization_atlas) | |
(exists_coord_change : ∀ (e e' ∈ pretrivialization_atlas), ∃ f : B → F →L[R] F, | |
continuous_on f (e.base_set ∩ e'.base_set) ∧ | |
∀ (b : B) (hb : b ∈ e.base_set ∩ e'.base_set) (v : F), | |
f b v = (e' (total_space_mk b (e.symm b v))).2) | |
namespace topological_vector_prebundle | |
variables {R E F} | |
/-- A randomly chosen coordinate change on a `topological_vector_prebundle`, given by | |
the field `exists_coord_change`. -/ | |
def coord_change (a : topological_vector_prebundle R F E) | |
{e e' : pretrivialization R F E} (he : e ∈ a.pretrivialization_atlas) | |
(he' : e' ∈ a.pretrivialization_atlas) (b : B) : F →L[R] F := | |
classical.some (a.exists_coord_change e he e' he') b | |
lemma continuous_on_coord_change (a : topological_vector_prebundle R F E) | |
{e e' : pretrivialization R F E} (he : e ∈ a.pretrivialization_atlas) | |
(he' : e' ∈ a.pretrivialization_atlas) : | |
continuous_on (a.coord_change he he') (e.base_set ∩ e'.base_set) := | |
(classical.some_spec (a.exists_coord_change e he e' he')).1 | |
lemma coord_change_apply (a : topological_vector_prebundle R F E) | |
{e e' : pretrivialization R F E} (he : e ∈ a.pretrivialization_atlas) | |
(he' : e' ∈ a.pretrivialization_atlas) {b : B} (hb : b ∈ e.base_set ∩ e'.base_set) (v : F) : | |
a.coord_change he he' b v = (e' (total_space_mk b (e.symm b v))).2 := | |
(classical.some_spec (a.exists_coord_change e he e' he')).2 b hb v | |
lemma mk_coord_change (a : topological_vector_prebundle R F E) | |
{e e' : pretrivialization R F E} (he : e ∈ a.pretrivialization_atlas) | |
(he' : e' ∈ a.pretrivialization_atlas) {b : B} (hb : b ∈ e.base_set ∩ e'.base_set) (v : F) : | |
(b, a.coord_change he he' b v) = e' (total_space_mk b (e.symm b v)) := | |
begin | |
ext, | |
{ rw [e.mk_symm hb.1 v, e'.coe_fst', e.proj_symm_apply' hb.1], | |
rw [e.proj_symm_apply' hb.1], exact hb.2 }, | |
{ exact a.coord_change_apply he he' hb v } | |
end | |
/-- Natural identification of `topological_vector_prebundle` as a `topological_fiber_prebundle`. -/ | |
def to_topological_fiber_prebundle (a : topological_vector_prebundle R F E) : | |
topological_fiber_prebundle F (@total_space.proj B E) := | |
{ pretrivialization_atlas := | |
pretrivialization.to_fiber_bundle_pretrivialization '' a.pretrivialization_atlas, | |
pretrivialization_at := λ x, (a.pretrivialization_at x).to_fiber_bundle_pretrivialization, | |
pretrivialization_mem_atlas := λ x, ⟨_, a.pretrivialization_mem_atlas x, rfl⟩, | |
continuous_triv_change := begin | |
rintros _ ⟨e, he, rfl⟩ _ ⟨e', he', rfl⟩, | |
have := is_bounded_bilinear_map_apply.continuous.comp_continuous_on | |
((a.continuous_on_coord_change he' he).prod_map continuous_on_id), | |
have H : e'.to_fiber_bundle_pretrivialization.to_local_equiv.target ∩ | |
e'.to_fiber_bundle_pretrivialization.to_local_equiv.symm ⁻¹' | |
e.to_fiber_bundle_pretrivialization.to_local_equiv.source =(e'.base_set ∩ e.base_set) ×ˢ univ, | |
{ rw [e'.target_eq, e.source_eq], | |
ext ⟨b, f⟩, | |
simp only [-total_space.proj, and.congr_right_iff, e'.proj_symm_apply', iff_self, | |
implies_true_iff] with mfld_simps {contextual := tt} }, | |
rw [H], | |
refine (continuous_on_fst.prod this).congr _, | |
rintros ⟨b, f⟩ ⟨hb, -⟩, | |
dsimp only [function.comp, prod.map], | |
rw [a.mk_coord_change _ _ hb, e'.mk_symm hb.1], | |
refl, | |
end, | |
.. a } | |
/-- Topology on the total space that will make the prebundle into a bundle. -/ | |
def total_space_topology (a : topological_vector_prebundle R F E) : | |
topological_space (total_space E) := | |
a.to_topological_fiber_prebundle.total_space_topology | |
/-- Promotion from a `topologial_vector_prebundle.trivialization` to a | |
`topological_vector_bundle.trivialization`. -/ | |
def trivialization_of_mem_pretrivialization_atlas (a : topological_vector_prebundle R F E) | |
{e : topological_vector_bundle.pretrivialization R F E} (he : e ∈ a.pretrivialization_atlas) : | |
@topological_vector_bundle.trivialization R _ F E _ _ _ _ _ _ _ a.total_space_topology := | |
begin | |
letI := a.total_space_topology, | |
exact { linear' := λ b, e.linear, | |
..a.to_topological_fiber_prebundle.trivialization_of_mem_pretrivialization_atlas ⟨e, he, rfl⟩ } | |
end | |
variable (a : topological_vector_prebundle R F E) | |
lemma mem_trivialization_at_source (b : B) (x : E b) : | |
total_space_mk b x ∈ (a.pretrivialization_at b).source := | |
begin | |
simp only [(a.pretrivialization_at b).source_eq, mem_preimage, total_space.proj], | |
exact a.mem_base_pretrivialization_at b, | |
end | |
@[simp] lemma total_space_mk_preimage_source (b : B) : | |
(total_space_mk b) ⁻¹' (a.pretrivialization_at b).source = univ := | |
begin | |
apply eq_univ_of_univ_subset, | |
rw [(a.pretrivialization_at b).source_eq, ←preimage_comp, function.comp], | |
simp only [total_space.proj], | |
rw preimage_const_of_mem _, | |
exact a.mem_base_pretrivialization_at b, | |
end | |
/-- Topology on the fibers `E b` induced by the map `E b → E.total_space`. -/ | |
def fiber_topology (b : B) : topological_space (E b) := | |
topological_space.induced (total_space_mk b) a.total_space_topology | |
@[continuity] lemma inducing_total_space_mk (b : B) : | |
@inducing _ _ (a.fiber_topology b) a.total_space_topology (total_space_mk b) := | |
by { letI := a.total_space_topology, letI := a.fiber_topology b, exact ⟨rfl⟩ } | |
@[continuity] lemma continuous_total_space_mk (b : B) : | |
@continuous _ _ (a.fiber_topology b) a.total_space_topology (total_space_mk b) := | |
begin | |
letI := a.total_space_topology, letI := a.fiber_topology b, | |
exact (a.inducing_total_space_mk b).continuous | |
end | |
/-- Make a `topological_vector_bundle` from a `topological_vector_prebundle`. Concretely this means | |
that, given a `topological_vector_prebundle` structure for a sigma-type `E` -- which consists of a | |
number of "pretrivializations" identifying parts of `E` with product spaces `U × F` -- one | |
establishes that for the topology constructed on the sigma-type using | |
`topological_vector_prebundle.total_space_topology`, these "pretrivializations" are actually | |
"trivializations" (i.e., homeomorphisms with respect to the constructed topology). -/ | |
def to_topological_vector_bundle : | |
@topological_vector_bundle R _ F E _ _ _ _ _ _ a.total_space_topology a.fiber_topology := | |
{ total_space_mk_inducing := a.inducing_total_space_mk, | |
trivialization_atlas := {e | ∃ e₀ (he₀ : e₀ ∈ a.pretrivialization_atlas), | |
e = a.trivialization_of_mem_pretrivialization_atlas he₀}, | |
trivialization_at := λ x, a.trivialization_of_mem_pretrivialization_atlas | |
(a.pretrivialization_mem_atlas x), | |
mem_base_set_trivialization_at := a.mem_base_pretrivialization_at, | |
trivialization_mem_atlas := λ x, ⟨_, a.pretrivialization_mem_atlas x, rfl⟩, | |
continuous_on_coord_change := begin | |
rintros _ ⟨e, he, rfl⟩ _ ⟨e', he', rfl⟩, | |
refine (a.continuous_on_coord_change he he').congr _, | |
intros b hb, | |
ext v, | |
rw [a.coord_change_apply he he' hb v, continuous_linear_equiv.coe_coe, | |
trivialization.coord_change_apply], | |
exacts [rfl, hb] | |
end } | |
end topological_vector_prebundle | |
end | |