Datasets:

Modalities:
Text
Languages:
English
Libraries:
Datasets
License:
Zhangir Azerbayev
I think it's all done!
fc5e983
raw
history blame
49.9 kB
/-
Copyright © 2020 Nicolò Cavalleri. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Nicolò Cavalleri, Sebastien Gouezel, Heather Macbeth, Patrick Massot, Floris van Doorn
-/
import analysis.normed_space.bounded_linear_maps
import topology.fiber_bundle
/-!
# Topological vector bundles
In this file we define topological vector bundles.
Let `B` be the base space. In our formalism, a topological vector bundle is by definition the type
`bundle.total_space E` where `E : B → Type*` is a function associating to
`x : B` the fiber over `x`. This type `bundle.total_space E` is just a type synonym for
`Σ (x : B), E x`, with the interest that one can put another topology than on `Σ (x : B), E x`
which has the disjoint union topology.
To have a topological vector bundle structure on `bundle.total_space E`, one should
additionally have the following data:
* `F` should be a normed space over a normed field `R`;
* There should be a topology on `bundle.total_space E`, for which the projection to `B` is
a topological fiber bundle with fiber `F` (in particular, each fiber `E x` is homeomorphic to `F`);
* For each `x`, the fiber `E x` should be a topological vector space over `R`, and the injection
from `E x` to `bundle.total_space F E` should be an embedding;
* There should be a distinguished set of bundle trivializations (which are continuous linear equivs
in the fibres), the "trivialization atlas"
* There should be a choice of bundle trivialization at each point, which belongs to this atlas.
If all these conditions are satisfied, and if moreover for any two trivializations `e`, `e'` in the
atlas the transition function considered as a map from `B` into `F →L[R] F` is continuous on
`e.base_set ∩ e'.base_set` with respect to the operator norm topology on `F →L[R] F`, we register
the typeclass `topological_vector_bundle R F E`.
We define constructions on vector bundles like pullbacks and direct sums in other files.
Only the trivial bundle is defined in this file.
## Tags
Vector bundle
-/
noncomputable theory
open bundle set
open_locale classical
variables (R 𝕜 : Type*) {B : Type*} (F : Type*) (E : B → Type*)
section topological_vector_space
variables [semiring R] [∀ x, add_comm_monoid (E x)] [∀ x, module R (E x)]
[topological_space F] [add_comm_monoid F] [module R F] [topological_space B]
/-- A pretrivialization for a (yet to be defined) topological vector bundle `total_space E` is a
local equiv between sets of the form `proj ⁻¹' base_set` and `base_set × F` which respects the
first coordinate, and is linear in each fiber. -/
@[ext, nolint has_nonempty_instance]
structure topological_vector_bundle.pretrivialization extends to_fiber_bundle_pretrivialization :
topological_fiber_bundle.pretrivialization F (@total_space.proj B E) :=
(linear' : ∀ x ∈ base_set, is_linear_map R (λ y : E x, (to_fun (total_space_mk x y)).2))
instance : has_coe_to_fun (topological_vector_bundle.pretrivialization R F E) _ := ⟨λ e, e.to_fun⟩
instance : has_coe (topological_vector_bundle.pretrivialization R F E)
(topological_fiber_bundle.pretrivialization F (@total_space.proj B E)) :=
⟨topological_vector_bundle.pretrivialization.to_fiber_bundle_pretrivialization⟩
namespace topological_vector_bundle.pretrivialization
open topological_vector_bundle
variables {R F E} (e : pretrivialization R F E) {x : total_space E} {b : B} {y : E b}
protected lemma linear (hb : b ∈ e.base_set) :
is_linear_map R (λ y : E b, (e (total_space_mk b y)).2) :=
e.linear' b hb
@[simp, mfld_simps] lemma coe_coe : ⇑e.to_local_equiv = e := rfl
@[simp, mfld_simps] lemma coe_fst (ex : x ∈ e.source) : (e x).1 = x.proj := e.proj_to_fun x ex
lemma mem_source : x ∈ e.source ↔ x.proj ∈ e.base_set := by rw [e.source_eq, mem_preimage]
lemma coe_mem_source : ↑y ∈ e.source ↔ b ∈ e.base_set := e.mem_source
lemma coe_fst' (ex : x.proj ∈ e.base_set) : (e x).1 = x.proj :=
e.coe_fst (e.mem_source.2 ex)
protected lemma eq_on : eq_on (prod.fst ∘ e) total_space.proj e.source := λ x hx, e.coe_fst hx
lemma mk_proj_snd (ex : x ∈ e.source) : (x.proj, (e x).2) = e x :=
prod.ext (e.coe_fst ex).symm rfl
@[simp, mfld_simps] lemma coe_coe_fst (hb : b ∈ e.base_set) : (e y).1 = b :=
e.coe_fst (e.mem_source.2 hb)
lemma mk_proj_snd' (ex : x.proj ∈ e.base_set) : (x.proj, (e x).2) = e x :=
prod.ext (e.coe_fst' ex).symm rfl
lemma mem_target {x : B × F} : x ∈ e.target ↔ x.1 ∈ e.base_set :=
e.to_fiber_bundle_pretrivialization.mem_target
lemma mk_mem_target {x : B} {y : F} : (x, y) ∈ e.target ↔ x ∈ e.base_set :=
e.mem_target
lemma proj_symm_apply {x : B × F} (hx : x ∈ e.target) : (e.to_local_equiv.symm x).proj = x.1 :=
e.to_fiber_bundle_pretrivialization.proj_symm_apply hx
lemma proj_symm_apply' {b : B} {x : F} (hx : b ∈ e.base_set) :
(e.to_local_equiv.symm (b, x)).proj = b :=
e.proj_symm_apply (e.mem_target.2 hx)
lemma apply_symm_apply {x : B × F} (hx : x ∈ e.target) : e (e.to_local_equiv.symm x) = x :=
e.to_local_equiv.right_inv hx
lemma symm_apply_apply {x : total_space E} (hx : x ∈ e.source) : e.to_local_equiv.symm (e x) = x :=
e.to_local_equiv.left_inv hx
lemma apply_symm_apply' {b : B} {x : F} (hx : b ∈ e.base_set) :
e (e.to_local_equiv.symm (b, x)) = (b, x) :=
e.apply_symm_apply (e.mem_target.2 hx)
@[simp, mfld_simps] lemma symm_apply_mk_proj (ex : x ∈ e.source) :
e.to_local_equiv.symm (x.proj, (e x).2) = x :=
by rw [← e.coe_fst ex, prod.mk.eta, ← e.coe_coe, e.to_local_equiv.left_inv ex]
@[simp, mfld_simps] lemma preimage_symm_proj_base_set :
(e.to_local_equiv.symm ⁻¹' (total_space.proj ⁻¹' e.base_set)) ∩ e.target = e.target :=
e.to_fiber_bundle_pretrivialization.preimage_symm_proj_base_set
lemma symm_coe_proj {x : B} {y : F} (e : pretrivialization R F E) (h : x ∈ e.base_set) :
(e.to_local_equiv.symm (x, y)).1 = x :=
e.proj_symm_apply' h
/-- A fiberwise inverse to `e`. This is the function `F → E b` that induces a local inverse
`B × F → total_space E` of `e` on `e.base_set`. It is defined to be `0` outside `e.base_set`. -/
protected def symm (e : pretrivialization R F E) (b : B) (y : F) : E b :=
if hb : b ∈ e.base_set
then cast (congr_arg E (e.proj_symm_apply' hb)) (e.to_local_equiv.symm (b, y)).2
else 0
lemma symm_apply (e : pretrivialization R F E) {b : B} (hb : b ∈ e.base_set) (y : F) :
e.symm b y = cast (congr_arg E (e.symm_coe_proj hb)) (e.to_local_equiv.symm (b, y)).2 :=
dif_pos hb
lemma symm_apply_of_not_mem (e : pretrivialization R F E) {b : B} (hb : b ∉ e.base_set) (y : F) :
e.symm b y = 0 :=
dif_neg hb
lemma coe_symm_of_not_mem (e : pretrivialization R F E) {b : B} (hb : b ∉ e.base_set) :
(e.symm b : F → E b) = 0 :=
funext $ λ y, dif_neg hb
lemma mk_symm (e : pretrivialization R F E) {b : B} (hb : b ∈ e.base_set) (y : F) :
total_space_mk b (e.symm b y) = e.to_local_equiv.symm (b, y) :=
by rw [e.symm_apply hb, total_space.mk_cast, total_space.eta]
lemma symm_proj_apply (e : pretrivialization R F E) (z : total_space E)
(hz : z.proj ∈ e.base_set) : e.symm z.proj (e z).2 = z.2 :=
by rw [e.symm_apply hz, cast_eq_iff_heq, e.mk_proj_snd' hz,
e.symm_apply_apply (e.mem_source.mpr hz)]
lemma symm_apply_apply_mk (e : pretrivialization R F E) {b : B} (hb : b ∈ e.base_set) (y : E b) :
e.symm b (e (total_space_mk b y)).2 = y :=
e.symm_proj_apply (total_space_mk b y) hb
lemma apply_mk_symm (e : pretrivialization R F E) {b : B} (hb : b ∈ e.base_set) (y : F) :
e (total_space_mk b (e.symm b y)) = (b, y) :=
by rw [e.mk_symm hb, e.apply_symm_apply (e.mk_mem_target.mpr hb)]
/-- A fiberwise linear inverse to `e`. -/
@[simps] protected def symmₗ (e : pretrivialization R F E) (b : B) : F →ₗ[R] E b :=
begin
refine is_linear_map.mk' (e.symm b) _,
by_cases hb : b ∈ e.base_set,
{ exact (((e.linear hb).mk' _).inverse (e.symm b) (e.symm_apply_apply_mk hb)
(λ v, congr_arg prod.snd $ e.apply_mk_symm hb v)).is_linear },
{ rw [e.coe_symm_of_not_mem hb], exact (0 : F →ₗ[R] E b).is_linear }
end
/-- A pretrivialization for a topological vector bundle defines linear equivalences between the
fibers and the model space. -/
@[simps {fully_applied := ff}] def linear_equiv_at (e : pretrivialization R F E) (b : B)
(hb : b ∈ e.base_set) :
E b ≃ₗ[R] F :=
{ to_fun := λ y, (e (total_space_mk b y)).2,
inv_fun := e.symm b,
left_inv := e.symm_apply_apply_mk hb,
right_inv := λ v, by simp_rw [e.apply_mk_symm hb v],
map_add' := λ v w, (e.linear hb).map_add v w,
map_smul' := λ c v, (e.linear hb).map_smul c v }
/-- A fiberwise linear map equal to `e` on `e.base_set`. -/
protected def linear_map_at (e : pretrivialization R F E) (b : B) : E b →ₗ[R] F :=
if hb : b ∈ e.base_set then e.linear_equiv_at b hb else 0
lemma coe_linear_map_at (e : pretrivialization R F E) (b : B) :
⇑(e.linear_map_at b) = λ y, if b ∈ e.base_set then (e (total_space_mk b y)).2 else 0 :=
by { rw [pretrivialization.linear_map_at], split_ifs; refl }
lemma coe_linear_map_at_of_mem (e : pretrivialization R F E) {b : B} (hb : b ∈ e.base_set) :
⇑(e.linear_map_at b) = λ y, (e (total_space_mk b y)).2 :=
by simp_rw [coe_linear_map_at, if_pos hb]
lemma linear_map_at_apply (e : pretrivialization R F E) {b : B} (y : E b) :
e.linear_map_at b y = if b ∈ e.base_set then (e (total_space_mk b y)).2 else 0 :=
by rw [coe_linear_map_at]
lemma linear_map_at_def_of_mem (e : pretrivialization R F E) {b : B} (hb : b ∈ e.base_set) :
e.linear_map_at b = e.linear_equiv_at b hb :=
dif_pos hb
lemma linear_map_at_def_of_not_mem (e : pretrivialization R F E) {b : B} (hb : b ∉ e.base_set) :
e.linear_map_at b = 0 :=
dif_neg hb
lemma linear_map_at_eq_zero (e : pretrivialization R F E) {b : B} (hb : b ∉ e.base_set) :
e.linear_map_at b = 0 :=
dif_neg hb
lemma symmₗ_linear_map_at (e : pretrivialization R F E) {b : B} (hb : b ∈ e.base_set) (y : E b) :
e.symmₗ b (e.linear_map_at b y) = y :=
by { rw [e.linear_map_at_def_of_mem hb], exact (e.linear_equiv_at b hb).left_inv y }
lemma linear_map_at_symmₗ (e : pretrivialization R F E) {b : B} (hb : b ∈ e.base_set) (y : F) :
e.linear_map_at b (e.symmₗ b y) = y :=
by { rw [e.linear_map_at_def_of_mem hb], exact (e.linear_equiv_at b hb).right_inv y }
end topological_vector_bundle.pretrivialization
variable [topological_space (total_space E)]
/--
A structure extending local homeomorphisms, defining a local trivialization of the projection
`proj : total_space E → B` with fiber `F`, as a local homeomorphism between `total_space E`
and `B × F` defined between two sets of the form `proj ⁻¹' base_set` and `base_set × F`,
acting trivially on the first coordinate and linear in the fibers.
-/
@[ext, nolint has_nonempty_instance]
structure topological_vector_bundle.trivialization extends to_fiber_bundle_trivialization :
topological_fiber_bundle.trivialization F (@total_space.proj B E) :=
(linear' : ∀ x ∈ base_set, is_linear_map R (λ y : E x, (to_fun (total_space_mk x y)).2))
open topological_vector_bundle
instance : has_coe_to_fun (trivialization R F E) (λ _, total_space E → B × F) := ⟨λ e, e.to_fun⟩
instance : has_coe (trivialization R F E)
(topological_fiber_bundle.trivialization F (@total_space.proj B E)) :=
⟨topological_vector_bundle.trivialization.to_fiber_bundle_trivialization⟩
namespace topological_vector_bundle.trivialization
variables {R F E} (e : trivialization R F E) {x : total_space E} {b : B} {y : E b}
/-- Natural identification as `topological_vector_bundle.pretrivialization`. -/
def to_pretrivialization (e : trivialization R F E) :
topological_vector_bundle.pretrivialization R F E := { ..e }
protected lemma linear (hb : b ∈ e.base_set) :
is_linear_map R (λ y : E b, (e (total_space_mk b y)).2) :=
e.linear' b hb
protected lemma continuous_on : continuous_on e e.source := e.continuous_to_fun
lemma to_pretrivialization_injective :
function.injective (λ e : trivialization R F E, e.to_pretrivialization) :=
by { intros e e', rw [pretrivialization.ext_iff, trivialization.ext_iff,
← topological_fiber_bundle.trivialization.to_pretrivialization_injective.eq_iff], exact id }
@[simp, mfld_simps] lemma coe_coe : ⇑e.to_local_homeomorph = e := rfl
@[simp, mfld_simps] lemma coe_fst (ex : x ∈ e.source) : (e x).1 = x.proj := e.proj_to_fun x ex
lemma mem_source : x ∈ e.source ↔ x.proj ∈ e.base_set := by rw [e.source_eq, mem_preimage]
lemma coe_mem_source : ↑y ∈ e.source ↔ b ∈ e.base_set := e.mem_source
lemma coe_fst' (ex : x.proj ∈ e.base_set) : (e x).1 = x.proj :=
e.coe_fst (e.mem_source.2 ex)
protected lemma eq_on : eq_on (prod.fst ∘ e) total_space.proj e.source := λ x hx, e.coe_fst hx
lemma mk_proj_snd (ex : x ∈ e.source) : (x.proj, (e x).2) = e x :=
prod.ext (e.coe_fst ex).symm rfl
lemma mk_proj_snd' (ex : x.proj ∈ e.base_set) : (x.proj, (e x).2) = e x :=
prod.ext (e.coe_fst' ex).symm rfl
lemma open_target : is_open e.target :=
by { rw e.target_eq, exact e.open_base_set.prod is_open_univ }
@[simp, mfld_simps] lemma coe_coe_fst (hb : b ∈ e.base_set) : (e y).1 = b :=
e.coe_fst (e.mem_source.2 hb)
lemma source_inter_preimage_target_inter (s : set (B × F)) :
e.source ∩ (e ⁻¹' (e.target ∩ s)) = e.source ∩ (e ⁻¹' s) :=
e.to_local_homeomorph.source_inter_preimage_target_inter s
lemma mem_target {x : B × F} : x ∈ e.target ↔ x.1 ∈ e.base_set :=
e.to_pretrivialization.mem_target
lemma mk_mem_target {y : F} : (b, y) ∈ e.target ↔ b ∈ e.base_set :=
e.to_pretrivialization.mem_target
lemma map_target {x : B × F} (hx : x ∈ e.target) : e.to_local_homeomorph.symm x ∈ e.source :=
e.to_local_homeomorph.map_target hx
lemma proj_symm_apply {x : B × F} (hx : x ∈ e.target) :
(e.to_local_homeomorph.symm x).proj = x.1 :=
e.to_pretrivialization.proj_symm_apply hx
lemma proj_symm_apply' {b : B} {x : F} (hx : b ∈ e.base_set) :
(e.to_local_homeomorph.symm (b, x)).proj = b :=
e.to_pretrivialization.proj_symm_apply' hx
lemma apply_symm_apply {x : B × F} (hx : x ∈ e.target) : e (e.to_local_homeomorph.symm x) = x :=
e.to_local_homeomorph.right_inv hx
lemma apply_symm_apply' {b : B} {x : F} (hx : b ∈ e.base_set) :
e (e.to_local_homeomorph.symm (b, x)) = (b, x) :=
e.to_pretrivialization.apply_symm_apply' hx
lemma symm_apply_apply {x : total_space E} (hx : x ∈ e.source) :
e.to_local_homeomorph.symm (e x) = x :=
e.to_local_equiv.left_inv hx
@[simp, mfld_simps] lemma symm_coe_proj {x : B} {y : F}
(e : trivialization R F E) (h : x ∈ e.base_set) :
(e.to_local_homeomorph.symm (x, y)).1 = x := e.proj_symm_apply' h
/-- A fiberwise inverse to `e`. The function `F → E x` that induces a local inverse
`B × F → total_space E` of `e` on `e.base_set`. It is defined to be `0` outside `e.base_set`. -/
protected def symm (e : trivialization R F E) (b : B) (y : F) : E b :=
e.to_pretrivialization.symm b y
lemma symm_apply (e : trivialization R F E) {b : B} (hb : b ∈ e.base_set) (y : F) :
e.symm b y = cast (congr_arg E (e.symm_coe_proj hb)) (e.to_local_homeomorph.symm (b, y)).2 :=
dif_pos hb
lemma symm_apply_of_not_mem (e : trivialization R F E) {b : B} (hb : b ∉ e.base_set) (y : F) :
e.symm b y = 0 :=
dif_neg hb
lemma mk_symm (e : trivialization R F E) {b : B} (hb : b ∈ e.base_set) (y : F) :
total_space_mk b (e.symm b y) = e.to_local_homeomorph.symm (b, y) :=
e.to_pretrivialization.mk_symm hb y
lemma symm_proj_apply (e : trivialization R F E) (z : total_space E)
(hz : z.proj ∈ e.base_set) : e.symm z.proj (e z).2 = z.2 :=
e.to_pretrivialization.symm_proj_apply z hz
lemma symm_apply_apply_mk (e : trivialization R F E) {b : B} (hb : b ∈ e.base_set) (y : E b) :
e.symm b (e (total_space_mk b y)).2 = y :=
e.symm_proj_apply (total_space_mk b y) hb
lemma apply_mk_symm (e : trivialization R F E) {b : B} (hb : b ∈ e.base_set) (y : F) :
e (total_space_mk b (e.symm b y)) = (b, y) :=
e.to_pretrivialization.apply_mk_symm hb y
lemma continuous_on_symm (e : trivialization R F E) :
continuous_on (λ z : B × F, total_space_mk z.1 (e.symm z.1 z.2)) (e.base_set ×ˢ univ) :=
begin
have : ∀ (z : B × F) (hz : z ∈ e.base_set ×ˢ (univ : set F)),
total_space_mk z.1 (e.symm z.1 z.2) = e.to_local_homeomorph.symm z,
{ rintro x ⟨hx : x.1 ∈ e.base_set, _⟩, simp_rw [e.mk_symm hx, prod.mk.eta] },
refine continuous_on.congr _ this,
rw [← e.target_eq],
exact e.to_local_homeomorph.continuous_on_symm
end
/-- A trivialization for a topological vector bundle defines linear equivalences between the
fibers and the model space. -/
def linear_equiv_at (e : trivialization R F E) (b : B) (hb : b ∈ e.base_set) :
E b ≃ₗ[R] F :=
e.to_pretrivialization.linear_equiv_at b hb
@[simp]
lemma linear_equiv_at_apply (e : trivialization R F E) (b : B) (hb : b ∈ e.base_set) (v : E b) :
e.linear_equiv_at b hb v = (e (total_space_mk b v)).2 := rfl
@[simp]
lemma linear_equiv_at_symm_apply (e : trivialization R F E) (b : B) (hb : b ∈ e.base_set) (v : F) :
(e.linear_equiv_at b hb).symm v = e.symm b v := rfl
/-- A fiberwise linear inverse to `e`. -/
protected def symmₗ (e : trivialization R F E) (b : B) : F →ₗ[R] E b :=
e.to_pretrivialization.symmₗ b
lemma coe_symmₗ (e : trivialization R F E) (b : B) : ⇑(e.symmₗ b) = e.symm b :=
rfl
/-- A fiberwise linear map equal to `e` on `e.base_set`. -/
protected def linear_map_at (e : trivialization R F E) (b : B) : E b →ₗ[R] F :=
e.to_pretrivialization.linear_map_at b
lemma coe_linear_map_at (e : trivialization R F E) (b : B) :
⇑(e.linear_map_at b) = λ y, if b ∈ e.base_set then (e (total_space_mk b y)).2 else 0 :=
e.to_pretrivialization.coe_linear_map_at b
lemma coe_linear_map_at_of_mem (e : trivialization R F E) {b : B} (hb : b ∈ e.base_set) :
⇑(e.linear_map_at b) = λ y, (e (total_space_mk b y)).2 :=
by simp_rw [coe_linear_map_at, if_pos hb]
lemma linear_map_at_apply (e : trivialization R F E) {b : B} (y : E b) :
e.linear_map_at b y = if b ∈ e.base_set then (e (total_space_mk b y)).2 else 0 :=
by rw [coe_linear_map_at]
lemma linear_map_at_def_of_mem (e : trivialization R F E) {b : B} (hb : b ∈ e.base_set) :
e.linear_map_at b = e.linear_equiv_at b hb :=
dif_pos hb
lemma linear_map_at_def_of_not_mem (e : trivialization R F E) {b : B} (hb : b ∉ e.base_set) :
e.linear_map_at b = 0 :=
dif_neg hb
lemma symmₗ_linear_map_at (e : trivialization R F E) {b : B} (hb : b ∈ e.base_set) (y : E b) :
e.symmₗ b (e.linear_map_at b y) = y :=
e.to_pretrivialization.symmₗ_linear_map_at hb y
lemma linear_map_at_symmₗ (e : trivialization R F E) {b : B} (hb : b ∈ e.base_set) (y : F) :
e.linear_map_at b (e.symmₗ b y) = y :=
e.to_pretrivialization.linear_map_at_symmₗ hb y
/-- A coordinate change function between two trivializations, as a continuous linear equivalence.
Defined to be the identity when `b` does not lie in the base set of both trivializations. -/
def coord_change (e e' : trivialization R F E) (b : B) : F ≃L[R] F :=
{ continuous_to_fun := begin
by_cases hb : b ∈ e.base_set ∩ e'.base_set,
{ simp_rw [dif_pos hb],
refine (e'.continuous_on.comp_continuous _ _).snd,
exact e.continuous_on_symm.comp_continuous (continuous.prod.mk b)
(λ y, mk_mem_prod hb.1 (mem_univ y)),
exact (λ y, e'.mem_source.mpr hb.2) },
{ rw [dif_neg hb], exact continuous_id }
end,
continuous_inv_fun := begin
by_cases hb : b ∈ e.base_set ∩ e'.base_set,
{ simp_rw [dif_pos hb],
refine (e.continuous_on.comp_continuous _ _).snd,
exact e'.continuous_on_symm.comp_continuous (continuous.prod.mk b)
(λ y, mk_mem_prod hb.2 (mem_univ y)),
exact (λ y, e.mem_source.mpr hb.1) },
{ rw [dif_neg hb], exact continuous_id }
end,
.. if hb : b ∈ e.base_set ∩ e'.base_set then
(e.linear_equiv_at b (hb.1 : _)).symm.trans (e'.linear_equiv_at b hb.2)
else linear_equiv.refl R F }
lemma coe_coord_change (e e' : trivialization R F E) {b : B}
(hb : b ∈ e.base_set ∩ e'.base_set) :
⇑(coord_change e e' b) = (e.linear_equiv_at b hb.1).symm.trans (e'.linear_equiv_at b hb.2) :=
congr_arg linear_equiv.to_fun (dif_pos hb)
lemma coord_change_apply (e e' : trivialization R F E) {b : B}
(hb : b ∈ e.base_set ∩ e'.base_set) (y : F) :
coord_change e e' b y = (e' (total_space_mk b (e.symm b y))).2 :=
congr_arg (λ f, linear_equiv.to_fun f y) (dif_pos hb)
lemma mk_coord_change (e e' : trivialization R F E) {b : B}
(hb : b ∈ e.base_set ∩ e'.base_set) (y : F) :
(b, coord_change e e' b y) = e' (total_space_mk b (e.symm b y)) :=
begin
ext,
{ rw [e.mk_symm hb.1 y, e'.coe_fst', e.proj_symm_apply' hb.1],
rw [e.proj_symm_apply' hb.1], exact hb.2 },
{ exact e.coord_change_apply e' hb y }
end
/-- A version of `coord_change_apply` that fully unfolds `coord_change`. The right-hand side is
ugly, but has good definitional properties for specifically defined trivializations. -/
lemma coord_change_apply' (e e' : trivialization R F E) {b : B}
(hb : b ∈ e.base_set ∩ e'.base_set) (y : F) :
coord_change e e' b y = (e' (e.to_local_homeomorph.symm (b, y))).2 :=
by rw [e.coord_change_apply e' hb, e.mk_symm hb.1]
lemma coord_change_symm_apply (e e' : trivialization R F E) {b : B}
(hb : b ∈ e.base_set ∩ e'.base_set) :
⇑(coord_change e e' b).symm = (e'.linear_equiv_at b hb.2).symm.trans (e.linear_equiv_at b hb.1) :=
congr_arg linear_equiv.inv_fun (dif_pos hb)
end topological_vector_bundle.trivialization
end topological_vector_space
section
open topological_vector_bundle
variables (B)
variables [nontrivially_normed_field R] [∀ x, add_comm_monoid (E x)] [∀ x, module R (E x)]
[normed_add_comm_group F] [normed_space R F] [topological_space B]
[topological_space (total_space E)] [∀ x, topological_space (E x)]
/-- The valid transition functions for a topological vector bundle over `B` modelled on
a normed space `F`: a transition function must be a local homeomorphism of `B × F` with source and
target both `s ×ˢ univ`, which on this set is of the form `λ (b, v), (b, ε b v)` for some continuous
map `ε` from `s` to `F ≃L[R] F`. Here continuity is with respect to the operator norm on
`F →L[R] F`. -/
def continuous_transitions (e : local_equiv (B × F) (B × F)) : Prop :=
∃ s : set B, e.source = s ×ˢ univ ∧ e.target = s ×ˢ univ
∧ ∃ ε : B → (F ≃L[R] F), continuous_on (λ b, (ε b : F →L[R] F)) s
∧ ∀ b ∈ s, ∀ v : F, e (b, v) = (b, ε b v)
variables {B}
/-- The space `total_space E` (for `E : B → Type*` such that each `E x` is a topological vector
space) has a topological vector space structure with fiber `F` (denoted with
`topological_vector_bundle R F E`) if around every point there is a fiber bundle trivialization
which is linear in the fibers. -/
class topological_vector_bundle :=
(total_space_mk_inducing [] : ∀ (b : B), inducing (@total_space_mk B E b))
(trivialization_atlas [] : set (trivialization R F E))
(trivialization_at [] : B → trivialization R F E)
(mem_base_set_trivialization_at [] : ∀ b : B, b ∈ (trivialization_at b).base_set)
(trivialization_mem_atlas [] : ∀ b : B, trivialization_at b ∈ trivialization_atlas)
(continuous_on_coord_change [] : ∀ (e e' ∈ trivialization_atlas), continuous_on
(λ b, trivialization.coord_change e e' b : B → F →L[R] F) (e.base_set ∩ e'.base_set))
export topological_vector_bundle (trivialization_atlas trivialization_at
mem_base_set_trivialization_at trivialization_mem_atlas continuous_on_coord_change)
variables {R F E} [topological_vector_bundle R F E]
namespace topological_vector_bundle
namespace trivialization
/-- Forward map of `continuous_linear_equiv_at` (only propositionally equal),
defined everywhere (`0` outside domain). -/
@[simps apply {fully_applied := ff}]
def continuous_linear_map_at (e : trivialization R F E) (b : B) :
E b →L[R] F :=
{ to_fun := e.linear_map_at b, -- given explicitly to help `simps`
cont := begin
dsimp,
rw [e.coe_linear_map_at b],
refine continuous_if_const _ (λ hb, _) (λ _, continuous_zero),
exact continuous_snd.comp (e.to_local_homeomorph.continuous_on.comp_continuous
(total_space_mk_inducing R F E b).continuous (λ x, e.mem_source.mpr hb))
end,
.. e.linear_map_at b }
/-- Backwards map of `continuous_linear_equiv_at`, defined everywhere. -/
@[simps apply {fully_applied := ff}]
def symmL (e : trivialization R F E) (b : B) : F →L[R] E b :=
{ to_fun := e.symm b, -- given explicitly to help `simps`
cont := begin
by_cases hb : b ∈ e.base_set,
{ rw (topological_vector_bundle.total_space_mk_inducing R F E b).continuous_iff,
exact e.continuous_on_symm.comp_continuous (continuous_const.prod_mk continuous_id)
(λ x, mk_mem_prod hb (mem_univ x)) },
{ refine continuous_zero.congr (λ x, (e.symm_apply_of_not_mem hb x).symm) },
end,
.. e.symmₗ b }
lemma symmL_continuous_linear_map_at (e : trivialization R F E) {b : B} (hb : b ∈ e.base_set)
(y : E b) :
e.symmL b (e.continuous_linear_map_at b y) = y :=
e.symmₗ_linear_map_at hb y
lemma continuous_linear_map_at_symmL (e : trivialization R F E) {b : B} (hb : b ∈ e.base_set)
(y : F) :
e.continuous_linear_map_at b (e.symmL b y) = y :=
e.linear_map_at_symmₗ hb y
/-- In a topological vector bundle, a trivialization in the fiber (which is a priori only linear)
is in fact a continuous linear equiv between the fibers and the model fiber. -/
@[simps apply symm_apply {fully_applied := ff}]
def continuous_linear_equiv_at (e : trivialization R F E) (b : B)
(hb : b ∈ e.base_set) : E b ≃L[R] F :=
{ to_fun := λ y, (e (total_space_mk b y)).2, -- given explicitly to help `simps`
inv_fun := e.symm b, -- given explicitly to help `simps`
continuous_to_fun := continuous_snd.comp (e.to_local_homeomorph.continuous_on.comp_continuous
(total_space_mk_inducing R F E b).continuous (λ x, e.mem_source.mpr hb)),
continuous_inv_fun := (e.symmL b).continuous,
.. e.to_pretrivialization.linear_equiv_at b hb }
lemma coe_continuous_linear_equiv_at_eq (e : trivialization R F E) {b : B} (hb : b ∈ e.base_set) :
(e.continuous_linear_equiv_at b hb : E b → F) = e.continuous_linear_map_at b :=
(e.coe_linear_map_at_of_mem hb).symm
lemma symm_continuous_linear_equiv_at_eq (e : trivialization R F E) {b : B} (hb : b ∈ e.base_set) :
((e.continuous_linear_equiv_at b hb).symm : F → E b) = e.symmL b :=
rfl
@[simp] lemma continuous_linear_equiv_at_apply' (e : trivialization R F E)
(x : total_space E) (hx : x ∈ e.source) :
e.continuous_linear_equiv_at x.proj (e.mem_source.1 hx) x.2 = (e x).2 := by { cases x, refl }
lemma apply_eq_prod_continuous_linear_equiv_at (e : trivialization R F E) (b : B)
(hb : b ∈ e.base_set) (z : E b) :
e.to_local_homeomorph ⟨b, z⟩ = (b, e.continuous_linear_equiv_at b hb z) :=
begin
ext,
{ refine e.coe_fst _,
rw e.source_eq,
exact hb },
{ simp only [coe_coe, continuous_linear_equiv_at_apply] }
end
lemma symm_apply_eq_mk_continuous_linear_equiv_at_symm (e : trivialization R F E) (b : B)
(hb : b ∈ e.base_set) (z : F) :
e.to_local_homeomorph.symm ⟨b, z⟩
= total_space_mk b ((e.continuous_linear_equiv_at b hb).symm z) :=
begin
have h : (b, z) ∈ e.to_local_homeomorph.target,
{ rw e.target_eq,
exact ⟨hb, mem_univ _⟩ },
apply e.to_local_homeomorph.inj_on (e.to_local_homeomorph.map_target h),
{ simp only [e.source_eq, hb, mem_preimage]},
simp_rw [e.apply_eq_prod_continuous_linear_equiv_at b hb, e.to_local_homeomorph.right_inv h,
continuous_linear_equiv.apply_symm_apply],
end
lemma comp_continuous_linear_equiv_at_eq_coord_change (e e' : trivialization R F E) {b : B}
(hb : b ∈ e.1.base_set ∩ e'.1.base_set) :
(e.continuous_linear_equiv_at b hb.1).symm.trans (e'.continuous_linear_equiv_at b hb.2)
= coord_change e e' b :=
by { ext v, rw [coord_change_apply e e' hb], refl }
end trivialization
section
instance {B : Type*} {F : Type*} [add_comm_monoid F] (b : B) :
add_comm_monoid (bundle.trivial B F b) := ‹add_comm_monoid F›
instance {B : Type*} {F : Type*} [add_comm_group F] (b : B) :
add_comm_group (bundle.trivial B F b) := ‹add_comm_group F›
instance {B : Type*} {F : Type*} [add_comm_monoid F] [module R F] (b : B) :
module R (bundle.trivial B F b) := ‹module R F›
end
namespace trivial_topological_vector_bundle
variables (R B F)
/-- Local trivialization for trivial bundle. -/
def trivialization : trivialization R F (bundle.trivial B F) :=
{ to_fun := λ x, (x.fst, x.snd),
inv_fun := λ y, ⟨y.fst, y.snd⟩,
source := univ,
target := univ,
map_source' := λ x h, mem_univ (x.fst, x.snd),
map_target' := λ y h, mem_univ ⟨y.fst, y.snd⟩,
left_inv' := λ x h, sigma.eq rfl rfl,
right_inv' := λ x h, prod.ext rfl rfl,
open_source := is_open_univ,
open_target := is_open_univ,
continuous_to_fun := by { rw [←continuous_iff_continuous_on_univ, continuous_iff_le_induced],
simp only [prod.topological_space, induced_inf, induced_compose], exact le_rfl, },
continuous_inv_fun := by { rw [←continuous_iff_continuous_on_univ, continuous_iff_le_induced],
simp only [bundle.total_space.topological_space, induced_inf, induced_compose],
exact le_rfl, },
base_set := univ,
open_base_set := is_open_univ,
source_eq := rfl,
target_eq := by simp only [univ_prod_univ],
proj_to_fun := λ y hy, rfl,
linear' := λ x hx, ⟨λ y z, rfl, λ c y, rfl⟩ }
lemma trivialization.coord_change (b : B) :
(trivialization R B F).coord_change
(trivialization R B F) b = continuous_linear_equiv.refl R F :=
begin
ext v,
rw [trivialization.coord_change_apply'],
exacts [rfl, ⟨mem_univ _, mem_univ _⟩]
end
@[simp]
lemma trivialization_source : (trivialization R B F).source = univ := rfl
@[simp]
lemma trivialization_target : (trivialization R B F).target = univ := rfl
instance topological_vector_bundle :
topological_vector_bundle R F (bundle.trivial B F) :=
{ trivialization_atlas := {trivial_topological_vector_bundle.trivialization R B F},
trivialization_at := λ x, trivial_topological_vector_bundle.trivialization R B F,
mem_base_set_trivialization_at := mem_univ,
trivialization_mem_atlas := λ x, mem_singleton _,
total_space_mk_inducing := λ b, ⟨begin
have : (λ (x : trivial B F b), x) = @id F, by { ext x, refl },
simp only [total_space.topological_space, induced_inf, induced_compose, function.comp,
total_space.proj, induced_const, top_inf_eq, trivial.proj_snd, id.def,
trivial.topological_space, this, induced_id],
end⟩,
continuous_on_coord_change := begin
intros e he e' he',
rw [mem_singleton_iff.mp he, mem_singleton_iff.mp he'],
simp_rw [trivial_topological_vector_bundle.trivialization.coord_change],
exact continuous_const.continuous_on
end }
end trivial_topological_vector_bundle
/- Not registered as an instance because of a metavariable. -/
lemma is_topological_vector_bundle_is_topological_fiber_bundle :
is_topological_fiber_bundle F (@total_space.proj B E) :=
λ x, ⟨(trivialization_at R F E x).to_fiber_bundle_trivialization,
mem_base_set_trivialization_at R F E x⟩
include R F
lemma continuous_total_space_mk (x : B) : continuous (@total_space_mk B E x) :=
(topological_vector_bundle.total_space_mk_inducing R F E x).continuous
variables (R B F)
@[continuity] lemma continuous_proj : continuous (@total_space.proj B E) :=
begin
apply @is_topological_fiber_bundle.continuous_proj B F,
apply @is_topological_vector_bundle_is_topological_fiber_bundle R,
end
end topological_vector_bundle
/-! ### Constructing topological vector bundles -/
variables (R B F)
/-- Analogous construction of `topological_fiber_bundle_core` for vector bundles. This
construction gives a way to construct vector bundles from a structure registering how
trivialization changes act on fibers. -/
structure topological_vector_bundle_core (ι : Type*) :=
(base_set : ι → set B)
(is_open_base_set : ∀ i, is_open (base_set i))
(index_at : B → ι)
(mem_base_set_at : ∀ x, x ∈ base_set (index_at x))
(coord_change : ι → ι → B → (F →L[R] F))
(coord_change_self : ∀ i, ∀ x ∈ base_set i, ∀ v, coord_change i i x v = v)
(coord_change_continuous : ∀ i j, continuous_on (coord_change i j) (base_set i ∩ base_set j))
(coord_change_comp : ∀ i j k, ∀ x ∈ (base_set i) ∩ (base_set j) ∩ (base_set k), ∀ v,
(coord_change j k x) (coord_change i j x v) = coord_change i k x v)
/-- The trivial topological vector bundle core, in which all the changes of coordinates are the
identity. -/
def trivial_topological_vector_bundle_core (ι : Type*) [inhabited ι] :
topological_vector_bundle_core R B F ι :=
{ base_set := λ ι, univ,
is_open_base_set := λ i, is_open_univ,
index_at := default,
mem_base_set_at := λ x, mem_univ x,
coord_change := λ i j x, continuous_linear_map.id R F,
coord_change_self := λ i x hx v, rfl,
coord_change_comp := λ i j k x hx v, rfl,
coord_change_continuous := λ i j, continuous_on_const }
instance (ι : Type*) [inhabited ι] : inhabited (topological_vector_bundle_core R B F ι) :=
⟨trivial_topological_vector_bundle_core R B F ι⟩
namespace topological_vector_bundle_core
variables {R B F} {ι : Type*} (Z : topological_vector_bundle_core R B F ι)
/-- Natural identification to a `topological_fiber_bundle_core`. -/
def to_topological_fiber_bundle_core : topological_fiber_bundle_core ι B F :=
{ coord_change := λ i j b, Z.coord_change i j b,
coord_change_continuous := λ i j, is_bounded_bilinear_map_apply.continuous.comp_continuous_on
((Z.coord_change_continuous i j).prod_map continuous_on_id),
..Z }
instance to_topological_fiber_bundle_core_coe : has_coe (topological_vector_bundle_core R B F ι)
(topological_fiber_bundle_core ι B F) := ⟨to_topological_fiber_bundle_core⟩
include Z
lemma coord_change_linear_comp (i j k : ι): ∀ x ∈ (Z.base_set i) ∩ (Z.base_set j) ∩ (Z.base_set k),
(Z.coord_change j k x).comp (Z.coord_change i j x) = Z.coord_change i k x :=
λ x hx, by { ext v, exact Z.coord_change_comp i j k x hx v }
/-- The index set of a topological vector bundle core, as a convenience function for dot notation -/
@[nolint unused_arguments has_nonempty_instance]
def index := ι
/-- The base space of a topological vector bundle core, as a convenience function for dot notation-/
@[nolint unused_arguments, reducible]
def base := B
/-- The fiber of a topological vector bundle core, as a convenience function for dot notation and
typeclass inference -/
@[nolint unused_arguments has_nonempty_instance]
def fiber (x : B) := F
instance topological_space_fiber (x : B) : topological_space (Z.fiber x) :=
by delta_instance topological_vector_bundle_core.fiber
instance add_comm_monoid_fiber : ∀ (x : B), add_comm_monoid (Z.fiber x) :=
by delta_instance topological_vector_bundle_core.fiber
instance module_fiber : ∀ (x : B), module R (Z.fiber x) :=
by delta_instance topological_vector_bundle_core.fiber
instance add_comm_group_fiber [add_comm_group F] : ∀ (x : B), add_comm_group (Z.fiber x) :=
by delta_instance topological_vector_bundle_core.fiber
/-- The projection from the total space of a topological fiber bundle core, on its base. -/
@[reducible, simp, mfld_simps] def proj : total_space Z.fiber → B := total_space.proj
/-- The total space of the topological vector bundle, as a convenience function for dot notation.
It is by definition equal to `bundle.total_space Z.fiber`, a.k.a. `Σ x, Z.fiber x` but with a
different name for typeclass inference. -/
@[nolint unused_arguments, reducible]
def total_space := bundle.total_space Z.fiber
/-- Local homeomorphism version of the trivialization change. -/
def triv_change (i j : ι) : local_homeomorph (B × F) (B × F) :=
topological_fiber_bundle_core.triv_change ↑Z i j
@[simp, mfld_simps] lemma mem_triv_change_source (i j : ι) (p : B × F) :
p ∈ (Z.triv_change i j).source ↔ p.1 ∈ Z.base_set i ∩ Z.base_set j :=
topological_fiber_bundle_core.mem_triv_change_source ↑Z i j p
variable (ι)
/-- Topological structure on the total space of a topological bundle created from core, designed so
that all the local trivialization are continuous. -/
instance to_topological_space : topological_space (Z.total_space) :=
topological_fiber_bundle_core.to_topological_space ι ↑Z
variables {ι} (b : B) (a : F)
@[simp, mfld_simps] lemma coe_coord_change (i j : ι) :
topological_fiber_bundle_core.coord_change ↑Z i j b = Z.coord_change i j b := rfl
/-- Extended version of the local trivialization of a fiber bundle constructed from core,
registering additionally in its type that it is a local bundle trivialization. -/
def local_triv (i : ι) : topological_vector_bundle.trivialization R F Z.fiber :=
{ linear' := λ x hx,
{ map_add := λ v w, by simp only [continuous_linear_map.map_add] with mfld_simps,
map_smul := λ r v, by simp only [continuous_linear_map.map_smul] with mfld_simps},
..topological_fiber_bundle_core.local_triv ↑Z i }
variables (i j : ι)
@[simp, mfld_simps] lemma mem_local_triv_source (p : Z.total_space) :
p ∈ (Z.local_triv i).source ↔ p.1 ∈ Z.base_set i := iff.rfl
@[simp, mfld_simps] lemma base_set_at : Z.base_set i = (Z.local_triv i).base_set := rfl
@[simp, mfld_simps] lemma local_triv_apply (p : Z.total_space) :
(Z.local_triv i) p = ⟨p.1, Z.coord_change (Z.index_at p.1) i p.1 p.2⟩ := rfl
@[simp, mfld_simps] lemma mem_local_triv_target (p : B × F) :
p ∈ (Z.local_triv i).target ↔ p.1 ∈ (Z.local_triv i).base_set :=
topological_fiber_bundle_core.mem_local_triv_target Z i p
@[simp, mfld_simps] lemma local_triv_symm_fst (p : B × F) :
(Z.local_triv i).to_local_homeomorph.symm p =
⟨p.1, Z.coord_change i (Z.index_at p.1) p.1 p.2⟩ := rfl
@[simp, mfld_simps] lemma local_triv_symm_apply {b : B} (hb : b ∈ Z.base_set i) (v : F) :
(Z.local_triv i).symm b v = Z.coord_change i (Z.index_at b) b v :=
by apply (Z.local_triv i).symm_apply hb v
@[simp, mfld_simps] lemma local_triv_coord_change_eq {b : B} (hb : b ∈ Z.base_set i ∩ Z.base_set j)
(v : F) :
(Z.local_triv i).coord_change (Z.local_triv j) b v = Z.coord_change i j b v :=
begin
rw [trivialization.coord_change_apply', local_triv_symm_fst, local_triv_apply,
coord_change_comp],
exacts [⟨⟨hb.1, Z.mem_base_set_at b⟩, hb.2⟩, hb]
end
/-- Preferred local trivialization of a vector bundle constructed from core, at a given point, as
a bundle trivialization -/
def local_triv_at (b : B) : topological_vector_bundle.trivialization R F Z.fiber :=
Z.local_triv (Z.index_at b)
@[simp, mfld_simps] lemma local_triv_at_def :
Z.local_triv (Z.index_at b) = Z.local_triv_at b := rfl
@[simp, mfld_simps] lemma mem_source_at : (⟨b, a⟩ : Z.total_space) ∈ (Z.local_triv_at b).source :=
by { rw [local_triv_at, mem_local_triv_source], exact Z.mem_base_set_at b }
@[simp, mfld_simps] lemma local_triv_at_apply (p : Z.total_space) :
((Z.local_triv_at p.1) p) = ⟨p.1, p.2⟩ :=
topological_fiber_bundle_core.local_triv_at_apply Z p
@[simp, mfld_simps] lemma local_triv_at_apply_mk (b : B) (a : F) :
((Z.local_triv_at b) ⟨b, a⟩) = ⟨b, a⟩ :=
Z.local_triv_at_apply _
@[simp, mfld_simps] lemma mem_local_triv_at_base_set :
b ∈ (Z.local_triv_at b).base_set :=
topological_fiber_bundle_core.mem_local_triv_at_base_set Z b
instance : topological_vector_bundle R F Z.fiber :=
{ total_space_mk_inducing := λ b, ⟨ begin refine le_antisymm _ (λ s h, _),
{ rw ←continuous_iff_le_induced,
exact topological_fiber_bundle_core.continuous_total_space_mk ↑Z b, },
{ refine is_open_induced_iff.mpr ⟨(Z.local_triv_at b).source ∩ (Z.local_triv_at b) ⁻¹'
((Z.local_triv_at b).base_set ×ˢ s), (continuous_on_open_iff
(Z.local_triv_at b).open_source).mp (Z.local_triv_at b).continuous_to_fun _
((Z.local_triv_at b).open_base_set.prod h), _⟩,
rw [preimage_inter, ←preimage_comp, function.comp],
simp only [total_space_mk],
refine ext_iff.mpr (λ a, ⟨λ ha, _, λ ha, ⟨Z.mem_base_set_at b, _⟩⟩),
{ simp only [mem_prod, mem_preimage, mem_inter_eq, local_triv_at_apply_mk] at ha,
exact ha.2.2, },
{ simp only [mem_prod, mem_preimage, mem_inter_eq, local_triv_at_apply_mk],
exact ⟨Z.mem_base_set_at b, ha⟩, } } end⟩,
trivialization_atlas := set.range Z.local_triv,
trivialization_at := Z.local_triv_at,
mem_base_set_trivialization_at := Z.mem_base_set_at,
trivialization_mem_atlas := λ b, ⟨Z.index_at b, rfl⟩,
continuous_on_coord_change := begin
rintros _ ⟨i, rfl⟩ _ ⟨i', rfl⟩,
refine (Z.coord_change_continuous i i').congr (λ b hb, _),
ext v,
simp_rw [continuous_linear_equiv.coe_coe, Z.local_triv_coord_change_eq i i' hb],
end }
/-- The projection on the base of a topological vector bundle created from core is continuous -/
@[continuity] lemma continuous_proj : continuous Z.proj :=
topological_fiber_bundle_core.continuous_proj Z
/-- The projection on the base of a topological vector bundle created from core is an open map -/
lemma is_open_map_proj : is_open_map Z.proj :=
topological_fiber_bundle_core.is_open_map_proj Z
end topological_vector_bundle_core
end
/-! ### Topological vector prebundle -/
section
variables [nontrivially_normed_field R] [∀ x, add_comm_monoid (E x)] [∀ x, module R (E x)]
[normed_add_comm_group F] [normed_space R F] [topological_space B]
open topological_space
open topological_vector_bundle
/-- This structure permits to define a vector bundle when trivializations are given as local
equivalences but there is not yet a topology on the total space or the fibers.
The total space is hence given a topology in such a way that there is a fiber bundle structure for
which the local equivalences are also local homeomorphisms and hence vector bundle trivializations.
The topology on the fibers is induced from the one on the total space.
The field `exists_coord_change` is stated as an existential statement (instead of 3 separate
fields), since it depends on propositional information (namely `e e' ∈ pretrivialization_atlas`).
This makes it inconvenient to explicitly define a `coord_change` function when constructing a
`topological_vector_prebundle`. -/
@[nolint has_nonempty_instance]
structure topological_vector_prebundle :=
(pretrivialization_atlas : set (pretrivialization R F E))
(pretrivialization_at : B → pretrivialization R F E)
(mem_base_pretrivialization_at : ∀ x : B, x ∈ (pretrivialization_at x).base_set)
(pretrivialization_mem_atlas : ∀ x : B, pretrivialization_at x ∈ pretrivialization_atlas)
(exists_coord_change : ∀ (e e' ∈ pretrivialization_atlas), ∃ f : B → F →L[R] F,
continuous_on f (e.base_set ∩ e'.base_set) ∧
∀ (b : B) (hb : b ∈ e.base_set ∩ e'.base_set) (v : F),
f b v = (e' (total_space_mk b (e.symm b v))).2)
namespace topological_vector_prebundle
variables {R E F}
/-- A randomly chosen coordinate change on a `topological_vector_prebundle`, given by
the field `exists_coord_change`. -/
def coord_change (a : topological_vector_prebundle R F E)
{e e' : pretrivialization R F E} (he : e ∈ a.pretrivialization_atlas)
(he' : e' ∈ a.pretrivialization_atlas) (b : B) : F →L[R] F :=
classical.some (a.exists_coord_change e he e' he') b
lemma continuous_on_coord_change (a : topological_vector_prebundle R F E)
{e e' : pretrivialization R F E} (he : e ∈ a.pretrivialization_atlas)
(he' : e' ∈ a.pretrivialization_atlas) :
continuous_on (a.coord_change he he') (e.base_set ∩ e'.base_set) :=
(classical.some_spec (a.exists_coord_change e he e' he')).1
lemma coord_change_apply (a : topological_vector_prebundle R F E)
{e e' : pretrivialization R F E} (he : e ∈ a.pretrivialization_atlas)
(he' : e' ∈ a.pretrivialization_atlas) {b : B} (hb : b ∈ e.base_set ∩ e'.base_set) (v : F) :
a.coord_change he he' b v = (e' (total_space_mk b (e.symm b v))).2 :=
(classical.some_spec (a.exists_coord_change e he e' he')).2 b hb v
lemma mk_coord_change (a : topological_vector_prebundle R F E)
{e e' : pretrivialization R F E} (he : e ∈ a.pretrivialization_atlas)
(he' : e' ∈ a.pretrivialization_atlas) {b : B} (hb : b ∈ e.base_set ∩ e'.base_set) (v : F) :
(b, a.coord_change he he' b v) = e' (total_space_mk b (e.symm b v)) :=
begin
ext,
{ rw [e.mk_symm hb.1 v, e'.coe_fst', e.proj_symm_apply' hb.1],
rw [e.proj_symm_apply' hb.1], exact hb.2 },
{ exact a.coord_change_apply he he' hb v }
end
/-- Natural identification of `topological_vector_prebundle` as a `topological_fiber_prebundle`. -/
def to_topological_fiber_prebundle (a : topological_vector_prebundle R F E) :
topological_fiber_prebundle F (@total_space.proj B E) :=
{ pretrivialization_atlas :=
pretrivialization.to_fiber_bundle_pretrivialization '' a.pretrivialization_atlas,
pretrivialization_at := λ x, (a.pretrivialization_at x).to_fiber_bundle_pretrivialization,
pretrivialization_mem_atlas := λ x, ⟨_, a.pretrivialization_mem_atlas x, rfl⟩,
continuous_triv_change := begin
rintros _ ⟨e, he, rfl⟩ _ ⟨e', he', rfl⟩,
have := is_bounded_bilinear_map_apply.continuous.comp_continuous_on
((a.continuous_on_coord_change he' he).prod_map continuous_on_id),
have H : e'.to_fiber_bundle_pretrivialization.to_local_equiv.target ∩
e'.to_fiber_bundle_pretrivialization.to_local_equiv.symm ⁻¹'
e.to_fiber_bundle_pretrivialization.to_local_equiv.source =(e'.base_set ∩ e.base_set) ×ˢ univ,
{ rw [e'.target_eq, e.source_eq],
ext ⟨b, f⟩,
simp only [-total_space.proj, and.congr_right_iff, e'.proj_symm_apply', iff_self,
implies_true_iff] with mfld_simps {contextual := tt} },
rw [H],
refine (continuous_on_fst.prod this).congr _,
rintros ⟨b, f⟩ ⟨hb, -⟩,
dsimp only [function.comp, prod.map],
rw [a.mk_coord_change _ _ hb, e'.mk_symm hb.1],
refl,
end,
.. a }
/-- Topology on the total space that will make the prebundle into a bundle. -/
def total_space_topology (a : topological_vector_prebundle R F E) :
topological_space (total_space E) :=
a.to_topological_fiber_prebundle.total_space_topology
/-- Promotion from a `topologial_vector_prebundle.trivialization` to a
`topological_vector_bundle.trivialization`. -/
def trivialization_of_mem_pretrivialization_atlas (a : topological_vector_prebundle R F E)
{e : topological_vector_bundle.pretrivialization R F E} (he : e ∈ a.pretrivialization_atlas) :
@topological_vector_bundle.trivialization R _ F E _ _ _ _ _ _ _ a.total_space_topology :=
begin
letI := a.total_space_topology,
exact { linear' := λ b, e.linear,
..a.to_topological_fiber_prebundle.trivialization_of_mem_pretrivialization_atlas ⟨e, he, rfl⟩ }
end
variable (a : topological_vector_prebundle R F E)
lemma mem_trivialization_at_source (b : B) (x : E b) :
total_space_mk b x ∈ (a.pretrivialization_at b).source :=
begin
simp only [(a.pretrivialization_at b).source_eq, mem_preimage, total_space.proj],
exact a.mem_base_pretrivialization_at b,
end
@[simp] lemma total_space_mk_preimage_source (b : B) :
(total_space_mk b) ⁻¹' (a.pretrivialization_at b).source = univ :=
begin
apply eq_univ_of_univ_subset,
rw [(a.pretrivialization_at b).source_eq, ←preimage_comp, function.comp],
simp only [total_space.proj],
rw preimage_const_of_mem _,
exact a.mem_base_pretrivialization_at b,
end
/-- Topology on the fibers `E b` induced by the map `E b → E.total_space`. -/
def fiber_topology (b : B) : topological_space (E b) :=
topological_space.induced (total_space_mk b) a.total_space_topology
@[continuity] lemma inducing_total_space_mk (b : B) :
@inducing _ _ (a.fiber_topology b) a.total_space_topology (total_space_mk b) :=
by { letI := a.total_space_topology, letI := a.fiber_topology b, exact ⟨rfl⟩ }
@[continuity] lemma continuous_total_space_mk (b : B) :
@continuous _ _ (a.fiber_topology b) a.total_space_topology (total_space_mk b) :=
begin
letI := a.total_space_topology, letI := a.fiber_topology b,
exact (a.inducing_total_space_mk b).continuous
end
/-- Make a `topological_vector_bundle` from a `topological_vector_prebundle`. Concretely this means
that, given a `topological_vector_prebundle` structure for a sigma-type `E` -- which consists of a
number of "pretrivializations" identifying parts of `E` with product spaces `U × F` -- one
establishes that for the topology constructed on the sigma-type using
`topological_vector_prebundle.total_space_topology`, these "pretrivializations" are actually
"trivializations" (i.e., homeomorphisms with respect to the constructed topology). -/
def to_topological_vector_bundle :
@topological_vector_bundle R _ F E _ _ _ _ _ _ a.total_space_topology a.fiber_topology :=
{ total_space_mk_inducing := a.inducing_total_space_mk,
trivialization_atlas := {e | ∃ e₀ (he₀ : e₀ ∈ a.pretrivialization_atlas),
e = a.trivialization_of_mem_pretrivialization_atlas he₀},
trivialization_at := λ x, a.trivialization_of_mem_pretrivialization_atlas
(a.pretrivialization_mem_atlas x),
mem_base_set_trivialization_at := a.mem_base_pretrivialization_at,
trivialization_mem_atlas := λ x, ⟨_, a.pretrivialization_mem_atlas x, rfl⟩,
continuous_on_coord_change := begin
rintros _ ⟨e, he, rfl⟩ _ ⟨e', he', rfl⟩,
refine (a.continuous_on_coord_change he he').congr _,
intros b hb,
ext v,
rw [a.coord_change_apply he he' hb v, continuous_linear_equiv.coe_coe,
trivialization.coord_change_apply],
exacts [rfl, hb]
end }
end topological_vector_prebundle
end