Datasets:
Tasks:
Text Generation
Modalities:
Text
Sub-tasks:
language-modeling
Languages:
English
Size:
100K - 1M
License:
\documentclass{article} | |
\usepackage[T1]{fontenc} | |
\usepackage{textcomp} | |
\renewcommand{\rmdefault}{ptm} | |
\usepackage[scaled=0.92]{helvet} | |
%\usepackage[slantedGreek,zswash,amsbb,mtpcal]{mtpro2} | |
\usepackage[psamsfonts]{amsfonts} | |
\usepackage{amsmath, amsbsy,verbatim} | |
\usepackage[dvips, bookmarks, colorlinks=true, plainpages = false, | |
citecolor = blue, urlcolor = blue, filecolor = blue]{hyperref} | |
\newtheorem{corollary}{Corollary} | |
\newtheorem{definition}{Definition} | |
\newtheorem{lemma}{Lemma} | |
\newtheorem{theorem}{Theorem} | |
\newtheorem{example}{Example} | |
\newcommand{\proof}{\noindent{\sc\bf Proof}\quad } | |
\def\endproof{{\hfill \vbox{\hrule\hbox{% | |
\vrule height1.3ex\hskip0.8ex\vrule}\hrule }}\par} | |
\newcommand{\bbox}{\phantom{1}\hfill{\rule{6pt}{6pt}}} | |
\newcommand{\pd}[2]{\frac{\partial{#1}}{\partial{#2}}} | |
\newcommand{\dst}{\displaystyle} | |
\newcommand{\place}{\bigskip\hrule\bigskip\noindent} | |
\newcommand{\set}[2]{\left\{#1\, \big|\, #2\right\}} | |
\newcommand{\solution}{\medskip\noindent{\bf Solution}\hskip.2em} | |
\newcommand{\exer}[1]{\par\noindent{\bf #1}.} | |
\newcommand{\boxit}[1]{\bigskip\noindent{\bf | |
#1}\\\vskip-6pt\hskip-\parindent} | |
\newcounter{lcal} | |
\newenvironment{alist}{\begin{list}{\bf (\alph{lcal})} | |
{\topsep 0pt\partopsep 0pt\labelwidth 14pt | |
\labelsep 8pt\leftmargin 22pt\itemsep 0pt | |
\usecounter{lcal}}}{\end{list}} | |
\newcounter{exercise} | |
\newenvironment{exerciselist}{\begin{list}{\bf \arabic{exercise}.} | |
{\topsep 10pt\partopsep 0pt\labelwidth 16pt | |
\labelsep 12pt\leftmargin 28pt | |
\itemsep 8pt\usecounter{exercise}}}{\end{list}} | |
\begin{document} | |
\noindent | |
\thispagestyle{empty} | |
\bf | |
\begin{center} | |
{\Huge THE METHOD OF\\\vspace{.2in} LAGRANGE MULTIPLIERS} | |
\vspace{.5in} | |
\huge | |
\bigskip | |
\vspace{.75in} | |
\bf\huge | |
\href{http://ramanujan.math.trinity.edu/wtrench/index.shtml} | |
{William F. Trench} | |
\medskip | |
\\\large | |
Andrew G. Cowles Distinguished Professor Emeritus\\ | |
Department of Mathematics\\ | |
Trinity University \\ | |
San Antonio, Texas, USA\\ | |
\href{mailto:{wtrench@trinity.edu}} | |
{wtrench@trinity.edu} | |
\large | |
\vspace*{.75in} | |
\end{center} | |
\rm | |
\noindent | |
\noindent | |
This is a supplement to the author's | |
\href{http://ramanujan.math.trinity.edu/wtrench/texts/TRENCH_REAL_ANALYSIS.PDF} | |
{\large Introduction to Real Analysis}. | |
It has been judged to meet the evaluation criteria set by the | |
Editorial Board | |
of the American Institute of Mathematics in connection with the Institute's | |
\href{http://www.aimath.org/textbooks/} | |
{Open | |
Textbook Initiative}. | |
It may be copied, modified, redistributed, translated, and | |
built upon subject to the Creative | |
Commons | |
\href{http://creativecommons.org/licenses/by-nc-sa/3.0/deed.en_G} | |
{Attribution-NonCommercial-ShareAlike 3.0 Unported License}. | |
A complete instructor's solution manual is available by email to | |
\href{mailto:wtrench@trinity.edu} | |
{wtrench@trinity.edu}, | |
subject to verification of the requestor's | |
faculty status. | |
\newpage | |
\centerline{\bf THE METHOD OF LAGRANGE MULTIPLIERS} | |
\medskip | |
\medskip | |
\centerline{\bf William F. Trench} | |
\medskip | |
\section{Foreword} \label{section:1} | |
This is a revised and extended version of Section~6.5 of my | |
\emph{Advanced Calculus} | |
(Harper \& Row, 1978). | |
It is a supplement to my textbook | |
\href{http://ramanujan.math.trinity.edu/wtrench/texts/TRENCH_REAL_ANALYSIS.PDF} | |
{\emph{Introduction to Real Analysis}}, which | |
is referenced via hypertext links. | |
\section{Introduction} \label{section:2} | |
To avoid repetition, it is to be understood throughout that | |
$f$ and $g_{1}$, $g_{2}$,\dots, | |
$g_{m}$ are continuously differentiable on | |
an open set $D$ in $\mathbb{R}^{n}$. | |
Suppose that $m<n$ and | |
\begin{equation} \label{eq:1} | |
g_{1}(\mathbf{X}) = g_2(\mathbf{X}) = \cdots = g_{m}(\mathbf{X})=0 | |
\end{equation} | |
on a nonempty subset $D_{1}$ of $D$. | |
If\, $\mathbf{X}_{0} \in | |
D_{1}$ and there is a neighborhood $N$ of $\mathbf{X}_{0}$ such that | |
\begin{equation} \label{eq:2} | |
f(\mathbf{X}) \le f(\mathbf{X}_{0}) | |
\end{equation} | |
for every $\mathbf{X}$ in $N \cap D_{1}$, then $\mathbf{X}_{0}$ | |
is \emph{a local | |
maximum point of $f$ subject to the constraints} \eqref{eq:1}. | |
However, we will usually say ``subject | |
to'' rather than ``subject to the constraint(s).'' | |
If \eqref{eq:2} is replaced | |
by | |
\begin{equation} \label{eq:3} | |
f(\mathbf{X}) \ge f(\mathbf{X}_{0}), | |
\end{equation} | |
then ``maximum'' is replaced by ``minimum.'' A local maximum or minimum of | |
$f$ subject to \eqref{eq:1} is also called a {\it local extreme point of | |
$f$ | |
subject to} \eqref{eq:1}. More briefly, we also speak of {\it constrained | |
local maximum, minimum, or extreme points}. If \eqref{eq:2} or | |
\eqref{eq:3} holds for all | |
$\mathbf{X}$ in $D_{1}$, we omit ``local.'' | |
Recall that | |
${\bf X}_{0}=(x_{10}, x_{20},\dots,x_{n0})$ | |
is a \emph{critical | |
point} of a differentiable function | |
$L=L(x_{1},x_{2},\dots,x_{n})$ if | |
$$ | |
L_{x_{i}}(x_{10},x_{20},\dots,x_{n0})=0,\quad 1\le i\le n. | |
$$ | |
Therefore, every local extreme point of $L$ is a critical point of $L$; | |
however, a critical point of $L$ is not necessarily | |
a local extreme point of $L$ | |
\href{http://ramanujan.math.trinity.edu/wtrench/texts/TRENCH_REAL_ANALYSIS.PDF} | |
{(pp.~334-5)}. | |
Suppose that the | |
system \eqref{eq:1} of simultaneous equations can be | |
solved for | |
$x_{1}$, \dots, $x_{m}$ | |
in terms of the $x_{m+1}$, \dots, $x_{n}$; thus, | |
\begin{equation} \label{eq:4} | |
x_{j}=h_{j}(x_{m+1},\dots,x_{n}),\quad 1\le j\le m. | |
\end{equation} | |
Then a constrained extreme value of $f$ | |
is an unconstrained extreme value of | |
\begin{equation} \label{eq:5} | |
f(h_{1}(x_{m+1},\dots,x_{n}),\dots,h_{m}(x_{m+1},\dots,x_{n}),x_{m+1},\dots,x_{n}). | |
\end{equation} | |
However, it may be difficult or impossible to find | |
explicit formulas for $h_{1}$, $h_{2}$, \dots, $h_{m}$, | |
and, even if it is | |
possible, the composite function \eqref{eq:5} is almost always | |
complicated. Fortunately, there is a better way to to find constrained | |
extrema, which also requires the solvability assumption, but does | |
not require an explicit formula as indicated in \eqref{eq:4}. It is | |
based on | |
the following theorem. Since the proof is complicated, we consider two | |
special cases first. | |
\begin{theorem} \label{theorem:1} | |
Suppose that $n>m.$ If\, ${\bf X}_{0}$ is a local extreme point of | |
$f$ | |
subject to | |
$$ | |
g_{1}({\bf X})=g_{2}({\bf X})=\cdots =g_{m}({\bf X})=0 | |
$$ | |
and | |
\begin{equation} \label{eq:6} | |
\left|\begin{array}{ccccccc} | |
\dst{\pd{g_{1}(\mathbf{X}_{0})}{x_{r_{1}}}} & | |
\dst{\pd{g_{1}(\mathbf{X}_{0})}{x_{r_{2}}}}& | |
&\cdots & | |
\dst{\pd{g_{1}(\mathbf{X}_{0})}{x_{r_{m}}}} \\\\ | |
\dst{\pd{g_{2}(\mathbf{X}_{0})}{x_{r_{1}}}} & | |
\dst{\pd{g_{2}(\mathbf{X}_{0})}{x_{r_{2}}}}& | |
&\cdots & | |
\dst{\pd{g_{m}(\mathbf{X}_{0})}{x_{r_{m}}}} & \\ | |
\vdots & \vdots &&\ddots&\vdots\\ | |
\dst{\pd{g_{m}(\mathbf{X}_{0})}{x_{r_{1}}}} & | |
\dst{\pd{g_{m}(\mathbf{X}_{0})}{x_{r_{2}}}}& | |
&\cdots & | |
\dst{\pd{g_{m}(\mathbf{X}_{0})}{x_{r_{m}}}} & | |
\end{array}\right|\ne0 | |
\end{equation} | |
for at least one choice of | |
$r_{1}<r_{2}<\dots <r_{m}$ in $\{1,2,\dots,n\},$ then there are constants | |
$\lambda_{1},$ $\lambda_{2},$ \dots$,$ $\lambda_{m}$ such that | |
${\bf X}_{0}$ | |
is a critical point of | |
$$ | |
f-\lambda_{1}g_{1}-\lambda_{2}g_{2}-\cdots-\lambda_{m} g_{m}; | |
$$ | |
that is$,$ | |
$$ | |
\frac{\partial{f({\bf X}_{0})}}{\partial x_{i}} | |
-\lambda_{1}\frac{\partial{g_{1}({\bf X}_{0})}}{\partial x_{i}} | |
-\lambda_{2}\frac{\partial{g_{2}({\bf X}_{0})}}{\partial x_{i}}-\cdots | |
-\lambda_{m}\frac{\partial{g_{m}({\bf X}_{0})}}{\partial x_{i}}=0, | |
$$ | |
$1\le i\le n$. | |
\end{theorem} | |
The following implementation of this theorem is the \emph{method of | |
\href{http://www-history.mcs.st-and.ac.uk/Mathematicians/Lagrange.html} | |
{Lagrange} \\multipliers}. | |
\medskip | |
\begin{alist} | |
\item Find the critical points of | |
$$ | |
f-\lambda_{1}g_{1}-\lambda_{2}g_{2}-\cdots-\lambda_{m} g_{m}, | |
$$ | |
treating $\lambda_{1}$, $\lambda_{2}$, \dots $\lambda_{m}$ as | |
unspecified constants. | |
\item Find $\lambda_{1}$, $\lambda_{2}$, \dots, $\lambda_{m}$ so that the | |
critical points obtained in (a) satisfy the constraints. | |
\item Determine which of the critical points are constrained | |
extreme points of $f$. This can usually be done | |
by physical or intuitive arguments. | |
\end{alist} | |
\medskip | |
If $a$ and $b_{1}$, $b_{2}$, \dots, $b_{m}$ are nonzero constants and $c$ | |
is an arbitrary | |
constant, then the local extreme points of $f$ subject to | |
$g_{1}=g_{2}= \cdots =g_{m}=0$ are the same as the | |
local extreme points of | |
$af-c$ subject to | |
$b_{1}g_{1}=b_{2}g_{2}=\cdots=b_{m}g_{m}=0$. Therefore, | |
we can replace | |
$f-\lambda_{1} g_{1}-\lambda_{2}g_{2}- \cdots-\lambda_{m} g_{m}$ by | |
$af-\lambda_{1}b_{1}g_{1}-\lambda_{2}b_{2}g_{2}- \cdots- | |
\lambda_{m}b_{m}g_{m}-c$ to simplify computations. | |
(Usually, the ``$-c$'' indicates dropping | |
additive constants.) | |
We will denote the final form by $L$ (for | |
\emph{Lagrangian}). | |
\section{Extrema subject to one constraint} \label{section:3} | |
Here is Theorem~\ref{theorem:1} with $m=1$. | |
\begin{theorem} \label{theorem:2} | |
Suppose that $n>1.$ If\, ${\bf X}_{0}$ is a local extreme point of $f$ | |
subject | |
to | |
$g({\bf | |
X})=0$ and $g_{x_{r}}({\bf X}_{0})\ne0$ for some $r\in\{1,2,\dots,n\},$ | |
then there is a constant $\lambda$ such that | |
\begin{equation} \label{eq:7} | |
f_{x_{i}}({\bf X}_{0})-\lambda | |
g_{x_{i}}({\bf X}_{0})=0,\quad | |
\end{equation} | |
$1\le i\le n;$ | |
thus$,$ ${\bf X}_{0}$ is a critical point of $f-\lambda g.$ | |
\end{theorem} | |
\proof | |
For notational convenience, let $r=1$ and denote | |
$$ | |
{\bf U}=(x_{2},x_{3},\dots x_{n})\text{\; and\;\;} | |
{\bf U}_{0}=(x_{20},x_{30},\dots x_{n0}). | |
$$ | |
Since $g_{x_{1}}({\bf X}_{0})\ne0$, the | |
Implicit Function Theorem | |
\href{http://ramanujan.math.trinity.edu/wtrench/texts/TRENCH_REAL_ANALYSIS.PDF} | |
{(Corollary 6.4.2, p.~423)} | |
implies | |
that there is a unique continuously differentiable function | |
$h=h({\bf U}),$ defined on a neighborhood $N \subset{\mathbb R}^{n-1}$ of | |
${\bf U}_{0},$ such that $(h({\bf U}),{\bf U})\in D$ for all | |
${\bf U}\in N$, | |
$h({\bf U}_{0})=x_{10}$, and | |
\begin{equation} \label{eq:8} | |
g(h({\bf U}),{\bf U})=0,\quad {\bf U}\in N. | |
\end{equation} | |
Now define | |
\begin{equation} \label{eq:9} | |
\lambda=\frac{f_{x_{1}}({\bf X}_{0})}{g_{x_{1}}({\bf X}_{0})}, | |
\end{equation} | |
which is permissible, since $g_{x_{1}}({\bf X}_{0})\ne0$. | |
This implies \eqref{eq:7} with $i=1$. | |
If $i> 1$, differentiating \eqref{eq:8} with respect to $x_{i}$ yields | |
\begin{equation} \label{eq:10} | |
\frac{\partial g(h({\bf U}),{\bf U})}{{\partial x_{i}}}+ | |
\frac{\partial g(h({\bf U}),{\bf U})}{{\partial x_{1}}} | |
\frac{{\partial h({\bf U})}}{{\partial x_{i}}}=0,\quad {\bf U}\in N. | |
\end{equation} | |
Also, | |
\begin{equation} \label{eq:11} | |
\frac{\partial f({h(\bf U}),{\bf U}))}{\partial x_{i}}= | |
\frac{\partial f(h({\bf U}),{\bf U})}{{\partial x_{i}}}+ | |
\frac{\partial f(h({\bf U}),{\bf U})}{{\partial x_{1}}} | |
\frac{{\partial h({\bf U})}}{{\partial x_{i}}},\quad {\bf U}\in N. | |
\end{equation} | |
Since $(h({\bf U}_{0}),{\bf U}_{0})={\bf X}_{0}$, \eqref{eq:10} | |
implies that | |
\begin{equation} \label{eq:12} | |
\frac{\partial g({\bf X}_{0})}{{\partial x_{i}}}+ | |
\frac{\partial g({\bf X}_{0})}{{\partial x_{1}}} | |
\frac{{\partial h({\bf U}_{0})}}{{\partial x_{i}}}=0. | |
\end{equation} | |
If\, | |
${\bf X}_{0}$ is a local extreme point of $f$ | |
subject to $g({\bf X})=0$, then ${\bf U}_{0}$ | |
is an unconstrained local extreme point of $f(h({\bf U}),{\bf U})$; | |
therefore, | |
\eqref{eq:11} implies that | |
\begin{equation} \label{eq:13} | |
\frac{\partial f({\bf X}_{0})}{{\partial x_{i}}}+ | |
\frac{\partial f({\bf X}_{0})}{{\partial x_{1}}} | |
\frac{{\partial h({\bf U}_{0})}}{{\partial x_{i}}}=0. | |
\end{equation} | |
Since a linear homogeneous system | |
$$ | |
\left[\begin{array}{ccccccc} a&b\\c&d | |
\end{array}\right] \left[\begin{array}{ccccccc} u\\v \end{array}\right]= | |
\left[\begin{array}{ccccccc} 0\\0 \end{array}\right] | |
$$ | |
has a nontrivial | |
solution if and only if | |
$$ \left|\begin{array}{ccccccc} a&b\\c&d | |
\end{array}\right|=0, | |
$$ | |
\href{http://ramanujan.math.trinity.edu/wtrench/texts/TRENCH_REAL_ANALYSIS.PDF} | |
{(Theorem~6.1.15, p.~376)}, | |
\eqref{eq:12} and | |
\eqref{eq:13} imply that | |
$$ | |
\left|\begin{array}{ccccccc} | |
\dst{\frac{{\partial f({\bf X}_{0})}}{{\partial x_{i}}}}& | |
\dst{\frac{{\partial f({\bf X}_{0})}}{{\partial x_{1}}}}\\\\ | |
\dst{\frac{{\partial g({\bf X}_{0})}}{{\partial x_{i}}}}& | |
\dst{\frac{{\partial g({\bf X}_{0})}}{{\partial x_{1}}}}& | |
\end{array}\right|=0,\text{\; so\;\;} \left|\begin{array}{ccccccc} | |
\dst{\frac{{\partial f({\bf X}_{0})}}{{\partial x_{i}}}}& | |
\dst{\frac{{\partial g({\bf X}_{0})}}{{\partial x_{i}}}}\\\\ | |
\dst{\frac{{\partial f({\bf X}_{0})}}{{\partial x_{1}}}}& | |
\dst{\frac{{\partial g({\bf X}_{0})}}{{\partial x_{1}}}} | |
\end{array}\right|=0, $$ | |
since the determinants of a matrix and its transpose are equal. | |
Therefore, the system | |
$$ | |
\left[\begin{array}{ccccccc} | |
\dst{\frac{{\partial f({\bf X}_{0})}}{{\partial x_{i}}}}& | |
\dst{\frac{{\partial g({\bf X}_{0})}}{{\partial x_{i}}}}\\\\ | |
\dst{\frac{{\partial f({\bf X}_{0})}}{{\partial x_{1}}}}& | |
\dst{\frac{{\partial g({\bf X}_{0})}}{{\partial x_{1}}}} \end{array}\right] | |
\left[\begin{array}{ccccccc} u\\v \end{array}\right]= | |
\left[\begin{array}{ccccccc} 0\\0 \end{array}\right] $$ | |
has a nontrivial | |
solution | |
\href{http://ramanujan.math.trinity.edu/wtrench/index.shtml} | |
{(Theorem~6.1.15, p. 376)}. | |
Since $g_{x_{1}}({\bf X}_{0})\ne0$, $u$ must be nonzero in a | |
nontrivial solution. Hence, we may assume that $u=1$, so | |
\begin{equation} \label{eq:14} | |
\left[\begin{array}{ccccccc} | |
\dst{\frac{{\partial f({\bf X}_{0})}}{{\partial x_{i}}}}& | |
\dst{\frac{{\partial g({\bf X}_{0})}}{{\partial x_{i}}}}\\\\ | |
\dst{\frac{{\partial f({\bf X}_{0})}}{{\partial x_{1}}}}& | |
\dst{\frac{{\partial g({\bf X}_{0})}}{{\partial x_{1}}}} \end{array}\right] | |
\left[\begin{array}{ccccccc} 1\\ v \end{array}\right]= | |
\left[\begin{array}{ccccccc} 0\\0 \end{array}\right]. | |
\end{equation} | |
In particular, | |
$$ | |
\frac{\partial f({\bf X}_{0})}{\partial x_{1}}+ | |
v\frac{\partial g({\bf X}_{0})}{\partial x_{1}}=0, \text{\; so\;\;} | |
-v=\frac{f_{x_{1}}({\bf X}_{0})}{g_{x_{1}}({\bf X}_{0})}. | |
$$ | |
Now \eqref{eq:9} implies that $-v=\lambda$, and \eqref{eq:14} becomes | |
$$ | |
\left[\begin{array}{ccccccc} | |
\dst{\frac{{\partial f({\bf X}_{0})}}{{\partial x_{i}}}}& | |
\dst{\frac{{\partial g({\bf X}_{0})}}{{\partial x_{i}}}}\\\\ | |
\dst{\frac{{\partial f({\bf X}_{0})}}{{\partial x_{1}}}}& | |
\dst{\frac{{\partial g({\bf X}_{0})}}{{\partial x_{1}}}} \end{array}\right] | |
\left[\begin{array}{rcccccc} 1\\ -\lambda \end{array}\right]= | |
\left[\begin{array}{ccccccc} 0\\0 \end{array}\right]. | |
$$ | |
Computing the topmost entry of the vector on the left yields | |
\eqref{eq:7}. | |
\hfill\bbox | |
\begin{example} \label{example:1} \rm | |
Find the point $(x_{0},y_{0})$ on the line | |
$$ | |
ax+by=d | |
$$ | |
closest to a given point $(x_{1},y_{1})$. | |
\solution | |
We must minimize $\sqrt{(x-x_{1})^{2}+(y-y_{1})^{2}}$ subject to the | |
constraint. This is equivalent to minimizing | |
$(x-x_{1})^{2}+(y-y_{1})^{2}$ subject to the constraint, which is simpler. | |
For, this we could let | |
$$ | |
L=(x-x_{1})^{2}+(y-y_{1})^{2}-\lambda (ax+by-d); | |
$$ | |
however, | |
$$ | |
L=\frac{(x-x_{1})^{2}+(y-y_{1})^{2}}{2}-\lambda (ax+by) | |
$$ | |
is better. Since | |
$$ | |
L_{x}=x-x_{1}-\lambda a\text{\quad and \quad } | |
L_{y}=y-y_{1}-\lambda b, | |
$$ | |
$(x_{0},y_{0})=(x_{1}+\lambda a, y_{1}+\lambda b)$, | |
where we must choose $\lambda$ so that $ax_{0}+by_{0}=d$. Therefore, | |
$$ | |
ax_{0}+by_{0}=ax_{1}+by_{1}+\lambda(a^{2}+b^{2})=d, | |
$$ | |
so | |
$$ | |
\lambda= \frac{d-ax_{1}-by_{1}}{a^{2}+b^{2}}, | |
$$ | |
$$ | |
x_{0}=x_{1}+\frac{(d-ax_{1}-by_{1})a}{a^{2}+b^{2}}, | |
\text{\; and\;\;} | |
y_{0}=y_{1}+\frac{(d-ax_{1}-by_{1})b}{a^{2}+b^{2}}. | |
$$ | |
The distance from $(x_{1},y_{1})$ to the line is | |
$$ | |
\sqrt{(x_{0}-x_{1})^{2}+(y_{0}-y_{1})^{2}}= | |
\frac{|d-ax_{1}-by_{1}|}{\sqrt{a^{2}+b^{2}}}. | |
$$ | |
\end{example} | |
\begin{example} \label{example:2} \rm | |
Find the extreme values of $f(x,y)=2x+y$ subject to | |
$$ | |
x^{2}+y^{2}=4. | |
$$ | |
\noindent | |
{\bf Solution} | |
Let | |
$$ | |
L=2x+y-\frac{\lambda}{2}(x^{2}+y^{2}); | |
$$ | |
then | |
$$ | |
L_{x}=2-\lambda x\text{\; and\;\;} L_{y}=1-\lambda y, | |
$$ | |
so | |
$(x_{0},y_{0})=(2/\lambda,1/\lambda)$. Since | |
$x_{0}^{2}+y_{0}^{2}=4$, $\lambda=\pm \sqrt{5}/2$. Hence, the | |
constrained maximum is $2\sqrt{5}$, attained at $(4/\sqrt{5},2/\sqrt{5})$, | |
and the constrained minimum is | |
$-2\sqrt{5}$, attained at $(-4/\sqrt{5},-2/\sqrt{5})$. | |
\end{example} | |
\begin{example} \label{example:3} \rm | |
Find the point in the plane | |
\begin{equation} \label{eq:15} | |
3x+4y+z=1 | |
\end{equation} | |
closest to $(-1,1,1)$. | |
\medskip | |
\solution | |
We must minimize | |
$$ | |
f(x,y,z)=(x+1)^{2}+(y-1)^{2}+(z-1)^{2} | |
$$ | |
subject to \eqref{eq:15}. Let | |
$$ | |
L=\frac{(x+1)^{2}+(y-1)^{2}+(z-1)^{2}}{2}-\lambda(3x+4y+z); | |
$$ | |
then | |
$$ | |
L_{x}= x+1-3\lambda,\quad | |
L_{y}= y-1-4\lambda,\text{\; and\;\;} | |
L_{z}= z-1-\lambda, | |
$$ | |
so | |
$$ | |
x_{0}=-1+3\lambda,\quad y_{0}=1+4\lambda,\quad z_{0}=1+\lambda. | |
$$ | |
From \eqref{eq:15}, | |
$$ | |
3(-1+3\lambda)+4(1+4\lambda)+(1+\lambda)-1=1+26\lambda=0, | |
$$ | |
so | |
$\lambda=-1/26$ and | |
$$ | |
(x_{0},y_{0},z_{0})= | |
\left(-\frac{29}{26},\frac{22}{26},\frac{25}{26}\right). | |
$$ | |
The distance from $(x_{0},y_{0},z_{0})$ to $(-1,1,1)$ is | |
$$ | |
\sqrt{(x_{0}+1)^{2}+(y_{0}-1)^{2}+(z_{0}-1)^{2}}=\frac{1}{\sqrt{26}}. | |
$$ | |
\end{example} | |
\begin{example} \label{example:4} \rm | |
Assume that $n\ge 2$ and $x_{i}\ge 0$, $1\le i\le n$. | |
\begin{alist} | |
\item % (a) | |
Find the extreme values of | |
$\dst{\sum_{i=1}^{n}x_{i}}$ subject to | |
$\dst{\sum_{i=1}^{n}x_{i}^{2}=1}$. | |
\item | |
Find the | |
minimum value of | |
$\dst{\sum_{i=1}^{n}x_{i}^{2}}$ subject to | |
$\dst{\sum_{i=1}^{n}x_{i}=1}$. | |
\end{alist} | |
\solution {\bf (a)} | |
Let | |
$$ | |
L= \sum_{i=1}^{n}x_{i}-\frac{\lambda}{2}\sum_{i=1}^{n}x_{i}^{2}; | |
$$ | |
then | |
$$ | |
L_{x_{i}}=1-\lambda x_{i}, \text{\; so\;\;} x_{i0}=\frac{1}{\lambda}, \quad | |
1\le i\le n. | |
$$ | |
Hence, $\dst{\sum_{i=1}^{n}x_{i0}^{2}}=n/\lambda^{2}$, so | |
$\lambda=\pm\sqrt{n}$\, and | |
$$ | |
(x_{10},x_{20},\dots,x_{n0})= | |
\pm\left(\frac{1}{\sqrt{n}},\frac{1}{\sqrt{n}}, \dots, | |
\frac{1}{\sqrt{n}}\right). | |
$$ | |
Therefore, the constrained maximum is $\sqrt{n}$ | |
and the constrained minimum is $-\sqrt{n}$. | |
\solution {\bf (b)} | |
Let | |
$$ | |
L=\frac{1}{2} | |
\sum_{i=1}^{n}x_{i}^{2}-\lambda\sum_{i=1}^{n}x_{i}; | |
$$ | |
then | |
$$ | |
L_{x_{i}}=x_{i}-\lambda, \text{\; so\;\;} x_{i0}=\lambda,\quad 1\le i\le n. | |
$$ | |
Hence, $\dst{\sum_{i=1}^{n}x_{i0}}=n\lambda=1$, so | |
$x_{i0}=\lambda=1/n$ | |
and the constrained minimum is | |
$$ | |
\dst{\sum_{i=1}^{n}x_{i0}^{2}}=\frac{1}{n} | |
$$ | |
There is no constrained maximum. (Why?) | |
\end{example} | |
\begin{example} \label{example:5} \rm | |
Show that | |
$$ | |
x^{1/p}y^{1/q} \le \frac{x}{p}+\frac{y}{q}, \quad x,y \ge 0, | |
$$ | |
if | |
\begin{equation} \label{eq:16} | |
\frac{1}{p} +\frac{1}{q} = 1, \quad p > 0, \text{\; and\;\;} q > 0. | |
\end{equation} | |
\solution | |
We first find the maximum of | |
$$ | |
f(x,y) = x^{1/p}y^{1/q} | |
$$ | |
subject to | |
\begin{equation} \label{eq:17} | |
\frac{x}{p}+\frac{y}{q} = | |
\sigma, \quad x \ge 0, \quad y \ge 0, | |
\end{equation} | |
where $\sigma$ is a fixed but arbitrary positive number. Since $f$ is | |
continuous, it must | |
assume a maximum at some point $(x_{0},y_{0})$ on the line segment \eqref{eq:17}, and | |
$(x_{0},y_{0})$ cannot be an endpoint of the segment, since $f(p\sigma,0) = | |
f(0,q\sigma)=0$. Therefore, $(x_{0},y_{0})$ is in the open first quadrant. | |
Let | |
$$ | |
L = x^{1/p}y^{1/q} -\lambda | |
\left(\frac{x}{p}+\frac{y}{q}\right). | |
$$ | |
Then | |
$$ | |
L_x = \frac{1}{px} f(x,y) - \frac{\lambda}{p} | |
\text{\; and\;\;} | |
L_y = \frac{1}{qy} f(x,y) - \frac{\lambda}{q}=0, | |
$$ | |
so $x_{0} = y_{0}=f(x_{0},y_{0})/\lambda$. Now\eqref{eq:16} and | |
\eqref{eq:17} imply that | |
$x_{0} =y_{0} = | |
\sigma$. Therefore, | |
$$ | |
f(x,y) \le f(\sigma,\sigma) = \sigma^{1/p}\sigma^{1/q} = | |
\sigma=\frac{x}{p}+\frac{y}{q}. | |
$$ | |
\end{example} | |
This can be generalized (Exercise~\ref{exer:53}). | |
It can also be used to | |
generalize | |
\href{http://www-history.mcs.st-and.ac.uk/Mathematicians/Schwarz.html} | |
{Schwarz's} | |
inequality | |
(Exercise~\ref{exer:54}). | |
\section{Constrained Extrema of Quadratic Forms} \label{section:4} | |
In this section it is convenient to write | |
$$ | |
{\bf X}= | |
\left[\begin{array}{ccccccc} | |
x_{1}\\x_{2}\\\vdots\\x_{n} | |
\end{array}\right]. | |
$$ | |
An {\it eigenvalue} of a square matrix $\mathbf{A} = [a_{ij}]_{i,j=1}^{n}$ | |
is a number $\lambda$ such that the system | |
$$ | |
\mathbf{A}\mathbf{X} = \lambda \mathbf{X}, | |
$$ | |
or, equivalently, | |
$$ | |
(\mathbf{A}-\lambda \mathbf{I})\mathbf{X}=\mathbf{0}, | |
$$ | |
has a solution $\mathbf{X} \ne \mathbf{0}$. Such a solution is called | |
an {\it eigenvector} of $\mathbf{A}$. You probably know from | |
linear algebra that | |
$\lambda$ is an eigenvalue of $\mathbf{A}$ if and only if | |
$$ | |
\det(\mathbf{A} -\lambda \mathbf{I}) = {0}. | |
$$ | |
Henceforth we assume that | |
$\mathbf{A}$ is symmetric $(a_{ij} = a_{ji}, 1 \le i, j \le n)$. In this | |
case, | |
$$ | |
\det(\mathbf{A}-\lambda \mathbf{I}) = | |
(-1)^{n}(\lambda-\lambda_{1})(\lambda-\lambda_2) \cdots | |
(\lambda-\lambda_{n}), | |
$$ | |
where $\lambda_{1},\lambda_2,\dots,\lambda_{n}$ are real numbers. | |
The function | |
$$ | |
Q(\mathbf{X}) = \sum^{n}_{i,j=1} a_{ij} x_{i}x_{j} | |
$$ | |
is a \emph{quadratic form}. | |
To find its maximum or minimum | |
subject to | |
$\dst{\sum^{n}_{i=1} x^{2}_{i}=1}$, | |
we form the Lagrangian | |
$$ | |
L=Q(\mathbf{X}) - \lambda \sum^{n}_{i=1}x^{2}_{i}. | |
$$ | |
Then | |
$$ | |
L_{x_{i}}= 2 \sum^{n}_{j=1} a_{ij}x_{j} - 2\lambda x_{i}=0, | |
\quad 1 \le i \le n, | |
$$ | |
so | |
$$ | |
\sum_{j=1}^{n}a_{ij}x_{j0}=\lambda x_{i0},\quad 1\le i\le n. | |
$$ | |
Therefore, $\mathbf{X_{0}}$ is a constrained critical | |
point of $Q$ subject to $\dst{\sum^{n}_{i=1} x^{2}_{i}=1}$ if and only if\, | |
${\mathbf A}{\mathbf X}_{0}=\lambda{\mathbf X}_{0}$ for some $\lambda$; | |
that | |
is, if and only if $\lambda$ is an eigenvalue and $\mathbf{X}_{0}$ is an | |
associated unit eigenvector of $\mathbf{A}$. If ${\mathbf | |
A}\mathbf{X}_{0}={\bf X}_{0}$ and | |
$\dst{\sum_{i}^{n}x_{i0}^{2}}=1$, then | |
\begin{eqnarray*} | |
Q(\mathbf{X}_{0}) & =& \sum^{n}_{i=1} \left(\sum^{n}_{j=1} a_{ij}x_{j0} | |
\right) x_{i0} = | |
\sum^{n}_{i=1} (\lambda x_{i0})x_{i0} \\ | |
& =& \lambda \sum^{n}_{i=1} x^{2}_{i0} = \lambda; | |
\end{eqnarray*} | |
therefore, the largest and smallest eigenvalues of ${\bf A}$ are the | |
maximum | |
and minimum values of $Q$ subject to $\dst{\sum_{i=1}^{n}x_{i}^{2}}=1$. | |
\begin{example} \label{example:6} \rm | |
Find the maximum and minimum values | |
$$ | |
Q(\mathbf{X}) = x^{2}+y^{2}+2z^{2}-2xy + 4xz + 4yz | |
$$ | |
subject to the constraint | |
\begin{equation} \label{eq:18} | |
x^{2}+y^{2}+z^{2}=1. | |
\end{equation} | |
\solution | |
The matrix of $Q$ is | |
$$ | |
\mathbf{A} = | |
\left[\begin{array}{rrrrr} | |
1 & -1 & 2 \\ | |
-1 & 1 & 2 \\ | |
2&2&2 | |
\end{array}\right] | |
$$ | |
and | |
\begin{eqnarray*} | |
\det(\mathbf{A} - \lambda \mathbf{I}) & =& | |
\left|\begin{array}{ccccccc} | |
1-\lambda &-1 & 2 \\ | |
-1 & 1-\lambda & 2 \\ | |
2 & 2 & 2-\lambda | |
\end{array}\right| \\ | |
& =& -(\lambda+2)(\lambda-2)(\lambda-4), | |
\end{eqnarray*} | |
so | |
$$ | |
\lambda_{1}=4, \quad \lambda_2=2, \quad \lambda_3=-2 | |
$$ | |
are the eigenvalues of $\mathbf{A}$. Hence, $\lambda_{1}=4$ and | |
$\lambda_3 = -2$ are the maximum and minimum values of $Q$ subject to | |
\eqref{eq:18}. | |
To find the points $(x_{1},y_{1},z_{1})$ where $Q$ attains its | |
constrained maximum, we first find an eigenvector of ${\bf A}$ | |
corresponding | |
to $\lambda_{1}=4$. To do this, we find a nontrivial solution of the | |
system | |
$$ | |
(\mathbf{A}-4\mathbf{I}) | |
\left[\begin{array}{ccccccc} | |
x_{1}\\ y_{1}\\ z_{1} | |
\end{array}\right]= | |
\left[\begin{array}{ccccccc} | |
-3 & -1 & \phantom{-}2 \\ | |
-1 & -3 & \phantom{-}2 \\ | |
\phantom{-}2 & \phantom{-}2 & -2 | |
\end{array}\right] | |
\left[\begin{array}{ccccccc} | |
x_{1}\\y_{1}\\z_{1} | |
\end{array}\right]= | |
\left[\begin{array}{ccccccc} | |
0\\0\\0 | |
\end{array}\right]. | |
$$ | |
All such solutions are multiples of | |
$ | |
\left[\begin{array}{ccccccc} | |
1\\1\\2 | |
\end{array}\right]. | |
$ | |
Normalizing this to satisfy \eqref{eq:18} yields | |
$$ | |
{\bf X}_{1}=\frac{1}{\sqrt6} | |
\left[\begin{array}{ccccccc} | |
x_{1}\\y_{1}\\z_{1} | |
\end{array}\right]=\pm | |
\left[\begin{array}{ccccccc} | |
1\\ 1\\1 | |
\end{array}\right]. | |
$$ | |
To find the points $(x_{3},y_{3},z_{3})$ where $Q$ attains its | |
constrained minimum, we first find an eigenvector of ${\bf A}$ | |
corresponding | |
to $\lambda_{3}=-2$. To do this, we find a nontrivial solution of the | |
system | |
$$ | |
(\mathbf{A}+2\mathbf{I}) | |
\left[\begin{array}{ccccccc} | |
x_{3}\\ y_{3}\\ z_{3} | |
\end{array}\right]= | |
\left[\begin{array}{rrrcccc} | |
3 & -1 & \phantom{-}2 \\ | |
-1 & 3 & \phantom{-}2 \\ | |
\phantom{-}2 & \phantom{-}2 & 4 | |
\end{array}\right] | |
\left[\begin{array}{ccccccc} | |
x_{3}\\y_{3}\\z_{3} | |
\end{array}\right]= | |
\left[\begin{array}{ccccccc} | |
0\\0\\0 | |
\end{array}\right]. | |
$$ | |
All such solutions are multiples of | |
$ | |
\left[\begin{array}{rcccccc} | |
1\\1\\-1 | |
\end{array}\right]. | |
$ | |
Normalizing this to satisfy \eqref{eq:18} yields | |
$$ | |
{\bf X}_{3}= | |
\left[\begin{array}{ccccccc} | |
x_{2}\\y_{2}\\z_{2} | |
\end{array}\right]=\pm \frac{1}{\sqrt{3}} | |
\left[\begin{array}{rcccccc} | |
1\\ 1\\-1 | |
\end{array}\right]. | |
$$ | |
As for the eigenvalue $\lambda_{2}=2$, we leave it you to verify that | |
the only unit vectors that satisfy | |
${\bf A}{\bf X}_{2}=2{\bf X}_{2}$ are | |
$$ | |
{\bf X}_{2}=\pm \frac{1}{\sqrt{2}} | |
\left[\begin{array}{rcccccc} | |
1\\ 1\\-1 | |
\end{array}\right]. | |
$$ | |
\end{example} | |
For more on this subject, see Theorem~\ref{theorem:4}. | |
\section{Extrema subject to two constraints} \label{section:5} | |
Here is Theorem~\ref{theorem:1} with $m=2$. | |
\begin{theorem} \label{theorem:3} | |
Suppose that $n>2.$ If\, ${\bf X}_{0}$ is a local extreme point of $f$ | |
subject to | |
$g_{1}({\bf X})=g_{2}({\bf X})=0$ and | |
\begin{equation} \label{eq:19} | |
\left|\begin{array}{ccccccc} | |
\dst{\frac{{\partial g_{1}({\bf X}_{0})}}{{\partial x_{r}}}}& | |
\dst{\frac{{\partial g_{1}({\bf X}_{0})}}{{\partial x_{s}}}}\\\\ | |
\dst{\frac{{\partial g_{2}({\bf X}_{0})}}{{\partial x_{r}}}}& | |
\dst{\frac{{\partial g_{2}({\bf X}_{0})}}{{\partial x_{s}}}}\\ | |
\end{array}\right|\ne0 | |
\end{equation} | |
for some $r$ and $s$ in $\{1,2,\dots,n\},$ then | |
there are constants $\lambda$ and $\mu$ such that | |
\begin{equation} \label{eq:20} | |
\frac{{\partial f({\bf X}_{0})}}{{\partial x_{i}}}- | |
\lambda\frac{{\partial g_{1}({\bf X}_{0})}}{{\partial x_{i}}}- | |
\mu\frac{{\partial g_{2}({\bf X}_{0})}}{{\partial x_{i}}}=0, | |
\end{equation} | |
$1\le i\le n$. | |
\end{theorem} | |
\proof | |
For notational convenience, let $r=1$ and $s=2$. Denote | |
$$ | |
{\bf U}=(x_{3},x_{4},\dots x_{n})\text{\; and\;\;} | |
{\bf U}_{0}=(x_{30},x_{30},\dots x_{n0}). | |
$$ | |
Since | |
\begin{equation} \label{eq:21} | |
\left|\begin{array}{ccccccc} | |
\dst{\frac{{\partial g_{1}({\bf X}_{0})}}{{\partial x_{1}}}}& | |
\dst{\frac{{\partial g_{1}({\bf X}_{0})}}{{\partial x_{2}}}}\\\\ | |
\dst{\frac{{\partial g_{2}({\bf X}_{0})}}{{\partial x_{1}}}}& | |
\dst{\frac{{\partial g_{2}({\bf X}_{0})}}{{\partial x_{2}}}}\\ | |
\end{array}\right|\ne0, | |
\end{equation} | |
the Implicit Function Theorem | |
\href{http://ramanujan.math.trinity.edu/wtrench/texts/TRENCH_REAL_ANALYSIS.PDF} | |
{(Theorem~6.4.1, p.~420)} | |
implies that there are unique continuously differentiable functions | |
$$ | |
h_{1}=h_{1}(x_{3},x_{4},\dots,x_{n})\text{\; and\;\;} | |
h_{2}=h_{1}(x_{3},x_{4},\dots,x_{n}), | |
$$ | |
defined on a neighborhood $N\subset{\mathbb R}^{n-2}$ of | |
${\bf U}_{0},$ such that $(h_{1}({\bf | |
U}),h_{2}({\bf U}),{\bf U})\in D$ for all ${\bf U}\in N$, | |
$h_{1}({\bf U}_{0})=x_{10}$, | |
$h_{2}({\bf U}_{0})=x_{20}$, and | |
\begin{equation} \label{eq:22} | |
g_{1}(h_{1}({\bf U}),h_{2}({\bf U}),{\bf U})= | |
g_{2}(h_{1}({\bf U}),h_{2}({\bf U}),{\bf U})=0,\quad {\bf U}\in N. | |
\end{equation} | |
From \eqref{eq:21}, the system | |
\begin{equation} \label{eq:23} | |
\left[\begin{array}{ccccccc} | |
\dst{\frac{{\partial g_{1}({\bf X}_{0})}}{{\partial x_{1}}}}& | |
\dst{\frac{{\partial g_{1}({\bf X}_{0})}}{{\partial x_{2}}}}\\\\ | |
\dst{\frac{{\partial g_{2}({\bf X}_{0})}}{{\partial x_{1}}}}& | |
\dst{\frac{{\partial g_{2}({\bf X}_{0})}}{{\partial x_{2}}}}\\ | |
\end{array}\right] | |
\left[\begin{array}{ccccccc} | |
\lambda\\\mu | |
\end{array}\right]= | |
\left[\begin{array}{ccccccc} | |
f_{x_{1}}({\bf X}_{0})\\f_{x_{2}}({\bf X}_{0})\\ | |
\end{array}\right] | |
\end{equation} | |
has a unique solution | |
\href{http://ramanujan.math.trinity.edu/wtrench/texts/TRENCH_REAL_ANALYSIS.PDF} | |
{(Theorem~6.1.13, p. 373)}. | |
This implies \eqref{eq:20} with $i=1$ and $i=2$. | |
If $3\le i\le n$, then differentiating \eqref{eq:22} with respect to | |
$x_{i}$ and recalling that | |
$(h_{1}({\bf U}_{0}),h_{2}({\bf U}_{0}),{\bf U}_{0})={\bf X}_{0}$ | |
yields | |
$$ | |
\frac{\partial g_{1}({\bf X}_{0})}{\partial x_{i}}+ | |
\frac{\partial g_{1}({\bf X}_{0})}{\partial x_{1}} | |
\frac{\partial h_{1}({\bf U}_{0})}{\partial x_{i}}+ | |
\frac{\partial g_{1}({\bf X}_{0})}{\partial x_{2}} | |
\frac{\partial h_{2}({\bf U}_{0})}{\partial x_{i}}=0 | |
$$ | |
and | |
$$ | |
\frac{\partial g_{2}({\bf X}_{0})}{\partial x_{i}}+ | |
\frac{\partial g_{2}({\bf X}_{0})}{\partial x_{1}} | |
\frac{\partial h_{1}({\bf U}_{0})}{\partial x_{i}}+ | |
\frac{\partial g_{2}({\bf X}_{0})}{\partial x_{2}} | |
\frac{\partial h_{2}({\bf U}_{0})}{\partial x_{i}}=0. | |
$$ | |
If | |
${\bf X}_{0}$ is a local extreme point of $f$ | |
subject to $g_{1}({\bf X})=g_{2}({\bf X})=0$, then ${\bf U}_{0}$ | |
is an unconstrained local extreme point of | |
$f(h_{1}({\bf U}),h_{2}({\bf U}),{\bf U})$; therefore, | |
$$ | |
\frac{\partial f({\bf X}_{0})}{\partial x_{i}}+ | |
\frac{\partial f({\bf X}_{0})}{\partial x_{1}} | |
\frac{\partial h_{1}({\bf U}_{0})}{\partial x_{i}}+ | |
\frac{\partial f({\bf X}_{0})}{\partial x_{2}} | |
\frac{\partial h_{2}({\bf U}_{0})}{\partial x_{i}}=0. | |
$$ | |
The last three equations imply that | |
$$ | |
\left|\begin{array}{ccccccc} | |
\dst{\frac{{\partial f({\bf X}_{0})}}{{\partial x_{i}}}}& | |
\dst{\frac{{\partial f({\bf X}_{0})}}{{\partial x_{1}}}}& | |
\dst{\frac{{\partial f({\bf X}_{0})}}{{\partial x_{2}}}}\\\\ | |
\dst{\frac{{\partial g_{1}({\bf X}_{0})}}{{\partial x_{i}}}}& | |
\dst{\frac{{\partial g_{1}({\bf X}_{0})}}{{\partial x_{1}}}}& | |
\dst{\frac{{\partial g_{1}({\bf X}_{0})}}{{\partial x_{2}}}}\\\\ | |
\dst{\frac{{\partial g_{2}({\bf X}_{0})}}{{\partial x_{i}}}}& | |
\dst{\frac{{\partial g_{2}({\bf X}_{0})}}{{\partial x_{1}}}}& | |
\dst{\frac{{\partial g_{2}({\bf X}_{0})}}{{\partial x_{2}}}}\\ | |
\end{array}\right|=0, | |
$$ | |
$$ | |
\left|\begin{array}{ccccccc} | |
\dst{\frac{{\partial f({\bf X}_{0})}}{{\partial x_{i}}}}& | |
\dst{\frac{{\partial g_{1}({\bf X}_{0})}}{{\partial x_{i}}}}& | |
\dst{\frac{{\partial g_{2}({\bf X}_{0})}}{{\partial x_{i}}}}\\\\ | |
\dst{\frac{{\partial f({\bf X}_{0})}}{{\partial x_{1}}}}& | |
\dst{\frac{{\partial g_{1}({\bf X}_{0})}}{{\partial x_{1}}}}& | |
\dst{\frac{{\partial g_{2}({\bf X}_{0})}}{{\partial x_{1}}}}\\\\ | |
\dst{\frac{{\partial f({\bf X}_{0})}}{{\partial x_{2}}}}& | |
\dst{\frac{{\partial g_{1}({\bf X}_{0})}}{{\partial x_{2}}}}& | |
\dst{\frac{{\partial g_{2}({\bf X}_{0})}}{{\partial x_{2}}}}\\\\ | |
\end{array}\right|=0. | |
$$ | |
Therefore, there are constants $c_{1}$, $c_{2}$, $c_{3}$, not all zero, | |
such | |
that | |
\begin{equation} \label{eq:24} | |
\left[\begin{array}{ccccccc} | |
\dst{\frac{{\partial f({\bf X}_{0})}}{{\partial x_{i}}}}& | |
\dst{\frac{{\partial g_{1}({\bf X}_{0})}}{{\partial x_{i}}}}& | |
\dst{\frac{{\partial g_{2}({\bf X}_{0})}}{{\partial x_{i}}}}\\\\ | |
\dst{\frac{{\partial f({\bf X}_{0})}}{{\partial x_{1}}}}& | |
\dst{\frac{{\partial g_{1}({\bf X}_{0})}}{{\partial x_{1}}}}& | |
\dst{\frac{{\partial g_{2}({\bf X}_{0})}}{{\partial x_{1}}}}\\\\ | |
\dst{\frac{{\partial f({\bf X}_{0})}}{{\partial x_{2}}}}& | |
\dst{\frac{{\partial g_{1}({\bf X}_{0})}}{{\partial x_{2}}}}& | |
\dst{\frac{{\partial g_{2}({\bf X}_{0})}}{{\partial x_{2}}}}\\\\ | |
\end{array}\right] | |
\left[\begin{array}{ccccccc} | |
c_{1}\\c_{2}\\c_{3} | |
\end{array}\right]= | |
\left[\begin{array}{ccccccc} | |
0\\0\\0 | |
\end{array}\right]. | |
\end{equation} | |
If $c_{1}=0$, then | |
$$ | |
\left[\begin{array}{ccccccc} | |
\dst{\frac{{\partial g_{1}({\bf X}_{0})}}{{\partial x_{1}}}}& | |
\dst{\frac{{\partial g_{1}({\bf X}_{0})}}{{\partial x_{2}}}}\\\\ | |
\dst{\frac{{\partial g_{2}({\bf X}_{0})}}{{\partial x_{1}}}}& | |
\dst{\frac{{\partial g_{2}({\bf X}_{0})}}{{\partial x_{2}}}}\\ | |
\end{array}\right] | |
\left[\begin{array}{ccccccc} | |
c_{2}\\c_{3} | |
\end{array}\right]= | |
\left[\begin{array}{ccccccc} | |
0\\0 | |
\end{array}\right], | |
$$ | |
so \eqref{eq:19} implies that $c_{2}=c_{3}=0$; | |
hence, we | |
may assume that $c_{1}=1$ in a nontrivial solution of \eqref{eq:24}. | |
Therefore, | |
\begin{equation} \label{eq:25} | |
\left[\begin{array}{ccccccc} | |
\dst{\frac{{\partial f({\bf X}_{0})}}{{\partial x_{i}}}}& | |
\dst{\frac{{\partial g_{1}({\bf X}_{0})}}{{\partial x_{i}}}}& | |
\dst{\frac{{\partial g_{2}({\bf X}_{0})}}{{\partial x_{i}}}}\\\\ | |
\dst{\frac{{\partial f({\bf X}_{0})}}{{\partial x_{1}}}}& | |
\dst{\frac{{\partial g_{1}({\bf X}_{0})}}{{\partial x_{1}}}}& | |
\dst{\frac{{\partial g_{2}({\bf X}_{0})}}{{\partial x_{1}}}}\\\\ | |
\dst{\frac{{\partial f({\bf X}_{0})}}{{\partial x_{2}}}}& | |
\dst{\frac{{\partial g_{1}({\bf X}_{0})}}{{\partial x_{2}}}}& | |
\dst{\frac{{\partial g_{2}({\bf X}_{0})}}{{\partial x_{2}}}}\\\\ | |
\end{array}\right] | |
\left[\begin{array}{ccccccc} | |
1\\c_{2}\\c_{3} | |
\end{array}\right]= | |
\left[\begin{array}{ccccccc} | |
0\\0\\0 | |
\end{array}\right], | |
\end{equation} | |
which implies that | |
$$ | |
\left[\begin{array}{ccccccc} | |
\dst{\frac{{\partial g_{1}({\bf X}_{0})}}{{\partial x_{1}}}}& | |
\dst{\frac{{\partial g_{1}({\bf X}_{0})}}{{\partial x_{2}}}}\\\\ | |
\dst{\frac{{\partial g_{2}({\bf X}_{0})}}{{\partial x_{1}}}}& | |
\dst{\frac{{\partial g_{2}({\bf X}_{0})}}{{\partial x_{2}}}}\\ | |
\end{array}\right] | |
\left[\begin{array}{ccccccc} | |
-c_{2}\\-c_{3} | |
\end{array}\right]= | |
\left[\begin{array}{ccccccc} | |
f_{x_{1}}({\bf X}_{0})\\f_{x_{2}}({\bf X}_{0})\\ | |
\end{array}\right]. | |
$$ | |
Since \eqref{eq:23} has only one solution, | |
this implies that | |
$c_{2}=-\lambda$ and $c_{2}=-\mu$, so \eqref{eq:25} becomes | |
$$ | |
\left[\begin{array}{ccccccc} | |
\dst{\frac{{\partial f({\bf X}_{0})}}{{\partial x_{i}}}}& | |
\dst{\frac{{\partial g_{1}({\bf X}_{0})}}{{\partial x_{i}}}}& | |
\dst{\frac{{\partial g_{2}({\bf X}_{0})}}{{\partial x_{i}}}}\\\\ | |
\dst{\frac{{\partial f({\bf X}_{0})}}{{\partial x_{1}}}}& | |
\dst{\frac{{\partial g_{1}({\bf X}_{0})}}{{\partial x_{1}}}}& | |
\dst{\frac{{\partial g_{2}({\bf X}_{0})}}{{\partial x_{1}}}}\\\\ | |
\dst{\frac{{\partial f({\bf X}_{0})}}{{\partial x_{2}}}}& | |
\dst{\frac{{\partial g_{1}({\bf X}_{0})}}{{\partial x_{2}}}}& | |
\dst{\frac{{\partial g_{2}({\bf X}_{0})}}{{\partial x_{2}}}}\\\\ | |
\end{array}\right] | |
\left[\begin{array}{rcccccc} | |
1\\-\lambda\\-\mu | |
\end{array}\right]= | |
\left[\begin{array}{ccccccc} | |
0\\0\\0 | |
\end{array}\right]. | |
$$ | |
Computing the topmost entry of the vector on the left | |
yields \eqref{eq:20}. | |
\hfill\bbox | |
\begin{example}\label{example:7}\rm | |
Minimize | |
$$ | |
f(x,y,z,w) = x^{2}+y^{2}+z^{2}+w^{2} | |
$$ | |
subject to | |
\begin{equation} \label{eq:26} | |
x+y+z+w = 10 \text{\; and\;\;} | |
x-y+z+3w = 6. | |
\end{equation} | |
\solution | |
Let | |
$$ | |
L = | |
\frac{x^{2}+y^{2}+z^{2}+w^{2}}{2}-\lambda(x+y+z+w)-\mu(x-y+z+3w); | |
$$ | |
then | |
\begin{eqnarray*} | |
L_x & =& x-\lambda-\mu \\ | |
L_y & =& y-\lambda+\mu \\ | |
L_z & =& z-\lambda-\mu \\ | |
L_w & =& w-\lambda-3\mu, | |
\end{eqnarray*} | |
so | |
\begin{equation} \label{eq:27} | |
x_{0} = \lambda+\mu, \quad y_{0} = \lambda-\mu, \quad z_{0} = \lambda+\mu, \quad | |
w_{0} = \lambda+3\mu. | |
\end{equation} | |
This and \eqref{eq:26} imply that | |
\begin{eqnarray*} | |
(\lambda+\mu)+(\lambda-\mu)+(\lambda+\mu) + (\lambda+3\mu) & =& 10 \\ | |
(\lambda+\mu)-(\lambda-\mu)+(\lambda+\mu)+ (3\lambda+9\mu) & =& | |
\phantom{1}6. | |
\end{eqnarray*} | |
Therefore, | |
\begin{eqnarray*} | |
4\lambda + \phantom{1}4\mu & =& 10 \\ | |
4\lambda + 12\mu & = &\phantom{1}6, | |
\end{eqnarray*} | |
so | |
$\lambda=3$ and $\mu = -1/2$. | |
Now \eqref{eq:27} implies that | |
$$ | |
(x_{0},y_{0},z_{0},w_{0}) = | |
\left(\frac{5}{2},\frac{7}{2},\frac{5}{2} | |
\frac{3}{2}\right). | |
$$ | |
Since $f(x,y,z,w)$ is the square of the distance from $(x,y,z,w)$ to the | |
origin, it attains a minimum value (but not | |
a maximum value) subject to the constraints; hence the | |
constrained minimum value is | |
$$ | |
f\left(\frac{5}{2},\frac{7}{2},\frac{5}{2}, | |
\frac{3}{2}\right)=27. | |
$$ | |
\end{example} | |
\begin{example} \label{example:8} \rm | |
The distance between two curves in $\mathbb{R}^{2}$ is the minimum value of | |
$$ | |
\sqrt{(x_{1}-x_{2})^{2}+(y_{1}-y_{2})^{2}}, | |
$$ | |
where $(x_{1},y_{1})$ is on one curve and | |
$(x_{2},y_{2})$ is on the other. Find the distance between the ellipse | |
$$ | |
x^{2}+2y^{2}=1 | |
$$ | |
and the line | |
\begin{equation} \label{eq:28} | |
x+y=4. | |
\end{equation} | |
\solution | |
We must minimize | |
$$ | |
d^{2}=(x_{1}-x_{2})^{2} + (y_{1}-y_{2})^{2} | |
$$ | |
subject to | |
$$ | |
x_{1}^{2} + 2y_{1}^{2} =1 \text{\; and\;\;} x_{2}+y_{2} = 4. | |
$$ | |
Let | |
$$ | |
L = \frac{(x_{1}-x_{2})^{2} + (y_{1}-y_{2})^{2} - | |
\lambda(x_{1}^{2} + 2y_{1}^{2})}{2} -\mu(x_{2}+y_{2}); | |
$$ | |
then | |
\begin{eqnarray*} | |
L_{x_{1}}&=&x_{1}-x_{2}-\lambda x_{1}\\ | |
L_{y_{1}}&=&y_{1}-y_{2}-2\lambda y_{1}\\ | |
L_{x_{2}}&=&x_{2}-x_{1}-\mu\\ | |
L_{y_{2}}&=&y_{2}-y_{1}-\mu, | |
\end{eqnarray*} | |
so | |
\begin{eqnarray*} | |
x_{10}-x_{20}&=&\lambda x_{10} \text{\; \quad (i)}\\ | |
y_{10}-y_{20}&=&2\lambda y_{10}\text{\quad (ii)}\\ | |
x_{20}-x_{10}&=&\mu\text{\quad \quad \;\;(iii)} \\ | |
y_{20}-y_{10}&=&\mu.\text{\quad \quad \;\;(iv)} | |
\end{eqnarray*} | |
From (i) and (iii), $\mu=-\lambda x_{10}$; from (ii) and (iv), | |
$\mu=-2\lambda y_{10}$. Since the curves do not intersect, $\lambda\ne0$, | |
so $x_{10}=2y_{10}$. Since $x_{10}^{2}+2y_{10}^{2}=1$ and | |
$(x_{0},y_{0})$ is in the first quadrant, | |
\begin{equation} \label{eq:29} | |
(x_{10},y_{10})=\left(\frac{2}{\sqrt{6}},\frac{1}{\sqrt{6}}\right). | |
\end{equation} | |
Now (iii), (iv), and \eqref{eq:28} yield the simultaneous system | |
$$ | |
x_{20}-y_{20}=x_{10}-y_{10}=\frac{1}{\sqrt{6}},\quad | |
x_{20}+y_{20}=4, | |
$$ | |
so | |
$$ | |
(x_{20},y_{20}) = \left(2+\frac{1}{2\sqrt{6}}, | |
2-\frac{1}{2\sqrt{6}}\right). | |
$$ | |
From this and \eqref{eq:29}, the distance between the curves is | |
$$ | |
\left[\left(2+\frac{1}{2\sqrt{6}} -\frac{2}{\sqrt{6}} | |
\right)^{2} + \left(2- | |
\frac{1}{2\sqrt{6}} - \frac{1}{ | |
\sqrt{6}}\right)^{2}\right]^{1/2} | |
= \sqrt{2} \left(2-\frac{3}{2\sqrt{6}}\right). | |
$$ | |
\end{example} | |
\section{Proof of Theorem~1} \label{section:6} | |
\proof | |
For notational convenience, let $r_{\ell}=\ell$, | |
$1\le \ell\le m$, so \eqref{eq:6} becomes | |
\begin{equation} \label{eq:30} | |
\left|\begin{array}{ccccccc} | |
\dst{\frac{\partial{g_{1}({\bf X}_{0})}}{\partial{x_{1}}}}& | |
\dst{\frac{\partial{g_{1}({\bf X}_{0})}}{\partial{x_{2}}}}& | |
\cdots& | |
\dst{\frac{\partial{g_{1}({\bf X}_{0})}}{\partial{x_{m}}}}\\ \\ | |
\dst{\frac{\partial{g_{2}({\bf X}_{0})}}{\partial{x_{1}}}}& | |
\dst{\frac{\partial{g_{2}({\bf X}_{0})}}{\partial{x_{2}}}}& | |
\cdots& | |
\dst{\frac{\partial{g_{2}({\bf X}_{0})}}{\partial{x_{m}}}}\\ | |
\vdots&\vdots&\ddots&\vdots\\ | |
\dst{\frac{\partial{g_{m}({\bf X}_{0})}}{\partial{x_{1}}}}& | |
\dst{\frac{\partial{g_{m}({\bf X}_{0})}}{\partial{x_{2}}}}& | |
\cdots& | |
\dst{\frac{\partial{g_{m}({\bf X}_{0})}}{\partial{x_{m}}}}\\ \\ | |
\end{array}\right|\ne0 | |
\end{equation} | |
Denote | |
$$ | |
{\bf U}=(x_{m+1},x_{m+2},\dots x_{n})\text{\; and\;\;} | |
{\bf U}_{0}=(x_{m+1,0},x_{m+2,0},\dots x_{n0}). | |
$$ | |
From \eqref{eq:30}, the Implicit Function Theorem | |
implies | |
that there are unique continuously differentiable functions | |
$h_{\ell}=h_{\ell}({\bf U})$, $1\le \ell\le m$, | |
defined on a neighborhood $N$ of | |
${\bf U}_{0}$, such that | |
$$ | |
(h_{1}({\bf U}),h_{2}({\bf U}),\dots, h_{m}({\bf U}), | |
{\bf U})\in D, | |
\text{\; for all\;\;} {\bf U}\in N, | |
$$ | |
\begin{equation} \label{eq:31} | |
(h_{1}({\bf U_{0}}),h_{2}({\bf U_{0}}),\dots, h_{m}({\bf U_{0}}),{\bf | |
U}_{0})={\bf X}_{0}, | |
\end{equation} | |
and | |
\begin{equation} \label{eq:32} | |
g_{\ell}(h_{1}({\bf U}),h_{2}({\bf U}),\dots, h_{m}({\bf U}),{\bf | |
U})=0,\quad | |
{\bf U}\in N, \quad 1\le \ell\le m. | |
\end{equation} | |
Again from \eqref{eq:30}, the system | |
\begin{equation} \label{eq:33} | |
\left[\begin{array}{ccccccc} | |
\dst{\frac{\partial{g_{1}({\bf X}_{0})}}{\partial{x_{1}}}}& | |
\dst{\frac{\partial{g_{1}({\bf X}_{0})}}{\partial{x_{2}}}}& | |
\cdots& | |
\dst{\frac{\partial{g_{1}({\bf X}_{0})}}{\partial{x_{m}}}}\\ \\ | |
\dst{\frac{\partial{g_{2}({\bf X}_{0})}}{\partial{x_{1}}}}& | |
\dst{\frac{\partial{g_{2}({\bf X}_{0})}}{\partial{x_{2}}}}& | |
\cdots& | |
\dst{\frac{\partial{g_{2}({\bf X}_{0})}}{\partial{x_{m}}}}\\ | |
\vdots&\vdots&\ddots&\vdots\\ | |
\dst{\frac{\partial{g_{m}({\bf X}_{0})}}{\partial{x_{1}}}}& | |
\dst{\frac{\partial{g_{m}({\bf X}_{0})}}{\partial{x_{2}}}}& | |
\cdots& | |
\dst{\frac{\partial{g_{m}({\bf X}_{0})}}{\partial{x_{m}}}}\\ \\ | |
\end{array}\right] | |
\left[\begin{array}{ccccccc} | |
\lambda_{1}\\\lambda_{2}\\ \vdots\\\lambda_{m} | |
\end{array}\right]= | |
\left[\begin{array}{ccccccc} | |
f_{x_{1}}({\bf X}_{0})\\f_{x_{2}}({\bf X}_{0})\\\vdots\\ f_{x_{m}}({\bf | |
X}_{0}) | |
\end{array}\right] | |
\end{equation} | |
has a unique solution. | |
This implies that | |
\begin{equation} \label{eq:34} | |
\frac{\partial{f({\bf X}_{0})}}{\partial x_{i}} | |
-\lambda_{1}\frac{\partial{g_{1}({\bf X}_{0})}}{\partial x_{i}} | |
-\lambda_{2}\frac{\partial{g_{2}({\bf X}_{0})}}{\partial x_{i}}-\cdots | |
-\lambda_{m}\frac{\partial{g_{m}({\bf X}_{0})}}{\partial x_{i}}=0 | |
\end{equation} | |
for $1\le i\le m$. | |
If $m+1\le i\le n$, differentiating \eqref{eq:32} with respect to $x_{i}$ | |
and recalling \eqref{eq:31} yields | |
$$ | |
\frac{\partial g_{\ell}({\bf X}_{0})} {\partial x_{i}} +\sum_{j=1}^{m} | |
\frac{\partial g_{\ell}({\bf X}_{0})}{\partial x_{j}} | |
\frac{\partial h_{j}({\bf X}_{0})}{\partial x_{i}}=0, \quad 1\le \ell\le m. | |
$$ | |
If | |
${\bf X}_{0}$ is local extreme point $f$ | |
subject to $g_{1}({\bf X})=g_{2}({\bf X})= \cdots =g_{m}({\bf X})=0$, then | |
${\bf U}_{0}$ is an unconstrained local extreme point of | |
$f(h_{1}({\bf U}),h_{2}({\bf U}), \dots h_{m}({\bf U}),{\bf U})$; | |
therefore, | |
$$ | |
\frac{\partial f({\bf X}_{0})} {\partial x_{i}} +\sum_{j=1}^{m} | |
\frac{\partial f({\bf X}_{0})}{\partial x_{j}} | |
\frac{\partial h_{j}({\bf X}_{0})}{\partial x_{i}}=0. | |
$$ | |
The last two equations imply that | |
$$ | |
\left|\begin{array}{ccccccc} | |
\dst{\frac{\partial{f({\bf X}_{0})}}{\partial{x_{i}}}}& | |
\dst{\frac{\partial{f({\bf X}_{0})}}{\partial{x_{1}}}}& | |
\dst{\frac{\partial{f({\bf X}_{0})}}{\partial{x_{2}}}}& | |
\cdots& | |
\dst{\frac{\partial{f({\bf X}_{0})}}{\partial{x_{m}}}}\\ \\ | |
\dst{\frac{\partial{g_{1}({\bf X}_{0})}}{\partial{x_{i}}}}& | |
\dst{\frac{\partial{g_{1}({\bf X}_{0})}}{\partial{x_{1}}}}& | |
\dst{\frac{\partial{g_{1}({\bf X}_{0})}}{\partial{x_{2}}}}& | |
\cdots& | |
\dst{\frac{\partial{g_{1}({\bf X}_{0})}}{\partial{x_{m}}}}\\ \\ | |
\dst{\frac{\partial{g_{2}({\bf X}_{0})}}{\partial{x_{i}}}}& | |
\dst{\frac{\partial{g_{2}({\bf X}_{0})}}{\partial{x_{1}}}}& | |
\dst{\frac{\partial{g_{2}({\bf X}_{0})}}{\partial{x_{2}}}}& | |
\cdots& | |
\dst{\frac{\partial{g_{2}({\bf X}_{0})}}{\partial{x_{m}}}}\\ | |
\vdots&\vdots&\vdots&\ddots&\vdots\\ | |
\dst{\frac{\partial{g_{m}({\bf X}_{0})}}{\partial{x_{i}}}}& | |
\dst{\frac{\partial{g_{m}({\bf X}_{0})}}{\partial{x_{1}}}}& | |
\dst{\frac{\partial{g_{m}({\bf X}_{0})}}{\partial{x_{2}}}}& | |
\cdots& | |
\dst{\frac{\partial{g_{m}({\bf X}_{0})}}{\partial{x_{m}}}}\\ \\ | |
\end{array}\right|=0, | |
$$ | |
so | |
$$ | |
\left|\begin{array}{ccccccc} | |
\dst{\frac{\partial f({\bf X}_{0})}{\partial x_{i}}}& | |
\dst{\frac{\partial g_{1}({\bf X}_{0})}{\partial x_{i}}}& | |
\dst{\frac{\partial g_{2}({\bf X}_{0})}{\partial x_{i}}}&\dots& | |
\dst{\frac{\partial g_{m}({\bf X}_{0})}{\partial x_{i}}}\\\\ | |
\dst{\frac{\partial f({\bf X}_{0})}{\partial x_{1}}}& | |
\dst{\frac{\partial g_{1}({\bf X}_{0})}{\partial x_{1}}}& | |
\dst{\frac{\partial g_{2}({\bf X}_{0})}{\partial x_{1}}}&\dots& | |
\dst{\frac{\partial g_{m}({\bf X}_{0})}{\partial x_{1}}}\\\\ | |
\dst{\frac{\partial f({\bf X}_{0})}{\partial x_{2}}}& | |
\dst{\frac{\partial g_{1}({\bf X}_{0})}{\partial x_{2}}}& | |
\dst{\frac{\partial g_{2}({\bf X}_{0})}{\partial x_{2}}}&\dots& | |
\dst{\frac{\partial g_{m}({\bf X}_{0})}{\partial x_{2}}}\\ | |
\vdots&\vdots&\vdots&\ddots&\vdots\\ | |
\dst{\frac{\partial f({\bf X}_{0})}{\partial x_{m}}}& | |
\dst{\frac{\partial g_{1}({\bf X}_{0})}{\partial x_{m}}}& | |
\dst{\frac{\partial g_{2}({\bf X}_{0})}{\partial x_{m}}}&\dots& | |
\dst{\frac{\partial g_{m}({\bf X}_{0})}{\partial x_{m}}} | |
\end{array}\right|=0. | |
$$ | |
Therefore, there are constant $c_{0}$, $c_{1}$, \dots $c_{m}$, not all | |
zero, such that | |
\begin{equation} \label{eq:35} | |
\left[\begin{array}{ccccccc} | |
\dst{\frac{\partial f({\bf X}_{0})}{\partial x_{i}}}& | |
\dst{\frac{\partial g_{1}({\bf X}_{0})}{\partial x_{i}}}& | |
\dst{\frac{\partial g_{2}({\bf X}_{0})}{\partial x_{i}}}&\dots& | |
\dst{\frac{\partial g_{m}({\bf X}_{0})}{\partial x_{i}}}\\\\ | |
\dst{\frac{\partial f({\bf X}_{0})}{\partial x_{1}}}& | |
\dst{\frac{\partial g_{1}({\bf X}_{0})}{\partial x_{1}}}& | |
\dst{\frac{\partial g_{2}({\bf X}_{0})}{\partial x_{1}}}&\dots& | |
\dst{\frac{\partial g_{m}({\bf X}_{0})}{\partial x_{1}}}\\\\ | |
\dst{\frac{\partial f({\bf X}_{0})}{\partial x_{2}}}& | |
\dst{\frac{\partial g_{1}({\bf X}_{0})}{\partial x_{2}}}& | |
\dst{\frac{\partial g_{2}({\bf X}_{0})}{\partial x_{2}}}&\dots& | |
\dst{\frac{\partial g_{m}({\bf X}_{0})}{\partial x_{2}}}\\ | |
\vdots&\vdots&\vdots&\ddots&\vdots\\ | |
\dst{\frac{\partial f({\bf X}_{0})}{\partial x_{m}}}& | |
\dst{\frac{\partial g_{1}({\bf X}_{0})}{\partial x_{m}}}& | |
\dst{\frac{\partial g_{2}({\bf X}_{0})}{\partial x_{m}}}&\dots& | |
\dst{\frac{\partial g_{m}({\bf X}_{0})}{\partial x_{m}}}\\ | |
\end{array}\right] | |
\left[\begin{array}{ccccccc} | |
c_{0}\\c_{1}\\c_{3}\\\vdots\\c_{m} | |
\end{array}\right]= | |
\left[\begin{array}{ccccccc} | |
0\\0\\0\\\vdots\\0 | |
\end{array}\right]. | |
\end{equation} | |
If $c_{0}=0$, then | |
$$ | |
\left[\begin{array}{ccccccc} | |
\dst{\frac{\partial{g_{1}({\bf X}_{0})}}{\partial{x_{1}}}}& | |
\dst{\frac{\partial{g_{1}({\bf X}_{0})}}{\partial{x_{2}}}}& | |
\cdots& | |
\dst{\frac{\partial{g_{1}({\bf X}_{0})}}{\partial{x_{m}}}}\\ \\ | |
\dst{\frac{\partial{g_{2}({\bf X}_{0})}}{\partial{x_{1}}}}& | |
\dst{\frac{\partial{g_{2}({\bf X}_{0})}}{\partial{x_{2}}}}& | |
\cdots& | |
\dst{\frac{\partial{g_{2}({\bf X}_{0})}}{\partial{x_{m}}}}\\ | |
\vdots&\vdots&\ddots&\vdots\\ | |
\dst{\frac{\partial{g_{m}({\bf X}_{0})}}{\partial{x_{1}}}}& | |
\dst{\frac{\partial{g_{m}({\bf X}_{0})}}{\partial{x_{2}}}}& | |
\cdots& | |
\dst{\frac{\partial{g_{m}({\bf X}_{0})}}{\partial{x_{m}}}}\\ \\ | |
\end{array}\right] | |
\left[\begin{array}{ccccccc} | |
c_{1}\\c_{2}\\\vdots\\c_{m} | |
\end{array}\right]= | |
\left[\begin{array}{ccccccc} | |
0\\0\\\vdots\\0 | |
\end{array}\right] | |
$$ | |
and \eqref{eq:30} implies that $c_{1}=c_{2}=\cdots = c_{m}=0$; hence, we | |
may assume that $c_{0}=1$ in a nontrivial solution of \eqref{eq:35}. | |
Therefore, | |
\begin{equation} \label{eq:36} | |
\left[\begin{array}{ccccccc} | |
\dst{\frac{\partial f({\bf X}_{0})}{\partial x_{i}}}& | |
\dst{\frac{\partial g_{1}({\bf X}_{0})}{\partial x_{i}}}& | |
\dst{\frac{\partial g_{2}({\bf X}_{0})}{\partial x_{i}}}&\dots& | |
\dst{\frac{\partial g_{m}({\bf X}_{0})}{\partial x_{i}}}\\\\ | |
\dst{\frac{\partial f({\bf X}_{0})}{\partial x_{1}}}& | |
\dst{\frac{\partial g_{1}({\bf X}_{0})}{\partial x_{1}}}& | |
\dst{\frac{\partial g_{2}({\bf X}_{0})}{\partial x_{1}}}&\dots& | |
\dst{\frac{\partial g_{m}({\bf X}_{0})}{\partial x_{1}}}\\\\ | |
\dst{\frac{\partial f({\bf X}_{0})}{\partial x_{2}}}& | |
\dst{\frac{\partial g_{1}({\bf X}_{0})}{\partial x_{2}}}& | |
\dst{\frac{\partial g_{2}({\bf X}_{0})}{\partial x_{2}}}&\dots& | |
\dst{\frac{\partial g_{m}({\bf X}_{0})}{\partial x_{2}}}\\ | |
\vdots&\vdots&\vdots&\ddots&\vdots\\ | |
\dst{\frac{\partial f({\bf X}_{0})}{\partial x_{m}}}& | |
\dst{\frac{\partial g_{1}({\bf X}_{0})}{\partial x_{m}}}& | |
\dst{\frac{\partial g_{2}({\bf X}_{0})}{\partial x_{m}}}&\dots& | |
\dst{\frac{\partial g_{m}({\bf X}_{0})}{\partial x_{m}}}\\ | |
\end{array}\right] | |
\left[\begin{array}{ccccccc} | |
1\\c_{1}\\c_{2}\\\vdots\\c_{m} | |
\end{array}\right]= | |
\left[\begin{array}{ccccccc} | |
0\\0\\0\\\vdots\\0 | |
\end{array}\right], | |
\end{equation} | |
which implies that | |
$$ | |
\left[\begin{array}{ccccccc} | |
\dst{\frac{\partial{g_{1}({\bf X}_{0})}}{\partial{x_{1}}}}& | |
\dst{\frac{\partial{g_{1}({\bf X}_{0})}}{\partial{x_{2}}}}& | |
\cdots& | |
\dst{\frac{\partial{g_{1}({\bf X}_{0})}}{\partial{x_{m}}}}\\ \\ | |
\dst{\frac{\partial{g_{2}({\bf X}_{0})}}{\partial{x_{1}}}}& | |
\dst{\frac{\partial{g_{2}({\bf X}_{0})}}{\partial{x_{2}}}}& | |
\cdots& | |
\dst{\frac{\partial{g_{2}({\bf X}_{0})}}{\partial{x_{m}}}}\\ | |
\vdots&\vdots&\ddots&\vdots\\ | |
\dst{\frac{\partial{g_{m}({\bf X}_{0})}}{\partial{x_{1}}}}& | |
\dst{\frac{\partial{g_{m}({\bf X}_{0})}}{\partial{x_{2}}}}& | |
\cdots& | |
\dst{\frac{\partial{g_{m}({\bf X}_{0})}}{\partial{x_{m}}}}\\ \\ | |
\end{array}\right] | |
\left[\begin{array}{ccccccc} | |
-c_{1}\\-c_{2}\\ \vdots\\-c_{m} | |
\end{array}\right]= | |
\left[\begin{array}{ccccccc} | |
f_{x_{1}}({\bf X}_{0})\\f_{x_{2}}({\bf X}_{0})\\\vdots\\ f_{x_{m}}({\bf | |
X}_{0}) | |
\end{array}\right] | |
$$ | |
Since \eqref{eq:33} has only one solution, | |
this implies that | |
$c_{j}=-\lambda_{j}$, $1\le j\le n$, so \eqref{eq:36} becomes | |
$$ | |
\left[\begin{array}{ccccccc} | |
\dst{\frac{\partial f({\bf X}_{0})}{\partial x_{i}}}& | |
\dst{\frac{\partial g_{1}({\bf X}_{0})}{\partial x_{i}}}& | |
\dst{\frac{\partial g_{2}({\bf X}_{0})}{\partial x_{i}}}&\dots& | |
\dst{\frac{\partial g_{m}({\bf X}_{0})}{\partial x_{i}}}\\\\ | |
\dst{\frac{\partial f({\bf X}_{0})}{\partial x_{1}}}& | |
\dst{\frac{\partial g_{1}({\bf X}_{0})}{\partial x_{1}}}& | |
\dst{\frac{\partial g_{2}({\bf X}_{0})}{\partial x_{1}}}&\dots& | |
\dst{\frac{\partial g_{m}({\bf X}_{0})}{\partial x_{1}}}\\\\ | |
\dst{\frac{\partial f({\bf X}_{0})}{\partial x_{2}}}& | |
\dst{\frac{\partial g_{1}({\bf X}_{0})}{\partial x_{2}}}& | |
\dst{\frac{\partial g_{2}({\bf X}_{0})}{\partial x_{2}}}&\dots& | |
\dst{\frac{\partial g_{m}({\bf X}_{0})}{\partial x_{2}}}\\ | |
\vdots&\vdots&\vdots&\ddots&\vdots\\ | |
\dst{\frac{\partial f({\bf X}_{0})}{\partial x_{m}}}& | |
\dst{\frac{\partial g_{1}({\bf X}_{0})}{\partial x_{m}}}& | |
\dst{\frac{\partial g_{2}({\bf X}_{0})}{\partial x_{m}}}&\dots& | |
\dst{\frac{\partial g_{m}({\bf X}_{0})}{\partial x_{m}}}\\ | |
\end{array}\right] | |
\left[\begin{array}{ccccccc} | |
1\\-\lambda_{1}\\-\lambda_{2}\\\vdots\\-\lambda_{m} | |
\end{array}\right]= | |
\left[\begin{array}{ccccccc} | |
0\\0\\0\\\vdots\\0 | |
\end{array}\right]. | |
$$ | |
Computing the topmost entry of the vector on the left yields | |
yields \eqref{eq:34}, | |
which completes the proof.\endproof | |
\begin{example}\label{example:9}\rm | |
Minimize | |
$\dst{\sum_{i=1}^{n}x_{i}^{2}}$ subject to | |
\begin{equation} \label{eq:37} | |
\sum_{i=1}^{n}a_{r i}x_{i}=c_{r}, \quad 1\le r\le m, | |
\end{equation} | |
where | |
\begin{equation} \label{eq:38} | |
\sum_{i=1}^{n}a_{ri}a_{si}= | |
\begin{cases} | |
1 &\text{if } r=s,\\ | |
0 &\text{if }r\ne s. | |
\end{cases} | |
\end{equation} | |
\solution \quad | |
Let | |
$$ | |
L =\frac{1}{2} | |
\sum_{i=1}^{n}x_{i}^{2}-\sum_{s=1}^{m}\lambda_{s} | |
\sum_{i=1}^{n}a_{s i}x_{i}. | |
$$ | |
Then | |
$$ | |
L_{x_{i}}=x_{i}-\sum_{s=1}^{m}\lambda_{s}a_{si},\quad 1\le i\le n, | |
$$ | |
so | |
\begin{equation} \label{eq:39} | |
x_{i0}=\sum_{s=1}^{m}\lambda_{s}a_{s i}\quad 1\le i\le n, | |
\end{equation} | |
and | |
$$ | |
a_{ri}x_{i0}=\sum_{s=1}^{m}\lambda_{s}a_{ri}a_{s i}. | |
$$ | |
Now \eqref{eq:38} implies that | |
$$ | |
\sum_{i=1}^{n}a_{ri}x_{i0}=\sum_{s=1}^{m}\lambda_{s} | |
\sum_{i=1}^{n}a_{ri}a_{s i}=\lambda_{r}. | |
$$ | |
From this and \eqref{eq:37}, | |
$\lambda_{r}=c_{r}$, $1\le r\le m$, and \eqref{eq:39} implies that | |
$$ | |
x_{i0}=\sum_{s=1}^{m}c_{s}a_{s i},\quad 1\le i\le n. | |
$$ | |
Therefore, | |
$$ | |
x_{i0}^{2}=\sum_{r,s=1}^{m}c_{r}c_{s}a_{r i}a_{si},\quad 1\le i\le n, | |
$$ | |
and \eqref{eq:38} implies that | |
$$ | |
\sum_{i=1}^{n}x_{i0}^{2}=\sum_{r,s=1}^{m}c_{r}c_{s} | |
\sum_{i=1}^{n}a_{r i}a_{si}=\sum_{r=1}^{m}c_{r}^{2}. | |
$$ | |
\end{example} | |
The next theorem provides further information on the relationship between | |
the eigenvalues of a symmetric matrix and constrained extrema of its | |
quadratic form. It can be proved by successive applications of | |
Theorem~\ref{theorem:1}; however, we omit the proof. | |
\begin{theorem}\label{theorem:4} | |
Suppose that ${\bf A}=[a_{rs}]_{r,s=1}^{n}\in {\mathbb R}^{n\times n}$ is | |
symmetric and let | |
$$ | |
Q({\bf x})=\sum_{r,s=1}^{n}a_{rs}x_{r}x_{s}. | |
$$ | |
Suppose also | |
that | |
$$ | |
{\bf x}_{1}= | |
\left[\begin{array}{ccccccc} | |
x_{11}\\x_{21}\\\vdots\\x_{n1} | |
\end{array}\right] | |
$$ | |
minimizes $Q$ subject to $\sum_{i=1}^{n}x_{i}^{2}$. For $2\le r\le n$, | |
suppose that | |
$$ | |
{\bf x}_{r}= | |
\left[\begin{array}{ccccccc} | |
x_{1r}\\x_{2r}\\\vdots\\x_{nr} | |
\end{array}\right], | |
$$ | |
minimizes $Q$ subject to | |
$$ | |
\sum_{i=1}^{n}x_{i}^{2} =1 \text{\; and\;\;} | |
\sum_{i=1}^{n}x_{is}x_{i}=0,\quad 1\le s\le r-1. | |
$$ | |
Denote | |
$$ | |
\lambda_{r}=\sum_{i,j=1}^{n}a_{ij}x_{ir}x_{jr}, \quad 1\le r\le n. | |
$$ | |
Then | |
$$ | |
\lambda_{1}\le \lambda_{2}\le \cdots\le \lambda_{n} | |
\text{\; and\;\;} Ax_{r}=\lambda_{r}x_{r},\quad 1\le r\le n. | |
$$ | |
\end{theorem} | |
\newpage | |
\section{Exercises} \label{section:7} | |
\begin{exerciselist} | |
\item\label{exer:1} | |
Find the point on the plane $2x+3y+z=7$ closest to $(1,-2,3)$. | |
\item\label{exer:2} | |
Find the extreme values of $f(x,y)=2x+y$ subject to $x^{2}+y^{2}=5$. | |
\item\label{exer:3} | |
Suppose that $a,b>0$ and $a\alpha^{2}+b\beta^{2}=1$. Find the extreme | |
values of | |
$f(x,y)=\beta x+\alpha y$ subject to $ax^{2}+by^{2}=1$. | |
\item\label{exer:4} | |
Find the points on the circle $x^{2}+y^{2}=320$ closest to and | |
farthest from $(2,4)$. | |
\item\label{exer:5} | |
Find the extreme values of | |
$$ | |
f(x,y,z)=2x+3y+z\text{\quad subject to\quad} | |
x^{2}+2y^{2}+3z^{2}=1. | |
$$ | |
\item\label{exer:6} | |
Find the maximum value of $f(x,y)=xy$ on the line $ax+by=1$, where $a,b>0$. | |
\item\label{exer:7} | |
A rectangle has perimeter $p$. Find its largest possible area. | |
\item\label{exer:8} | |
A rectangle has area $A$. Find its smallest possible perimeter. | |
\item\label{exer:9} | |
A closed rectangular box has surface area $A$. | |
Find it largest possible volume. | |
\item\label{exer:10} | |
The sides and bottom of a rectangular box have total area $A$. Find its | |
largest possible volume. | |
\item\label{exer:11} | |
A rectangular box with no top has volume $V$. Find | |
its smallest possible surface area. | |
\item\label{exer:12} Maximize $f(x,y,z)=xyz$ subject to $$ | |
\frac{x}{a}+\frac{y}{b}+\frac{z}{c}=1, $$ where $a$, $b$, $c>0$. | |
\item\label{exer:13} | |
Two vertices of a triangle are $(-a,0)$ and $(a,0)$, and the third | |
is on the ellipse | |
$$ | |
\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1. | |
$$ | |
Find its largest possible area. | |
\item\label{exer:14} | |
Show that the triangle with the greatest possible area for a | |
given perimeter is equilateral, given that the area of | |
a triangle with sides $x$, $y$, $z$ and perimeter $s$ is | |
$$ | |
A= \sqrt{s(s-x)(s-y)(s-z)}. | |
$$ | |
\item\label{exer:15} | |
A box with sides parallel to the coordinate planes | |
has its vertices on the ellipsoid | |
$$ | |
\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}+\frac{z^{2}}{c^{2}}=1. | |
$$ | |
Find its largest possible volume. | |
\item\label{exer:16} | |
Derive a formula for the distance from $(x_{1},y_{1},z_{1})$ | |
to the plane | |
$$ | |
ax+by+cz=\sigma. | |
$$ | |
\item\label{exer:17} | |
Let $\mathbf{X}_{i}=(x_{i},y_{i},z_{i})$, $1 \le i \le n$. | |
Find the point in the plane | |
$$ | |
ax+by+cz=\sigma | |
$$ | |
for which $\sum_{i=1}^{n}|\mathbf{X}-\mathbf{X}_{i}|^{2}$ | |
is a minimum. Assume that none of the ${\bf X}_{i}$ are in the plane. | |
\item\label{exer:18} | |
Find the extreme values of | |
$f({\bf X})=\dst{\sum_{i=1}^{n}(x_{i}-c_{i})^{2}}$ subject to | |
$\dst{\sum_{i=1}^{n}x_{i}^{2}}=1$. | |
\item\label{exer:19} | |
Find the extreme values of | |
$$ | |
f(x,y,z)=2xy+2xz+2yz\text{\quad subject to\quad} | |
x^{2}+y^{2}+z^{2}=1. | |
$$ | |
\item\label{exer:20} | |
Find the extreme values of | |
$$ | |
f(x,y,z)=3x^{2}+2y^{2}+3z^{2}+2xz\text{\quad subject to\quad} | |
x^{2}+y^{2}+z^{2}=1. | |
$$ | |
\item\label{exer:21} | |
Find the extreme values of | |
$$ | |
f(x,y)=x^{2}+8xy+4y^{2} | |
\text{\quad subject to\quad} x^{2}+2xy+4y^{2}=1. | |
$$ | |
\item\label{exer:22} | |
Find the extreme value of $f(x,y)=\alpha+\beta xy$ subject to | |
$(ax+by)^{2}=1$. | |
Assume that $ab\ne0$. | |
\item\label{exer:23} | |
Find the extreme values of $f(x,y,z)=x+y^{2}+2z$ subject to | |
$$ | |
4x^{2}+9y^{2}-36z^{2}=36. | |
$$ | |
\item\label{exer:24} | |
Find the extreme values of $f(x,y,z,w)=(x+z)(y+w)$ subject to | |
$$ | |
x^{2}+y^{2}+z^{2}+w^{2}=1. | |
$$ | |
\item\label{exer:25} | |
Find the extreme values of $f(x,y,z,w)=(x+z)(y+w)$ subject to | |
$$ | |
x^{2}+y^{2}=1 \text{\;and \;\;} z^{2}+w^{2}=1. | |
$$ | |
\item\label{exer:26} | |
Find the extreme values of $f(x,y,z,w)=(x+z)(y+w)$ subject to | |
$$ | |
x^{2}+z^{2}=1 \text{\;and \;\;} y^{2}+w^{2}=1. | |
$$ | |
\item\label{exer:27} | |
Find the distance between the circle $x^{2}+y^{2}=1$ | |
the hyperbola $xy=1$. | |
\item\label{exer:28} | |
Minimize | |
$f(x,y,x)=\dst{\frac{x^{2}}{\alpha^{2}}+\frac{y^{2}}{\beta^{2}} | |
+\frac{z^{2}}{\gamma^{2}}}$\; | |
subject to $ax+by+cz=d$ and $x$, $y$, $z>0$. | |
\item\label{exer:29} | |
Find the distance from | |
$(c_{1},c_{2},\dots,c_{n})$ to the plane | |
$$ | |
a_{1}x_{1}+a_{2}x_{2}+\cdots+a_{n}x_{n}=d. | |
$$ | |
\item\label{exer:30} | |
Find the maximum value of $f({\bf X})=\dst{\sum_{i=1}^{n}a_{i}x_{i}^{2}}$ | |
subject to | |
$\dst{\sum_{i=1}^{n}b_{i}x_{i}^{4}}=1$, where $p,$ $q>0$ and | |
$a_{i}$, $b_{i}$ $x_{i}>0$, | |
$1\le i\le n$. | |
\item\label{exer:31} | |
Find the extreme value of $f({\bf X})=\dst{\sum_{i=1}^{n}a_{i}x_{i}^{p}}$ | |
subject to | |
$\dst{\sum_{i=1}^{n}b_{i}x_{i}^{q}}=1$, where $p$, $q$>0 and | |
$a_{i}$, $b_{i}$, $x_{i}>0$, | |
$1\le i\le n$. | |
\item\label{exer:32} | |
Find the minimum value of | |
$$ | |
f(x,y,z,w)=x^{2}+2y^{2}+z^{2}+w^2 | |
$$ | |
subject to | |
\begin{eqnarray*} | |
x+y+\phantom{2}z+3w&=&1\\ | |
x+y+2z+\phantom{3}w&=&2. | |
\end{eqnarray*} | |
\item\label{exer:33} | |
Find the minimum value of | |
$$ | |
f(x,y,z)= | |
\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}+\frac{z^{2}}{c^{2}} | |
$$ | |
subject to $p_{1}x+p_{2}y+p_{3}z=d$, assuming that at least one of | |
$p_{1}$, | |
$p_{2}$, $p_{3}$ is nonzero. | |
\item\label{exer:34} | |
Find the extreme values of | |
$f(x,y,z)= p_{1}x+p_{2}y+p_{3}z$ subject to | |
$$ | |
\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}+\frac{z^{2}}{c^{2}}=1, | |
$$ | |
assuming that at least one of | |
$p_{1}$, | |
$p_{2}$, $p_{3}$ is nonzero. | |
\item\label{exer:35} | |
Find the distance from $(-1,2,3)$ to the intersection of the | |
planes \\$x+2y-3z=4$ and $2x-y+2z=5$. | |
\item\label{exer:36} | |
Find the extreme values of $f(x,y,z)=2x+y+2z$ subject to $x^{2}+y^{2}=4$ | |
and | |
$x+z=2$. | |
\item\label{exer:37} | |
Find the distance between the parabola $y=1+x^{2}$ and the | |
line $x+y=-1$. | |
\item\label{exer:38} | |
Find the distance between the ellipsoid | |
$$ | |
3x^{2}+9y^{2}+6z^{2}=10 | |
$$ | |
and the plane | |
$$ | |
3x+3y+6z=70. | |
$$ | |
\item\label{exer:39} | |
Show that the extreme values of $f(x,y,z)=xy+yz+zx$ subject to | |
$$ | |
\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}+\frac{z^{2}}{c^{2}}=1 | |
$$ | |
are the largest and smallest eigenvalues of the matrix | |
$$ | |
\left[\begin{array}{ccccccc} | |
0&a^{2}&a^{2}\\ b^{2}&0&b^{2}\\c^{2}&c^{2}&0 | |
\end{array}\right]. | |
$$ | |
\item\label{exer:40} | |
Show that the extreme values of $f(x,y,z)=xy+2yz+2zx$ subject to | |
$$ | |
\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}+\frac{z^{2}}{c^{2}}=1 | |
$$ | |
are the largest and smallest eigenvalues of the matrix | |
$$ | |
\left[\begin{array}{ccccccc} | |
0&a^{2}/2&a^{2}\\ | |
b^{2}/2&0&b^{2}\\c^{2}&c^{2}&0 | |
\end{array}\right]. | |
$$ | |
\item\label{exer:41} | |
Find the extreme values of $x(y+z)$ subject to | |
$$ | |
\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}+\frac{z^{2}}{c^{2}}=1. | |
$$ | |
\item\label{exer:42} | |
Let $a$, $b$, $c$, $p$, $q$, $r$, $\alpha$, $\beta$, and | |
$\gamma$ be positive constants. | |
Find the maximum value of $f(x,y,z)=x^{\alpha}y^{\beta}z^{\gamma}$ subject | |
to | |
$$ | |
ax^{p}+by^{q}+cz^{r}=1 \text{\; and\;\;} x,y,z>0 . | |
$$ | |
\item\label{exer:43} | |
Find the extreme values of | |
$$ | |
f(x,y,z,w)=xw-yz \text{\quad subject to\quad} | |
x^{2}+2y^{2}=4\text{\quad and\quad} 2z^{2}+w^{2}=9. | |
$$ | |
\item\label{exer:44} | |
Let $a$, $b$, $c$,and $d$ be positive. Find the extreme values of | |
$$ | |
f(x,y,z,w)=xw-yz | |
$$ | |
subject to | |
$$ | |
ax^{2}+by^{2}=1, \quad cz^{2}+dw^{2}=1, | |
$$ | |
if {\bf(a)} $ad\ne bc$; {\bf(b)} $ad=bc.$ | |
\item\label{exer:45} | |
Minimize $f(x,y,z)=\alpha x^{2}+\beta y^{2}+\gamma z^{2}$ subject to | |
$$ | |
a_{1}x+a_{2}y+a_{3}z=c\text{\; and\;\;} b_{1}x+b_{2}y+b_{3}z=d. | |
$$ | |
Assume that | |
$$ | |
\alpha,\beta,\gamma>0,\quad a_{1}^{2}+a_{2}^{2}+a_{3}^{2}\ne0, | |
\text{\; and\;\;} | |
b_{1}^{2}+b_{2}^{2}+b_{3}^{2}\ne 0. | |
$$ | |
Formulate and apply a required additional assumption. | |
\item\label{exer:46} | |
Minimize $f({\bf X},{\bf Y})=\dst{\sum_{i=1}^{n}(x_{i}-\alpha_{i})^{2}}$ | |
subject to | |
$$ | |
\dst{\sum_{i=1}^{n}a_{i}x_{i}=c} \text{\; and\;\;} | |
\dst{\sum_{i=1}^{n}b_{i}x_{i}=d}, | |
$$ | |
where | |
$$ | |
\sum_{i=1}^{n}a_{i}^{2}=\sum_{i=1}^{n}b_{i}^{2}=1 | |
\text{\; and\;\;} | |
\sum_{i=1}^{n}a_{i}b_{i}=0. | |
$$ | |
\item\label{exer:47} | |
Find $(x_{10,x_{20}},\dots,x_{n0})$ to minimize | |
$$ | |
Q(\mathbf{X})=\sum_{i=1}^{n}x_{i}^{2} | |
$$ | |
subject to | |
$$ | |
\sum_{i=1}^{n}x_{i}=1\text{\quad and\quad} \sum_{i=1}^{n}ix_{i}=0. | |
$$ | |
Prove explicitly that if | |
$$ | |
\sum_{j=1}^{n}y_{i}=1,\quad \sum_{i=1}^{n}iy_{i}=0 | |
$$ | |
and $y_{i}\ne x_{i0}$ for some $i\in\{1,2,\dots,n\}$, then | |
$$ | |
\sum_{i=1}^{n}y_{i}^{2}>\sum_{i=1}^{n}x_{i0}^{2}. | |
$$ | |
\item\label{exer:48} | |
Let $p_{1}$, $p_{2}$, \dots, $p_{n}$ and $s$ be positive numbers. | |
Maximize | |
$$ | |
f({\bf X})= | |
(s-x_{1})^{p_{1}}(s-x_{2})^{p_{2}}\cdots(s-x_{n})^{p_{n}} | |
$$ | |
subject to $x_{1}+x_{2}+\cdots+x_{n}=s$. | |
\item\label{exer:49} | |
Maximize $f({\bf X})=x_{1}^{p_{1}}x_{2}^{p_{2}}\cdots x_{n}^{p_{n}}$ | |
subject to $x_{i}>0$, $1\le i\le n$, and | |
$$ | |
\sum_{i=1}^{n}\frac{x_{i}}{\sigma_{i}} = S, | |
$$ | |
where $p_{1}$, $p_{2}$,\dots, $p_{n}$, $\sigma_{1}$, $\sigma_{2}$, \dots, | |
$\sigma_{n}$, and | |
$V$ are given positive numbers. | |
\item\label{exer:50} | |
Maximize | |
$$ | |
f({\bf X})=\sum_{i=1}^{n}\frac{x_{i}}{\sigma_{i}} | |
$$ | |
subject to $x_{i}>0$, $1\le i\le n$, and | |
$$ | |
x_{1}^{p_{1}}x_{2}^{p_{2}}\cdots x_{n}^{p_{n}}=V, | |
$$ | |
where $p_{1}$, $p_{2}$,\dots, $p_{n}$, $\sigma_{1}$, $\sigma_{2}$, \dots, | |
$\sigma_{n}$, and | |
$S$ are given positive numbers. | |
\item\label{exer:51} | |
Suppose that $\alpha_{1}$, $\alpha_{2}$, \dots $\alpha_{n}$ are positive | |
and at least one of $a_{1}$, $a_{2}$, \dots, $a_{n}$ is nonzero. | |
Let $(c_{1},c_{2},\dots,c_{n})$ be given. | |
Minimize | |
$$ | |
Q({\bf X})=\sum_{i=1}^{n}\frac{(x_{i}-c_{i})^{2}}{\alpha_{i}} | |
$$ | |
subject to | |
$$ | |
a_{1}x_{1}+a_{2}x_{2}+\cdots+a_{n}x_{n}=d. | |
$$ | |
\item\label{exer:52} | |
Schwarz's inequality says that $(a_{1},a_{2},\dots,a_{n})$ and | |
$(x_{1},x_{2},\dots,x_{n})$ are arbitrary $n$-tuples of real | |
numbers, then | |
$$ | |
|a_{1}x_{1}+a_{2}x_{2}+\cdots+a_{n}x_{n}|\le | |
(a_{1}^{2}+a_{2}^{2}+ \cdots+ a_{n}^{2})^{1/2} | |
(x_{1}^{2}+x_{2}^{2}+ \cdots+ x_{n}^{2})^{1/2}. | |
$$ | |
Prove this by finding the extreme values of | |
$f({\bf X})=\dst{\sum_{i=1}^{n}a_{i}x_{i}}$ | |
subject to $\dst{\sum_{i=1}^{n}x_{i}^{2}}~=~\sigma^{2}$. | |
\item\label{exer:53} | |
Let $x_{1}$, $x_{2}$, \dots, $x_{m}$, $r_{1}$, $r_{2}$, \dots, $r_{m}$ | |
be positive and | |
$$ | |
r_{1}+r_{2}+\cdots+r_{m}=r. | |
$$ | |
Show that | |
$$ | |
\left(x_{1}^{r_{1}}x_{2}^{r_{2}}\cdots x_{m}^{r_{m}}\right)^{1/r} | |
\le \frac{r_{1}x_{1}+r_{2}x_{2}+\cdots r_{m}x_{m}}{r}, | |
$$ | |
and give necessary and sufficient conditions for equality. | |
(Hint: Maximize $x_{1}^{r_{1}}x_{2}^{r_{2}}\cdots | |
x_{m}^{r_{m}}$ subject to $\sum_{j=1}^{m}r_{j}x_{j}=\sigma>0$, | |
$x_{1}>0$, $x_{2}>0$, \dots, $x_{m}>0$.) | |
\item\label{exer:54} | |
Let $\mathbf{A}=[a_{ij}]$ be an $m\times n$ matrix. Suppose that | |
$p_{1}$, $p_{2}$, \dots, $p_{m}>0$ and | |
$$ | |
\sum_{j=1}^{m}\frac{1}{p_{j}}=1, | |
$$ | |
and define | |
$$ | |
\sigma_{i}=\sum_{j=1}^{n}|a_{ij}|^{p_{i}}, \quad 1 \le i \le m. | |
$$ | |
Use Exercise~\ref{exer:53} to show that | |
$$ | |
\left|\sum_{j=1}^{n}a_{ij}a_{2j}\cdots a_{mj}\right| \le | |
\sigma_{1}^{1/p_{1}}\sigma_{2}^{1/p_{2}}\cdots \sigma_{m}^{1/p_{m}}. | |
$$ | |
(With $m=2$ this is | |
\href{http://www-history.mcs.st-and.ac.uk/Mathematicians/Holder.html} | |
{\emph{H\"{o}lder's}} | |
\emph{inequality}, which reduces to | |
Schwarz's | |
inequality if $p_{1}=p_{2}=2$.) | |
%### | |
\item\label{exer:55} | |
Let $c_{0}$, $c_{1}$, \dots, $c_{m}$ be given constants and $n\ge m+1$. | |
Show that the minimum value of | |
$$ | |
Q({\bf X})=\sum_{r=0}^{n}x_{r}^{2} | |
$$ | |
subject to | |
$$ | |
\sum_{r=0}^{n}x_{r}r^{s}=c_{s},\quad 0\le s \le m, | |
$$ | |
is attained when | |
$$ | |
x_{r}=\sum_{s=0}^{m}\lambda_{s}r^{s},\quad 0\le r\le n, | |
$$ | |
where | |
$$ | |
\sum_{\ell=0}^{m}\sigma_{s+\ell}\lambda_{\ell}=c_{s} | |
\text{\; and\;\;} \sigma_{s}= \sum_{r=0}^{n}r^{s},\quad 0\le s\le m. | |
$$ | |
Show that if | |
$\{x_{r}\}_{r=0}^{n}$ satisfies the constraints and | |
$x_{r}\ne x_{r0}$ for some $r$, then | |
$$ | |
\sum_{r=0}^{n}x_{r}^{2}>\sum_{r=0}^{n}x_{r0}^{2}. | |
$$ | |
\item\label{exer:56} | |
Suppose that $n> 2k$. Show that the minimum value of | |
$f({\bf W})=\dst{\sum_{i=-n}^{n}w_{i}^{2}}$, subject to the constraint | |
$$ | |
\sum_{i=-n}^{n}w_{i}P(r-i)=P(r) | |
$$ | |
whenever $r$ is an integer and $P$ is a polynomial of degree $\le 2k$, | |
is attained with | |
$$ | |
w_{i0}=\sum_{r=0}^{2k}\lambda_{r}i^{r},\quad 1\le i\le n, | |
$$ | |
where | |
$$ | |
\sum_{r=0}^{2k}\lambda_{r}\sigma_{r+s}= | |
\begin{cases} 1& \text{if } s=0,\\ 0&\text{if }1\le s\le 2k, \end{cases} | |
\text{\; and\;\;} | |
\sigma_{s}=\sum_{j=-n}^{n}j^{s}. | |
$$ | |
Show that if | |
$\{w_{i}\}_{i=-n}^{n}$ satisfies the constraint and | |
$w_{i}\ne w_{i0}$ for some $i$, then | |
$$ | |
\sum_{i=-n}^{n}w_{i}^{2}>\sum_{i=-n}^{n}w_{i0}^{2}. | |
$$ | |
\item\label{exer:57} | |
Suppose that $n\ge k$. Show that the minimum value of | |
$f\dst{\sum_{i=0}^{n}w_{i}^{2}}$, subject to the constraint | |
$$ | |
\sum_{i=0}^{n}w_{i}P(r-i)=P(r+1) | |
$$ | |
whenever $r$ is an integer and $P$ is a polynomial of degree $\le k$, | |
is attained with | |
$$ | |
w_{i0}=\sum_{r=0}^{k}\lambda_{r}i^{r},\quad 0\le i\le n, | |
$$ | |
where | |
$$ | |
\sum_{r=0}^{k}\sigma_{r+s}\lambda_{r}=(-1)^{s},\quad 0\le s \le k, | |
\text{\quad and\quad } \sigma_{\ell}=\sum_{i=0}^{n}i^{\ell},\quad 0\le | |
\ell\le 2k. | |
$$ | |
Show that if | |
$$ | |
\sum_{i=0}^{n}u_{i}P(r-i)=P(r+1) | |
$$ | |
whenever $r$ is an integer and $P$ is a polynomial of degree $\le k$, | |
and | |
$u_{i}\ne w_{i0}$ for some $i$, then | |
$$ | |
\sum_{i=0}^{n}u_{i}^{2}>\sum_{i=0}^{n}w_{i0}^{2}. | |
$$ | |
\item\label{exer:58} | |
Minimize | |
$$ | |
f({\bf X})=\sum_{i=1}^{n}\frac{(x_{i}-c_{i})^{2}}{\alpha_{i}} | |
$$ | |
subject to | |
$$ | |
\sum_{i=1}^{n}a_{ir}x_{i}=d_{r},\quad 1\le r \le m | |
$$ | |
Assume that $m>1$, $\alpha_{1}$, $\alpha_{2}$, \dots $\alpha_{m}>0$, | |
and | |
$$ | |
\sum_{i=1}^{n}\alpha_{i}a_{ir}a_{is}= | |
\begin{cases} | |
1 & \text{ if } r=s,\\0 & \text{ if }r\ne s. | |
\end{cases} | |
$$ | |
\end{exerciselist} | |
\newpage | |
\setlength{\parindent}{0pt} | |
\section{Answers to selected exercises}\label{section:8} | |
\medskip | |
{\bf \ref{exer:1}.} | |
$\left(\frac{15}{7} -\frac{2}{7},\frac{25}{7}\right)$ | |
\quad | |
{\bf \ref{exer:2}.} $\pm5$ | |
\quad | |
{\bf \ref{exer:3}.} $1/\sqrt{ab}$, $-1/\sqrt{ab}$ | |
\medskip | |
{\bf \ref{exer:4}.} $(8,16)$ is closest, $(-8,-16)$ is farthest. | |
\quad | |
{\bf \ref{exer:5}.} $\pm\sqrt{53/6}$ | |
\quad | |
{\bf \ref{exer:6}.} $1/4ab$ | |
\quad | |
{\bf \ref{exer:7}.} $p^{2}/4$ | |
\medskip | |
{\bf \ref{exer:8}.} $4\sqrt{A}$ | |
\quad | |
{\bf \ref{exer:9}.} $A^{3/2}/6\sqrt{6}$ | |
\quad | |
{\bf \ref{exer:10}.} $A^{3/2}/6\sqrt{3}$ | |
\quad | |
{\bf \ref{exer:11}.} $3(2V)^{2/3}$ | |
\quad | |
{\bf \ref{exer:12}.} $abc/27$ | |
\medskip | |
{\bf \ref{exer:13}.} $ab$ | |
\quad | |
{\bf \ref{exer:15}.} $8abc/3\sqrt{3}$ | |
\quad | |
{\bf \ref{exer:18}.} | |
$(1-\mu)^{2}$ and $(1+\mu)^{2}$, where | |
$\mu =\dst{\left(\sum_{j=1}^{n}c_{j}^{2}\right)^{1/2}}$ | |
\quad | |
{\bf \ref{exer:19}.} $-1$, $2$ | |
\quad | |
{\bf \ref{exer:20}.} $2$, $4$ | |
\medskip | |
{\bf \ref{exer:21}.} $-2/3$, $2$ | |
\quad | |
{\bf \ref{exer:22}.} $\alpha\pm|\beta|/4|ab|$ | |
\quad | |
{\bf \ref{exer:23}.} $-\sqrt{5}$, $73/16$ | |
\quad | |
{\bf \ref{exer:24}.} $\pm1$ | |
\quad | |
{\bf \ref{exer:25}.} $\pm2$ | |
\medskip | |
{\bf \ref{exer:26}.} $\pm2$ | |
\quad | |
{\bf \ref{exer:27}.} $\sqrt2-1$ | |
\quad | |
{\bf \ref{exer:28}.} | |
$\dst{\frac{d^{2}}{(a\alpha)^{2}+(b\beta^{2})+(c\gamma)^{2}}}$ | |
\medskip | |
{\bf \ref{exer:29}.} | |
$\dst{\frac{|d-a_{1}c_{1}-a_{2}c_{2}-\cdots-a_{n}c_{n})a_{i}|} | |
{\sqrt{a_{1}^{2}+a_{2}^{2}+\cdots a_{n}^{2}}}}$ | |
\quad | |
{\bf \ref{exer:30}.} | |
$\dst{\left(\sum_{i=1}^{n}\frac{a_{i}^{2}}{b_{i}}\right)^{1/2}}$ | |
{\bf \ref{exer:31}.} | |
$\dst{\left(\sum_{i=1}^{n}a_{i}^{q/(q-p)} b_{i}^{p/(p-q)}\right)^{1-p/q}}$ | |
is a constrained maximum if $p<q$, a constrained minimum if $p>q$ | |
\medskip | |
{\bf \ref{exer:32}.} $689/845$ | |
\quad | |
{\bf \ref{exer:33}.} | |
$\dst{\frac{d^{2}}{p_{1}^{2}a^{2}+p_{2}^{2}b^{2}+p_{3}^{2}c^{2}}}$ | |
\quad | |
{\bf \ref{exer:34}.} $\pm (p_{1}^{2}a^{2}+p_{2}^{2}b^{2}+p_{3}^{2}c^{2})^{1/2}$ | |
\quad | |
\medskip | |
{\bf \ref{exer:35}.} | |
\quad | |
$\sqrt{693/45}$ | |
{\bf \ref{exer:36}.} $2$, $6$ | |
\quad | |
{\bf \ref{exer:37}.} $7/4\sqrt{2}$ | |
\quad | |
{\bf \ref{exer:38}.} $10\sqrt{6}/3$ | |
\quad | |
{\bf \ref{exer:41}.} | |
$\pm|c|\sqrt{a^{2}+b^{2}}/2$ | |
\medskip | |
{\bf \ref{exer:42}.} | |
$\dst{\frac{\alpha\beta\gamma}{pqr} | |
\left(\frac{\alpha}{p}+\frac{\beta}{q}+\frac{\gamma}{r}\right)^{-3}}$ | |
{\bf \ref{exer:43}.} $\pm3$ | |
\quad | |
{\bf \ref{exer:44}.} {\bf (a)} $\pm1/\sqrt{bc}$ | |
{\bf (b)} $\pm1/\sqrt{ad}=\pm1/\sqrt{bc}$ | |
\medskip | |
{\bf \ref{exer:46}.} | |
$\dst{\left(c-\sum_{i=1}^{n}a_{i}\alpha_{i}\right)^{2} | |
+\left(d-\sum_{i=1}^{n}b_{i}\alpha_{i}\right)^{2}}$ | |
\quad | |
{\bf \ref{exer:47}.} $x_{i0}=(4n+2-6i)/n(n-1)$ | |
\medskip | |
{\bf \ref{exer:48}.} | |
$\left[\frac{(n-1)s}{P}\right]^{P}p_{1}^{p_{1}}p_{2}^{p_{2}}\cdots | |
p_{n}^{p_{n}}$ | |
\medskip | |
{\bf \ref{exer:49}.} | |
$\dst{\left(\frac{S}{p_{1}+p_{2}+\cdots+ | |
p_{n}}\right)^{p_{1}+p_{2}+\cdots+p_{n}} | |
(p_{1}\sigma_{1})^{p_{1}} | |
(p_{2}\sigma_{2})^{p_{2}} \cdots | |
(p_{n}\sigma_{n})^{p_{n}}}$ | |
\medskip | |
{\bf \ref{exer:50}.} | |
$\dst{(p_{1}+p_{2}+\cdots+p_{n}) | |
\left(\frac{V}{(\sigma_{1}p_{1})^{p_{1}}(\sigma_{2}p_{2})^{p_{2}} | |
\cdots (\sigma_{ n}p_{n})^{p_{n}}}\right)^{\frac{1}{p_{1}+p_{2}+\cdots+p_{n}}}}$ | |
{\bf \ref{exer:51}.} | |
$\dst{\left(d-\sum_{i=1}^{n}a_{i}c_{i}\right))^{2}/ | |
\left(\sum_{i=1}^{n}a_{i}^{2}\alpha_{i}\right)}$ | |
\quad | |
{\bf \ref{exer:52}.} | |
$\dst{\pm\left(\sum_{i=1}^{n}a_{i}^{2}\right)^{1/2} | |
\left(\sum_{i=1}^{n}x_{i0}^{2}\right)^{1/2}}$ | |
\medskip | |
{\bf \ref{exer:58}.} $\dst\sum_{r=1}^{m} | |
\left(d_{r}-\sum_{i=1}^{n}a_{ir}c_{i}\right)^{2}$ | |
\enlargethispage{\baselineskip} | |
\end{document} | |
\newpage | |
\noindent | |
\thispagestyle{empty} | |
\bf | |
\begin{center} | |
{\Large INSTRUCT0R'S SOLUTIONS MANUAL} | |
\medskip | |
{\Huge THE METHOD OF \\ \medskip LAGRANGE MULTIPLIERS} | |
\vspace{1in} | |
\huge | |
\href{http://ramanujan.math.trinity.edu/wtrench/index.shtml} | |
{William F. Trench} | |
\\ \medskip\large | |
Professor Emeritus\\ | |
Department of Mathematics\\ | |
Trinity University \\ | |
San Antonio, Texas, USA\\ | |
\href{mailto:wtrench@trinity.edu} | |
{wtrench@trinity.edu} | |
\vspace*{1in} | |
\bigskip | |
\medskip | |
\end{center} | |
\noindent | |
{\bf \copyright Copyright November 2012 William F. Trench, all rights | |
reserved. | |
No part of this document may be circulated or posted on any | |
website without the author's permission. Under US copyright law,} | |
\medskip | |
{\bf | |
\begin{quote}``Uploading or downloading works protected by copyright | |
without the authority of the | |
copyright owner is an infringement of the copyright owner's exclusive rights of | |
reproduction and/or distribution. Anyone found to have infringed a copyrighted work may be | |
liable for statutory damages up to \$30,000 for each work infringed and, if willful | |
infringement is proven by the copyright owner, that amount may be increased up to \$150,000 | |
for each work infringed. In addition, an infringer of a work may also be liable for the | |
attorney's fees incurred by the copyright owner to enforce his or her rights.'' | |
\end{quote}} | |
\rm | |
\newpage | |
\setlength{\parindent}{0pt} | |
\medskip | |
\centerline{\bf SOLUTIONS OF EXERCISES} | |
\bigskip | |
{\bf \ref{exer:1}.} | |
\quad | |
\quad $L=\dst{\frac{(x-1)^{2}+(y+2)^{2}+(z-3)^{2}}{2}-\lambda(2x+3y+z)}$ | |
$$ | |
L_{x}=x-1-2\lambda,\quad | |
L_{y}=y+2-3\lambda, \quad | |
L_{z}=z-3-\lambda | |
$$ | |
$$ | |
x_{0}=1+2\lambda, \quad | |
y_{0}=-2+3\lambda, \quad | |
z_{0}=3+\lambda \quad | |
$$ | |
$$ | |
2(1+2\lambda)+3(-2+3\lambda)+(3+\lambda)=7, \quad | |
\lambda=\dst{\frac{4}{7}} | |
$$ | |
$$ | |
x_{0}=\dst{\frac{15}{7}}, \quad | |
y_{0}=-\dst{\frac{2}{7}},\quad z_{0}=\dst{\frac{25}{7}} | |
$$ | |
The distance from $(x_{01},y_{01},z_{01})$ to the plane is | |
$$ | |
\sqrt{(x_{0}-1)^{2}+(y_{0}+2)^{2}+(z_{0}-3)^{2}}= | |
\sqrt{4\lambda^{2}+9\lambda^{2}+\lambda^{2}}=4\sqrt{\frac{2}{7}}. | |
$$ | |
\bigskip | |
{\bf \ref{exer:2}.} | |
\centerline{$L=2x+y-\dst{\frac{\lambda}{2}}(x^{2}+y^{2})$,\quad | |
$L_{x}=2-\lambda x$,\quad | |
$L_{y}=1-\lambda y$} | |
$$ | |
x_{0}=2y_{0},\quad 5y_{0}^{2}=5, \quad | |
(x_{0},y_{0})=\pm(2,1) | |
$$ | |
Constrained minimum $=-5$, constrained maximum | |
$=5$. | |
\bigskip | |
{\bf \ref{exer:3}.} | |
\centerline{$L=\beta x+\alpha y-\dst{\frac{\lambda}{2}}(ax^{2}+by^{2})$} | |
$$ | |
L_{x}=\beta-\lambda ax,\quad | |
L_{y}=\alpha-\lambda by,\quad | |
x_{0}=\dst{\frac{\beta}{\lambda a}}, \quad | |
y_{0}=\dst{\frac{\alpha}{\lambda b}} | |
$$ | |
$$ | |
1=ax_{0}^{2}+by_{0}^{2}=\frac{1}{\lambda^{2}} | |
\left(\frac{\beta^{2}}{a}+\frac{\alpha^{2}}{b}\right) | |
=\frac{1}{ab\lambda^{2}}(a\alpha^{2}+b\beta^{2})=\frac{1}{ab\lambda^{2}}. | |
$$ | |
$\dst{\frac{1}{\lambda}}=\pm\sqrt{ab}$; | |
$(x_{0},y_{0})=\pm\dst{\left(\beta\sqrt{\frac{b}{a}},\alpha\sqrt\frac{a}{b}\right)}$. | |
Choosing ``$+$'' yields the constrained maximum | |
$$ | |
f(x_{0},y_{0})=\beta^{2}\sqrt{\frac{b}{a}}+\alpha^{2}\sqrt{\frac{a}{b}} | |
=\frac{b\beta^{2}}{\sqrt{ab}}+\frac{a\alpha^{2}}{\sqrt{ab}}=\frac{1}{\sqrt{ab}}. | |
$$ | |
Choosing ``$-$'' yields the constrained minimum | |
$-\dst{\frac{1}{\sqrt{ab}}}$. | |
\bigskip | |
{\bf \ref{exer:4}.} | |
\centerline{$L=\dst{\frac{(x-2)^{2}+(y-4)^{2}-\lambda(x^{2}+y^{2})}{2}}$} | |
$$ | |
L_{x}(x,y)=(x-2)-\lambda x,\quad | |
L_{y}(x,y)=(y-4)-\lambda y | |
$$ | |
$$ | |
\frac{x_{0}-2}{x_{0}}=\frac{y_{0}-4}{y_{0}}=\lambda, \text{\; so\;\;} | |
y_{0}=2x_{0}. | |
$$ | |
Therefore, $x_{0}^{2}+y_{0}^{2}=5x_{0}^{2}=320$, | |
$(x_{0},y_{0})=\pm(8,16)$ so the constrained critical | |
points | |
are $(8,16)$ and $(-8,-16)$; $(8,16)$ is closest to $(2,4)$ and $(-8,-16)$ | |
is farthest. | |
\bigskip | |
{\bf \ref{exer:5}.} | |
\centerline{$L=2x+3y+z-\dst{\frac{\lambda}{2}}(x^{2}+2y^{2}+3z^{2})$} | |
$$ | |
L_{x}=2-\lambda x,\quad L_{y}=3-2\lambda y,\quad L_{z}=1-3\lambda z | |
$$ | |
$$ | |
x_{0}=\frac{2}{\lambda}\quad y_{0}=\frac{3}{2\lambda}, \quad | |
z_{0}=\frac{1}{3\lambda}, \quad | |
x_{0}^{2}+2y_{0}^{2}+3z_{0}^{2}=\dst{\frac{53}{6\lambda^{2}}}=1,\quad | |
\lambda=\pm\sqrt{53/6}. | |
$$ | |
Since $f(2/\lambda,3/2\lambda,1/3\lambda)=\dst{\frac{53}{6\lambda}}=\pm | |
\lambda$, the constrained extreme values are $\pm\sqrt{53/6}$. | |
\bigskip | |
{\bf \ref{exer:6}.} | |
\centerline{$L=xy-\lambda (ax+by)$, $L_{x}(x,y)=y-\lambda a$, | |
$L_{y}=x-\lambda b$} | |
$$ | |
x_{0}=\lambda b,\quad y_{0}=\lambda a, \quad ax_{0}+by_{0}=2\lambda | |
ab=1,\quad | |
\lambda=\frac{1}{2ab} | |
$$ | |
$$ | |
x_{0}=\frac{1}{2a},\quad | |
y_{0}=\frac{1}{2b},\quad | |
x_{0}y_{0}=\frac{1}{4ab}=\text{constrained maximum\;\;} | |
$$ | |
\bigskip | |
{\bf \ref{exer:7}.} | |
$p=2x+2y$, $A=xy$, | |
$L=xy-\lambda(x+y)$, $L_{x}=y-\lambda$, $L_{y}=x-\lambda$, | |
$y_{0}=x_{0}$, | |
$x_{0}=p/4$, $A_{\text max}=p^{2}/4$. | |
\bigskip | |
{\bf \ref{exer:8}.} | |
Let $x$ and $y$ denote lengths of sides. We must mimimize | |
$x+y$ subject to $xy=A$. | |
$$ | |
L=x+y-\lambda xy,\quad L_{x}=1-\lambda y,\; L_{y}=1-\lambda x, \; | |
x_{0}=y_{0},\; x_{0}y_{0}=A,\; x_{0}=\sqrt{A}. | |
$$ | |
The minimum perimeter is $4\sqrt{A}$. | |
\bigskip | |
{\bf \ref{exer:9}.} | |
Denote the vertices of the box by $(0,0,0)$, $(x,0,0)$, $(0,y,0)$, and | |
$(0,0,z)$. | |
$$ | |
V=xyz,\quad A=2xz+2yz +2xy,\quad | |
L=xyz-\lambda(xz+yz+xy) | |
$$ | |
$$ | |
L_{x}=yz-\lambda(z+y),\quad | |
L_{y}=xz-\lambda(z+x), \quad | |
L_{z}=xy-\lambda(x+y) | |
$$ | |
$$ | |
y_{0}z_{0}=\lambda(z_{0}+y_{0}),\quad | |
x_{0}z_{0}=\lambda(z_{0}+x_{0}), \quad | |
x_{0}y_{0}=\lambda(x_{0}+y_{0}) | |
$$ | |
$$ | |
x_{0}z_{0}+x_{0}y_{0}=z_{0}y_{0}+x_{0}y_{0} | |
=x_{0}z_{0}+y_{0}z_{0},\quad | |
x_{0}=y_{0}=z_{0} | |
$$ | |
$$ | |
A=6z_{0}^{2}, \quad | |
z=\sqrt{\frac{A}{6}},\quad | |
V_{\text{max}}=z_{0}^{3}=\dst{\frac{A^{3/2}}{6\sqrt{6}}}. | |
$$ | |
\bigskip | |
{\bf \ref{exer:10}.} | |
Denote the vertices of the box by | |
$(0,0,0)$, $(x,0,0)$, $(0,y,0)$, and | |
$(0,0,z)$. | |
$$ | |
V=xyz,\quad A=2xz+2yz+xy,\quad | |
L=xyz-\lambda(2xz+2yz+xy) | |
$$ | |
$$ | |
L_{x}=yz-\lambda(2z+y),\quad L_{y}=xz-\lambda(2z+x), \quad | |
L_{z}=xy-\lambda(2x+2y) | |
$$ | |
$$ | |
y_{0}z_{0}=\lambda(2z_{0}+y_{0}),\quad | |
x_{0}z_{0}=\lambda(2z_{0}+x_{0}),\quad | |
x_{0}y_{0}=\lambda(2x_{0}+2y_{0}) | |
$$ | |
$$ | |
x_{0}y_{0}z_{0}=\lambda x_{0}(2z_{0}+y_{0}),\quad | |
x_{0}y_{0}z_{0}=\lambda y_{0}(2z_{0}+x_{0}),\quad | |
x_{0}y_{0}z_{0}=\lambda z_{0}(2x_{0}+2y_{0}) | |
$$ | |
$$ | |
2x_{0}z_{0}+x_{0}y_{0}=2y_{0}z_{0}+x_{0}y_{0}=2x_{0}z_{0}+2y_{0}z_{0} | |
$$ | |
$$ | |
x_{0}=y_{0}=2z_{0}, \quad | |
A=12z_{0}^{2}, \quad | |
z_{0}=\sqrt{\frac{A}{12}},\quad | |
V_{\text{max}}=z_{0}^{3}=\dst{\frac{A^{3/2}}{6\sqrt{3}}}. | |
$$ | |
\bigskip | |
{\bf \ref{exer:11}.} | |
Denote the vertices of the box by $(0,0,0)$, $(x,0,0)$, $(0,y,0)$, and | |
$(0,0,z)$. | |
$$ | |
V=xyz,\quad A=2xz+2yz+xy, \quad | |
L=2xz+2yz+xy-\lambda xyz,\quad | |
$$ | |
$$ | |
L_{x}=2z+y-\lambda yz, \quad L_{y}=2z+x-\lambda xz, \quad | |
L_{z}=2x+2y-\lambda xy | |
$$ | |
$$ | |
2z_{0}+y_{0}=\lambda y_{0}z_{0}, \quad 2z_{0}+x_{0}=\lambda x_{0}z_{0}, | |
\quad 2x_{0}+2y_{0}-\lambda x_{0}y_{0} | |
$$ | |
$$ | |
2x_{0}z_{0}+x_{0}y_{0}=2y_{0}z_{0}+x_{0}y_{0}=2x_{0}z_{0}+2y_{0}z_{0} | |
$$ | |
$$ | |
x_{0}=y_{0}=2z_{0},\; V=4z_{0}^{3}, \; | |
z_{0}=\frac{(2V)^{1/3}}{2},\; | |
x_{0}=y_{0}=(2V)^{1/3},\; A_\text{min}=3(2V)^{2/3} | |
$$ | |
\bigskip | |
{\bf \ref{exer:12}.} | |
$L=xyz-\lambda\dst{\left(\dst{\frac{x}{a}+\frac{y}{b}+\frac{z}{c}}\right)}$,\; | |
$L_{x}=yz-\dst{\frac{\lambda}{a}}$,\; | |
$L_{y}=xz-\dst{\frac{\lambda}{b}}$, \; | |
$L_{z}=xy-\dst{\frac{\lambda}{c}}$ | |
$$ | |
y_{0}z_{0}=\dst{\frac{\lambda}{a}},\quad | |
x_{0}z_{0}=\dst{\frac{\lambda}{b}}, \quad | |
x_{0}y_{0}=\dst{\frac{\lambda}{c}},\quad | |
\dst{\frac{x_{0}}{a}} = | |
\dst{\frac{y_{0}}{b}}=\dst{\frac{z_{0}}{c}}=\dst{\frac{1}{3}},\quad | |
V_{\text{max}}=\frac{abc}{27}. | |
$$ | |
\bigskip | |
{\bf \ref{exer:13}.} | |
We may assume without loss of generality that $y>0$, so $A=ay$. | |
$$ | |
L=\dst{ay-\frac{\lambda}{2}\left(\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}\right)},\quad | |
\dst{L_{x}=\frac{\lambda x}{a^{2}}},\quad | |
x_{0}=0,\quad y_{0}=b,\quad A_{\text{max}}=ab. | |
$$ | |
\bigskip | |
{\bf \ref{exer:14}.} | |
We must maximize $A^{2}=s(s-x)(s-y)(s-z)$ subject to | |
$x+y+z=s$. | |
$$ | |
L=-s(s-x)(s-y)(s-z)-\lambda(x+y+z) | |
$$ | |
$$ | |
L_{x}=s(s-y)(s-z)-\lambda,\quad | |
L_{y}=s(s-x)(s-z)-\lambda,\quad | |
L_{z}=s(s-x)(s-y)-\lambda\quad | |
$$ | |
$$ | |
s(s-y_{0})(s-z_{0})= | |
s(s-x_{0})(s-z_{0})= | |
s(s-x_{0})(s-y_{0})=\lambda,\quad | |
x_{0}=y_{0}=z_{0}=\frac{s}{3}. | |
$$ | |
\bigskip | |
{\bf \ref{exer:15}.} | |
We must maximize $V=8xyz$ subject to \quad | |
$\dst{\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}+\frac{z^{2}}{c^{2}}}=1.$ | |
$$ | |
L=xyz-\frac{\lambda}{2}\left(\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}+\frac{z^{2}}{c^{2}}\right) | |
$$ | |
$$ | |
L_{x}=yz-\frac{\lambda x}{a^{2}}, \quad | |
L_{y}=xz-\frac{\lambda y}{b^{2}}, \quad | |
L_{z}=xy-\frac{\lambda z}{c^{2}} | |
$$ | |
$$ | |
y_{0}z_{0}=\frac{\lambda x_{0}}{a^{2}}, \quad | |
x_{0}z_{0}=\frac{\lambda y_{0}}{b^{2}}, \quad | |
x_{0}y_{0}=\frac{\lambda z}{c^{2}}\quad | |
$$ | |
$$ | |
\dst{\frac{x_{0}^{2}}{a^{2}}}=\dst{\frac{y_{0}^{2}}{b^{2}}}=\dst{\frac{z_{0}^{2}}{c^{2}}} | |
=\lambda x_{0}y_{0}z_{0} | |
$$ | |
To satisfy the constraint, | |
$x_{0}=\dst{\frac{a}{\sqrt{3}}}$, | |
$y_{0}=\dst{\frac{b}{\sqrt{3}}}$, | |
$z_{0}=\dst{\frac{c}{\sqrt{3}}}$, | |
so $V_{\text max}=\dst{\frac{8abc}{3\sqrt{3}}}$. | |
\bigskip | |
{\bf \ref{exer:16}.} | |
Let $(x_{0},y_{0},z_{0})$ be the point on the plane closest to | |
$(x_{1},y_{1},z_{1})$, so | |
\begin{equation} \tag{A} | |
ax_{0}+by_{0}+cz_{0}=\sigma. | |
\end{equation} | |
$$ | |
L=\dst{\frac{(x-x_{1})^{2}+(y-y_{1})^{2}+(z-z_{1})^{2}}{2}}-\lambda(ax+by+cz) | |
$$ | |
$$ | |
L_{x}=(x-x_{1})-\lambda a,\quad | |
L_{y}=(y-y_{1})-\lambda b,\quad | |
L_{z}=(z-z_{1})-\lambda c | |
$$ | |
\begin{equation} | |
x_{0}=x_{1}+\lambda a,\quad y_{0}=y_{1}+\lambda b,\text{\quad and\quad} | |
z_{0}=z_{1}+\lambda c, \tag{B} | |
\end{equation} | |
\begin{equation} \tag{C} | |
d^{2}=\lambda^{2}(a^{2}+b^{2}+c^{2}) | |
\end{equation} | |
(A) and (B) imply that | |
$$ | |
ax_{1}+by_{1}+cz_{1}+\lambda(a^{2}+b^{2}+c^{2})=\sigma, | |
$$ | |
so | |
$$ | |
\lambda=\frac{\sigma-ax_{1}-by_{1}-cz_{1}}{a^{2}+b^{2}+c^{2}}, | |
$$ | |
and (C) implies that | |
$$ | |
d=\frac{|\sigma-ax_{1}-by_{1}-cz_{1}|}{\sqrt{a^{2}+b^{2}+c^{2}}}. | |
$$ | |
\bigskip | |
{\bf \ref{exer:17}.} | |
\quad $\dst{ | |
L=\frac{1}{2}\sum_{i=1}^{n}\left[(x-x_{i})^{2}+(y-y_{i})^{2}+(z-z_{i})^{2}\right] | |
-\lambda(ax+by+cz)}$ | |
$$ | |
L_{x}=nx - \lambda a -\sum_{i=1}^{n}x_{i},\quad | |
L_{y}=ny - \lambda b -\sum_{i=1}^{n}y_{i},\quad | |
L_{z}=nz - \lambda b -\sum_{i=1}^{n}z_{i}. | |
$$ | |
$$ | |
x_{0}=\dst{\frac{1}{n}\left[\lambda a+\sum_{i=1}^{n}x_{i}\right]},\quad | |
y_{0}=\dst{\frac{1}{n}\left[\lambda b+\sum_{i=1}^{n}y_{i}\right]},\quad | |
z_{0}=\dst{\frac{1}{n}\left[\lambda c+\sum_{i=1}^{n}z_{i}\right]} | |
$$ | |
$$ | |
ax_{0}+by_{0}+cz_{0}=\frac{1}{n} | |
\left[\lambda(a^{2}+b^{2}+c^{2})+\sum_{i=1}^{n}(ax_{i}+by_{i}+cz_{i})\right] | |
$$ | |
Since $ax_{0}+by_{0}+cz_{0}=\sigma$, | |
$$ | |
\lambda=(a^{2}+b^{2}+c^{2})^{-1}\dst{\sum_{i=1}^{n} | |
(\sigma-ax_{i}-by_{i}-cz_{i})}. | |
$$ | |
\bigskip | |
{\bf \ref{exer:18}.} | |
$L=\dst{\frac{1}{2}}\dst\left({\sum_{i=1}^{n}(x_{i}-c_{i})^{2}- | |
\lambda\sum_{i=1}^{n}x_{i}^{2}}\right)$,\, | |
$L_{x_{i}}=x_{i}-c_{i}-\lambda x_{i}$,\, $x_{i0}=(1-\lambda)^{-1} c_{i}$ | |
\medskip | |
$\dst{\sum_{i=1}^{n}x_{i0}^{2}=(1-\lambda)^{-2}\sum_{j=1}^{n}c_{j}^{2}}=1$, | |
so | |
$\lambda =1\pm \mu$ where | |
$\mu =\dst{\left(\sum_{j=1}^{n}c_{j}^{2}\right)^{1/2}}$ | |
Since $x_{i0}=c_{i}+\lambda x_{i0}$ and | |
$\dst{\sum_{i=1}^{n}x_{i0}^{2}}=1$, | |
$\dst{\sum_{i=1}^{n}(x_{i0}-c_{i})^{2}=\lambda^{2}}$. Since | |
$x_{i0}=(1-\lambda)^{-1}c_{i}$, the constrained maximum is $(1+\mu)^{2}$, | |
attained with $x_{i0}=-c_{i}/\mu$, $1\le i\le n$, and the constrained | |
minimum is $(1-\mu)^{2}$, | |
attained with $x_{i0}=c_{i}/\mu$, $1\le i\le n$. | |
{\bf \ref{exer:19}.} | |
\centerline{$L=xy+xz+yz-\dst{\frac{\lambda}{2}(x^{2}+y^{2}+z^{2})}$} | |
$$ | |
L_{x}=y+z-\lambda x,\quad L_{y}=x+z-\lambda y,\quad | |
L_{z}=x+y-\lambda z | |
$$ | |
$$ | |
\left[\begin{array}{ccccccc} | |
0&1&1\\1&0&1\\1&1&0 | |
\end{array}\right] | |
\left[\begin{array}{ccccccc} | |
x_{0}\\y_{0}\\z_{0} | |
\end{array}\right]=\lambda | |
\left[\begin{array}{ccccccc} | |
x_{0}\\y_{0}\\z_{0} | |
\end{array}\right]. | |
$$ | |
The eigenvalues of the matrix are $2$ and $-1$, which are therefore the | |
extremes of $Q$ subject to the constraint. | |
\bigskip | |
{\bf \ref{exer:20}.} | |
\quad \quad \quad | |
\centerline{$L=\dst{\frac{3x^{2}+2y^{2}+3z^{2}+2xz}{2}}-\dst{\frac{\lambda}{2}(x^{2}+y^{2}+z^{2})}$} | |
$$ | |
L_{x}=3x+z-\lambda x,\quad L_{y}=2y-\lambda y,\quad | |
L_{z}=3z+x-\lambda z | |
$$ | |
$$ | |
\left[\begin{array}{ccccccc} | |
3&0&1\\0&2&0\\1&0&3 | |
\end{array}\right] | |
\left[\begin{array}{ccccccc} | |
x_{0}\\y_{0}\\z_{0} | |
\end{array}\right]=\lambda | |
\left[\begin{array}{ccccccc} | |
x_{0}\\y_{0}\\z_{0} | |
\end{array}\right] | |
$$ | |
The largest and smallest eigenvalues of the matrix are $4$ and $2$, which | |
are therefore the extremes of $Q$ subject to the constraint. | |
\bigskip | |
{\bf \ref{exer:21}.} | |
\quad \quad | |
\quad $L=\dst{\frac{x^{2}+8xy+4y^{2}-\lambda(x^{2}+2xy+4y^{2})}{2}}$ | |
\begin{eqnarray*} | |
L_{x}&=&(x+4y)-\lambda(x+y)=(1-\lambda)x+(4-\lambda)y \\ | |
L_{y}&=& (4x+4y)-\lambda(x+4y)=(4-\lambda)x+4(1-\lambda y) | |
\end{eqnarray*} | |
$$ | |
\left[\begin{array}{ccccccc} | |
1-\lambda & 4-\lambda \\ 4-\lambda &4(1-\lambda) | |
\end{array}\right] | |
\left[\begin{array}{ccccccc} | |
x_{0}\\ y_{0} | |
\end{array}\right]= | |
\left[\begin{array}{ccccccc} | |
0\\0 | |
\end{array}\right], | |
$$ | |
so | |
$$ | |
4(\lambda-1)^{2}-(\lambda-4)^{2}=3(\lambda-2)(\lambda+2)=0. | |
$$ | |
If $\lambda=2$, then $x_{0}=2y_{0}$. To satisfy the constraint, | |
$(x_{0},y_{0})=\pm\left(\frac{1}{\sqrt3},\frac{1}{2\sqrt3}\right)$ and | |
$f(x_{0},y_{0})=2$. | |
If $\lambda=-2$, then $x_{0}=-2y_{0}$. To satisfy the constraint, | |
$(x_{0},y_{0})=\pm\left(-\frac{1}{\sqrt3},\frac{1}{2\sqrt3}\right)$ and | |
$f(x_{0},y_{0})=-\frac{2}{3}$. | |
\bigskip | |
{\bf \ref{exer:22}.} | |
$L=\alpha+\beta xy-\dst{\frac{\lambda}{2}(ax+by)^{2}}$,\, | |
$L_{x}=\beta y-\lambda a(ax+by)$,\, | |
$L_{y}=\beta x-\lambda b(ax+by)$ | |
\centerline{$x_{0}=\dst{\frac{\lambda b(ax_{0}+by_{0})}{\beta}}$,\quad | |
$y_{0}=\dst{\frac{\lambda a(ax_{0}+by_{0})}{\beta}}$,\quad | |
$(x_{0},y_{0})=\dst{\pm\left(\frac{\lambda | |
b}{\beta},\frac{\lambda a}{\beta}\right)}$}\quad | |
\centerline{$ax_{0}+by_{0}=\dst{\frac{2\lambda ab}{\beta}=\pm1}$,\quad | |
$\lambda=\dst{\pm\dst{\frac{\beta}{2ab}}}$,\quad | |
$(x_{0},y_{0})=\dst{\pm\left(\frac{1}{2a},\frac{1}{2b}\right)}$} | |
\centerline{$(\alpha+\beta | |
x_{0}y_{0})_\text{max}=\dst{\alpha+\frac{|\beta|}{4|ab|}}$,\quad | |
$(\alpha+\beta | |
x_{0}y_{0})_\text{min}=\alpha-\dst{\frac{|\beta|}{4|ab|}}$} | |
\bigskip | |
{\bf \ref{exer:23}.} | |
\centerline{$L=x+y^{2}+2z-\dst{\frac{\lambda}{2}(4x^{2}+9y^{2}-36z^{2})}$} | |
$$ | |
L_{x}=1-4\lambda x,\; | |
L_{y}=2y-9\lambda y, \; | |
L_{z}=2+36\lambda z | |
$$ | |
$$ | |
x_{0}=\dst{\frac{1}{4\lambda}},\; | |
z_{0}=-\dst{\frac{1}{18\lambda}}=-\frac{2}{9}x_{0}, | |
$$ | |
and | |
either $y_{0}=0$ or $\lambda=\dst{\frac{2}{9}}$. | |
If $y_{0}=0$, then | |
$$ | |
36=4x_{0}^{2}-36z_{0}^{2}=\left(4-36\left(\frac{2}{9}\right)^{2}\right)x_{0}^{2} | |
=\frac{20}{9}x_{0}^{2},\text{\quad so\quad} | |
(x_{0},z_{0})=\pm \left(\frac{9}{\sqrt{5}},-\frac{2}{\sqrt{5}}\right) | |
$$ | |
and $f(x_{0},0,z_{0})=x_{0}+2z_{0}=\pm\sqrt{5}$. | |
If $\lambda=\dst{\frac{2}{9}}$, then $x_{0}=\dst{\frac{9}{8}}$ | |
and | |
$z_{0}=-\dst{\frac{1}{4}}$, so | |
$$ | |
9y_{0}^{2}=36(1+z_{0}^{2})-4x_{0}^{2}=36\left(1+\frac{1}{16}\right)-4\left(\frac{81}{64}\right) | |
=\frac{531}{16}, | |
\text{\; so\;\;}y_{0}=\pm\dst{\frac{\sqrt{59}}{4}}. | |
$$ | |
Therefore, the constrained maximum is | |
$f\left(\frac{9}{8},\frac{\sqrt{59}}{4},-\frac{1}{4}\right)= | |
f\left(\frac{9}{8},-\frac{\sqrt{59}}{4},-\frac{1}{4}\right)=\frac{73}{16}$ | |
and the constrained minimum is | |
$f\left(-\frac{9}{\sqrt{5}},0,\frac{2}{\sqrt{5}}\right)=-\sqrt{5}$. | |
\bigskip | |
{\bf \ref{exer:24}.} | |
\quad \quad \quad \quad | |
$L=(x+z)(y+w)-\dst{\frac{\lambda}{2}(x^{2}+y^{2}+z^{2}+w^{2})}$ | |
$$ | |
L_{x}=y+w-\lambda x,\, | |
L_{y}=x+z-\lambda y,\, L_{z}=y+w -\lambda z, \, | |
L_{w}=x+z-\lambda w | |
$$ | |
$$ | |
x_{0}+z_{0}=\lambda y_{0}=\lambda w_{0}, \quad | |
y_{0}+w_{0}=\lambda x_{0}=\lambda z_{0} | |
$$ | |
If $\lambda=0$, then | |
all $(x_{0},y_{0},-x_{0},w_{0})$ with $2x_{0}^{2}+y_{0}^{2}+w_{0}^{2}=1$ | |
and all $(x_{0},y_{0},z_{0},-y_{0})$ with | |
$x_{0}^{2}+2y_{0}^{2}+z_{0}^{2}=1$ are constrained critical points, with | |
$f(x_{0},y_{0},-x_{0},w_{0})=0$ and $f(x_{0},y_{0},z_{0},-y_{0})$. | |
\medskip | |
If $\lambda \ne0$, then $y_{0}=w_{0}$ and $x_{0}=z_{0}$, so | |
$$ | |
2x_{0}=\lambda y_{0},\quad 2y_{0}=\lambda x_{0},\quad | |
2z_{0}=\lambda w_{0},\quad 2w_{0} =\lambda z_{0}, | |
$$ | |
and | |
$$ | |
2x_{0}=\lambda y_{0} =\frac{\lambda}{2}(2y_{0})=\frac{\lambda^{2}}{2}x_{0} | |
\text{\; and \;\;}2z_{0}=\lambda w_{0}=\frac{\lambda}{2}(2w_{0})= | |
\frac{\lambda^{2}}{2}z_{0}. | |
$$ | |
If $\lambda\ne2$, then | |
$x_{0}=y_{0}=z_{0}=w_{0}$, which does not satisfy the constraint. | |
If $\lambda=2$, then | |
$$ | |
x_{0}=y_{0}=z_{0}=w_{0}=\pm\frac{1}{2}\text{\; and\;\;} | |
(x_{0}+z_{0})(y_{0}+w_{0})=1. | |
$$ | |
If $\lambda=-2$, then | |
$$ | |
x_{0}=-y_{0}=z_{0}=-w_{0}=\pm\frac{1}{2} | |
\text{\; and\;\;} | |
(x_{0}+z_{0})(y_{0}+w_{0})=-1. | |
$$ | |
Therefore, the constrained maximum is $1$, attained at | |
$\pm\left(\frac{1}{2},\frac{1}{2},\frac{1}{2},\frac{1}{2}\right)$ | |
the constrained minimum is $-1$, attained at | |
$\pm\left(\frac{1}{2},-\frac{1}{2},\frac{1}{2},-\frac{1}{2}\right)$. | |
\bigskip | |
{\bf \ref{exer:25}.} | |
\quad \quad \quad \quad | |
$L=(x+z)(y+w)-\dst{\frac{\lambda}{2}(x^{2}+y^{2})} | |
-\dst{\frac{\mu}{2}(z^{2}+w^{2})}$ | |
$$ | |
L_{x}=y+w-\lambda x,\, | |
L_{y}=x+z-\lambda y,\, L_{z}=y+w -\mu z, \, | |
L_{w}=x+z-\mu w | |
$$ | |
\begin{equation} \tag{A} | |
x_{0}+z_{0}=\lambda y_{0}=\mu w_{0}, \quad | |
y_{0}+w_{0}=\lambda x_{0}=\mu z_{0} | |
\end{equation} | |
\medskip | |
If $\lambda=\mu=0$, then $z_{0}=-x_{0}$ and $w_{0}=-y_{0}$, | |
$(x_{0},y_{0},-x_{0},-y_{0})$ satisfies the constraints and | |
$f(x_{0},y_{0},-x_{0},-y_{0})=0$ for all $(x_{0},y_{0})$ | |
such that $x_{0}^{2}+y_{0}^{2}=1$. | |
\medskip | |
If $\lambda=0$ | |
and $\mu\ne0$, then $z_{0}=w_{0}=0$, which does not satisfy the constraint | |
$z^{2}+y^{2}=1$. If $\mu=0$ and $\lambda\ne0$, then $x_{0}=y_{0}=0$, | |
which does not satisfy the constraint $x^{2}+y^{2}=1$. | |
\medskip | |
Now assume that $\lambda$, $\mu\ne0$. From (A), | |
$\lambda(x_{0}^{2}+y_{0}^{2})=\mu^{2}(z_{0}^{2}+w_{0}^{2})$, so | |
$\lambda=\pm\mu$. If $\lambda=-\mu$, (A) implies that | |
$y_{0}=-w_{0}$ and $x_{0}=-z_{0}$, so again | |
$(x_{0},y_{0},-x_{0},-y_{0})$ satisfies the constraints and | |
$f(x_{0},y_{0},-x_{0},-y_{0})=0$ for all $(x_{0},y_{0})$ | |
such that $x_{0}^{2}+y_{0}^{2}=1$. | |
\medskip | |
If $\lambda=\mu$, (A) becomes | |
$$ | |
x_{0}+z_{0}=\lambda y_{0}= \lambda w_{0},\quad | |
y_{0}+w_{0}=\lambda x_{0}=\lambda z_{0}, | |
$$ | |
so | |
$y_{0}=w_{0}$, $x_{0}=z_{0}$, $2x_{0}=\lambda y_{0}$, and $2y_{0}=\lambda | |
x_{0}$, $4x_{0}=2\lambda y_{0}=\lambda^{2}x_{0}$, so $\lambda=\pm2$ . | |
\medskip | |
If | |
$\lambda=2$, $x_{0}=y_{0}=z_{0}=w_{0}$. To satisfy the constraints, | |
$$ | |
(x_{0},y_{0},z_{0},w_{0})=\pm\left( \frac{1}{\sqrt2}, | |
\frac{1}{\sqrt2}, \frac{1}{\sqrt2}, | |
\frac{1}{\sqrt2} | |
\right), \text{\; so\;\;} | |
$$ | |
and the constrained maximum is $f(x_{0},y_{0},z_{0},w_{0})=2$. | |
\medskip | |
If | |
$\lambda=-2$, $x_{0}=-y_{0}=z_{0}=-w_{0}$. To satisfy the constraints, | |
$$ | |
(x_{0},y_{0},z_{0},w_{0})=\pm\left( \frac{1}{\sqrt2}, | |
- \frac{1}{\sqrt2}, \frac{1}{\sqrt2}, | |
-\frac{1}{\sqrt2} | |
\right), \text{\; so\;\;} | |
$$ | |
and the constrained minimum is $f(x_{0},y_{0},z_{0},w_{0})=-2$. | |
\bigskip | |
{\bf \ref{exer:26}.} | |
\centerline{$L=(x+z)(y+w)-\dst{\frac{\lambda}{2}}(x^{2}+z^{2}) | |
-\dst{\frac{\mu}{2}}(y^{2}+w^{2})$} | |
$$ | |
L_{x}=y+w-\lambda x,\; | |
L_{y}=x+z-\mu y,\; | |
L_{w}=x+z-\mu w,\; | |
L_{z}=y+w-\lambda z | |
$$ | |
\centerline{$y_{0}+w_{0}=\lambda x_{0}$,\; | |
$x_{0}+z_{0}=\mu y_{0}$,\; | |
$x_{0}+z_{0}=\mu w_{0}$,\; | |
$y_{0}+w_{0}=\lambda z_{0}$} | |
If $\mu=0$, then $x_{0}=-z_{0}$, so the constrained critical points | |
are $\pm\left(\frac{1}{\sqrt2},y_{0},-\frac{1}{\sqrt2},w_{0}\right)$ | |
for all $(y_{0},w_{0})$ such that $y_{0}^{2}+w_{0}^{2}=1$; $f=0$ | |
at all such points. | |
If $\lambda=0$, then $y_{0}=-w_{0}$, so the constrained critical points | |
are $\pm\left(x_{0},\frac{1}{\sqrt2},z_{0},-\frac{1}{\sqrt2}\right)$ | |
for all $(x_{0},z_{0})$ such that $x_{0}^{2}+z_{0}^{2}=1$; $f=0$ | |
at all such points. | |
\medskip | |
Now suppose that | |
$\lambda\mu\ne0$. Since | |
$\lambda x_{0}=\lambda z_{0}$ and | |
$\mu y_{0}=\mu w_{0}$, | |
$x_{0}=z_{0}$ and $y_{0}=w_{0}$. Therefore, | |
$(x_{0},z_{0})=\pm\left(\frac{1}{\sqrt2},\frac{1}{\sqrt2}\right)$ | |
and | |
$(y_{0},w_{0})=\pm\left(\frac{1}{\sqrt2},\frac{1}{\sqrt2}\right)$, so | |
the constrained maximum is $2$, attained at | |
$\pm(\frac{1}{\sqrt2},\frac{1}{\sqrt2},\frac{1}{\sqrt2},\frac{1}{\sqrt2})$, | |
and constrained minimum is $-2$, attained | |
$\pm\left(\frac{1}{\sqrt2},-\frac{1}{\sqrt2},\frac{1}{\sqrt2},-\frac{1}{\sqrt2}\right)$, | |
\bigskip | |
{\bf \ref{exer:27}.} | |
\quad \quad \quad $L=\dst{\frac{(x_{1}-x_{2})^{2}+(y_{1}-y_{2})^{2}}{2}}- | |
\dst{\frac{\lambda}{2}}(x_{1}^{2}+y_{1}^{2})-\mu x_{2}y_{2}$ | |
$$ | |
L_{x_{1}}=x_{1}-x_{2}-\lambda x_{1},\; L_{x_{2}}=x_{2}-x_{1}-\mu | |
y_{2},\; L_{y_{1}}=y_{1}-y_{2}-\lambda y_{1},\; | |
L_{y_{2}}=y_{2}-y_{1}-\mu x_{2} | |
$$ | |
\centerline{(i) $x_{10}-x_{20}=\lambda x_{10}$,\quad (ii) | |
$y_{10}-y_{20}=\lambda y_{10}$} | |
\medskip | |
\centerline{(iii) $x_{20}-x_{10}=\mu y_{20}$,\quad | |
(iv) $y_{20}-y_{10}=\mu x_{20}$} | |
\medskip | |
Since $0<x_{10}<x_{20}$ and $0<y_{10}<y_{20}$, $\lambda<0$ | |
and $\mu>0$ | |
Since $x_{20}\ne0$, $\lambda \ne 1$, (i) and (ii) imply that | |
(v) $x_{10}y_{20}=y_{10}x_{20}$. From (i) and (iii), | |
(vi) $\lambda x_{10}=-\mu y_{20}$; from (ii) and (iv), (vii) $\lambda | |
y_{10}=-\mu x_{20}$. Since $x_{20}y_{20}=1$, (vi) and (vii) imply that | |
$x_{10}x_{20}=y_{10}y_{20}$. This and (v) imply that | |
$$ | |
\frac{x_{10}}{y_{10}}=\frac{x_{20}}{y_{20}}=\frac{y_{20}}{x_{20}}. | |
$$ | |
Therefore, $x_{20}=y_{20}=1$ and $x_{10}=y_{10}=\frac{1}{\sqrt2}$, | |
so | |
$$ | |
(x_{10}-x_{20})^{2}+(y_{10}-y_{20})^{2}= | |
2\left(1-\frac{1}{\sqrt 2}\right)^{2} | |
$$ | |
and the distance between the curves is $\sqrt2-1$. | |
\bigskip | |
{\bf \ref{exer:28}.} | |
\centerline{$L=\dst{\frac{1}{2}}\left(\dst{\frac{x^{2}}{\alpha^{2}}+\frac{y^{2}}{\beta^{2}}} | |
+\frac{z^{2}}{\gamma^{2}}\right) | |
-\lambda (ax+by+cz)$} | |
$$ | |
L_{x}=\frac{x}{\alpha^{2}}-\lambda a,\quad | |
L_{y}=\frac{y}{\beta^{2}}-\lambda b,\quad | |
L_{z}=\frac{z}{\gamma^{2}}-\lambda c | |
$$ | |
$$ | |
x_{0}=\lambda a \alpha^{2},\quad | |
y_{0}=\lambda b \beta^{2},\quad | |
z_{0}=\lambda c \gamma^{2} | |
$$ | |
$$ | |
ax_{0}+by_{0}+cz_{0}= | |
\lambda[(a \alpha)^{2}+(b\beta)^{2}+(c\gamma^{2})]=d, | |
\quad | |
\lambda=\frac{d}{(a\alpha)^{2}+(b\beta^{2})+(c\gamma)^{2}} | |
$$ | |
$$ | |
\frac{x_{0}^{2}}{\alpha^{2}}+\frac{y_{0}^{2}}{\beta^{2}} | |
+\frac{z_{0}^{2}}{\gamma^{2}}= | |
\lambda^{2}[(a\alpha)^{2}+(b\beta)^{2}+(c\gamma)^{2}] | |
= \frac{d^{2}}{(a\alpha)^{2}+(b\beta^{2})+(c\gamma)^{2}}. | |
$$ | |
\bigskip | |
{\bf \ref{exer:29}.} | |
\quad | |
$\dst{L(x_{1},x_{2},\dots,x_{n})=\frac{(x_{1}-c_{1})^{2}+(x_{2}-c_{2})^2+ | |
\cdots+(x_{n}-c_{n})^2}{2}}$ | |
$$ | |
-\lambda(a_{1}x_{1}+a_{2}x_{2}+\cdots+a_{n}x_{n}) | |
$$ | |
$L_{x_{i}}=x_{i}-c_{i}-\lambda a_{i}$, $1\le i\le n$. We must choose | |
$\lambda$ so that if $x_{i0}=c_{i}+\lambda a_{i}$, $1\le i\le n$, then | |
\begin{eqnarray*} | |
a_{1}x_{10}+a_{2}x_{20}+\cdots+a_{n}x_{n0}&=&a_{1}c_{1}+a_{2}c_{2}+\dots + | |
a_{n}c_{n}\\ &+& \lambda (a_{1}^{2}+a_{2}^{2}+\cdots+ a_{n}^{2})=d, | |
\end{eqnarray*} | |
which holds if and only if | |
$$ | |
\lambda=\frac{d-a_{1}c_{1}-a_{2}c_{2}-\cdots-a_{n}c_{n}} | |
{a_{1}^{2}+a_{2}^{2}+\cdots +a_{n}^{2}}. | |
$$ | |
Therefore, | |
$$ | |
x_{i0}=c_{i}+ | |
\frac{(d-a_{1}c_{1}-a_{2}c_{2}-\cdots-a_{n}c_{n})a_{i}} | |
{a_{1}^{2}+a_{2}^{2}+\cdots a_{n}^{2}},\quad 1\le i\le n, | |
$$ | |
and the distance from $(x_{10},x_{10},\dots,x_{n0})$ to | |
$(c_{1},c_{2},\dots,c_{n})$ is | |
$$ | |
\frac{|(d-a_{1}c_{1}-a_{2}c_{2}-\cdots-a_{n}c_{n})a_{i}|} | |
{\sqrt{a_{1}^{2}+a_{2}^{2}+\cdots a_{n}^{2}}}. | |
$$ | |
\bigskip | |
{\bf \ref{exer:30}.} | |
\centerline{$L=\dst{\frac{1}{2}\sum_{i=1}^{n}a_{i}x_{i}^{2}- | |
\frac{\lambda}{4}\sum_{i=1}^{n}b_{i}x_{i}^{4}}$,\quad | |
$L_{x_{i}}=a_{i}x_{i}-\lambda b_{i}x_{i}^{3}$,\quad | |
$a_{i}x_{i0}^{2}=\lambda b_{i}x_{i0}^{4}$} | |
$\dst{\sum_{i=1}^{n}a_{i}x_{i0}^{2}=\lambda \sum_{i=1}^{n} | |
b_{i}x_{i0}^{4}=\lambda}$,\; | |
$x_{i0}^{2}=\dst{\frac{a_{i}}{\lambda b_{i}}}$,\quad | |
$\lambda=\dst{\sum_{i=1}^{n}a_{i}x_{i0}^{2}= | |
\frac{1}{\lambda}\sum_{i=1}^{n}\frac{a_{i}^{2}}{b_{i}}}$,\; | |
$\lambda=\dst{\left(\sum_{i=1}^{n}\frac{a_{i}^{2}}{b_{i}}\right)^{1/2}}$ | |
{\bf \ref{exer:31}.} | |
\centerline{$L=\dst{\frac{1}{p}\sum_{i=1}^{n}a_{i}x_{i}^{p}- | |
\frac{\lambda}{q}\sum_{i=1}^{n}b_{i}x_{i}^{q}}$,\quad | |
$L_{x_{i}}=a_{i}x_{i}^{p}-\lambda b_{i}x_{i}^{q}$,\quad | |
$a_{i}x_{i0}^{p}=\lambda b_{i}x_{i0}^{q}$} | |
$\dst{\sum_{i=1}^{n}a_{i}x_{i0}^{p}=\lambda \sum_{i=1}^{n} | |
b_{i}x_{i0}^{q}=\lambda}$,\; | |
$x_{i0}^{q-p}=\dst{\frac{a_{i}}{\lambda b_{i}}}$,\quad | |
$x_{i0}=\dst{\left(\frac{a_{i}}{\lambda b_{i}}\right)^{1/(q-p)}}$, | |
$x_{i0}^{p}=\dst{\left(\frac{a_{i}}{\lambda b_{i}}\right)^{p/(q-p)}}$ | |
$$ | |
\lambda=\sum_{i=1}^{n}a_{i}x_{i0}^{p}=\lambda^{p/(p-q)} | |
\sum_{i=1}^{n}a_{i}^{q/(q-p)} b_{i}^{p/(p-q)},\quad | |
$$ | |
$$ | |
\lambda^{q/(q-p)}= | |
\sum_{i=1}^{n}a_{i}^{q/(q-p)} b_{i}^{p/(p-q)},\quad | |
\lambda= | |
\left(\sum_{i=1}^{n}a_{i}^{q/(q-p)} b_{i}^{p/(p-q)}\right)^{1-p/q}= | |
\sum_{i=1}^{n}a_{i}x_{i0}^{p} | |
$$ | |
$\lambda$ is the constrained maximum if $p<q$, the constrained minimum if | |
$p>q$, undefined if $p=q$. | |
{\bf \ref{exer:32}.} | |
$L=\dst{\frac{x^{2}+2y^{2}+z^{2}+w^{2}}{2}}-\lambda(x+y+z+3w)-\mu(x+y+2z+w)$ | |
$$ | |
L_{x}=x-\lambda-\mu, \quad L_{y}=2y-\lambda-\mu, \quad | |
L_{z}=z-\lambda-2\mu, \quad L_{w}=w-3\lambda-\mu | |
$$ | |
$$ | |
x_{0}=\lambda+\mu, \quad y_{0}=\frac{\lambda+\mu}{2}, \quad | |
z_{0}=\lambda+2\mu, | |
\quad w_{0}=3\lambda+\mu | |
$$ | |
$$ | |
x_{0}+y_{0}+z_{0}+3w_{0}=\frac{23}{2}\lambda+\frac{13}{2}\mu=1, \quad | |
x_{0}+y_{0}+2z_{0}+w_{0}=\frac{13}{2}\lambda+\frac{13}{2}\mu=2 | |
$$ | |
$$ | |
\lambda=-\frac{1}{5},\, \mu=\frac{33}{65},\, x_{0}=\frac{4}{13},\, | |
y_{0}=\frac{2}{13},\, | |
z_{0}=\frac{53}{65},\, | |
w_{0}=-\frac{6}{65},\,\ | |
\min=\frac{689}{845} | |
$$ | |
\bigskip | |
{\bf \ref{exer:33}.} | |
\centerline{$\dst{L=\frac{1}{2}\left(\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}+\frac{z^{2}}{c^{2}}\right) | |
-\lambda(p_{1}x+p_{2}y+p_{3}z)}$} | |
\medskip | |
\centerline{$L_{x}=\dst{\frac{x}{a^{2}}}-\lambda p_{1}$,\quad | |
$L_{y}=\dst{\frac{y}{b^{2}}}-\lambda p_{2}$,\quad | |
$L_{z}=\dst{\frac{z}{c^{2}}}-\lambda p_{3}$} | |
\medskip | |
\centerline{$x_{0}=\lambda p_{1}a^{2}$,\quad | |
$y_{0}=\lambda p_{2}b^{2}$,\quad | |
$z_{0}=\lambda p_{3}c^{2}$} | |
\medskip | |
\centerline{$p_{1}x_{0}+p_{2}y_{0}+p_{3}z_{0}= | |
\lambda(p_{1}^{2}a^{2}+p_{2}^{2}b^{2}+p_{3}^{2}c^{2})=d$} | |
\medskip | |
\centerline{$\lambda=\dst{\frac{d}{p_{1}^{2}a^{2}+p_{2}^{2}b^{2}+p_{3}^{2}c^{2}}}$,\quad | |
$\dst{\frac{x_{0}}{a}=\lambda p_{1}a}$,\quad | |
$\dst{\frac{y_{0}}{b}=\lambda p_{2}b}$, \quad | |
$\dst{\frac{z_{0}}{b}=\lambda p_{3}c}$} | |
\medskip | |
$$ | |
\frac{x_{0}^{2}}{a^{2}}+\frac{y_{0}^{2}}{b^{2}}+\frac{z_{0}^{2}}{c^{2}} | |
=\lambda^{2}(p_{1}^{2}a^{2}+p_{2}^{2}b^{2}+p_{3}^{2}c^{2}) | |
=\frac{d^{2}}{p_{1}^{2}a^{2}+p_{2}^{2}b^{2}+p_{3}^{2}c^{2}} | |
$$ | |
\bigskip | |
{\bf \ref{exer:34}.} | |
\centerline{$L=p_{1}x+p_{2}y+p_{3}z- | |
\dst{\frac{\lambda}{2}\left(\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}+ | |
\frac{z^{2}}{c^{2}}\right)}$} | |
\medskip | |
\centerline{$L_{x}=p_{1}-\lambda\dst{\frac{x}{a^{2}}}$,\quad | |
$L_{y}=p_{2}-\lambda\dst{\frac{y}{b^{2}}}$,\quad | |
$L_{z}=p_{3}-\lambda\dst{\frac{z}{c^{2}}}$} | |
\medskip | |
\centerline{$x_{0}=\dst{\frac{p_{1}a^{2}}{\lambda}}$,\quad | |
$y_{0}=\dst{\frac{p_{2}b^{2}}{\lambda}}$,\quad | |
$z_{0}=\dst{\frac{p_{3}c^{2}}{\lambda}}$} | |
$$ | |
\frac{x_{0}^{2}}{a^{2}}+\frac{y_{0}^{2}}{b^{2}}+\frac{z_{0}^{2}}{c^{2}} | |
=\frac{p_{1}^{2}a^{2}+p_{2}^{2}b^{2}+p_{3}^{2}c^{2}}{\lambda^{2}}=1 | |
$$ | |
$$ | |
\lambda=\pm(p_{1}^{2}a^{2}+p_{2}^{2}b^{2}+p_{3}^{2}c^{2})^{1/2} | |
$$ | |
$$ | |
p_{1}x_{0}+p_{2}y_{0}+p_{3}z_{0}= | |
\frac{p_{1}^{2}a^{2}+p_{2}^{2}b^{2}+p_{3}^{2}c^{2}}{\lambda} | |
=\pm (p_{1}^{2}a^{2}+p_{2}^{2}b^{2}+p_{3}^{2}c^{2})^{1/2} | |
$$ | |
\medskip | |
{\bf \ref{exer:35}.} | |
$L=\dst{\frac{(x+1)^{2}+(y-2)^{2}+(z-3)^{2}}{2}}-\lambda(x+2y-3z)-\mu(2x-y+2z)$ | |
$$ | |
L_{x}=x+1-\lambda-2\mu,\quad L_{y}=y-2-2\lambda +\mu,\quad | |
L_{z}=z-3+3\lambda-2\mu | |
$$ | |
$$ | |
x_{0}=-1+\lambda+2\mu,\quad y_{0}=2+2\lambda-\mu, \quad | |
z_{0}=3-3\lambda+2\mu | |
$$ | |
$$ | |
x_{0}+2y_{0}-3z_{0}-4=-10+14\lambda-6\mu,\quad | |
2x_{0}-y_{0}+2z_{0}-5=-3-6\lambda+9\mu | |
$$ | |
$$ | |
7\lambda-3\mu=5, \quad -2\lambda+3\mu=1,\quad \lambda=\frac{18}{15}, | |
\quad \mu=\frac{17}{15} | |
$$ | |
$$ | |
(x_{0},y_{0},z_{0})=\left(\frac{37}{15}, | |
\frac{49}{15},\frac{25}{15}\right),\quad | |
$$ | |
$$ | |
\sqrt{(x_{0}+1)^{2}+(y_{0}-2)^{2}+(z_{0}-3)^{2}} | |
=\left[\left(\frac{52}{15}\right)+\left(\frac{19}{15}\right)^{2}+ | |
\left(\frac{20}{15}\right)^{2}\right]^{1/2}=\sqrt{\frac{693}{45}} | |
$$ | |
\bigskip | |
{\bf \ref{exer:36}.} | |
\centerline{$L=2x+y+2z-\dst{\frac{\lambda}{2}}(x^{2}+y^{2})-\mu(x+z)$} | |
$$ | |
L_{x}=2-\lambda x-\mu,\quad L_{y}=1-\lambda y,\quad L_{z}=2-\mu | |
$$ | |
$\mu=2$, so $\lambda x_{0}=0$. Since $\lambda y_{0}=1$, $\lambda\ne0$; | |
hence, | |
$x_{0}=0$. Since $x_{0}^{2}+y_{0}^{2}=4$, | |
$y_{0}=\pm2$. | |
Therefore, | |
$(0,2,2)$ and $(0,-2,2)$, are constrained extreme points, and | |
the constrained extreme values are | |
$f(0,2,2)=6$ and $f(0,-2,2)=2$. | |
\bigskip | |
{\bf \ref{exer:37}.} | |
Let $(x_{1},y_{1})$ be on the parabola, $(x_{2},y_{2})$ on the line. | |
$$ | |
L=\frac{(x_{1}-x_{2})^{2}+(y_{1}-y_{2})^{2}}{2} | |
-\lambda(y_{1}-x_{1}^{2})-\mu(x_{2}+y_{2}). | |
$$ | |
$$ | |
L_{x_{1}}=x_{1}-x_{2}+2\lambda x_{1},\, | |
L_{x_{2}}=x_{2}-x_{1}-\mu,\, | |
$$ | |
$$ | |
L_{y_{1}}=y_{1}-y_{2}-\lambda,\, | |
L_{y_{2}}=y_{2}-y_{1}-\mu | |
$$ | |
\begin{eqnarray*} | |
x_{10}-x_{20}&=&-2\lambda x_{10}\\ | |
x_{20}-x_{10}&=&\mu\\ | |
y_{10}-y_{20}&=&\lambda\text{\quad (i)}\\ | |
y_{20}-y_{10}&=&\mu\text{\quad (ii)} | |
\end{eqnarray*} | |
From (i) and (ii), $\lambda=-\mu$, so | |
\begin{eqnarray*} | |
x_{10}-x_{20}&=& 2\mu x_{10}\text{\quad (i)}\\ | |
x_{20}-x_{10}&=&\mu\text{\quad\quad \;\, (ii)}\\ | |
y_{20}-y_{10}&=&\mu\text{\quad\quad \;\, (iii)} | |
\end{eqnarray*} | |
From (i) and (ii), $x_{10}=-1/2$, so $y_{10}=1+x_{10}^{2}=5/4$ and | |
$$ | |
2\mu=x_{20}+y_{20}-x_{10}-y_{10}=-1+\frac{1}{2}-\frac{5}{4}=-\frac{7}{4}, | |
$$ | |
since $x_{20}+y_{20}=-1$ (constraint). Therefore, $\mu=-7/8$ so (ii) | |
and (iii) imply that | |
$$ | |
x_{20}=x_{10}=\mu=-\frac{1}{2}-\frac{7}{8}=-\frac{11}{8} | |
\text{\; and\;\;} | |
y_{20}=y_{10}-\frac{7}{8}=\frac{5}{4}-\frac{7}{8}=\frac{3}{8}. | |
$$ | |
The distance between the line and the | |
parabola is | |
$$ | |
\sqrt{(x_{10}-x_{20})^{2}+(y_{10}-y_{20})^{2}}=\frac{7}{4\sqrt{2}}. | |
$$ | |
\bigskip | |
{\bf \ref{exer:38}.} | |
Let $(x_{1},y_{1},z_{1})$ be on the ellipsoid and | |
$(x_{2},y_{2},z_{2})$ be on the plane. | |
$$ | |
L= | |
\frac{(x_{1}-x_{2})^{2}+(y_{1}-y_{2})^{2}+(z_{1}-z_{2})^{2}}{2} | |
-\frac{\lambda}{2}(3x_{1}^{2}+9y_{1}^{2}+6z_{1}^{2}) | |
-\mu(x_{2}+y_{2}+2z_{2}). | |
$$ | |
$$ | |
L_{x_{1}}=x_{1}-x_{2}-3\lambda x_{1}=0,\quad | |
L_{y_{1}}=y_{1}-y_{2}-9\lambda y_{1}=0,\quad | |
L_{z_{1}}=z_{1}-z_{2}-6\lambda z_{1} | |
$$ | |
$$ | |
L_{x_{2}}=x_{2}-x_{1}-\mu,\quad Ly_{2}=y_{2}-y_{1}-\mu,\quad | |
L_{z_{2}}=z_{2}-z_{1}-2\mu | |
$$ | |
\begin{eqnarray*} | |
x_{10}-x_{20}&=& 3\lambda x_{10}\\ | |
y_{10}-y_{20}&=& 9\lambda y_{10}\\ | |
z_{10}-z_{20}&=& 6\lambda z_{10}\\ | |
x_{20}-x_{10}&=& \mu\\ | |
y_{20}-y_{10}&=& \mu \\ | |
z_{20}-z_{10}&=& 2\mu | |
\end{eqnarray*} | |
Therefore, $3\lambda x_{10}=-\mu$, $9\lambda y_{10}=-\mu$, and | |
$3\lambda z_{10}=-\mu$, so | |
$y_{10}=x_{1}/3$ and | |
$z_{10}=x_{10}$. Since $(x_{10},x_{10}/3,x_{10})$ is on the ellipsoid if | |
and only if $x_{10}=\pm1$, either | |
$$ | |
\text{\; (a)\;\;}(x_{10},y_{10},z_{10})=\left(1,\frac{1}{3},1\right) | |
\text{\; or \quad (b)\;\;} | |
(x_{10},y_{10},z_{10})=\left(-1,-\frac{1}{3},-1\right). | |
$$ | |
Since | |
\begin{equation} \tag{A} | |
x_{2}=x_{1}+\mu,\quad y_{2}=y_{1}+\mu,\quad z_{2}=z_{1}+2\mu, | |
\end{equation} | |
\begin{equation} \tag{B} | |
(x_{10}-x_{20})^{2}+(y_{10}-y_{20})^{2}+(z_{10}-z_{20})=6\mu^{2}, \text{\; | |
so\;\;} d=\mu.\sqrt{6}. | |
\end{equation} | |
Since | |
$3x_{20}+3y_{20}+6z_{20}=70$, (A) implies that | |
$$ | |
\mu=\frac{70-3x_{10}-3y_{10}-6z_{10}}{18}, | |
$$ | |
In Case (a) $\mu=\frac{10}{3}$ so (A) implies that $d=\frac{10\sqrt{6}}{3}$ | |
In case (b) | |
$\mu=\frac{40}{9}>\frac{10}{3}$, so | |
the distance between the plane and the ellipsoid is | |
$\frac{10\sqrt{6}}{3}$. | |
\bigskip | |
{\bf \ref{exer:39}.} | |
\quad \quad \quad \quad $L=xy+yz+zx-\dst{\frac{\lambda}{2} | |
\left(\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}+\frac{z^{2}}{c^{2}}\right)}$ | |
$$ | |
L_{x}=y+z-\lambda\frac{x}{a^{2}},\quad | |
L_{y}=z+x-\lambda\frac{y}{b^{2}},\quad | |
L_{z}=x+y-\lambda\frac{z}{c^{2}} | |
$$ | |
$$ | |
y_{0}+z_{0}=\lambda\frac{x_{0}}{a^{2}},\quad | |
z_{0}+x_{0}=\lambda\frac{y_{0}}{b^{2}},\quad | |
x_{0}+y_{0}-\lambda\frac{z_{0}}{c^{2}} | |
$$ | |
$$ | |
\left[\begin{array}{ccccccc} | |
0&a^{2}&a^{2}\\ b^{2}&0&b^{2}\\c^{2}&c^{2}&0 | |
\end{array}\right] | |
\left[\begin{array}{ccccccc} | |
x_{0}\\y_{0}\\z_{0} | |
\end{array}\right]=\lambda | |
\left[\begin{array}{ccccccc} | |
x_{0}\\y_{0}\\z_{0} | |
\end{array}\right] | |
$$ | |
$$ | |
x_{0}(y_{0}+z_{0})=\lambda\frac{x_{0}^{2}}{a^{2}},\quad | |
y_{0}(z_{0}+x_{0})=\lambda\frac{y_{0}^{2}}{b^{2}},\quad | |
z_{0}(x_{0}+y_{0})=\lambda\frac{z_{0}^{2}}{c^{2}}, | |
$$ | |
$$ | |
x_{0}(y_{0}+z_{0})+ | |
y_{0}(z_{0}+x_{0})+ | |
z_{0}(x_{0}+y_{0})= | |
\lambda\left(\frac{x_{0}^{2}}{a^{2}}+\frac{y_{0}^{2}}{b^{2}}+\frac{z_{0}^{2}}{c^{2}}\right) | |
=\lambda | |
$$ | |
\bigskip | |
{\bf \ref{exer:40}.} | |
\quad \quad \quad $L=xy+2yz+2zx-\lambda | |
\dst{\left(\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}+\frac{z^{2}}{c^{2}}\right)}$ | |
$$ | |
L_{x}=y+2z-2\lambda\frac{x}{a^{2}},\quad | |
L_{y}=x+2z-2\lambda\frac{y}{b^{2}},\quad | |
L_{z}=2x+2y-2\lambda\frac{z}{c^{2}} | |
$$ | |
$$ | |
y_{0}+2z_{0}=2\lambda\frac{x_{0}}{a^{2}},\quad | |
x_{0}+2z_{0}=2\lambda\frac{y_{0}}{b^{2}},\quad | |
2x_{0}+2y_{0}-2\lambda\frac{z_{0}}{c^{2}} | |
$$ | |
$$ | |
\left[\begin{array}{ccccccc} | |
0&a^{2}/2&a^{2}\\ b^{2}/2&0&b^{2}\\c^{2}&c^{2}&0 | |
\end{array}\right] | |
\left[\begin{array}{ccccccc} | |
x_{0}\\y_{0}\\z_{0} | |
\end{array}\right]=\lambda | |
\left[\begin{array}{ccccccc} | |
x_{0}\\y_{0}\\z_{0} | |
\end{array}\right]. | |
$$ | |
$$ | |
x_{0}(y_{0}+2z_{0})=2\lambda\frac{x_{0}^{2}}{a^{2}},\quad | |
y_{0}(x_{0}+2z_{0})=2\lambda\frac{y_{0}^{2}}{b^{2}};\quad | |
z_{0}(2x_{0}+2y_{0})=2\lambda\frac{z_{0}^{2}}{c^{2}}, | |
$$ | |
$$ | |
\frac{x_{0}(y_{0}+2z_{0})+ | |
y_{0}(x_{0}+2z_{0})+ | |
z_{0}(2x_{0}+2y_{0})}{2}= | |
\lambda\left(\frac{x_{0}^{2}}{a^{2}}+\frac{y_{0}^{2}}{b^{2}}+\frac{z_{0}^{2}}{c^{2}}\right) | |
=\lambda, | |
$$ | |
\bigskip | |
{\bf \ref{exer:41}.} | |
\quad \quad \quad $L=xz+yz-\dst{\frac{\lambda}{2} | |
\left(\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}+\frac{z^{2}}{c^{2}}\right)}$ | |
$$ | |
L_{x}=z-\lambda\frac{x}{a^{2}},\quad | |
L_{y}=z-\lambda\frac{y}{b^{2}},\quad | |
L_{z}=x+y-\lambda\frac{z}{c^{2}} | |
$$ | |
$$ | |
z_{0}=\lambda\frac{x_{0}}{a^{2}},\quad | |
z_{0}=\lambda\frac{y_{0}}{b^{2}},\quad | |
x_{0}+y_{0}=\lambda\frac{z_{0}}{c^{2}},\text{\; so\;\;} | |
\frac{a^{2}}{\lambda}+\frac{b^{2}}{\lambda}=\frac{\lambda}{c^{2}}. | |
$$ | |
Therefore, $\lambda=\pm |c|\sqrt{a^{2}+b^{2}}$. To determine $z_{0}$, | |
note that $x_{0}=\dst{\frac{a^{2}z_{0}}{\lambda}}$ and | |
$y_{0}=\dst{\frac{b^{2}z_{0}}{\lambda}}$. Therefore, | |
$$ | |
1=\frac{x_{0}^{2}}{a^{2}} | |
+\frac{y_{0}^{2}}{b^{2}}+\frac{z_{0}^{2}}{c^{2}} = | |
\left(\frac{a^{2}+b^{2}}{\lambda^{2}}+\frac{1}{c^{2}}\right)z_{0}^{2}= | |
\frac{2z_{0}^{2}}{c^{2}}, | |
$$ | |
so | |
$$ | |
z_{0}=\pm\frac{|c|}{\sqrt2}\text{\; and\;\;} | |
(x_{0},y_{0},z_{0})=\pm | |
\left(\frac{a^{2}}{\sqrt{2(a^{2}+b^{2})}}, | |
\frac{b^{2}}{\sqrt{2(a^{2}+b^{2})}}, | |
\dst{\frac{|c|}{\sqrt{2}}} | |
\right) | |
$$ | |
$$ | |
(x_{0}+y_{0})z_{0}=\dst{\frac{\lambda | |
z_{0}^{2}}{c^{2}}}=\pm\frac{\lambda}{2}=\pm | |
\frac{|c|\sqrt{a^{2}+b^{2}}}{2}. | |
$$ | |
\bigskip | |
{\bf \ref{exer:42}.} | |
\centerline{$L=x^{\alpha}y^{\beta}z^{\gamma}-\lambda(ax^{p}+by^{q}+cz^{r})$} | |
$$ | |
L_{x}=\alpha x^{\alpha-1}y^{\beta}z^{\gamma}-\lambda pax^{p-1},\quad | |
L_{y}=\beta x^{\alpha}y^{\beta-1}z^{\gamma}-\lambda qby^{q-1} | |
$$ | |
$$ | |
L_{z}=\gamma x^{\alpha}y^{\beta}z^{\gamma-1}-\lambda rcz^{r-1} | |
$$ | |
$$ | |
\dst{\frac{p}{\alpha}ax_{0}^{p}=\frac{q}{\beta}by_{0}^{q}=\frac{r}{\gamma}cz_{0}^{q}=C} | |
$$ | |
where $C$ is to be determined as follows: | |
$$ | |
\dst{ax_{0}^{p}=\frac{C\alpha}{p},\quad by_{0}^{q}=\frac{C\beta}{q},\quad | |
cz_{0}^{q}=\frac{C\gamma}{r}} | |
$$ | |
From the constraint, | |
$$ | |
ax_{0}^p+by_{0}^{p}+cz_{0}^{r}=1, | |
$$ | |
so | |
$$ | |
C=\dst{\left(\frac{\alpha}{p}+\frac{\beta}{q}+\frac{\gamma}{r}\right)^{-1}} | |
\text{\; and\;\;} | |
\dst{x_{0}^{p}y_{0}^{q}z_{0}^{r}=\frac{\alpha\beta\gamma}{pqr} | |
\left(\frac{\alpha}{p}+\frac{\beta}{q}+\frac{\gamma}{r}\right)^{-3}}. | |
$$ | |
\bigskip | |
{\bf \ref{exer:43}.} | |
\quad \quad \quad \quad $L=xw-yz-\dst{\frac{\lambda | |
(x^{2}+2y^{2})}{2}-\frac{\mu(2z^{2}+w^{2})}{2}}$ | |
$$ | |
L_{x}=w-\lambda x,\quad | |
L_{y}=-z-2\lambda y,\quad | |
L_{z}=-y-2\mu z,\quad | |
L_{w}=x-\mu w | |
$$ | |
$$ | |
w_{0}=\lambda x_{0},\quad | |
z_{0}=-2\lambda y_{0},\quad | |
y_{0}=-2\mu z_{0},\quad | |
x_{0}=\mu w_{0} | |
$$ | |
The first and last equality imply that $w_{0}=\lambda\mu w_{0}$ | |
and $z_{0}=4\lambda\mu z_{0}$. | |
Since\\ $2z_{0}^{2}+w_{0}^{2}=9$, $w_{0}$ and $z_{0}$ cannot both be zero, | |
so either | |
$\lambda\mu=1$ or $4\lambda\mu=1$. | |
\bigskip | |
If $\lambda\mu=1$, | |
$z_{0}=y_{0}=0$, | |
$x_{0}^{2}=4$, and | |
$w_{0}^{2}=9$, so the constrained critical values are | |
$$ | |
f(2,0,0,3)=f(-2,0,0,-3)=6 \text{\; and\;\;} | |
f(-2,0,0,3)=f(2,0,0,-3)=-6. | |
$$ | |
\bigskip | |
If $4\lambda\mu=1$, then $x_{0}=w_{0}=0$, $y_{0}^{2}=2$ and | |
$z_{0}^{2}=9/2$, so the constrained critical values are | |
$$ | |
f\left(0,\sqrt{2},\frac{3}{\sqrt{2}},0\right)= | |
f\left(0,-\sqrt{2},-\frac{3}{\sqrt{2}},0\right)=3 | |
$$ | |
and | |
$$ | |
f\left(0,\sqrt{2},-\frac{3}{\sqrt{2}},0\right)= | |
f\left(0,-\sqrt{2},\frac{3}{\sqrt{2}},0\right)= -3. | |
$$ | |
Hence the constrained maximum and minimum values are $3$ and | |
$-3$. | |
\bigskip | |
{\bf \ref{exer:44}.} | |
\centerline{$L=xw-yz-\dst{ | |
\frac{\lambda}{2}(ax^{2}+by^{2})-\frac{\mu}{2}(cz^{2}+dw^{2})}$} | |
$$ | |
L_{x}=w-a\lambda x,\quad | |
L_{y}=-z-b\lambda y, | |
$$ | |
$$ | |
L_{z}=-y-c\mu z=0,\quad | |
L_{w}=x-d\mu w=0 | |
$$ | |
$$ | |
x_{0}=\mu dw_{0},\quad y_{0}=-c\mu z_{0},\quad z_{0}=-b\lambda y_{0}, | |
\text{\; and\;\;} w_{0}=\lambda a x_{0}. | |
$$ | |
This implies that | |
$$ | |
x_{0}w_{0}-y_{0}z_{0}=\lambda (ax_{0}^{2}+by_{0}^{2})=\lambda | |
\text{\; and\;\;} | |
x_{0}w_{0}-y_{0}z_{0}=\mu(cz_{0}^{2}+dw_{0}^{2}) =\mu, | |
$$ | |
so $\lambda =\mu$. Therefore, | |
$$ | |
x_{0}=\lambda dw_{0},\quad y_{0}=-c\lambda z_{0},\quad z_{0}=-b\lambda | |
y_{0}, | |
\text{\; and\;\;} w_{0}=\lambda a x_{0}, | |
$$ | |
so $z_{0}=bc\lambda^{2} z_{0}$ and $w_{0}=ad\lambda^{2}w_{0}$. | |
Since $cz_{0}^{2}+dw_{0}^{2}=1$, $w_{0}$ and $z_{0}$ cannot | |
both be zero; hence, either $ad\lambda^{2}=1$ or $bc\lambda^{2}=1$. | |
\bigskip | |
{\bf (a)} | |
Suppose that $ad\ne bc$. If $\lambda^{2} ad=1$, then | |
$\lambda^{2} bc\ne1$, so | |
$z_{0}=y_{0}=0$, and the constraints imply that | |
$x_{0}^{2}=1/a$, and | |
$w_{0}^{2}=1/d$. | |
Therefore, | |
the constrained maximum is | |
$$ | |
\dst{\frac{1}{\sqrt{ad}}},\text{\; attained at\;\;} | |
\pm \dst{\left(\frac{1}{\sqrt{a}},0,0,\frac{1}{\sqrt{d}}\right)} | |
$$ | |
and | |
the constrained minimum is | |
$$ | |
-\dst{\frac{1}{\sqrt{ad}}},\text{\; attained at\;\;} | |
\pm \dst{\left(-\frac{1}{\sqrt{a}},0,0,\frac{1}{\sqrt{d}}\right)}. | |
$$ | |
If $\lambda^{2} bc=1$, then $\lambda^{2} ad\ne1$, so $x_{0}=w_{0}=0$ | |
and the constraints imply that $y_{0}^{2}=1/b$ and | |
$z_{0}^{2}=1/c$. | |
Therefore, the constrained maximum is | |
$$ | |
\dst{\frac{1}{\sqrt{bc}}}, \text{\; attained at\;\;} | |
\pm \dst{\left(0,\frac{1}{\sqrt{b}},-\frac{1}{\sqrt{c}},0\right)}, | |
$$ | |
and the constrained minimum is | |
$$ | |
-\dst{\frac{1}{\sqrt{bc}}}, \text{\; attained at\;\;} | |
\pm \dst{\left(0,\frac{1}{\sqrt{b}},\frac{1}{\sqrt{c}},0\right)}. | |
$$ | |
\medskip | |
{\rm (b)} | |
Suppose that $ad=bc$. | |
Since $x_{0}=\lambda dw_{0}$ and $y_{0}=-c\lambda z_{0}$, | |
$$ | |
1=ax_{0}^{2}+by_{0}^{2}=\lambda^{2}[(ad)dw_{0}^2+(bc)cz_{0}^{2}]= | |
\lambda^{2}ad(cz_{0}^{2}+d(w_{0})^{2}=\lambda^{2}ad, | |
$$ | |
so $\lambda=\pm \dst{\frac{1}{\sqrt {ad}}}=\pm\frac{1}{\sqrt{bc}}$. | |
Therefore, the constrained maximum value of $f$ is | |
$\dst{\frac{1}{\sqrt {ad}}}=\frac{1}{\sqrt{bc}}$, is attained | |
at all points of the form | |
$\dst{\left(w_{0}\sqrt{\frac{d}{a}},-z_{0}\sqrt{\frac{c}{b}},z_{0},w_{0}\right)}$ | |
and the constrained minimum value of $f$ is | |
$-\dst{\frac{1}{\sqrt {ad}}}=-\frac{1}{\sqrt{bc}}$, attained | |
at all points of the form | |
$\dst{\left(-w_{0}\sqrt{\frac{d}{a}},z_{0}\sqrt{\frac{c}{b}},z_{0},w_{0}\right)}$ | |
where, in both cases, $cz_{0}^2+dw_{0}^{2}=1$. Alternatively, all the | |
constrained maximum points are of the form | |
$\dst{\left(x_{0},y_{0},-y_{0}\sqrt{\frac{b}{c}},x_{0}\sqrt{\frac{a}{d}}\right)}$ | |
and | |
all the | |
constrained minimum points are of the form | |
$\dst{\left(x_{0},y_{0},y_{0}\sqrt{\frac{b}{c}},-x_{0}\sqrt{\frac{a}{d}}\right)}$ | |
where, in both cases, $ax_{0}^{2}+by_{0}^{2}=1$. | |
\bigskip | |
{\bf \ref{exer:45}.} | |
\centerline{$L=\dst{\frac{\alpha x^{2}+\beta y^{2}+\gamma z^{2}}{2}} | |
-\lambda(a_{1}x+a_{2}y+a_{3}z)-\mu(b_{1}x+b_{2}y+b_{3}z)$} | |
$$ | |
L_{x}=\alpha x-\lambda a_{1}-\mu b_{1},\quad | |
L_{y}=\beta y-\lambda a_{2}-\mu b_{2}, \quad | |
L_{z}=\gamma y-\lambda a_{3}-\mu b_{3} | |
$$ | |
\begin{equation}\tag{A} | |
x_{0}=\frac{\lambda a_{1}+\mu b_{1}}{\alpha},\quad | |
y_{0}=\frac{\lambda a_{2}+\mu b_{2}}{\beta},\quad | |
z_{0}=\frac{\lambda a_{3}+\mu b_{3}}{\gamma}. | |
\end{equation} | |
\begin{equation}\tag{B} | |
\frac{a_{1}(\lambda a_{1}+\mu b_{1})}{\alpha}+ | |
\frac{a_{2}(\lambda a_{2}+\mu b_{2})}{\beta}+ | |
\frac{a_{3}(\lambda a_{3}+\mu b_{3})}{\gamma}=c. | |
\end{equation} | |
\begin{equation}\tag{C} | |
\frac{b_{1}(\lambda a_{1}+\mu b_{1})}{\alpha}+ | |
\frac{b_{2}(\lambda a_{2}+\mu b_{2})}{\beta}+ | |
\frac{b_{3}(\lambda a_{3}+\mu b_{3})}{\gamma}=d. | |
\end{equation} | |
Assume that | |
$$ | |
{\bf u}=\frac{a_{1}}{\sqrt{\alpha}}{\bf i}+ | |
\frac{a_{2}}{\sqrt{\beta}}{\bf j}+ | |
\frac{a_{3}}{\sqrt{\gamma}}{\bf k} | |
\text{\; and\;\;} | |
{\bf v}=\frac{b_{1}}{\sqrt{\alpha}}{\bf i}+ | |
\frac{b_{2}}{\sqrt{\beta}}{\bf j}+ | |
\frac{b_{3}}{\sqrt{\gamma}}{\bf k} | |
$$ | |
are linearly independent. Then (B) and (C) can be written as | |
\begin{equation}\tag{D} | |
|{\bf u}|^{2}\lambda+({\bf u}\cdot{\bf v})\mu=c,\quad | |
({\bf u}\cdot{\bf v})\lambda+|{\bf v}|^2\mu=d. | |
\end{equation} | |
Since ${\bf u}$ and ${\bf v}$ are linearly independent, | |
$\Delta=_\text{def}|{\bf u}|^{2}|{\bf v}|^{2}-({\bf u}\cdot{\bf | |
v})^{2}\ne0$. Therfore the solution of (D) is | |
$$ | |
\lambda=\frac{c|{\bf v}|^{2}-d({\bf u}\cdot{\bf v})}{\Delta},\quad | |
\mu=\frac{d|{\bf u}|^{2}-c({\bf u}\cdot{\bf v})}{\Delta}. | |
$$ | |
From (A), | |
\begin{eqnarray*} | |
\alpha x_{0}^2+\beta y_{0}^{2}+\gamma z_{0}^{2} &=& | |
(\lambda a_{1}+\mu b_{1})^{2}+ | |
(\lambda a_{2}+\mu b_{2})^{2}+ | |
(\lambda a_{3}+\mu b_{3})^{2}\\ | |
&=& | |
\lambda^{2} (a_{1}^{2}+a_{2}^{2}+a_{3}^{2})+ | |
\mu^{2} (b_{1}^{2}+b_{2}^{2}+b_{3}^{2})\\ | |
&&+ 2\lambda\mu(a_{1}b_{1}+a_{2}b_{2}+a_{3}b_{3}). | |
\end{eqnarray*} | |
\bigskip | |
{\bf \ref{exer:46}.} | |
\centerline{$L=\dst{\frac{1}{2}\sum_{i=1}^{n}(x_{i}-\alpha_{i})^{2}- | |
\lambda\sum_{i=1}^{n}a_{i}x_{i}-\mu\sum_{i=1}^{n}b_{i}x_{i}}$} | |
$$ | |
L_{x_{i}}=x_{i}-\alpha_{i}-\lambda a_{i}-\mu_{i} b_{i},\quad | |
x_{i0}=\alpha_{i}+\lambda a_{i}+\mu b_{i} | |
$$ | |
$$ | |
c=\sum_{i=1}^{n}a_{i}x_{i0}=\sum_{i=1}^{n}a_{i}\alpha_{i} | |
+\lambda \sum_{i=1}^{n}a_{i}^{2}+\mu\sum_{i=1}^{n}a_{i}b_{i} | |
= \sum_{i=1}^{n}a_{i}\alpha_{i} +\lambda | |
$$ | |
$$ | |
d=\sum_{i=1}^{n}b_{i}x_{i0}=\sum_{i=1}^{n}b_{i}\alpha_{i} | |
+\lambda \sum_{i=1}^{n}a_{i}b_{i}+\mu\sum_{i=1}^{n}b_{i}^{2} | |
= \sum_{i=1}^{n}b_{i}\alpha_{i} +\mu | |
$$ | |
$$ | |
\lambda=c-\sum_{i=1}^{n}a_{i}\alpha_{i},\quad | |
\mu=d-\sum_{i=1}^{n}b_{i}\alpha_{i} | |
$$ | |
\begin{eqnarray*} | |
\sum_{i=1}^{n}(x_{i0}-\alpha_{i})^{2}&=& | |
\sum_{i=1}^{n}(\lambda a_{i}+\mu b_{i})^{2} | |
=\lambda^{2}\sum_{i=1}^{n}a_{i}^{2}\\&+&2\lambda | |
\mu\sum_{i=1}^{n}a_{i}b_{i} | |
+\mu^{2}\sum_{i=1}^{n}b_{i}^{2}=\lambda^{2}+\mu^{2}\\ | |
&=&\left(c-\sum_{i=1}^{n}a_{i}\alpha_{i}\right)^{2} | |
+\left(d-\sum_{i=1}^{n}b_{i}\alpha_{i}\right)^{2} | |
\end{eqnarray*} | |
\bigskip | |
{\bf \ref{exer:47}.} | |
$L=\dst{\frac{1}{2}}\sum_{i=1}^{n}x_{i}^{2}- | |
\lambda\sum_{i=1}^{n}x_{i}-\mu\sum_{i=1}^{n}jx_{i}$; | |
$L_{x_{i}}=x_{i}-\lambda-\mu i$, so $x_{i0}=\lambda+\mu i$. | |
To satisfy the constraints, | |
\begin{equation} | |
\dst{\sum_{i=1}^{n}(\lambda+ \mu i)=1} | |
\text{\; and\;\;} | |
\dst{\sum_{i=1}^{n}i(\lambda+ \mu i)=0}. \tag{A} | |
\end{equation} | |
Let | |
$$ | |
s_{0}=n, \quad s_{1}=\sum_{j=1}^{n}i=\frac{n(n+1)}{2},\text{\; and\;\;} | |
s_{2}=\sum_{i=1}^{n}i^{2}=\frac{n(n+1)(2n+1)}{6}. | |
$$ | |
Then (A) is equvalent to, | |
$$ | |
\left[\begin{array}{ccccccc} | |
s_{0}&s_{1}\\ s_{1}&s_{2} | |
\end{array}\right] | |
\left[\begin{array}{ccccccc} | |
\lambda\\\mu | |
\end{array}\right] = | |
\left[\begin{array}{ccccccc} | |
1\\0 | |
\end{array}\right]. | |
$$ | |
By Cramer's rule, | |
$$ | |
\lambda=\frac{s_{2}}{s_{0}s_{2}-s_{1}^{2}}=\frac{2(2n+1)}{n(n-1)} | |
\text{\; and\;\;} | |
\mu=-\frac{s_{1}}{s_{0}s_{2}-s_{1}^{2}}=-\frac{6}{n(n-1)}. | |
$$ | |
Therefore, | |
$$ | |
x_{i0}=\dst{\frac{4n+2-6i}{n(n-1)}},\quad 1\le i\le n. | |
$$ | |
\medskip | |
If | |
$$ | |
\sum_{i=1}^{n}y_{i}=1\text{\; and\;\;}\sum_{i=1}^{n}iy_{i}=0, | |
\text{\; then\;\;}\sum_{i=1}^{n}(y_{i}-x_{i0})x_{i0}=0, | |
$$ | |
so | |
\begin{eqnarray*} | |
\sum_{i=1}^{n}y_{i}^{2}&=&\sum_{i=1}^{n}(y_{i}-x_{i0}+x_{i0})^{2} | |
+\sum_{i=1}^{n}(y_{i}-x_{i0})^{2}+ | |
2\sum_{i=1}^{n}(y_{i}-x_{i0})x_{i0} | |
+\sum_{i=1}^{n}x_{i0}^{2}\\ | |
&=& | |
\sum_{i=1}^{n}(y_{i}-x_{i0})^{2}+ | |
\sum_{i=1}^{n}x_{i0}^{2}>\sum_{i=1}^{n}x_{i0}^{2} | |
\end{eqnarray*} | |
if $y_{i}\ne x_{i0}$ for some $i\in\{1,2,\dots,n\}$. | |
\bigskip | |
{\bf \ref{exer:48}.} | |
$L=f({\bf X})- | |
\lambda (x_{1}+x_{2}+\cdots+x_{n})$ | |
$$ | |
L_{x_{i}}=-\frac{p_{i}f({\bf X})}{s-x_{i}}- \lambda,\text{\; so\;\;} | |
\frac{s-x_{10}}{p_{1}}= | |
\frac{s-x_{20}}{p_{2}}=\cdots= | |
\frac{s-x_{n0}}{p_{n}}=_\text{ def}C. | |
$$ | |
$x_{i0}=s-Cp_{i}$, $1\le i\le n$.\quad | |
Denote $P=p_{1}+p_{2}+\cdots +p_{n}$. | |
$$ | |
x_{1}+x_{2}+\cdots+x_{n}=ns-C(p_{1}+p_{2}+\cdots+p_{n})=ns-CP=s. | |
$$ | |
$$ | |
\dst{C=\frac{(n-1)s}{P}};\quad | |
x_{i0}=\dst{\frac{[P-(n-1)]sp_{i}}{P}}. | |
$$ | |
$$ | |
f_\text{max}=C^{P}p_{1}^{p_{1}}p_{2}^{p_{2}}\cdots p_{n}^{p_{n}}= | |
\left[\frac{(n-1)s}{P}\right]^{P}p_{1}^{p_{1}}p_{2}^{p_{2}}\cdots | |
p_{n}^{p_{n}} | |
$$ | |
\bigskip | |
{\bf \ref{exer:49}.} | |
$L({\bf X})=\dst{f({\bf X})-\lambda | |
\sum_{i=1}^{n}\frac{x_{i}}{\sigma_{i}}}$, \; | |
$L_{x_{i}}=\dst{\frac{p_{i}f({\bf X})}{x_{i}}-\frac{\lambda}{\sigma_{i}}}$, | |
so $\dst{\frac{x_{i0}}{\sigma_{i}}}=Cp_{i}$. | |
To satisfy the constraint, $C=(p_{1}+p_{2}\cdots+p_{n})^{-1}$, so | |
$$ | |
x_{i0}=\dst{\frac{p_{i}\sigma_{i}S}{p_{1}+p_{2}+\cdots+p_{n}}}. | |
$$ | |
and | |
$$ | |
x_{10}^{p_{1}}x_{20}^{p_{2}}\cdots x_{n0}^{p_{n}}= | |
\left(\frac{S}{p_{1}+p_{2}+\cdots+ p_{n}}\right)^{p_{1}+p_{2}+\cdots+p_{n}} | |
(p_{1}\sigma_{1})^{p_{1}} | |
(p_{2}\sigma_{2})^{p_{2}} \cdots | |
(p_{n}\sigma_{n})^{p_{n}} | |
$$ | |
\bigskip | |
{\bf \ref{exer:50}.} | |
$\dst{L=\sum_{i=1}^{n}\frac{x_{i}}{\sigma_{i}}- | |
\lambda | |
x_{1}^{p_{1}}x_{2}^{p_{2}}\cdots x_{n}^{p_{n}}}$, | |
$L_{x_{i}}=\dst{\frac{1}{\sigma_{i}}-\lambda\frac{p_{i}V}{x_{i}}}$, | |
$\dst{\frac{x_{i0}}{\sigma_{i}}}=Cp_{i}$, | |
where $C$ must be chosen to satisfy the constraints. | |
\medskip | |
$x_{i0}=C\sigma_{i}p_{i}$, | |
$x_{i0}^{p_{i}}=(C\sigma_{i}p_{i})^{p_{i}}$, | |
$V=(C\sigma_{1}p_{1})^{p_{1}} | |
(C\sigma_{2}p_{2})^{p_{2}}\cdots | |
(C\sigma_{n})^{p_{n}}$ | |
$$ | |
C^{p_{1}+p_{2}+\cdots+p_{n}}=\frac{V}{(\sigma_{1}p_{1})^{p_{1}}(\sigma_{2}p_{2})^{p_{2}} | |
\cdots (\sigma_{ n}p_{n})^{p_{n}}} | |
$$ | |
$$ | |
C=\left(\frac{V}{(\sigma_{1}p_{1})^{p_{1}}(\sigma_{2}p_{2})^{p_{2}} | |
\cdots (\sigma_{ n}p_{n})^{p_{n}}}\right)^{\frac{1}{p_{1}+p_{2}+\cdots+p_{n}}} | |
$$ | |
$$ | |
\frac{x_{i0}}{\sigma_{i}}=p_{i} | |
\left(\frac{V}{(\sigma_{1}p_{1})^{p_{1}}(\sigma_{2}p_{2})^{p_{2}} | |
\cdots (\sigma_{ n}p_{n})^{p_{n}}}\right)^{\frac{1}{p_{1}+p_{2}+\cdots+p_{n}}} | |
$$ | |
$$ | |
\sum_{i=1}^{n}\frac{x_{i0}}{\sigma_{i}}=(p_{1}+p_{2}+\cdots+p_{n}) | |
\left(\frac{V}{(\sigma_{1}p_{1})^{p_{1}}(\sigma_{2}p_{2})^{p_{2}} | |
\cdots (\sigma_{ n}p_{n})^{p_{n}}}\right)^{\frac{1}{p_{1}+p_{2}+\cdots+p_{n}}}. | |
$$ | |
\bigskip | |
{\bf \ref{exer:51}.} | |
\quad \quad \quad | |
$L=\dst{\frac{1}{2}\sum_{i=1}^{n}\frac{(x_{i}-c_{i})^{2}}{\alpha_{i}}} | |
-\lambda (a_{1}x_{1}+a_{2}x_{2}+\cdots+a_{n}x_{n})$ | |
$$ | |
L_{x_{i}}=\dst{\frac{x_{i}-c_{i}}{\alpha_{i}}}-\lambda a_{i},\quad | |
x_{i0}=c_{i}+\lambda a_{i}\alpha_{i} | |
$$ | |
$$ | |
\sum_{i=1}^{n}a_{i}x_{i0}=\sum_{i=1}^{n}a_{i}c_{i}+ | |
\lambda\sum_{i=1}^{n}a_{i}^{2}\alpha_{i}=d,\quad | |
\lambda=\frac{d-\sum_{i=1}^{n}a_{i}c_{i}}{\sum_{i=1}^{n}a_{i}^{2}\alpha_{i}} | |
$$ | |
$$ | |
\sum_{i=1}^{n}\frac{(x_{i0}-c_{i})^{2}}{\alpha_{i}}=\lambda^{2} | |
\sum_{i=1}^{n}a_{i}^{2}\alpha_{i}= | |
\frac{(d-\sum_{i=1}^{n}a_{i}c_{i})^{2}}{\sum_{i=1}^{n}a_{i}^{2}\alpha_{i}} | |
$$ | |
\bigskip | |
{\bf \ref{exer:52}.} | |
It suffices to extremize | |
$\dst{\sum_{i=1}^{n}a_{i}x_{i}}$ subject to | |
$\sum_{i=1}^{n}x_{i}^{2}=\sigma^{2}$ for arbitrary $\sigma>0$. | |
$$ | |
L=\dst{\sum_{i=1}^{n}a_{i}x_{i}-\frac{\lambda}{2}\sum_{i=1}^{n}x_{i}^{2}}, | |
\quad L_{y_{i}}=a_{i}-\lambda x_{i},\quad a_{i}=\lambda x_{i0}, | |
$$ | |
$$ | |
\sum_{i=1}^{n}a_{i}^{2}=\lambda^{2}\sum_{i=1}^{n}x_{i0}^{2}=\lambda^{2}\sigma^{2} | |
$$ | |
$$ | |
\sum_{i=1}^{n}a_{i}x_{i0}=\lambda | |
\sum_{i=1}^{n}x_{i0}^{2}=\lambda\sigma^{2}=(\lambda\sigma)\sigma = | |
\pm\left(\sum_{i=1}^{n}a_{i}^{2}\right)^{1/2} | |
\left(\sum_{i=1}^{n}x_{i0}^{2}\right)^{1/2} | |
$$ | |
\bigskip | |
{\bf \ref{exer:53}.} | |
For every $\sigma>0$, | |
$f({\bf X})= | |
x_{m})=x_{1}^{r_{1}}x_{2}^{r_{2}}\cdots x_{m}^{r_{m}}$ assumes a maximum | |
value on the closed set | |
$$ | |
S_{\sigma}=\set{(x_{1},x_{2}, \dots, x_{m})}{x_{i}>0, \,1 \le i \le m,\, | |
r_{1}x_{1}+r_{2}x_{2}+\cdots+ r_{m}x_{m}=\sigma}. | |
$$ | |
$$ | |
L=x_{1}^{r_{1}}x_{2}^{r_{2}}\cdots x_{m}^{r_{m}} | |
-\lambda\sum_{i=1}^{m}r_{i}x_{i},\quad | |
L_{x_{i}}=r_{i}\left(\frac{x_{1}^{r_{1}}x_{2}^{r_{2}}\cdots | |
x_{m}^{r_{m}}}{x_{i}}-\lambda\right), \quad 1 \le i \le m. | |
$$ | |
Therefore, the constrained extremum is attained at | |
$x_{1}=x_{2}=\cdots =x_{m}=\sigma/r$, and the value of the constrained | |
extremum is $(\sigma/r)^{r}$, so | |
$$ | |
\left(x_{1}^{r_{1}}x_{2}^{r_{2}}\cdots x_{m}^{r_{m}}\right)^{1/r} | |
\le \frac{\sigma}{r}=\frac{r_{1}{x_{1}+r_{2}x_{2}+\cdots+r_{k}x_{k}}}{r} | |
$$ | |
with equality if and only if $x_{1}=x_{2}=\cdots= x_{m}=\sigma/r$. | |
\bigskip | |
{\bf \ref{exer:54}.} | |
The statement is trivial if $\sigma_{i}=0$ for some $i$. If | |
$\sigma_{i}\ne0$, $1 \le i \le m$, | |
then Exercise~\ref{exer:53} | |
with $r_{i}=\dst{\frac{1}{p_{i}}}$ and | |
$x_{i}=\dst{\frac{|a_{ij}|^{p_{i}}}{\sigma_{i}}}$ implies that | |
$$ | |
\frac{|a_{1j}||a_{2j}|\cdots|a_{mj}|} | |
{\sigma_{1}^{1/p_{1}}\sigma_{2}^{1/p_{2}}\cdots\sigma_{m}^{1/p_{m}}} | |
\le \sum_{i=1}^{m} \frac{|a_{ij}|^{p_{i}}}{p_{i}\sigma_{i}}. | |
$$ | |
Summing both sides from $j=1$ to $n$ yields the stated conclusion. | |
\bigskip | |
{\bf \ref{exer:55}.} | |
\quad \quad $\dst{L | |
=\frac{1}{2}\sum_{r=0}^{n}x_{r}^{2}-\sum_{s=0}^{m} | |
\lambda_{s}\sum_{r=0}^{n}x_{r}r^{s}}$,\quad | |
$L_{x_{r}}=x_{r}-\dst{\sum_{s=0}^{m}\lambda_{s}r^{s}}$ | |
$$ | |
x_{r0}=\sum_{s=0}^{m}\lambda_{s}r^{s},\quad 0\le r\le n. | |
$$ | |
$$ | |
\sum_{r=0}^{n}x_{r0}r^{s}=\sum_{r=0}^{n}\sum_{\ell=0}^{m}\lambda_{\ell}r^{\ell+s} | |
=\sum_{\ell=0}^{m}\lambda_{\ell}\sum_{r=0}^{n}r^{\ell+s}= | |
\sum_{\ell=0}^{m}\sigma_{s+\ell}\lambda_{\ell}=c_{s}, | |
\quad 0\le s \le m, | |
$$ | |
so $(x_{10},x_{20},\dots,x_{n0})$ is a critical point of $L$. | |
To see that it is constrained minimum point of $Q$, suppose that | |
$(y_{0},y_{1},\dots,y_{n})$ also satisfies the constraints; thus, | |
$$ | |
\sum_{r=0}^{n}y_{r}r^{s}=c_{s},\quad 0\le s \le m. | |
$$ | |
Then | |
$$ | |
\sum_{r=0}^{n}(y_{r}-x_{r0})x_{r0}=\sum_{r=0}^{n}(y_{r}-x_{r0}) | |
\sum_{s=0}^{m}\lambda_{s}r^{s}=\sum_{s=0}^{m}\lambda_{s}\sum_{r=0}^{n} | |
(y_{r}-x_{r0})r^{s}=0, | |
$$ | |
so | |
\begin{eqnarray*} | |
\sum_{r=0}^{n}y_{r}^{2}&=&\sum_{r=0}^{n}(y_{r}-x_{r0}+x_{r0})^{2} | |
=\sum_{r=0}^{n}[(y_{r}-x_{r0})^{2}+2(y_{r}-x_{r0})x_{r0} | |
+x_{r0}^{2}]\\ | |
&=&\sum_{r=0}^{n}[(y_{r}-x_{r0})^{2} +\sum_{r=0}^{n}x_{r0}^{2}> | |
\sum_{r=0}^{n}x_{r0}^{2}. | |
\end{eqnarray*} | |
\bigskip | |
{\bf \ref{exer:56}.} | |
Imposing the constraint with $r=0$ and $P(x)=x^{s}$, $1\le s\le 2k$, | |
yields | |
the necessary condition | |
\begin{equation} \tag{A} | |
\sum_{i=-n}^{n}w_{i}i^{s}= | |
\begin{cases} 1& \text{if } s=0,\\ 0&\text{if }1\le s\le 2k. \end{cases} | |
\end{equation} | |
If $P$ is an arbitrary polynomial of degree $\le 2k$ and $r$ is an | |
arbitrary integer, then \\ $P(r-i)=P(r)+$ a linear combination of | |
$i$, $i^{2}$, \dots, $i^{2k}$, so (A) implies that | |
$$ | |
\sum_{i=-n}^{n}w_{i}P(r-i)=P(r) | |
$$ | |
whenever $r$ is an integer and $P$ is a polynomial of degree $\le 2k$. | |
Therefore, | |
$$ | |
L=\frac{1}{2}\sum_{i=-n}^{n}w_{i}^{2}-\sum_{r=0}^{2k}\lambda_{r} | |
\sum_{i=-n}^{n}w_{i}i^{r}, | |
$$ | |
$$ | |
L_{w_{i}}=w_{i}-\sum_{r=0}^{2k}\lambda_{r}i^{r},\quad | |
w_{i0}=\sum_{r=0}^{2k}\lambda_{r}i^{r}, \quad -n\le i\le n, | |
$$ | |
and | |
$$ | |
\sum_{i=-n}^{n}w_{i0}i^{s}= \sum_{i=-n}^{n} | |
\left(\sum_{r=0}^{2k} \lambda_{r}i^{r}\right)i^{s} | |
=\sum_{r=0}^{2k}\lambda_{r}\sigma_{r+s}\text{\; where\;\;} | |
\sigma_{m}=\sum_{i=-n}^{n}i^{m}. | |
$$ | |
\medskip | |
If $\{w_{i}\}_{i=-n}^{n}$ also satisfies the constraint, | |
then | |
$$ | |
\sum_{i=-n}^{n}(w_{i}-w_{i0})w_{i0}= | |
\sum_{i=-n}^{n}(w_{i}-w_{i0})\sum_{r=0}^{2k}\lambda_{r}i^{r}=0. | |
$$ | |
Therefore, | |
\begin{eqnarray*} | |
\sum_{i=-n}^{n}w_{i}^{2}&=&\sum_{i=-n}^{n}(w_{i0}+w_{i}-w_{i0})^{2}= | |
\sum_{i=-n}^{n}\left(w_{i0}^{2}+2(w_{i}-w_{i0})w_{i0}+(w_{i}-w_{i0})^{2}\right)\\ | |
&=&\sum_{i=-n}^{n}w_{i0}^{2}+\sum_{i=-n}^{n}(w_{i}-w_{i0})^{2} | |
>\sum_{i=-n}^{n}w_{i0}^{2} | |
\end{eqnarray*} | |
if $w_{i}\ne w_{i0}$ for some $i$. | |
\medskip | |
{\bf \ref{exer:57}.} | |
The coefficients $w_{0}$, $w_{1}$, \dots, $w_{k}$ satisfy the constraint | |
if and only if | |
$$ | |
\sum_{i=0}^{n}w_{i}(r-i)^{j}=(r+1)^{j},\quad 0\le j\le k, | |
$$ | |
for all integers $r$. This is equivalent to | |
$$ | |
\sum_{i=0}^{n}w_{i}\sum_{s=0}^{j}(-1)^{s} | |
\binom{j}{s}s^{j}r^{j-s} | |
=\sum_{s=0}^{j}\binom{j}{s}r^{j-s},\quad 0\le j\le k, | |
$$ | |
which is equivalent to | |
\begin{equation} \tag{A} | |
\sum_{i=0}^{n}w_{i}i^{s}=(-1)^{s},\quad 0\le s\le k. | |
\end{equation} | |
$$ | |
L=\frac{1}{2}\sum_{i=0}^{k}w_{i}^{2}-\sum_{r=0}^{k}\lambda_{r} | |
\sum_{i=0}^{k}w_{i}i^{r};\quad | |
L_{x_{i}}=w_{i}-\sum_{r=0}^{k}\lambda_{r} i^{r};\quad | |
w_{i0}=\sum_{r=0}^{k}\lambda_{r}i^{r}. | |
$$ | |
Now | |
must choose $\lambda_{1}$, $\lambda_{2}$, \dots, $\lambda_{k}$ to | |
satisfy (A). | |
$$ | |
\sum_{i=0}^{n}w_{i0}i^{s}\sum_{r=0}^{k}\lambda_{r}i^{r} | |
=\sum_{r=0}^{k}\lambda_{r}\sum_{i=0}^{n}i^{r+s} | |
= \sum_{r=0}^{k}\sigma_{r+s}\lambda_{r}=(-1)^{s}, \quad 0\le s\le k. | |
$$ | |
If $\{w_{i}\}_{i=0}^{n}$ also satisfies the constraint, | |
then | |
$$ | |
\sum_{i=0}^{n}(w_{i}-w_{i0})w_{i0}= | |
\sum_{i=n}^{n}(w_{i}-w_{i0})\sum_{r=0}^{2k}\lambda_{r}i^{r}=0. | |
$$ | |
Therefore, | |
\begin{eqnarray*} | |
\sum_{i=0}^{n}w_{i}^{2}&=&\sum_{i=0}^{n}(w_{i0}+w_{i}-w_{i0})^{2}= | |
\sum_{i=0}^{n}\left(w_{i0}^{2}+2(w_{i}-w_{i0})w_{i0}+(w_{i}-w_{i0})^{2}\right)\\ | |
&=&\sum_{i=0}^{n}w_{i0}^{2}+\sum_{i=-n}^{n}(w_{i}-w_{i0})^{2} | |
>\sum_{i=0}^{n}w_{i0}^{2} | |
\end{eqnarray*} | |
if $w_{i}\ne w_{i0}$ for some $i$. | |
\bigskip | |
{\bf \ref{exer:58}.} | |
\quad \quad \quad \quad \quad \quad | |
$L=\dst{\frac{1}{2}\sum_{i=1}^{n}\frac{(x_{i}-c_{i})^{2}}{\alpha_{i}} | |
-\sum_{s=1}^{m}\lambda_{s}\sum_{i=1}^{n}a_{is}x_{i}}$ | |
$$ | |
L_{x_{i}}=\frac{x_{i}-c_{i}}{\alpha_{i}}, \quad | |
x_{i0}=c_{i}+\alpha_{i}\dst{\sum_{s=1}^{m}\lambda_{s}a_{is}} | |
$$ | |
\medskip | |
$$ | |
\dst{\sum_{i=1}^{n}a_{ir}x_{i0}}=\dst{\sum_{i=1}^{n}a_{ir}c_{i}+ | |
\sum_{s=1}^{m}\lambda_{s}\sum_{i=1}^{n}\alpha_{i}a_{ir}a_{is} | |
= \sum_{i=1}^{n}a_{ir}c_{i}+\lambda_{r} =d_{r}} | |
$$ | |
$$ | |
\lambda_{r}=d_{r}-\dst{\sum_{i=1}^{n}a_{ir} c_{i}},\quad | |
\dst{\frac{(x_{i}-c_{i})^{2}}{\alpha_{i}}=\alpha_{i}\sum_{r,s=1}^{m} | |
\lambda_{r}\lambda_{s}a_{ir}a_{is}} | |
$$ | |
$$ | |
\sum_{i=1}^{n}\frac{(x_{i}-c_{i})^{2}}{\alpha_{i}}=\sum_{r,s=1}^{m} | |
\lambda_{r}\lambda_{s}\sum_{i=1}^{n}\alpha_{i}a_{ir}a_{is} | |
=\sum_{r=1}^{m}\lambda_{r}^{2} =\sum_{r=1}^{m} | |
\left(d_{r}-\sum_{i=1}^{n}a_{ir}c_{i}\right)^{2} | |
$$ | |
\end{document} | |
\place %3903 | |