Datasets:
Tasks:
Text Generation
Modalities:
Text
Sub-tasks:
language-modeling
Languages:
English
Size:
100K - 1M
License:
(* (c) Copyright 2006-2016 Microsoft Corporation and Inria. *) | |
(* Distributed under the terms of CeCILL-B. *) | |
From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat. | |
(******************************************************************************) | |
(* The seq type is the ssreflect type for sequences; it is an alias for the *) | |
(* standard Coq list type. The ssreflect library equips it with many *) | |
(* operations, as well as eqType and predType (and, later, choiceType) *) | |
(* structures. The operations are geared towards reflection: they generally *) | |
(* expect and provide boolean predicates, e.g., the membership predicate *) | |
(* expects an eqType. To avoid any confusion we do not Import the Coq List *) | |
(* module. *) | |
(* As there is no true subtyping in Coq, we don't use a type for non-empty *) | |
(* sequences; rather, we pass explicitly the head and tail of the sequence. *) | |
(* The empty sequence is especially bothersome for subscripting, since it *) | |
(* forces us to pass a default value. This default value can often be hidden *) | |
(* by a notation. *) | |
(* Here is the list of seq operations: *) | |
(* ** Constructors: *) | |
(* seq T == the type of sequences of items of type T. *) | |
(* bitseq == seq bool. *) | |
(* [::], nil, Nil T == the empty sequence (of type T). *) | |
(* x :: s, cons x s, Cons T x s == the sequence x followed by s (of type T). *) | |
(* [:: x] == the singleton sequence. *) | |
(* [:: x_0; ...; x_n] == the explicit sequence of the x_i. *) | |
(* [:: x_0, ..., x_n & s] == the sequence of the x_i, followed by s. *) | |
(* rcons s x == the sequence s, followed by x. *) | |
(* All of the above, except rcons, can be used in patterns. We define a view *) | |
(* lastP and an induction principle last_ind that can be used to decompose *) | |
(* or traverse a sequence in a right to left order. The view lemma lastP has *) | |
(* a dependent family type, so the ssreflect tactic case/lastP: p => [|p' x] *) | |
(* will generate two subgoals in which p has been replaced by [::] and by *) | |
(* rcons p' x, respectively. *) | |
(* ** Factories: *) | |
(* nseq n x == a sequence of n x's. *) | |
(* ncons n x s == a sequence of n x's, followed by s. *) | |
(* seqn n x_0 ... x_n-1 == the sequence of the x_i; can be partially applied. *) | |
(* iota m n == the sequence m, m + 1, ..., m + n - 1. *) | |
(* mkseq f n == the sequence f 0, f 1, ..., f (n - 1). *) | |
(* ** Sequential access: *) | |
(* head x0 s == the head (zero'th item) of s if s is non-empty, else x0. *) | |
(* ohead s == None if s is empty, else Some x when the head of s is x. *) | |
(* behead s == s minus its head, i.e., s' if s = x :: s', else [::]. *) | |
(* last x s == the last element of x :: s (which is non-empty). *) | |
(* belast x s == x :: s minus its last item. *) | |
(* ** Dimensions: *) | |
(* size s == the number of items (length) in s. *) | |
(* shape ss == the sequence of sizes of the items of the sequence of *) | |
(* sequences ss. *) | |
(* ** Random access: *) | |
(* nth x0 s i == the item i of s (numbered from 0), or x0 if s does *) | |
(* not have at least i+1 items (i.e., size x <= i) *) | |
(* s`_i == standard notation for nth x0 s i for a default x0, *) | |
(* e.g., 0 for rings. *) | |
(* set_nth x0 s i y == s where item i has been changed to y; if s does not *) | |
(* have an item i, it is first padded with copies of x0 *) | |
(* to size i+1. *) | |
(* incr_nth s i == the nat sequence s with item i incremented (s is *) | |
(* first padded with 0's to size i+1, if needed). *) | |
(* ** Predicates: *) | |
(* nilp s <=> s is [::]. *) | |
(* := (size s == 0). *) | |
(* x \in s == x appears in s (this requires an eqType for T). *) | |
(* index x s == the first index at which x appears in s, or size s if *) | |
(* x \notin s. *) | |
(* has a s <=> a holds for some item in s, where a is an applicative *) | |
(* bool predicate. *) | |
(* all a s <=> a holds for all items in s. *) | |
(* 'has_aP <-> the view reflect (exists2 x, x \in s & A x) (has a s), *) | |
(* where aP x : reflect (A x) (a x). *) | |
(* 'all_aP <=> the view for reflect {in s, forall x, A x} (all a s). *) | |
(* all2 r s t <=> the (bool) relation r holds for all _respective_ items *) | |
(* in s and t, which must also have the same size, i.e., *) | |
(* for s := [:: x1; ...; x_m] and t := [:: y1; ...; y_n], *) | |
(* the condition [&& r x_1 y_1, ..., r x_n y_n & m == n]. *) | |
(* find p s == the index of the first item in s for which p holds, *) | |
(* or size s if no such item is found. *) | |
(* count p s == the number of items of s for which p holds. *) | |
(* count_mem x s == the multiplicity of x in s, i.e., count (pred1 x) s. *) | |
(* tally s == a tally of s, i.e., a sequence of (item, multiplicity) *) | |
(* pairs for all items in sequence s (without duplicates). *) | |
(* incr_tally bs x == increment the multiplicity of x in the tally bs, or add *) | |
(* x with multiplicity 1 at then end if x is not in bs. *) | |
(* bs \is a wf_tally <=> bs is well-formed tally, with no duplicate items or *) | |
(* null multiplicities. *) | |
(* tally_seq bs == the expansion of a tally bs into a sequence where each *) | |
(* (x, n) pair expands into a sequence of n x's. *) | |
(* constant s <=> all items in s are identical (trivial if s = [::]). *) | |
(* uniq s <=> all the items in s are pairwise different. *) | |
(* subseq s1 s2 <=> s1 is a subsequence of s2, i.e., s1 = mask m s2 for *) | |
(* some m : bitseq (see below). *) | |
(* infix s1 s2 <=> s1 is a contiguous subsequence of s2, i.e., *) | |
(* s ++ s1 ++ s' = s2 for some sequences s, s'. *) | |
(* prefix s1 s2 <=> s1 is a subchain of s2 appearing at the beginning *) | |
(* of s2. *) | |
(* suffix s1 s2 <=> s1 is a subchain of s2 appearing at the end of s2. *) | |
(* infix_index s1 s2 <=> the first index at which s1 appears in s2, *) | |
(* or (size s2).+1 if infix s1 s2 is false. *) | |
(* perm_eq s1 s2 <=> s2 is a permutation of s1, i.e., s1 and s2 have the *) | |
(* items (with the same repetitions), but possibly in a *) | |
(* different order. *) | |
(* perm_eql s1 s2 <-> s1 and s2 behave identically on the left of perm_eq. *) | |
(* perm_eqr s1 s2 <-> s1 and s2 behave identically on the right of perm_eq. *) | |
(* --> These left/right transitive versions of perm_eq make it easier to *) | |
(* chain a sequence of equivalences. *) | |
(* permutations s == a duplicate-free list of all permutations of s. *) | |
(* ** Filtering: *) | |
(* filter p s == the subsequence of s consisting of all the items *) | |
(* for which the (boolean) predicate p holds. *) | |
(* rem x s == the subsequence of s, where the first occurrence *) | |
(* of x has been removed (compare filter (predC1 x) s *) | |
(* where ALL occurrences of x are removed). *) | |
(* undup s == the subsequence of s containing only the first *) | |
(* occurrence of each item in s, i.e., s with all *) | |
(* duplicates removed. *) | |
(* mask m s == the subsequence of s selected by m : bitseq, with *) | |
(* item i of s selected by bit i in m (extra items or *) | |
(* bits are ignored. *) | |
(* ** Surgery: *) | |
(* s1 ++ s2, cat s1 s2 == the concatenation of s1 and s2. *) | |
(* take n s == the sequence containing only the first n items of s *) | |
(* (or all of s if size s <= n). *) | |
(* drop n s == s minus its first n items ([::] if size s <= n) *) | |
(* rot n s == s rotated left n times (or s if size s <= n). *) | |
(* := drop n s ++ take n s *) | |
(* rotr n s == s rotated right n times (or s if size s <= n). *) | |
(* rev s == the (linear time) reversal of s. *) | |
(* catrev s1 s2 == the reversal of s1 followed by s2 (this is the *) | |
(* recursive form of rev). *) | |
(* ** Dependent iterator: for s : seq S and t : S -> seq T *) | |
(* [seq E | x <- s, y <- t] := flatten [seq [seq E | x <- t] | y <- s] *) | |
(* == the sequence of all the f x y, with x and y drawn from *) | |
(* s and t, respectively, in row-major order, *) | |
(* and where t is possibly dependent in elements of s *) | |
(* allpairs_dep f s t := self expanding definition for *) | |
(* [seq f x y | x <- s, y <- t y] *) | |
(* ** Iterators: for s == [:: x_1, ..., x_n], t == [:: y_1, ..., y_m], *) | |
(* allpairs f s t := same as allpairs_dep but where t is non dependent, *) | |
(* i.e. self expanding definition for *) | |
(* [seq f x y | x <- s, y <- t] *) | |
(* := [:: f x_1 y_1; ...; f x_1 y_m; f x_2 y_1; ...; f x_n y_m] *) | |
(* allrel r xs ys := all [pred x | all (r x) ys] xs *) | |
(* <=> r x y holds whenever x is in xs and y is in ys *) | |
(* all2rel r xs := allrel r xs xs *) | |
(* <=> the proposition r x y holds for all possible x, y in xs.*) | |
(* pairwise r xs <=> the relation r holds for any i-th and j-th element of *) | |
(* xs such that i < j. *) | |
(* map f s == the sequence [:: f x_1, ..., f x_n]. *) | |
(* pmap pf s == the sequence [:: y_i1, ..., y_ik] where i1 < ... < ik, *) | |
(* pf x_i = Some y_i, and pf x_j = None iff j is not in *) | |
(* {i1, ..., ik}. *) | |
(* foldr f a s == the right fold of s by f (i.e., the natural iterator). *) | |
(* := f x_1 (f x_2 ... (f x_n a)) *) | |
(* sumn s == x_1 + (x_2 + ... + (x_n + 0)) (when s : seq nat). *) | |
(* foldl f a s == the left fold of s by f. *) | |
(* := f (f ... (f a x_1) ... x_n-1) x_n *) | |
(* scanl f a s == the sequence of partial accumulators of foldl f a s. *) | |
(* := [:: f a x_1; ...; foldl f a s] *) | |
(* pairmap f a s == the sequence of f applied to consecutive items in a :: s. *) | |
(* := [:: f a x_1; f x_1 x_2; ...; f x_n-1 x_n] *) | |
(* zip s t == itemwise pairing of s and t (dropping any extra items). *) | |
(* := [:: (x_1, y_1); ...; (x_mn, y_mn)] with mn = minn n m. *) | |
(* unzip1 s == [:: (x_1).1; ...; (x_n).1] when s : seq (S * T). *) | |
(* unzip2 s == [:: (x_1).2; ...; (x_n).2] when s : seq (S * T). *) | |
(* flatten s == x_1 ++ ... ++ x_n ++ [::] when s : seq (seq T). *) | |
(* reshape r s == s reshaped into a sequence of sequences whose sizes are *) | |
(* given by r (truncating if s is too long or too short). *) | |
(* := [:: [:: x_1; ...; x_r1]; *) | |
(* [:: x_(r1 + 1); ...; x_(r0 + r1)]; *) | |
(* ...; *) | |
(* [:: x_(r1 + ... + r(k-1) + 1); ...; x_(r0 + ... rk)]] *) | |
(* flatten_index sh r c == the index, in flatten ss, of the item of indexes *) | |
(* (r, c) in any sequence of sequences ss of shape sh *) | |
(* := sh_1 + sh_2 + ... + sh_r + c *) | |
(* reshape_index sh i == the index, in reshape sh s, of the sequence *) | |
(* containing the i-th item of s. *) | |
(* reshape_offset sh i == the offset, in the (reshape_index sh i)-th *) | |
(* sequence of reshape sh s of the i-th item of s *) | |
(* ** Notation for manifest comprehensions: *) | |
(* [seq x <- s | C] := filter (fun x => C) s. *) | |
(* [seq E | x <- s] := map (fun x => E) s. *) | |
(* [seq x <- s | C1 & C2] := [seq x <- s | C1 && C2]. *) | |
(* [seq E | x <- s & C] := [seq E | x <- [seq x | C]]. *) | |
(* --> The above allow optional type casts on the eigenvariables, as in *) | |
(* [seq x : T <- s | C] or [seq E | x : T <- s, y : U <- t]. The cast may be *) | |
(* needed as type inference considers E or C before s. *) | |
(* We are quite systematic in providing lemmas to rewrite any composition *) | |
(* of two operations. "rev", whose simplifications are not natural, is *) | |
(* protected with nosimpl. *) | |
(* ** The following are equivalent: *) | |
(* [<-> P0; P1; ..; Pn] <-> P0, P1, ..., Pn are all equivalent. *) | |
(* := P0 -> P1 -> ... -> Pn -> P0 *) | |
(* if T : [<-> P0; P1; ..; Pn] is such an equivalence, and i, j are in nat *) | |
(* then T i j is a proof of the equivalence Pi <-> Pj between Pi and Pj; *) | |
(* when i (resp. j) is out of bounds, Pi (resp. Pj) defaults to P0. *) | |
(* The tactic tfae splits the goal into n+1 implications to prove. *) | |
(* An example of use can be found in fingraph theorem orbitPcycle. *) | |
(******************************************************************************) | |
Set Implicit Arguments. | |
Unset Strict Implicit. | |
Unset Printing Implicit Defensive. | |
Declare Scope seq_scope. | |
Reserved Notation "[ '<->' P0 ; P1 ; .. ; Pn ]" | |
(at level 0, format "[ '<->' '[' P0 ; '/' P1 ; '/' .. ; '/' Pn ']' ]"). | |
Delimit Scope seq_scope with SEQ. | |
Open Scope seq_scope. | |
(* Inductive seq (T : Type) : Type := Nil | Cons of T & seq T. *) | |
Notation seq := list. | |
Bind Scope seq_scope with list. | |
Arguments cons {T%type} x s%SEQ : rename. | |
Arguments nil {T%type} : rename. | |
Notation Cons T := (@cons T) (only parsing). | |
Notation Nil T := (@nil T) (only parsing). | |
(* As :: and ++ are (improperly) declared in Init.datatypes, we only rebind *) | |
(* them here. *) | |
Infix "::" := cons : seq_scope. | |
Notation "[ :: ]" := nil (at level 0, format "[ :: ]") : seq_scope. | |
Notation "[ :: x1 ]" := (x1 :: [::]) | |
(at level 0, format "[ :: x1 ]") : seq_scope. | |
Notation "[ :: x & s ]" := (x :: s) (at level 0, only parsing) : seq_scope. | |
Notation "[ :: x1 , x2 , .. , xn & s ]" := (x1 :: x2 :: .. (xn :: s) ..) | |
(at level 0, format | |
"'[hv' [ :: '[' x1 , '/' x2 , '/' .. , '/' xn ']' '/ ' & s ] ']'" | |
) : seq_scope. | |
Notation "[ :: x1 ; x2 ; .. ; xn ]" := (x1 :: x2 :: .. [:: xn] ..) | |
(at level 0, format "[ :: '[' x1 ; '/' x2 ; '/' .. ; '/' xn ']' ]" | |
) : seq_scope. | |
Section Sequences. | |
Variable n0 : nat. (* numerical parameter for take, drop et al *) | |
Variable T : Type. (* must come before the implicit Type *) | |
Variable x0 : T. (* default for head/nth *) | |
Implicit Types x y z : T. | |
Implicit Types m n : nat. | |
Implicit Type s : seq T. | |
Fixpoint size s := if s is _ :: s' then (size s').+1 else 0. | |
Lemma size0nil s : size s = 0 -> s = [::]. Proof. by case: s. Qed. | |
Definition nilp s := size s == 0. | |
Lemma nilP s : reflect (s = [::]) (nilp s). | |
Proof. by case: s => [|x s]; constructor. Qed. | |
Definition ohead s := if s is x :: _ then Some x else None. | |
Definition head s := if s is x :: _ then x else x0. | |
Definition behead s := if s is _ :: s' then s' else [::]. | |
Lemma size_behead s : size (behead s) = (size s).-1. | |
Proof. by case: s. Qed. | |
(* Factories *) | |
Definition ncons n x := iter n (cons x). | |
Definition nseq n x := ncons n x [::]. | |
Lemma size_ncons n x s : size (ncons n x s) = n + size s. | |
Proof. by elim: n => //= n ->. Qed. | |
Lemma size_nseq n x : size (nseq n x) = n. | |
Proof. by rewrite size_ncons addn0. Qed. | |
(* n-ary, dependently typed constructor. *) | |
Fixpoint seqn_type n := if n is n'.+1 then T -> seqn_type n' else seq T. | |
Fixpoint seqn_rec f n : seqn_type n := | |
if n is n'.+1 return seqn_type n then | |
fun x => seqn_rec (fun s => f (x :: s)) n' | |
else f [::]. | |
Definition seqn := seqn_rec id. | |
(* Sequence catenation "cat". *) | |
Fixpoint cat s1 s2 := if s1 is x :: s1' then x :: s1' ++ s2 else s2 | |
where "s1 ++ s2" := (cat s1 s2) : seq_scope. | |
Lemma cat0s s : [::] ++ s = s. Proof. by []. Qed. | |
Lemma cat1s x s : [:: x] ++ s = x :: s. Proof. by []. Qed. | |
Lemma cat_cons x s1 s2 : (x :: s1) ++ s2 = x :: s1 ++ s2. Proof. by []. Qed. | |
Lemma cat_nseq n x s : nseq n x ++ s = ncons n x s. | |
Proof. by elim: n => //= n ->. Qed. | |
Lemma nseqD n1 n2 x : nseq (n1 + n2) x = nseq n1 x ++ nseq n2 x. | |
Proof. by rewrite cat_nseq /nseq /ncons iterD. Qed. | |
Lemma cats0 s : s ++ [::] = s. | |
Proof. by elim: s => //= x s ->. Qed. | |
Lemma catA s1 s2 s3 : s1 ++ s2 ++ s3 = (s1 ++ s2) ++ s3. | |
Proof. by elim: s1 => //= x s1 ->. Qed. | |
Lemma size_cat s1 s2 : size (s1 ++ s2) = size s1 + size s2. | |
Proof. by elim: s1 => //= x s1 ->. Qed. | |
Lemma cat_nilp s1 s2 : nilp (s1 ++ s2) = nilp s1 && nilp s2. | |
Proof. by case: s1. Qed. | |
(* last, belast, rcons, and last induction. *) | |
Fixpoint rcons s z := if s is x :: s' then x :: rcons s' z else [:: z]. | |
Lemma rcons_cons x s z : rcons (x :: s) z = x :: rcons s z. | |
Proof. by []. Qed. | |
Lemma cats1 s z : s ++ [:: z] = rcons s z. | |
Proof. by elim: s => //= x s ->. Qed. | |
Fixpoint last x s := if s is x' :: s' then last x' s' else x. | |
Fixpoint belast x s := if s is x' :: s' then x :: (belast x' s') else [::]. | |
Lemma lastI x s : x :: s = rcons (belast x s) (last x s). | |
Proof. by elim: s x => [|y s IHs] x //=; rewrite IHs. Qed. | |
Lemma last_cons x y s : last x (y :: s) = last y s. | |
Proof. by []. Qed. | |
Lemma size_rcons s x : size (rcons s x) = (size s).+1. | |
Proof. by rewrite -cats1 size_cat addnC. Qed. | |
Lemma size_belast x s : size (belast x s) = size s. | |
Proof. by elim: s x => [|y s IHs] x //=; rewrite IHs. Qed. | |
Lemma last_cat x s1 s2 : last x (s1 ++ s2) = last (last x s1) s2. | |
Proof. by elim: s1 x => [|y s1 IHs] x //=; rewrite IHs. Qed. | |
Lemma last_rcons x s z : last x (rcons s z) = z. | |
Proof. by rewrite -cats1 last_cat. Qed. | |
Lemma belast_cat x s1 s2 : | |
belast x (s1 ++ s2) = belast x s1 ++ belast (last x s1) s2. | |
Proof. by elim: s1 x => [|y s1 IHs] x //=; rewrite IHs. Qed. | |
Lemma belast_rcons x s z : belast x (rcons s z) = x :: s. | |
Proof. by rewrite lastI -!cats1 belast_cat. Qed. | |
Lemma cat_rcons x s1 s2 : rcons s1 x ++ s2 = s1 ++ x :: s2. | |
Proof. by rewrite -cats1 -catA. Qed. | |
Lemma rcons_cat x s1 s2 : rcons (s1 ++ s2) x = s1 ++ rcons s2 x. | |
Proof. by rewrite -!cats1 catA. Qed. | |
Variant last_spec : seq T -> Type := | |
| LastNil : last_spec [::] | |
| LastRcons s x : last_spec (rcons s x). | |
Lemma lastP s : last_spec s. | |
Proof. case: s => [|x s]; [left | rewrite lastI; right]. Qed. | |
Lemma last_ind P : | |
P [::] -> (forall s x, P s -> P (rcons s x)) -> forall s, P s. | |
Proof. | |
move=> Hnil Hlast s; rewrite -(cat0s s). | |
elim: s [::] Hnil => [|x s2 IHs] s1 Hs1; first by rewrite cats0. | |
by rewrite -cat_rcons; apply/IHs/Hlast. | |
Qed. | |
(* Sequence indexing. *) | |
Fixpoint nth s n {struct n} := | |
if s is x :: s' then if n is n'.+1 then @nth s' n' else x else x0. | |
Fixpoint set_nth s n y {struct n} := | |
if s is x :: s' then if n is n'.+1 then x :: @set_nth s' n' y else y :: s' | |
else ncons n x0 [:: y]. | |
Lemma nth0 s : nth s 0 = head s. Proof. by []. Qed. | |
Lemma nth_default s n : size s <= n -> nth s n = x0. | |
Proof. by elim: s n => [|x s IHs] []. Qed. | |
Lemma nth_nil n : nth [::] n = x0. | |
Proof. by case: n. Qed. | |
Lemma nth_seq1 n x : nth [:: x] n = if n == 0 then x else x0. | |
Proof. by case: n => [|[]]. Qed. | |
Lemma last_nth x s : last x s = nth (x :: s) (size s). | |
Proof. by elim: s x => [|y s IHs] x /=. Qed. | |
Lemma nth_last s : nth s (size s).-1 = last x0 s. | |
Proof. by case: s => //= x s; rewrite last_nth. Qed. | |
Lemma nth_behead s n : nth (behead s) n = nth s n.+1. | |
Proof. by case: s n => [|x s] [|n]. Qed. | |
Lemma nth_cat s1 s2 n : | |
nth (s1 ++ s2) n = if n < size s1 then nth s1 n else nth s2 (n - size s1). | |
Proof. by elim: s1 n => [|x s1 IHs] []. Qed. | |
Lemma nth_rcons s x n : | |
nth (rcons s x) n = | |
if n < size s then nth s n else if n == size s then x else x0. | |
Proof. by elim: s n => [|y s IHs] [] //=; apply: nth_nil. Qed. | |
Lemma nth_rcons_default s i : nth (rcons s x0) i = nth s i. | |
Proof. | |
by rewrite nth_rcons; case: ltngtP => //[/ltnW ?|->]; rewrite nth_default. | |
Qed. | |
Lemma nth_ncons m x s n : | |
nth (ncons m x s) n = if n < m then x else nth s (n - m). | |
Proof. by elim: m n => [|m IHm] []. Qed. | |
Lemma nth_nseq m x n : nth (nseq m x) n = (if n < m then x else x0). | |
Proof. by elim: m n => [|m IHm] []. Qed. | |
Lemma eq_from_nth s1 s2 : | |
size s1 = size s2 -> (forall i, i < size s1 -> nth s1 i = nth s2 i) -> | |
s1 = s2. | |
Proof. | |
elim: s1 s2 => [|x1 s1 IHs1] [|x2 s2] //= [eq_sz] eq_s12. | |
by rewrite [x1](eq_s12 0) // (IHs1 s2) // => i; apply: (eq_s12 i.+1). | |
Qed. | |
Lemma size_set_nth s n y : size (set_nth s n y) = maxn n.+1 (size s). | |
Proof. | |
rewrite maxnC; elim: s n => [|x s IHs] [|n] //=. | |
- by rewrite size_ncons addn1. | |
- by rewrite IHs maxnSS. | |
Qed. | |
Lemma set_nth_nil n y : set_nth [::] n y = ncons n x0 [:: y]. | |
Proof. by case: n. Qed. | |
Lemma nth_set_nth s n y : nth (set_nth s n y) =1 [eta nth s with n |-> y]. | |
Proof. | |
elim: s n => [|x s IHs] [|n] [|m] //=; rewrite ?nth_nil ?IHs // nth_ncons eqSS. | |
case: ltngtP => // [lt_nm | ->]; last by rewrite subnn. | |
by rewrite nth_default // subn_gt0. | |
Qed. | |
Lemma set_set_nth s n1 y1 n2 y2 (s2 := set_nth s n2 y2) : | |
set_nth (set_nth s n1 y1) n2 y2 = if n1 == n2 then s2 else set_nth s2 n1 y1. | |
Proof. | |
have [-> | ne_n12] := eqVneq. | |
apply: eq_from_nth => [|i _]; first by rewrite !size_set_nth maxnA maxnn. | |
by do 2!rewrite !nth_set_nth /=; case: eqP. | |
apply: eq_from_nth => [|i _]; first by rewrite !size_set_nth maxnCA. | |
by do 2!rewrite !nth_set_nth /=; case: eqP => // ->; case: eqVneq ne_n12. | |
Qed. | |
(* find, count, has, all. *) | |
Section SeqFind. | |
Variable a : pred T. | |
Fixpoint find s := if s is x :: s' then if a x then 0 else (find s').+1 else 0. | |
Fixpoint filter s := | |
if s is x :: s' then if a x then x :: filter s' else filter s' else [::]. | |
Fixpoint count s := if s is x :: s' then a x + count s' else 0. | |
Fixpoint has s := if s is x :: s' then a x || has s' else false. | |
Fixpoint all s := if s is x :: s' then a x && all s' else true. | |
Lemma size_filter s : size (filter s) = count s. | |
Proof. by elim: s => //= x s <-; case (a x). Qed. | |
Lemma has_count s : has s = (0 < count s). | |
Proof. by elim: s => //= x s ->; case (a x). Qed. | |
Lemma count_size s : count s <= size s. | |
Proof. by elim: s => //= x s; case: (a x); last apply: leqW. Qed. | |
Lemma all_count s : all s = (count s == size s). | |
Proof. | |
elim: s => //= x s; case: (a x) => _ //=. | |
by rewrite add0n eqn_leq andbC ltnNge count_size. | |
Qed. | |
Lemma filter_all s : all (filter s). | |
Proof. by elim: s => //= x s IHs; case: ifP => //= ->. Qed. | |
Lemma all_filterP s : reflect (filter s = s) (all s). | |
Proof. | |
apply: (iffP idP) => [| <-]; last exact: filter_all. | |
by elim: s => //= x s IHs /andP[-> Hs]; rewrite IHs. | |
Qed. | |
Lemma filter_id s : filter (filter s) = filter s. | |
Proof. by apply/all_filterP; apply: filter_all. Qed. | |
Lemma has_find s : has s = (find s < size s). | |
Proof. by elim: s => //= x s IHs; case (a x); rewrite ?leqnn. Qed. | |
Lemma find_size s : find s <= size s. | |
Proof. by elim: s => //= x s IHs; case (a x). Qed. | |
Lemma find_cat s1 s2 : | |
find (s1 ++ s2) = if has s1 then find s1 else size s1 + find s2. | |
Proof. | |
by elim: s1 => //= x s1 IHs; case: (a x) => //; rewrite IHs (fun_if succn). | |
Qed. | |
Lemma has_nil : has [::] = false. Proof. by []. Qed. | |
Lemma has_seq1 x : has [:: x] = a x. | |
Proof. exact: orbF. Qed. | |
Lemma has_nseq n x : has (nseq n x) = (0 < n) && a x. | |
Proof. by elim: n => //= n ->; apply: andKb. Qed. | |
Lemma has_seqb (b : bool) x : has (nseq b x) = b && a x. | |
Proof. by rewrite has_nseq lt0b. Qed. | |
Lemma all_nil : all [::] = true. Proof. by []. Qed. | |
Lemma all_seq1 x : all [:: x] = a x. | |
Proof. exact: andbT. Qed. | |
Lemma all_nseq n x : all (nseq n x) = (n == 0) || a x. | |
Proof. by elim: n => //= n ->; apply: orKb. Qed. | |
Lemma all_nseqb (b : bool) x : all (nseq b x) = b ==> a x. | |
Proof. by rewrite all_nseq eqb0 implybE. Qed. | |
Lemma filter_nseq n x : filter (nseq n x) = nseq (a x * n) x. | |
Proof. by elim: n => /= [|n ->]; case: (a x). Qed. | |
Lemma count_nseq n x : count (nseq n x) = a x * n. | |
Proof. by rewrite -size_filter filter_nseq size_nseq. Qed. | |
Lemma find_nseq n x : find (nseq n x) = ~~ a x * n. | |
Proof. by elim: n => /= [|n ->]; case: (a x). Qed. | |
Lemma nth_find s : has s -> a (nth s (find s)). | |
Proof. by elim: s => //= x s IHs; case a_x: (a x). Qed. | |
Lemma before_find s i : i < find s -> a (nth s i) = false. | |
Proof. by elim: s i => //= x s IHs; case: ifP => // a'x [|i] // /(IHs i). Qed. | |
Lemma hasNfind s : ~~ has s -> find s = size s. | |
Proof. by rewrite has_find; case: ltngtP (find_size s). Qed. | |
Lemma filter_cat s1 s2 : filter (s1 ++ s2) = filter s1 ++ filter s2. | |
Proof. by elim: s1 => //= x s1 ->; case (a x). Qed. | |
Lemma filter_rcons s x : | |
filter (rcons s x) = if a x then rcons (filter s) x else filter s. | |
Proof. by rewrite -!cats1 filter_cat /=; case (a x); rewrite /= ?cats0. Qed. | |
Lemma count_cat s1 s2 : count (s1 ++ s2) = count s1 + count s2. | |
Proof. by rewrite -!size_filter filter_cat size_cat. Qed. | |
Lemma has_cat s1 s2 : has (s1 ++ s2) = has s1 || has s2. | |
Proof. by elim: s1 => [|x s1 IHs] //=; rewrite IHs orbA. Qed. | |
Lemma has_rcons s x : has (rcons s x) = a x || has s. | |
Proof. by rewrite -cats1 has_cat has_seq1 orbC. Qed. | |
Lemma all_cat s1 s2 : all (s1 ++ s2) = all s1 && all s2. | |
Proof. by elim: s1 => [|x s1 IHs] //=; rewrite IHs andbA. Qed. | |
Lemma all_rcons s x : all (rcons s x) = a x && all s. | |
Proof. by rewrite -cats1 all_cat all_seq1 andbC. Qed. | |
End SeqFind. | |
Lemma eq_find a1 a2 : a1 =1 a2 -> find a1 =1 find a2. | |
Proof. by move=> Ea; elim=> //= x s IHs; rewrite Ea IHs. Qed. | |
Lemma eq_filter a1 a2 : a1 =1 a2 -> filter a1 =1 filter a2. | |
Proof. by move=> Ea; elim=> //= x s IHs; rewrite Ea IHs. Qed. | |
Lemma eq_count a1 a2 : a1 =1 a2 -> count a1 =1 count a2. | |
Proof. by move=> Ea s; rewrite -!size_filter (eq_filter Ea). Qed. | |
Lemma eq_has a1 a2 : a1 =1 a2 -> has a1 =1 has a2. | |
Proof. by move=> Ea s; rewrite !has_count (eq_count Ea). Qed. | |
Lemma eq_all a1 a2 : a1 =1 a2 -> all a1 =1 all a2. | |
Proof. by move=> Ea s; rewrite !all_count (eq_count Ea). Qed. | |
Lemma all_filter (p q : pred T) xs : | |
all p (filter q xs) = all [pred i | q i ==> p i] xs. | |
Proof. by elim: xs => //= x xs <-; case: (q x). Qed. | |
Section SubPred. | |
Variable (a1 a2 : pred T). | |
Hypothesis s12 : subpred a1 a2. | |
Lemma sub_find s : find a2 s <= find a1 s. | |
Proof. by elim: s => //= x s IHs; case: ifP => // /(contraFF (@s12 x))->. Qed. | |
Lemma sub_has s : has a1 s -> has a2 s. | |
Proof. by rewrite !has_find; apply: leq_ltn_trans (sub_find s). Qed. | |
Lemma sub_count s : count a1 s <= count a2 s. | |
Proof. | |
by elim: s => //= x s; apply: leq_add; case a1x: (a1 x); rewrite // s12. | |
Qed. | |
Lemma sub_all s : all a1 s -> all a2 s. | |
Proof. | |
by rewrite !all_count !eqn_leq !count_size => /leq_trans-> //; apply: sub_count. | |
Qed. | |
End SubPred. | |
Lemma filter_pred0 s : filter pred0 s = [::]. Proof. by elim: s. Qed. | |
Lemma filter_predT s : filter predT s = s. | |
Proof. by elim: s => //= x s ->. Qed. | |
Lemma filter_predI a1 a2 s : filter (predI a1 a2) s = filter a1 (filter a2 s). | |
Proof. by elim: s => //= x s ->; rewrite andbC; case: (a2 x). Qed. | |
Lemma count_pred0 s : count pred0 s = 0. | |
Proof. by rewrite -size_filter filter_pred0. Qed. | |
Lemma count_predT s : count predT s = size s. | |
Proof. by rewrite -size_filter filter_predT. Qed. | |
Lemma count_predUI a1 a2 s : | |
count (predU a1 a2) s + count (predI a1 a2) s = count a1 s + count a2 s. | |
Proof. | |
elim: s => //= x s IHs; rewrite /= addnACA [RHS]addnACA IHs. | |
by case: (a1 x) => //; rewrite addn0. | |
Qed. | |
Lemma count_predC a s : count a s + count (predC a) s = size s. | |
Proof. by elim: s => //= x s IHs; rewrite addnACA IHs; case: (a _). Qed. | |
Lemma count_filter a1 a2 s : count a1 (filter a2 s) = count (predI a1 a2) s. | |
Proof. by rewrite -!size_filter filter_predI. Qed. | |
Lemma has_pred0 s : has pred0 s = false. | |
Proof. by rewrite has_count count_pred0. Qed. | |
Lemma has_predT s : has predT s = (0 < size s). | |
Proof. by rewrite has_count count_predT. Qed. | |
Lemma has_predC a s : has (predC a) s = ~~ all a s. | |
Proof. by elim: s => //= x s ->; case (a x). Qed. | |
Lemma has_predU a1 a2 s : has (predU a1 a2) s = has a1 s || has a2 s. | |
Proof. by elim: s => //= x s ->; rewrite -!orbA; do !bool_congr. Qed. | |
Lemma all_pred0 s : all pred0 s = (size s == 0). | |
Proof. by rewrite all_count count_pred0 eq_sym. Qed. | |
Lemma all_predT s : all predT s. | |
Proof. by rewrite all_count count_predT. Qed. | |
Lemma all_predC a s : all (predC a) s = ~~ has a s. | |
Proof. by elim: s => //= x s ->; case (a x). Qed. | |
Lemma all_predI a1 a2 s : all (predI a1 a2) s = all a1 s && all a2 s. | |
Proof. | |
apply: (can_inj negbK); rewrite negb_and -!has_predC -has_predU. | |
by apply: eq_has => x; rewrite /= negb_and. | |
Qed. | |
(* Surgery: drop, take, rot, rotr. *) | |
Fixpoint drop n s {struct s} := | |
match s, n with | |
| _ :: s', n'.+1 => drop n' s' | |
| _, _ => s | |
end. | |
Lemma drop_behead : drop n0 =1 iter n0 behead. | |
Proof. by elim: n0 => [|n IHn] [|x s] //; rewrite iterSr -IHn. Qed. | |
Lemma drop0 s : drop 0 s = s. Proof. by case: s. Qed. | |
Lemma drop1 : drop 1 =1 behead. Proof. by case=> [|x [|y s]]. Qed. | |
Lemma drop_oversize n s : size s <= n -> drop n s = [::]. | |
Proof. by elim: s n => [|x s IHs] []. Qed. | |
Lemma drop_size s : drop (size s) s = [::]. | |
Proof. by rewrite drop_oversize // leqnn. Qed. | |
Lemma drop_cons x s : | |
drop n0 (x :: s) = if n0 is n.+1 then drop n s else x :: s. | |
Proof. by []. Qed. | |
Lemma size_drop s : size (drop n0 s) = size s - n0. | |
Proof. by elim: s n0 => [|x s IHs] []. Qed. | |
Lemma drop_cat s1 s2 : | |
drop n0 (s1 ++ s2) = | |
if n0 < size s1 then drop n0 s1 ++ s2 else drop (n0 - size s1) s2. | |
Proof. by elim: s1 n0 => [|x s1 IHs] []. Qed. | |
Lemma drop_size_cat n s1 s2 : size s1 = n -> drop n (s1 ++ s2) = s2. | |
Proof. by move <-; elim: s1 => //=; rewrite drop0. Qed. | |
Lemma nconsK n x : cancel (ncons n x) (drop n). | |
Proof. by elim: n => // -[]. Qed. | |
Lemma drop_drop s n1 n2 : drop n1 (drop n2 s) = drop (n1 + n2) s. | |
Proof. by elim: s n2 => // x s ihs [|n2]; rewrite ?drop0 ?addn0 ?addnS /=. Qed. | |
Fixpoint take n s {struct s} := | |
match s, n with | |
| x :: s', n'.+1 => x :: take n' s' | |
| _, _ => [::] | |
end. | |
Lemma take0 s : take 0 s = [::]. Proof. by case: s. Qed. | |
Lemma take_oversize n s : size s <= n -> take n s = s. | |
Proof. by elim: s n => [|x s IHs] [|n] //= /IHs->. Qed. | |
Lemma take_size s : take (size s) s = s. | |
Proof. exact: take_oversize. Qed. | |
Lemma take_cons x s : | |
take n0 (x :: s) = if n0 is n.+1 then x :: (take n s) else [::]. | |
Proof. by []. Qed. | |
Lemma drop_rcons s : n0 <= size s -> | |
forall x, drop n0 (rcons s x) = rcons (drop n0 s) x. | |
Proof. by elim: s n0 => [|y s IHs] []. Qed. | |
Lemma cat_take_drop s : take n0 s ++ drop n0 s = s. | |
Proof. by elim: s n0 => [|x s IHs] [|n] //=; rewrite IHs. Qed. | |
Lemma size_takel s : n0 <= size s -> size (take n0 s) = n0. | |
Proof. | |
by move/subKn; rewrite -size_drop -[in size s](cat_take_drop s) size_cat addnK. | |
Qed. | |
Lemma size_take s : size (take n0 s) = if n0 < size s then n0 else size s. | |
Proof. | |
have [le_sn | lt_ns] := leqP (size s) n0; first by rewrite take_oversize. | |
by rewrite size_takel // ltnW. | |
Qed. | |
Lemma size_take_min s : size (take n0 s) = minn n0 (size s). | |
Proof. exact: size_take. Qed. | |
Lemma take_cat s1 s2 : | |
take n0 (s1 ++ s2) = | |
if n0 < size s1 then take n0 s1 else s1 ++ take (n0 - size s1) s2. | |
Proof. | |
elim: s1 n0 => [|x s1 IHs] [|n] //=. | |
by rewrite ltnS subSS -(fun_if (cons x)) -IHs. | |
Qed. | |
Lemma take_size_cat n s1 s2 : size s1 = n -> take n (s1 ++ s2) = s1. | |
Proof. by move <-; elim: s1 => [|x s1 IHs]; rewrite ?take0 //= IHs. Qed. | |
Lemma takel_cat s1 s2 : n0 <= size s1 -> take n0 (s1 ++ s2) = take n0 s1. | |
Proof. | |
by rewrite take_cat; case: ltngtP => // ->; rewrite subnn take0 take_size cats0. | |
Qed. | |
Lemma nth_drop s i : nth (drop n0 s) i = nth s (n0 + i). | |
Proof. | |
rewrite -[s in RHS]cat_take_drop nth_cat size_take ltnNge. | |
case: ltnP => [?|le_s_n0]; rewrite ?(leq_trans le_s_n0) ?leq_addr ?addKn //=. | |
by rewrite drop_oversize // !nth_default. | |
Qed. | |
Lemma find_ltn p s i : has p (take i s) -> find p s < i. | |
Proof. by elim: s i => [|y s ihs] [|i]//=; case: (p _) => //= /ihs. Qed. | |
Lemma has_take p s i : has p s -> has p (take i s) = (find p s < i). | |
Proof. by elim: s i => [|y s ihs] [|i]//=; case: (p _) => //= /ihs ->. Qed. | |
Lemma has_take_leq (p : pred T) (s : seq T) i : i <= size s -> | |
has p (take i s) = (find p s < i). | |
Proof. by elim: s i => [|y s ihs] [|i]//=; case: (p _) => //= /ihs ->. Qed. | |
Lemma nth_take i : i < n0 -> forall s, nth (take n0 s) i = nth s i. | |
Proof. | |
move=> lt_i_n0 s; case lt_n0_s: (n0 < size s). | |
by rewrite -[s in RHS]cat_take_drop nth_cat size_take lt_n0_s /= lt_i_n0. | |
by rewrite -[s in LHS]cats0 take_cat lt_n0_s /= cats0. | |
Qed. | |
Lemma take_take i j : i <= j -> forall s, take i (take j s) = take i s. | |
Proof. | |
move=> ij s; elim: s i j ij => [// | a s IHs] [|i] [|j] //=. | |
by rewrite ltnS => /IHs ->. | |
Qed. | |
Lemma take_drop i j s : take i (drop j s) = drop j (take (i + j) s). | |
Proof. by rewrite addnC; elim: s i j => // x s IHs [|i] [|j] /=. Qed. | |
Lemma takeD i j s : take (i + j) s = take i s ++ take j (drop i s). | |
Proof. | |
elim: i j s => [|i IHi] [|j] [|a s] //; first by rewrite take0 addn0 cats0. | |
by rewrite addSn /= IHi. | |
Qed. | |
Lemma takeC i j s : take i (take j s) = take j (take i s). | |
Proof. | |
wlog i_le_j : i j / i <= j. | |
by move=> Hwlog; case: (leqP i j) => [|/ltnW] /Hwlog ->. | |
rewrite take_take // [RHS]take_oversize // (leq_trans _ i_le_j) //. | |
elim: i s {i_le_j} => [|i IHi] s; first by rewrite take0. | |
by case: s => [|a s]//; rewrite /= ltnS. | |
Qed. | |
Lemma take_nseq i j x : i <= j -> take i (nseq j x) = nseq i x. | |
Proof. by move=>/subnKC <-; rewrite nseqD take_size_cat // size_nseq. Qed. | |
Lemma drop_nseq i j x : drop i (nseq j x) = nseq (j - i) x. | |
Proof. | |
case: (leqP i j) => [/subnKC {1}<-|/ltnW j_le_i]. | |
by rewrite nseqD drop_size_cat // size_nseq. | |
by rewrite drop_oversize ?size_nseq // (eqP j_le_i). | |
Qed. | |
(* drop_nth and take_nth below do NOT use the default n0, because the "n" *) | |
(* can be inferred from the condition, whereas the nth default value x0 *) | |
(* will have to be given explicitly (and this will provide "d" as well). *) | |
Lemma drop_nth n s : n < size s -> drop n s = nth s n :: drop n.+1 s. | |
Proof. by elim: s n => [|x s IHs] [|n] Hn //=; rewrite ?drop0 1?IHs. Qed. | |
Lemma take_nth n s : n < size s -> take n.+1 s = rcons (take n s) (nth s n). | |
Proof. by elim: s n => [|x s IHs] //= [|n] Hn /=; rewrite ?take0 -?IHs. Qed. | |
(* Rotation *) | |
Definition rot n s := drop n s ++ take n s. | |
Lemma rot0 s : rot 0 s = s. | |
Proof. by rewrite /rot drop0 take0 cats0. Qed. | |
Lemma size_rot s : size (rot n0 s) = size s. | |
Proof. by rewrite -[s in RHS]cat_take_drop /rot !size_cat addnC. Qed. | |
Lemma rot_oversize n s : size s <= n -> rot n s = s. | |
Proof. by move=> le_s_n; rewrite /rot take_oversize ?drop_oversize. Qed. | |
Lemma rot_size s : rot (size s) s = s. | |
Proof. exact: rot_oversize. Qed. | |
Lemma has_rot s a : has a (rot n0 s) = has a s. | |
Proof. by rewrite has_cat orbC -has_cat cat_take_drop. Qed. | |
Lemma rot_size_cat s1 s2 : rot (size s1) (s1 ++ s2) = s2 ++ s1. | |
Proof. by rewrite /rot take_size_cat ?drop_size_cat. Qed. | |
Definition rotr n s := rot (size s - n) s. | |
Lemma rotK : cancel (rot n0) (rotr n0). | |
Proof. | |
move=> s; rewrite /rotr size_rot -size_drop {2}/rot. | |
by rewrite rot_size_cat cat_take_drop. | |
Qed. | |
Lemma rot_inj : injective (rot n0). Proof. exact (can_inj rotK). Qed. | |
(* (efficient) reversal *) | |
Fixpoint catrev s1 s2 := if s1 is x :: s1' then catrev s1' (x :: s2) else s2. | |
Definition rev s := catrev s [::]. | |
Lemma catrev_catl s t u : catrev (s ++ t) u = catrev t (catrev s u). | |
Proof. by elim: s u => /=. Qed. | |
Lemma catrev_catr s t u : catrev s (t ++ u) = catrev s t ++ u. | |
Proof. by elim: s t => //= x s IHs t; rewrite -IHs. Qed. | |
Lemma catrevE s t : catrev s t = rev s ++ t. | |
Proof. by rewrite -catrev_catr. Qed. | |
Lemma rev_cons x s : rev (x :: s) = rcons (rev s) x. | |
Proof. by rewrite -cats1 -catrevE. Qed. | |
Lemma size_rev s : size (rev s) = size s. | |
Proof. by elim: s => // x s IHs; rewrite rev_cons size_rcons IHs. Qed. | |
Lemma rev_nilp s : nilp (rev s) = nilp s. | |
Proof. by move: s (rev s) (size_rev s) => [|? ?] []. Qed. | |
Lemma rev_cat s t : rev (s ++ t) = rev t ++ rev s. | |
Proof. by rewrite -catrev_catr -catrev_catl. Qed. | |
Lemma rev_rcons s x : rev (rcons s x) = x :: rev s. | |
Proof. by rewrite -cats1 rev_cat. Qed. | |
Lemma revK : involutive rev. | |
Proof. by elim=> //= x s IHs; rewrite rev_cons rev_rcons IHs. Qed. | |
Lemma nth_rev n s : n < size s -> nth (rev s) n = nth s (size s - n.+1). | |
Proof. | |
elim/last_ind: s => // s x IHs in n *. | |
rewrite rev_rcons size_rcons ltnS subSS -cats1 nth_cat /=. | |
case: n => [|n] lt_n_s; first by rewrite subn0 ltnn subnn. | |
by rewrite subnSK //= leq_subr IHs. | |
Qed. | |
Lemma filter_rev a s : filter a (rev s) = rev (filter a s). | |
Proof. by elim: s => //= x s IH; rewrite fun_if !rev_cons filter_rcons IH. Qed. | |
Lemma count_rev a s : count a (rev s) = count a s. | |
Proof. by rewrite -!size_filter filter_rev size_rev. Qed. | |
Lemma has_rev a s : has a (rev s) = has a s. | |
Proof. by rewrite !has_count count_rev. Qed. | |
Lemma all_rev a s : all a (rev s) = all a s. | |
Proof. by rewrite !all_count count_rev size_rev. Qed. | |
Lemma rev_nseq n x : rev (nseq n x) = nseq n x. | |
Proof. by elim: n => // n IHn; rewrite -[in LHS]addn1 nseqD rev_cat IHn. Qed. | |
End Sequences. | |
Prenex Implicits size ncons nseq head ohead behead last rcons belast. | |
Arguments seqn {T} n. | |
Prenex Implicits cat take drop rot rotr catrev. | |
Prenex Implicits find count nth all has filter. | |
Arguments rev {T} s : simpl never. | |
Arguments nth : simpl nomatch. | |
Arguments set_nth : simpl nomatch. | |
Arguments take : simpl nomatch. | |
Arguments drop : simpl nomatch. | |
Arguments nilP {T s}. | |
Arguments all_filterP {T a s}. | |
Arguments rotK n0 {T} s : rename. | |
Arguments rot_inj {n0 T} [s1 s2] eq_rot_s12 : rename. | |
Arguments revK {T} s : rename. | |
Notation count_mem x := (count (pred_of_simpl (pred1 x))). | |
Infix "++" := cat : seq_scope. | |
Notation "[ 'seq' x <- s | C ]" := (filter (fun x => C%B) s) | |
(at level 0, x at level 99, | |
format "[ '[hv' 'seq' x <- s '/ ' | C ] ']'") : seq_scope. | |
Notation "[ 'seq' x <- s | C1 & C2 ]" := [seq x <- s | C1 && C2] | |
(at level 0, x at level 99, | |
format "[ '[hv' 'seq' x <- s '/ ' | C1 '/ ' & C2 ] ']'") : seq_scope. | |
Notation "[ 'seq' x : T <- s | C ]" := (filter (fun x : T => C%B) s) | |
(at level 0, x at level 99, only parsing). | |
Notation "[ 'seq' x : T <- s | C1 & C2 ]" := [seq x : T <- s | C1 && C2] | |
(at level 0, x at level 99, only parsing). | |
(* Double induction/recursion. *) | |
Lemma seq_ind2 {S T} (P : seq S -> seq T -> Type) : | |
P [::] [::] -> | |
(forall x y s t, size s = size t -> P s t -> P (x :: s) (y :: t)) -> | |
forall s t, size s = size t -> P s t. | |
Proof. | |
by move=> Pnil Pcons; elim=> [|x s IHs] [|y t] //= [eq_sz]; apply/Pcons/IHs. | |
Qed. | |
Section FindSpec. | |
Variable (T : Type) (a : {pred T}) (s : seq T). | |
Variant find_spec : bool -> nat -> Type := | |
| NotFound of ~~ has a s : find_spec false (size s) | |
| Found (i : nat) of i < size s & (forall x0, a (nth x0 s i)) & | |
(forall x0 j, j < i -> a (nth x0 s j) = false) : find_spec true i. | |
Lemma findP : find_spec (has a s) (find a s). | |
Proof. | |
have [a_s|aNs] := boolP (has a s); last by rewrite hasNfind//; constructor. | |
by constructor=> [|x0|x0]; rewrite -?has_find ?nth_find//; apply: before_find. | |
Qed. | |
End FindSpec. | |
Arguments findP {T}. | |
Section RotRcons. | |
Variable T : Type. | |
Implicit Types (x : T) (s : seq T). | |
Lemma rot1_cons x s : rot 1 (x :: s) = rcons s x. | |
Proof. by rewrite /rot /= take0 drop0 -cats1. Qed. | |
Lemma rcons_inj s1 s2 x1 x2 : | |
rcons s1 x1 = rcons s2 x2 :> seq T -> (s1, x1) = (s2, x2). | |
Proof. by rewrite -!rot1_cons => /rot_inj[-> ->]. Qed. | |
Lemma rcons_injl x : injective (rcons^~ x). | |
Proof. by move=> s1 s2 /rcons_inj[]. Qed. | |
Lemma rcons_injr s : injective (rcons s). | |
Proof. by move=> x1 x2 /rcons_inj[]. Qed. | |
End RotRcons. | |
Arguments rcons_inj {T s1 x1 s2 x2} eq_rcons : rename. | |
Arguments rcons_injl {T} x [s1 s2] eq_rcons : rename. | |
Arguments rcons_injr {T} s [x1 x2] eq_rcons : rename. | |
(* Equality and eqType for seq. *) | |
Section EqSeq. | |
Variables (n0 : nat) (T : eqType) (x0 : T). | |
Local Notation nth := (nth x0). | |
Implicit Types (x y z : T) (s : seq T). | |
Fixpoint eqseq s1 s2 {struct s2} := | |
match s1, s2 with | |
| [::], [::] => true | |
| x1 :: s1', x2 :: s2' => (x1 == x2) && eqseq s1' s2' | |
| _, _ => false | |
end. | |
Lemma eqseqP : Equality.axiom eqseq. | |
Proof. | |
move; elim=> [|x1 s1 IHs] [|x2 s2]; do [by constructor | simpl]. | |
have [<-|neqx] := x1 =P x2; last by right; case. | |
by apply: (iffP (IHs s2)) => [<-|[]]. | |
Qed. | |
Canonical seq_eqMixin := EqMixin eqseqP. | |
Canonical seq_eqType := Eval hnf in EqType (seq T) seq_eqMixin. | |
Lemma eqseqE : eqseq = eq_op. Proof. by []. Qed. | |
Lemma eqseq_cons x1 x2 s1 s2 : | |
(x1 :: s1 == x2 :: s2) = (x1 == x2) && (s1 == s2). | |
Proof. by []. Qed. | |
Lemma eqseq_cat s1 s2 s3 s4 : | |
size s1 = size s2 -> (s1 ++ s3 == s2 ++ s4) = (s1 == s2) && (s3 == s4). | |
Proof. | |
elim: s1 s2 => [|x1 s1 IHs] [|x2 s2] //= [sz12]. | |
by rewrite !eqseq_cons -andbA IHs. | |
Qed. | |
Lemma eqseq_rcons s1 s2 x1 x2 : | |
(rcons s1 x1 == rcons s2 x2) = (s1 == s2) && (x1 == x2). | |
Proof. by rewrite -(can_eq revK) !rev_rcons eqseq_cons andbC (can_eq revK). Qed. | |
Lemma size_eq0 s : (size s == 0) = (s == [::]). | |
Proof. exact: (sameP nilP eqP). Qed. | |
Lemma nilpE s : nilp s = (s == [::]). Proof. by case: s. Qed. | |
Lemma has_filter a s : has a s = (filter a s != [::]). | |
Proof. by rewrite -size_eq0 size_filter has_count lt0n. Qed. | |
(* mem_seq and index. *) | |
(* mem_seq defines a predType for seq. *) | |
Fixpoint mem_seq (s : seq T) := | |
if s is y :: s' then xpredU1 y (mem_seq s') else xpred0. | |
Definition seq_eqclass := seq T. | |
Identity Coercion seq_of_eqclass : seq_eqclass >-> seq. | |
Coercion pred_of_seq (s : seq_eqclass) : {pred T} := mem_seq s. | |
Canonical seq_predType := PredType (pred_of_seq : seq T -> pred T). | |
(* The line below makes mem_seq a canonical instance of topred. *) | |
Canonical mem_seq_predType := PredType mem_seq. | |
Lemma in_cons y s x : (x \in y :: s) = (x == y) || (x \in s). | |
Proof. by []. Qed. | |
Lemma in_nil x : (x \in [::]) = false. | |
Proof. by []. Qed. | |
Lemma mem_seq1 x y : (x \in [:: y]) = (x == y). | |
Proof. by rewrite in_cons orbF. Qed. | |
(* to be repeated after the Section discharge. *) | |
Let inE := (mem_seq1, in_cons, inE). | |
Lemma forall_cons {P : T -> Prop} {a s} : | |
{in a::s, forall x, P x} <-> P a /\ {in s, forall x, P x}. | |
Proof. | |
split=> [A|[A B]]; last by move => x /predU1P [-> //|]; apply: B. | |
by split=> [|b Hb]; apply: A; rewrite !inE ?eqxx ?Hb ?orbT. | |
Qed. | |
Lemma exists_cons {P : T -> Prop} {a s} : | |
(exists2 x, x \in a::s & P x) <-> P a \/ exists2 x, x \in s & P x. | |
Proof. | |
split=> [[x /predU1P[->|x_s] Px]|]; [by left| by right; exists x|]. | |
by move=> [?|[x x_s ?]]; [exists a|exists x]; rewrite ?inE ?eqxx ?x_s ?orbT. | |
Qed. | |
Lemma mem_seq2 x y z : (x \in [:: y; z]) = xpred2 y z x. | |
Proof. by rewrite !inE. Qed. | |
Lemma mem_seq3 x y z t : (x \in [:: y; z; t]) = xpred3 y z t x. | |
Proof. by rewrite !inE. Qed. | |
Lemma mem_seq4 x y z t u : (x \in [:: y; z; t; u]) = xpred4 y z t u x. | |
Proof. by rewrite !inE. Qed. | |
Lemma mem_cat x s1 s2 : (x \in s1 ++ s2) = (x \in s1) || (x \in s2). | |
Proof. by elim: s1 => //= y s1 IHs; rewrite !inE /= -orbA -IHs. Qed. | |
Lemma mem_rcons s y : rcons s y =i y :: s. | |
Proof. by move=> x; rewrite -cats1 /= mem_cat mem_seq1 orbC in_cons. Qed. | |
Lemma mem_head x s : x \in x :: s. | |
Proof. exact: predU1l. Qed. | |
Lemma mem_last x s : last x s \in x :: s. | |
Proof. by rewrite lastI mem_rcons mem_head. Qed. | |
Lemma mem_behead s : {subset behead s <= s}. | |
Proof. by case: s => // y s x; apply: predU1r. Qed. | |
Lemma mem_belast s y : {subset belast y s <= y :: s}. | |
Proof. by move=> x ys'x; rewrite lastI mem_rcons mem_behead. Qed. | |
Lemma mem_nth s n : n < size s -> nth s n \in s. | |
Proof. | |
by elim: s n => // x s IHs [_|n sz_s]; rewrite ?mem_head // mem_behead ?IHs. | |
Qed. | |
Lemma mem_take s x : x \in take n0 s -> x \in s. | |
Proof. by move=> s0x; rewrite -(cat_take_drop n0 s) mem_cat /= s0x. Qed. | |
Lemma mem_drop s x : x \in drop n0 s -> x \in s. | |
Proof. by move=> s0'x; rewrite -(cat_take_drop n0 s) mem_cat /= s0'x orbT. Qed. | |
Lemma last_eq s z x y : x != y -> z != y -> (last x s == y) = (last z s == y). | |
Proof. by move=> /negPf xz /negPf yz; case: s => [|t s]//; rewrite xz yz. Qed. | |
Section Filters. | |
Implicit Type a : pred T. | |
Lemma hasP {a s} : reflect (exists2 x, x \in s & a x) (has a s). | |
Proof. | |
elim: s => [|y s IHs] /=; first by right; case. | |
exact: equivP (orPP idP IHs) (iff_sym exists_cons). | |
Qed. | |
Lemma allP {a s} : reflect {in s, forall x, a x} (all a s). | |
Proof. | |
elim: s => [|/= y s IHs]; first by left. | |
exact: equivP (andPP idP IHs) (iff_sym forall_cons). | |
Qed. | |
Lemma hasPn a s : reflect {in s, forall x, ~~ a x} (~~ has a s). | |
Proof. by rewrite -all_predC; apply: allP. Qed. | |
Lemma allPn a s : reflect (exists2 x, x \in s & ~~ a x) (~~ all a s). | |
Proof. by rewrite -has_predC; apply: hasP. Qed. | |
Lemma allss s : all (mem s) s. Proof. exact/allP. Qed. | |
Lemma mem_filter a x s : (x \in filter a s) = a x && (x \in s). | |
Proof. | |
rewrite andbC; elim: s => //= y s IHs. | |
rewrite (fun_if (fun s' : seq T => x \in s')) !in_cons {}IHs. | |
by case: eqP => [->|_]; case (a y); rewrite /= ?andbF. | |
Qed. | |
Variables (a : pred T) (s : seq T) (A : T -> Prop). | |
Hypothesis aP : forall x, reflect (A x) (a x). | |
Lemma hasPP : reflect (exists2 x, x \in s & A x) (has a s). | |
Proof. by apply: (iffP hasP) => -[x ? /aP]; exists x. Qed. | |
Lemma allPP : reflect {in s, forall x, A x} (all a s). | |
Proof. by apply: (iffP allP) => a_s x /a_s/aP. Qed. | |
End Filters. | |
Notation "'has_ view" := (hasPP _ (fun _ => view)) | |
(at level 4, right associativity, format "''has_' view"). | |
Notation "'all_ view" := (allPP _ (fun _ => view)) | |
(at level 4, right associativity, format "''all_' view"). | |
Section EqIn. | |
Variables a1 a2 : pred T. | |
Lemma eq_in_filter s : {in s, a1 =1 a2} -> filter a1 s = filter a2 s. | |
Proof. by elim: s => //= x s IHs /forall_cons [-> /IHs ->]. Qed. | |
Lemma eq_in_find s : {in s, a1 =1 a2} -> find a1 s = find a2 s. | |
Proof. by elim: s => //= x s IHs /forall_cons [-> /IHs ->]. Qed. | |
Lemma eq_in_count s : {in s, a1 =1 a2} -> count a1 s = count a2 s. | |
Proof. by move/eq_in_filter=> eq_a12; rewrite -!size_filter eq_a12. Qed. | |
Lemma eq_in_all s : {in s, a1 =1 a2} -> all a1 s = all a2 s. | |
Proof. by move=> eq_a12; rewrite !all_count eq_in_count. Qed. | |
Lemma eq_in_has s : {in s, a1 =1 a2} -> has a1 s = has a2 s. | |
Proof. by move/eq_in_filter=> eq_a12; rewrite !has_filter eq_a12. Qed. | |
End EqIn. | |
Lemma eq_has_r s1 s2 : s1 =i s2 -> has^~ s1 =1 has^~ s2. | |
Proof. | |
by move=> Es a; apply/hasP/hasP=> -[x sx ax]; exists x; rewrite ?Es in sx *. | |
Qed. | |
Lemma eq_all_r s1 s2 : s1 =i s2 -> all^~ s1 =1 all^~ s2. | |
Proof. by move=> Es a; apply/negb_inj; rewrite -!has_predC (eq_has_r Es). Qed. | |
Lemma has_sym s1 s2 : has (mem s1) s2 = has (mem s2) s1. | |
Proof. by apply/hasP/hasP=> -[x]; exists x. Qed. | |
Lemma has_pred1 x s : has (pred1 x) s = (x \in s). | |
Proof. by rewrite -(eq_has (mem_seq1^~ x)) (has_sym [:: x]) /= orbF. Qed. | |
Lemma mem_rev s : rev s =i s. | |
Proof. by move=> a; rewrite -!has_pred1 has_rev. Qed. | |
(* Constant sequences, i.e., the image of nseq. *) | |
Definition constant s := if s is x :: s' then all (pred1 x) s' else true. | |
Lemma all_pred1P x s : reflect (s = nseq (size s) x) (all (pred1 x) s). | |
Proof. | |
elim: s => [|y s IHs] /=; first by left. | |
case: eqP => [->{y} | ne_xy]; last by right=> [] [? _]; case ne_xy. | |
by apply: (iffP IHs) => [<- //| []]. | |
Qed. | |
Lemma all_pred1_constant x s : all (pred1 x) s -> constant s. | |
Proof. by case: s => //= y s /andP[/eqP->]. Qed. | |
Lemma all_pred1_nseq x n : all (pred1 x) (nseq n x). | |
Proof. by rewrite all_nseq /= eqxx orbT. Qed. | |
Lemma mem_nseq n x y : (y \in nseq n x) = (0 < n) && (y == x). | |
Proof. by rewrite -has_pred1 has_nseq eq_sym. Qed. | |
Lemma nseqP n x y : reflect (y = x /\ n > 0) (y \in nseq n x). | |
Proof. by rewrite mem_nseq andbC; apply: (iffP andP) => -[/eqP]. Qed. | |
Lemma constant_nseq n x : constant (nseq n x). | |
Proof. exact: all_pred1_constant (all_pred1_nseq x n). Qed. | |
(* Uses x0 *) | |
Lemma constantP s : reflect (exists x, s = nseq (size s) x) (constant s). | |
Proof. | |
apply: (iffP idP) => [| [x ->]]; last exact: constant_nseq. | |
case: s => [|x s] /=; first by exists x0. | |
by move/all_pred1P=> def_s; exists x; rewrite -def_s. | |
Qed. | |
(* Duplicate-freenes. *) | |
Fixpoint uniq s := if s is x :: s' then (x \notin s') && uniq s' else true. | |
Lemma cons_uniq x s : uniq (x :: s) = (x \notin s) && uniq s. | |
Proof. by []. Qed. | |
Lemma cat_uniq s1 s2 : | |
uniq (s1 ++ s2) = [&& uniq s1, ~~ has (mem s1) s2 & uniq s2]. | |
Proof. | |
elim: s1 => [|x s1 IHs]; first by rewrite /= has_pred0. | |
by rewrite has_sym /= mem_cat !negb_or has_sym IHs -!andbA; do !bool_congr. | |
Qed. | |
Lemma uniq_catC s1 s2 : uniq (s1 ++ s2) = uniq (s2 ++ s1). | |
Proof. by rewrite !cat_uniq has_sym andbCA andbA andbC. Qed. | |
Lemma uniq_catCA s1 s2 s3 : uniq (s1 ++ s2 ++ s3) = uniq (s2 ++ s1 ++ s3). | |
Proof. | |
by rewrite !catA -!(uniq_catC s3) !(cat_uniq s3) uniq_catC !has_cat orbC. | |
Qed. | |
Lemma rcons_uniq s x : uniq (rcons s x) = (x \notin s) && uniq s. | |
Proof. by rewrite -cats1 uniq_catC. Qed. | |
Lemma filter_uniq s a : uniq s -> uniq (filter a s). | |
Proof. | |
elim: s => //= x s IHs /andP[s'x]; case: ifP => //= a_x /IHs->. | |
by rewrite mem_filter a_x s'x. | |
Qed. | |
Lemma rot_uniq s : uniq (rot n0 s) = uniq s. | |
Proof. by rewrite /rot uniq_catC cat_take_drop. Qed. | |
Lemma rev_uniq s : uniq (rev s) = uniq s. | |
Proof. | |
elim: s => // x s IHs. | |
by rewrite rev_cons -cats1 cat_uniq /= andbT andbC mem_rev orbF IHs. | |
Qed. | |
Lemma count_memPn x s : reflect (count_mem x s = 0) (x \notin s). | |
Proof. by rewrite -has_pred1 has_count -eqn0Ngt; apply: eqP. Qed. | |
Lemma count_uniq_mem s x : uniq s -> count_mem x s = (x \in s). | |
Proof. | |
elim: s => //= y s IHs /andP[/negbTE s'y /IHs-> {IHs}]. | |
by rewrite in_cons; case: (eqVneq y x) => // <-; rewrite s'y. | |
Qed. | |
Lemma leq_uniq_countP x s1 s2 : uniq s1 -> | |
reflect (x \in s1 -> x \in s2) (count_mem x s1 <= count_mem x s2). | |
Proof. | |
move/count_uniq_mem->; case: (boolP (_ \in _)) => //= _; last by constructor. | |
by rewrite -has_pred1 has_count; apply: (iffP idP) => //; apply. | |
Qed. | |
Lemma leq_uniq_count s1 s2 : uniq s1 -> {subset s1 <= s2} -> | |
(forall x, count_mem x s1 <= count_mem x s2). | |
Proof. by move=> s1_uniq s1_s2 x; apply/leq_uniq_countP/s1_s2. Qed. | |
Lemma filter_pred1_uniq s x : uniq s -> x \in s -> filter (pred1 x) s = [:: x]. | |
Proof. | |
move=> uniq_s s_x; rewrite (all_pred1P _ _ (filter_all _ _)). | |
by rewrite size_filter count_uniq_mem ?s_x. | |
Qed. | |
(* Removing duplicates *) | |
Fixpoint undup s := | |
if s is x :: s' then if x \in s' then undup s' else x :: undup s' else [::]. | |
Lemma size_undup s : size (undup s) <= size s. | |
Proof. by elim: s => //= x s IHs; case: (x \in s) => //=; apply: ltnW. Qed. | |
Lemma mem_undup s : undup s =i s. | |
Proof. | |
move=> x; elim: s => //= y s IHs. | |
by case s_y: (y \in s); rewrite !inE IHs //; case: eqP => [->|]. | |
Qed. | |
Lemma undup_uniq s : uniq (undup s). | |
Proof. | |
by elim: s => //= x s IHs; case s_x: (x \in s); rewrite //= mem_undup s_x. | |
Qed. | |
Lemma undup_id s : uniq s -> undup s = s. | |
Proof. by elim: s => //= x s IHs /andP[/negbTE-> /IHs->]. Qed. | |
Lemma ltn_size_undup s : (size (undup s) < size s) = ~~ uniq s. | |
Proof. | |
by elim: s => //= x s IHs; case s_x: (x \in s); rewrite //= ltnS size_undup. | |
Qed. | |
Lemma filter_undup p s : filter p (undup s) = undup (filter p s). | |
Proof. | |
elim: s => //= x s IHs; rewrite (fun_if undup) fun_if /= mem_filter /=. | |
by rewrite (fun_if (filter p)) /= IHs; case: ifP => -> //=; apply: if_same. | |
Qed. | |
Lemma undup_nil s : undup s = [::] -> s = [::]. | |
Proof. by case: s => //= x s; rewrite -mem_undup; case: ifP; case: undup. Qed. | |
Lemma undup_cat s t : | |
undup (s ++ t) = [seq x <- undup s | x \notin t] ++ undup t. | |
Proof. by elim: s => //= x s ->; rewrite mem_cat; do 2 case: in_mem => //=. Qed. | |
Lemma undup_rcons s x : undup (rcons s x) = rcons [seq y <- undup s | y != x] x. | |
Proof. | |
by rewrite -!cats1 undup_cat; congr cat; apply: eq_filter => y; rewrite inE. | |
Qed. | |
Lemma count_undup s p : count p (undup s) <= count p s. | |
Proof. by rewrite -!size_filter filter_undup size_undup. Qed. | |
(* Lookup *) | |
Definition index x := find (pred1 x). | |
Lemma index_size x s : index x s <= size s. | |
Proof. by rewrite /index find_size. Qed. | |
Lemma index_mem x s : (index x s < size s) = (x \in s). | |
Proof. by rewrite -has_pred1 has_find. Qed. | |
Lemma memNindex x s : x \notin s -> index x s = size s. | |
Proof. by rewrite -has_pred1 => /hasNfind. Qed. | |
Lemma nth_index x s : x \in s -> nth s (index x s) = x. | |
Proof. by rewrite -has_pred1 => /(nth_find x0)/eqP. Qed. | |
Lemma index_cat x s1 s2 : | |
index x (s1 ++ s2) = if x \in s1 then index x s1 else size s1 + index x s2. | |
Proof. by rewrite /index find_cat has_pred1. Qed. | |
Lemma index_ltn x s i : x \in take i s -> index x s < i. | |
Proof. by rewrite -has_pred1; apply: find_ltn. Qed. | |
Lemma in_take x s i : x \in s -> (x \in take i s) = (index x s < i). | |
Proof. by rewrite -?has_pred1; apply: has_take. Qed. | |
Lemma in_take_leq x s i : i <= size s -> (x \in take i s) = (index x s < i). | |
Proof. by rewrite -?has_pred1; apply: has_take_leq. Qed. | |
Lemma nthK s: uniq s -> {in gtn (size s), cancel (nth s) (index^~ s)}. | |
Proof. | |
elim: s => //= x s IHs /andP[s'x Us] i; rewrite inE ltnS eq_sym -if_neg. | |
by case: i => /= [_|i lt_i_s]; rewrite ?eqxx ?IHs ?(memPn s'x) ?mem_nth. | |
Qed. | |
Lemma index_uniq i s : i < size s -> uniq s -> index (nth s i) s = i. | |
Proof. by move/nthK. Qed. | |
Lemma index_head x s : index x (x :: s) = 0. | |
Proof. by rewrite /= eqxx. Qed. | |
Lemma index_last x s : uniq (x :: s) -> index (last x s) (x :: s) = size s. | |
Proof. | |
rewrite lastI rcons_uniq -cats1 index_cat size_belast. | |
by case: ifP => //=; rewrite eqxx addn0. | |
Qed. | |
Lemma nth_uniq s i j : | |
i < size s -> j < size s -> uniq s -> (nth s i == nth s j) = (i == j). | |
Proof. by move=> lti ltj /nthK/can_in_eq->. Qed. | |
Lemma uniqPn s : | |
reflect (exists i j, [/\ i < j, j < size s & nth s i = nth s j]) (~~ uniq s). | |
Proof. | |
apply: (iffP idP) => [|[i [j [ltij ltjs]]]]; last first. | |
by apply: contra_eqN => Us; rewrite nth_uniq ?ltn_eqF // (ltn_trans ltij). | |
elim: s => // x s IHs /nandP[/negbNE | /IHs[i [j]]]; last by exists i.+1, j.+1. | |
by exists 0, (index x s).+1; rewrite !ltnS index_mem /= nth_index. | |
Qed. | |
Lemma uniqP s : reflect {in gtn (size s) &, injective (nth s)} (uniq s). | |
Proof. | |
apply: (iffP idP) => [/nthK/can_in_inj// | nth_inj]. | |
apply/uniqPn => -[i [j [ltij ltjs /nth_inj/eqP/idPn]]]. | |
by rewrite !inE (ltn_trans ltij ltjs) ltn_eqF //=; case. | |
Qed. | |
Lemma mem_rot s : rot n0 s =i s. | |
Proof. by move=> x; rewrite -[s in RHS](cat_take_drop n0) !mem_cat /= orbC. Qed. | |
Lemma eqseq_rot s1 s2 : (rot n0 s1 == rot n0 s2) = (s1 == s2). | |
Proof. exact/inj_eq/rot_inj. Qed. | |
Lemma drop_index s (n := index x0 s) : x0 \in s -> drop n s = x0 :: drop n.+1 s. | |
Proof. by move=> xs; rewrite (drop_nth x0) ?index_mem ?nth_index. Qed. | |
(* lemmas about the pivot pattern [_ ++ _ :: _] *) | |
Lemma index_pivot x s1 s2 (s := s1 ++ x :: s2) : x \notin s1 -> | |
index x s = size s1. | |
Proof. by rewrite index_cat/= eqxx addn0; case: ifPn. Qed. | |
Lemma take_pivot x s2 s1 (s := s1 ++ x :: s2) : x \notin s1 -> | |
take (index x s) s = s1. | |
Proof. by move=> /index_pivot->; rewrite take_size_cat. Qed. | |
Lemma rev_pivot x s1 s2 : rev (s1 ++ x :: s2) = rev s2 ++ x :: rev s1. | |
Proof. by rewrite rev_cat rev_cons cat_rcons. Qed. | |
Lemma eqseq_pivot2l x s1 s2 s3 s4 : x \notin s1 -> x \notin s3 -> | |
(s1 ++ x :: s2 == s3 ++ x :: s4) = (s1 == s3) && (s2 == s4). | |
Proof. | |
move=> xNs1 xNs3; apply/idP/idP => [E|/andP[/eqP-> /eqP->]//]. | |
suff S : size s1 = size s3 by rewrite eqseq_cat// eqseq_cons eqxx in E. | |
by rewrite -(index_pivot s2 xNs1) (eqP E) index_pivot. | |
Qed. | |
Lemma eqseq_pivot2r x s1 s2 s3 s4 : x \notin s2 -> x \notin s4 -> | |
(s1 ++ x :: s2 == s3 ++ x :: s4) = (s1 == s3) && (s2 == s4). | |
Proof. | |
move=> xNs2 xNs4; rewrite -(can_eq revK) !rev_pivot. | |
by rewrite eqseq_pivot2l ?mem_rev // !(can_eq revK) andbC. | |
Qed. | |
Lemma eqseq_pivotl x s1 s2 s3 s4 : x \notin s1 -> x \notin s2 -> | |
(s1 ++ x :: s2 == s3 ++ x :: s4) = (s1 == s3) && (s2 == s4). | |
Proof. | |
move=> xNs1 xNs2; apply/idP/idP => [E|/andP[/eqP-> /eqP->]//]. | |
rewrite -(@eqseq_pivot2l x)//; have /eqP/(congr1 (count_mem x)) := E. | |
rewrite !count_cat/= eqxx !addnS (count_memPn _ _ xNs1) (count_memPn _ _ xNs2). | |
by move=> -[/esym/eqP]; rewrite addn_eq0 => /andP[/eqP/count_memPn]. | |
Qed. | |
Lemma eqseq_pivotr x s1 s2 s3 s4 : x \notin s3 -> x \notin s4 -> | |
(s1 ++ x :: s2 == s3 ++ x :: s4) = (s1 == s3) && (s2 == s4). | |
Proof. by move=> *; rewrite eq_sym eqseq_pivotl//; case: eqVneq => /=. Qed. | |
Lemma uniq_eqseq_pivotl x s1 s2 s3 s4 : uniq (s1 ++ x :: s2) -> | |
(s1 ++ x :: s2 == s3 ++ x :: s4) = (s1 == s3) && (s2 == s4). | |
Proof. | |
by rewrite uniq_catC/= mem_cat => /andP[/norP[? ?] _]; rewrite eqseq_pivotl. | |
Qed. | |
Lemma uniq_eqseq_pivotr x s1 s2 s3 s4 : uniq (s3 ++ x :: s4) -> | |
(s1 ++ x :: s2 == s3 ++ x :: s4) = (s1 == s3) && (s2 == s4). | |
Proof. by move=> ?; rewrite eq_sym uniq_eqseq_pivotl//; case: eqVneq => /=. Qed. | |
End EqSeq. | |
Arguments eqseq : simpl nomatch. | |
Section RotIndex. | |
Variables (T : eqType). | |
Implicit Types x y z : T. | |
Lemma rot_index s x (i := index x s) : x \in s -> | |
rot i s = x :: (drop i.+1 s ++ take i s). | |
Proof. by move=> x_s; rewrite /rot drop_index. Qed. | |
Variant rot_to_spec s x := RotToSpec i s' of rot i s = x :: s'. | |
Lemma rot_to s x : x \in s -> rot_to_spec s x. | |
Proof. by move=> /rot_index /RotToSpec. Qed. | |
End RotIndex. | |
Definition inE := (mem_seq1, in_cons, inE). | |
Prenex Implicits mem_seq1 constant uniq undup index. | |
Arguments eqseq {T} !_ !_. | |
Arguments pred_of_seq {T} s x /. | |
Arguments eqseqP {T x y}. | |
Arguments hasP {T a s}. | |
Arguments hasPn {T a s}. | |
Arguments allP {T a s}. | |
Arguments allPn {T a s}. | |
Arguments nseqP {T n x y}. | |
Arguments count_memPn {T x s}. | |
Arguments uniqPn {T} x0 {s}. | |
Arguments uniqP {T} x0 {s}. | |
Arguments forall_cons {T P a s}. | |
Arguments exists_cons {T P a s}. | |
(* Since both `all (mem s) s` and `all (pred_of_seq s) s` may appear in *) | |
(* goals, the following hint has to be declared using the `Hint Extern` *) | |
(* command. Additionally, `mem` and `pred_of_seq` in the above terms do not *) | |
(* reduce to each other; thus, stating `allss` in the form of one of them *) | |
(* makes `apply: allss` failing for the other case. Since both `mem` and *) | |
(* `pred_of_seq` reduce to `mem_seq`, the following explicit type annotation *) | |
(* for `allss` makes it work for both cases. *) | |
#[global] Hint Extern 0 (is_true (all _ _)) => | |
apply: (allss : forall T s, all (mem_seq s) s) : core. | |
Section NthTheory. | |
Lemma nthP (T : eqType) (s : seq T) x x0 : | |
reflect (exists2 i, i < size s & nth x0 s i = x) (x \in s). | |
Proof. | |
apply: (iffP idP) => [|[n Hn <-]]; last exact: mem_nth. | |
by exists (index x s); [rewrite index_mem | apply nth_index]. | |
Qed. | |
Variable T : Type. | |
Implicit Types (a : pred T) (x : T). | |
Lemma has_nthP a s x0 : | |
reflect (exists2 i, i < size s & a (nth x0 s i)) (has a s). | |
Proof. | |
elim: s => [|x s IHs] /=; first by right; case. | |
case nax: (a x); first by left; exists 0. | |
by apply: (iffP IHs) => [[i]|[[|i]]]; [exists i.+1 | rewrite nax | exists i]. | |
Qed. | |
Lemma all_nthP a s x0 : | |
reflect (forall i, i < size s -> a (nth x0 s i)) (all a s). | |
Proof. | |
rewrite -(eq_all (fun x => negbK (a x))) all_predC. | |
case: (has_nthP _ _ x0) => [na_s | a_s]; [right=> a_s | left=> i lti]. | |
by case: na_s => i lti; rewrite a_s. | |
by apply/idPn=> na_si; case: a_s; exists i. | |
Qed. | |
Lemma set_nthE s x0 n x : | |
set_nth x0 s n x = if n < size s | |
then take n s ++ x :: drop n.+1 s | |
else s ++ ncons (n - size s) x0 [:: x]. | |
Proof. | |
elim: s n => [|a s IH] n /=; first by rewrite subn0 set_nth_nil. | |
case: n => [|n]; first by rewrite drop0. | |
by rewrite ltnS /=; case: ltnP (IH n) => _ ->. | |
Qed. | |
Lemma count_set_nth a s x0 n x : | |
count a (set_nth x0 s n x) = | |
count a s + a x - a (nth x0 s n) * (n < size s) + (a x0) * (n - size s). | |
Proof. | |
rewrite set_nthE; case: ltnP => [nlts|nges]; last first. | |
rewrite -cat_nseq !count_cat count_nseq /=. | |
by rewrite muln0 addn0 subn0 addnAC addnA. | |
have -> : n - size s = 0 by apply/eqP; rewrite subn_eq0 ltnW. | |
rewrite -[in count a s](cat_take_drop n s) [drop n s](drop_nth x0)//. | |
by rewrite !count_cat/= muln1 muln0 addn0 addnAC !addnA [in RHS]addnAC addnK. | |
Qed. | |
Lemma count_set_nth_ltn a s x0 n x : n < size s -> | |
count a (set_nth x0 s n x) = count a s + a x - a (nth x0 s n). | |
Proof. | |
move=> nlts; rewrite count_set_nth nlts muln1. | |
have -> : n - size s = 0 by apply/eqP; rewrite subn_eq0 ltnW. | |
by rewrite muln0 addn0. | |
Qed. | |
Lemma count_set_nthF a s x0 n x : ~~ a x0 -> | |
count a (set_nth x0 s n x) = count a s + a x - a (nth x0 s n). | |
Proof. | |
move=> /negbTE ax0; rewrite count_set_nth ax0 mul0n addn0. | |
case: ltnP => [_|nges]; first by rewrite muln1. | |
by rewrite nth_default// ax0 subn0. | |
Qed. | |
End NthTheory. | |
Lemma set_nth_default T s (y0 x0 : T) n : n < size s -> nth x0 s n = nth y0 s n. | |
Proof. by elim: s n => [|y s' IHs] [|n] //= /IHs. Qed. | |
Lemma headI T s (x : T) : rcons s x = head x s :: behead (rcons s x). | |
Proof. by case: s. Qed. | |
Arguments nthP {T s x}. | |
Arguments has_nthP {T a s}. | |
Arguments all_nthP {T a s}. | |
Definition bitseq := seq bool. | |
Canonical bitseq_eqType := Eval hnf in [eqType of bitseq]. | |
Canonical bitseq_predType := Eval hnf in [predType of bitseq]. | |
(* Generalizations of splitP (from path.v): split_find_nth and split_find *) | |
Section FindNth. | |
Variables (T : Type). | |
Implicit Types (x : T) (p : pred T) (s : seq T). | |
Variant split_find_nth_spec p : seq T -> seq T -> seq T -> T -> Type := | |
FindNth x s1 s2 of p x & ~~ has p s1 : | |
split_find_nth_spec p (rcons s1 x ++ s2) s1 s2 x. | |
Lemma split_find_nth x0 p s (i := find p s) : | |
has p s -> split_find_nth_spec p s (take i s) (drop i.+1 s) (nth x0 s i). | |
Proof. | |
move=> p_s; rewrite -[X in split_find_nth_spec _ X](cat_take_drop i s). | |
rewrite (drop_nth x0 _) -?has_find// -cat_rcons. | |
by constructor; [apply: nth_find | rewrite has_take -?leqNgt]. | |
Qed. | |
Variant split_find_spec p : seq T -> seq T -> seq T -> Type := | |
FindSplit x s1 s2 of p x & ~~ has p s1 : | |
split_find_spec p (rcons s1 x ++ s2) s1 s2. | |
Lemma split_find p s (i := find p s) : | |
has p s -> split_find_spec p s (take i s) (drop i.+1 s). | |
Proof. | |
by case: s => // x ? in i * => ?; case: split_find_nth => //; constructor. | |
Qed. | |
Lemma nth_rcons_cat_find x0 p s1 s2 x (s := rcons s1 x ++ s2) : | |
p x -> ~~ has p s1 -> nth x0 s (find p s) = x. | |
Proof. | |
move=> pz pNs1; rewrite /s cat_rcons find_cat (negPf pNs1). | |
by rewrite nth_cat/= pz addn0 subnn ltnn. | |
Qed. | |
End FindNth. | |
(* Incrementing the ith nat in a seq nat, padding with 0's if needed. This *) | |
(* allows us to use nat seqs as bags of nats. *) | |
Fixpoint incr_nth v i {struct i} := | |
if v is n :: v' then if i is i'.+1 then n :: incr_nth v' i' else n.+1 :: v' | |
else ncons i 0 [:: 1]. | |
Arguments incr_nth : simpl nomatch. | |
Lemma nth_incr_nth v i j : nth 0 (incr_nth v i) j = (i == j) + nth 0 v j. | |
Proof. | |
elim: v i j => [|n v IHv] [|i] [|j] //=; rewrite ?eqSS ?addn0 //; try by case j. | |
elim: i j => [|i IHv] [|j] //=; rewrite ?eqSS //; by case j. | |
Qed. | |
Lemma size_incr_nth v i : | |
size (incr_nth v i) = if i < size v then size v else i.+1. | |
Proof. | |
elim: v i => [|n v IHv] [|i] //=; first by rewrite size_ncons /= addn1. | |
by rewrite IHv; apply: fun_if. | |
Qed. | |
Lemma incr_nth_inj v : injective (incr_nth v). | |
Proof. | |
move=> i j /(congr1 (nth 0 ^~ i)); apply: contra_eq => neq_ij. | |
by rewrite !nth_incr_nth eqn_add2r eqxx /nat_of_bool ifN_eqC. | |
Qed. | |
Lemma incr_nthC v i j : | |
incr_nth (incr_nth v i) j = incr_nth (incr_nth v j) i. | |
Proof. | |
apply: (@eq_from_nth _ 0) => [|k _]; last by rewrite !nth_incr_nth addnCA. | |
by do !rewrite size_incr_nth leqNgt if_neg -/(maxn _ _); apply: maxnAC. | |
Qed. | |
(* Equality up to permutation *) | |
Section PermSeq. | |
Variable T : eqType. | |
Implicit Type s : seq T. | |
Definition perm_eq s1 s2 := | |
all [pred x | count_mem x s1 == count_mem x s2] (s1 ++ s2). | |
Lemma permP s1 s2 : reflect (count^~ s1 =1 count^~ s2) (perm_eq s1 s2). | |
Proof. | |
apply: (iffP allP) => /= [eq_cnt1 a | eq_cnt x _]; last exact/eqP. | |
have [n le_an] := ubnP (count a (s1 ++ s2)); elim: n => // n IHn in a le_an *. | |
have [/eqP|] := posnP (count a (s1 ++ s2)). | |
by rewrite count_cat addn_eq0; do 2!case: eqP => // ->. | |
rewrite -has_count => /hasP[x s12x a_x]; pose a' := predD1 a x. | |
have cnt_a' s: count a s = count_mem x s + count a' s. | |
rewrite -count_predUI -[LHS]addn0 -(count_pred0 s). | |
by congr (_ + _); apply: eq_count => y /=; case: eqP => // ->. | |
rewrite !cnt_a' (eqnP (eq_cnt1 _ s12x)) (IHn a') // -ltnS. | |
apply: leq_trans le_an. | |
by rewrite ltnS cnt_a' -add1n leq_add2r -has_count has_pred1. | |
Qed. | |
Lemma perm_refl s : perm_eq s s. | |
Proof. exact/permP. Qed. | |
Hint Resolve perm_refl : core. | |
Lemma perm_sym : symmetric perm_eq. | |
Proof. by move=> s1 s2; apply/permP/permP=> eq_s12 a. Qed. | |
Lemma perm_trans : transitive perm_eq. | |
Proof. by move=> s2 s1 s3 /permP-eq12 /permP/(ftrans eq12)/permP. Qed. | |
Notation perm_eql s1 s2 := (perm_eq s1 =1 perm_eq s2). | |
Notation perm_eqr s1 s2 := (perm_eq^~ s1 =1 perm_eq^~ s2). | |
Lemma permEl s1 s2 : perm_eql s1 s2 -> perm_eq s1 s2. Proof. by move->. Qed. | |
Lemma permPl s1 s2 : reflect (perm_eql s1 s2) (perm_eq s1 s2). | |
Proof. | |
apply: (iffP idP) => [eq12 s3 | -> //]; apply/idP/idP; last exact: perm_trans. | |
by rewrite -!(perm_sym s3) => /perm_trans; apply. | |
Qed. | |
Lemma permPr s1 s2 : reflect (perm_eqr s1 s2) (perm_eq s1 s2). | |
Proof. | |
by apply/(iffP idP) => [/permPl eq12 s3| <- //]; rewrite !(perm_sym s3) eq12. | |
Qed. | |
Lemma perm_catC s1 s2 : perm_eql (s1 ++ s2) (s2 ++ s1). | |
Proof. by apply/permPl/permP=> a; rewrite !count_cat addnC. Qed. | |
Lemma perm_cat2l s1 s2 s3 : perm_eq (s1 ++ s2) (s1 ++ s3) = perm_eq s2 s3. | |
Proof. | |
apply/permP/permP=> eq23 a; apply/eqP; | |
by move/(_ a)/eqP: eq23; rewrite !count_cat eqn_add2l. | |
Qed. | |
Lemma perm_catl s t1 t2 : perm_eq t1 t2 -> perm_eql (s ++ t1) (s ++ t2). | |
Proof. by move=> eq_t12; apply/permPl; rewrite perm_cat2l. Qed. | |
Lemma perm_cons x s1 s2 : perm_eq (x :: s1) (x :: s2) = perm_eq s1 s2. | |
Proof. exact: (perm_cat2l [::x]). Qed. | |
Lemma perm_cat2r s1 s2 s3 : perm_eq (s2 ++ s1) (s3 ++ s1) = perm_eq s2 s3. | |
Proof. by do 2!rewrite perm_sym perm_catC; apply: perm_cat2l. Qed. | |
Lemma perm_catr s1 s2 t : perm_eq s1 s2 -> perm_eql (s1 ++ t) (s2 ++ t). | |
Proof. by move=> eq_s12; apply/permPl; rewrite perm_cat2r. Qed. | |
Lemma perm_cat s1 s2 t1 t2 : | |
perm_eq s1 s2 -> perm_eq t1 t2 -> perm_eq (s1 ++ t1) (s2 ++ t2). | |
Proof. by move=> /perm_catr-> /perm_catl->. Qed. | |
Lemma perm_catAC s1 s2 s3 : perm_eql ((s1 ++ s2) ++ s3) ((s1 ++ s3) ++ s2). | |
Proof. by apply/permPl; rewrite -!catA perm_cat2l perm_catC. Qed. | |
Lemma perm_catCA s1 s2 s3 : perm_eql (s1 ++ s2 ++ s3) (s2 ++ s1 ++ s3). | |
Proof. by apply/permPl; rewrite !catA perm_cat2r perm_catC. Qed. | |
Lemma perm_catACA s1 s2 s3 s4 : | |
perm_eql ((s1 ++ s2) ++ (s3 ++ s4)) ((s1 ++ s3) ++ (s2 ++ s4)). | |
Proof. by apply/permPl; rewrite perm_catAC !catA perm_catAC. Qed. | |
Lemma perm_rcons x s : perm_eql (rcons s x) (x :: s). | |
Proof. by move=> /= s2; rewrite -cats1 perm_catC. Qed. | |
Lemma perm_rot n s : perm_eql (rot n s) s. | |
Proof. by move=> /= s2; rewrite perm_catC cat_take_drop. Qed. | |
Lemma perm_rotr n s : perm_eql (rotr n s) s. | |
Proof. exact: perm_rot. Qed. | |
Lemma perm_rev s : perm_eql (rev s) s. | |
Proof. by apply/permPl/permP=> i; rewrite count_rev. Qed. | |
Lemma perm_filter s1 s2 a : | |
perm_eq s1 s2 -> perm_eq (filter a s1) (filter a s2). | |
Proof. by move/permP=> s12_count; apply/permP=> Q; rewrite !count_filter. Qed. | |
Lemma perm_filterC a s : perm_eql (filter a s ++ filter (predC a) s) s. | |
Proof. | |
apply/permPl; elim: s => //= x s IHs. | |
by case: (a x); last rewrite /= -cat1s perm_catCA; rewrite perm_cons. | |
Qed. | |
Lemma perm_size s1 s2 : perm_eq s1 s2 -> size s1 = size s2. | |
Proof. by move/permP=> eq12; rewrite -!count_predT eq12. Qed. | |
Lemma perm_mem s1 s2 : perm_eq s1 s2 -> s1 =i s2. | |
Proof. by move/permP=> eq12 x; rewrite -!has_pred1 !has_count eq12. Qed. | |
Lemma perm_nilP s : reflect (s = [::]) (perm_eq s [::]). | |
Proof. by apply: (iffP idP) => [/perm_size/eqP/nilP | ->]. Qed. | |
Lemma perm_consP x s t : | |
reflect (exists i u, rot i t = x :: u /\ perm_eq u s) | |
(perm_eq t (x :: s)). | |
Proof. | |
apply: (iffP idP) => [eq_txs | [i [u [Dt eq_us]]]]. | |
have /rot_to[i u Dt]: x \in t by rewrite (perm_mem eq_txs) mem_head. | |
by exists i, u; rewrite -(perm_cons x) -Dt perm_rot. | |
by rewrite -(perm_rot i) Dt perm_cons. | |
Qed. | |
Lemma perm_has s1 s2 a : perm_eq s1 s2 -> has a s1 = has a s2. | |
Proof. by move/perm_mem/eq_has_r. Qed. | |
Lemma perm_all s1 s2 a : perm_eq s1 s2 -> all a s1 = all a s2. | |
Proof. by move/perm_mem/eq_all_r. Qed. | |
Lemma perm_small_eq s1 s2 : size s2 <= 1 -> perm_eq s1 s2 -> s1 = s2. | |
Proof. | |
move=> s2_le1 eqs12; move/perm_size: eqs12 s2_le1 (perm_mem eqs12). | |
by case: s2 s1 => [|x []] // [|y []] // _ _ /(_ x) /[!(inE, eqxx)] /eqP->. | |
Qed. | |
Lemma uniq_leq_size s1 s2 : uniq s1 -> {subset s1 <= s2} -> size s1 <= size s2. | |
Proof. | |
elim: s1 s2 => //= x s1 IHs s2 /andP[not_s1x Us1] /forall_cons[s2x ss12]. | |
have [i s3 def_s2] := rot_to s2x; rewrite -(size_rot i s2) def_s2. | |
apply: IHs => // y s1y; have:= ss12 y s1y. | |
by rewrite -(mem_rot i) def_s2 inE (negPf (memPn _ y s1y)). | |
Qed. | |
Lemma leq_size_uniq s1 s2 : | |
uniq s1 -> {subset s1 <= s2} -> size s2 <= size s1 -> uniq s2. | |
Proof. | |
elim: s1 s2 => [[] | x s1 IHs s2] // Us1x; have /andP[not_s1x Us1] := Us1x. | |
case/forall_cons => /rot_to[i s3 def_s2] ss12 le_s21. | |
rewrite -(rot_uniq i) -(size_rot i) def_s2 /= in le_s21 *. | |
have ss13 y (s1y : y \in s1): y \in s3. | |
by have:= ss12 y s1y; rewrite -(mem_rot i) def_s2 inE (negPf (memPn _ y s1y)). | |
rewrite IHs // andbT; apply: contraL _ le_s21 => s3x; rewrite -leqNgt. | |
by apply/(uniq_leq_size Us1x)/allP; rewrite /= s3x; apply/allP. | |
Qed. | |
Lemma uniq_size_uniq s1 s2 : | |
uniq s1 -> s1 =i s2 -> uniq s2 = (size s2 == size s1). | |
Proof. | |
move=> Us1 eqs12; apply/idP/idP=> [Us2 | /eqP eq_sz12]. | |
by rewrite eqn_leq !uniq_leq_size // => y; rewrite eqs12. | |
by apply: (leq_size_uniq Us1) => [y|]; rewrite (eqs12, eq_sz12). | |
Qed. | |
Lemma uniq_min_size s1 s2 : | |
uniq s1 -> {subset s1 <= s2} -> size s2 <= size s1 -> | |
(size s1 = size s2) * (s1 =i s2). | |
Proof. | |
move=> Us1 ss12 le_s21; have Us2: uniq s2 := leq_size_uniq Us1 ss12 le_s21. | |
suffices: s1 =i s2 by split; first by apply/eqP; rewrite -uniq_size_uniq. | |
move=> x; apply/idP/idP=> [/ss12// | s2x]; apply: contraLR le_s21 => not_s1x. | |
rewrite -ltnNge (@uniq_leq_size (x :: s1)) /= ?not_s1x //. | |
by apply/allP; rewrite /= s2x; apply/allP. | |
Qed. | |
Lemma eq_uniq s1 s2 : size s1 = size s2 -> s1 =i s2 -> uniq s1 = uniq s2. | |
Proof. | |
move=> eq_sz12 eq_s12. | |
by apply/idP/idP=> Us; rewrite (uniq_size_uniq Us) ?eq_sz12 ?eqxx. | |
Qed. | |
Lemma perm_uniq s1 s2 : perm_eq s1 s2 -> uniq s1 = uniq s2. | |
Proof. by move=> eq_s12; apply/eq_uniq; [apply/perm_size | apply/perm_mem]. Qed. | |
Lemma uniq_perm s1 s2 : uniq s1 -> uniq s2 -> s1 =i s2 -> perm_eq s1 s2. | |
Proof. | |
move=> Us1 Us2 eq12; apply/allP=> x _; apply/eqP. | |
by rewrite !count_uniq_mem ?eq12. | |
Qed. | |
Lemma perm_undup s1 s2 : s1 =i s2 -> perm_eq (undup s1) (undup s2). | |
Proof. | |
by move=> Es12; rewrite uniq_perm ?undup_uniq // => s; rewrite !mem_undup. | |
Qed. | |
Lemma count_mem_uniq s : (forall x, count_mem x s = (x \in s)) -> uniq s. | |
Proof. | |
move=> count1_s; have Uus := undup_uniq s. | |
suffices: perm_eq s (undup s) by move/perm_uniq->. | |
by apply/allP=> x _; apply/eqP; rewrite (count_uniq_mem x Uus) mem_undup. | |
Qed. | |
Lemma eq_count_undup a s1 s2 : | |
{in a, s1 =i s2} -> count a (undup s1) = count a (undup s2). | |
Proof. | |
move=> s1_eq_s2; rewrite -!size_filter !filter_undup. | |
apply/perm_size/perm_undup => x. | |
by rewrite !mem_filter; case: (boolP (a x)) => //= /s1_eq_s2. | |
Qed. | |
Lemma catCA_perm_ind P : | |
(forall s1 s2 s3, P (s1 ++ s2 ++ s3) -> P (s2 ++ s1 ++ s3)) -> | |
(forall s1 s2, perm_eq s1 s2 -> P s1 -> P s2). | |
Proof. | |
move=> PcatCA s1 s2 eq_s12; rewrite -[s1]cats0 -[s2]cats0. | |
elim: s2 nil => [|x s2 IHs] s3 in s1 eq_s12 *. | |
by case: s1 {eq_s12}(perm_size eq_s12). | |
have /rot_to[i s' def_s1]: x \in s1 by rewrite (perm_mem eq_s12) mem_head. | |
rewrite -(cat_take_drop i s1) -catA => /PcatCA. | |
rewrite catA -/(rot i s1) def_s1 /= -cat1s => /PcatCA/IHs/PcatCA; apply. | |
by rewrite -(perm_cons x) -def_s1 perm_rot. | |
Qed. | |
Lemma catCA_perm_subst R F : | |
(forall s1 s2 s3, F (s1 ++ s2 ++ s3) = F (s2 ++ s1 ++ s3) :> R) -> | |
(forall s1 s2, perm_eq s1 s2 -> F s1 = F s2). | |
Proof. | |
move=> FcatCA s1 s2 /catCA_perm_ind => ind_s12. | |
by apply: (ind_s12 (eq _ \o F)) => //= *; rewrite FcatCA. | |
Qed. | |
End PermSeq. | |
Notation perm_eql s1 s2 := (perm_eq s1 =1 perm_eq s2). | |
Notation perm_eqr s1 s2 := (perm_eq^~ s1 =1 perm_eq^~ s2). | |
Arguments permP {T s1 s2}. | |
Arguments permPl {T s1 s2}. | |
Arguments permPr {T s1 s2}. | |
Prenex Implicits perm_eq. | |
#[global] Hint Resolve perm_refl : core. | |
Section RotrLemmas. | |
Variables (n0 : nat) (T : Type) (T' : eqType). | |
Implicit Types (x : T) (s : seq T). | |
Lemma size_rotr s : size (rotr n0 s) = size s. | |
Proof. by rewrite size_rot. Qed. | |
Lemma mem_rotr (s : seq T') : rotr n0 s =i s. | |
Proof. by move=> x; rewrite mem_rot. Qed. | |
Lemma rotr_size_cat s1 s2 : rotr (size s2) (s1 ++ s2) = s2 ++ s1. | |
Proof. by rewrite /rotr size_cat addnK rot_size_cat. Qed. | |
Lemma rotr1_rcons x s : rotr 1 (rcons s x) = x :: s. | |
Proof. by rewrite -rot1_cons rotK. Qed. | |
Lemma has_rotr a s : has a (rotr n0 s) = has a s. | |
Proof. by rewrite has_rot. Qed. | |
Lemma rotr_uniq (s : seq T') : uniq (rotr n0 s) = uniq s. | |
Proof. by rewrite rot_uniq. Qed. | |
Lemma rotrK : cancel (@rotr T n0) (rot n0). | |
Proof. | |
move=> s; have [lt_n0s | ge_n0s] := ltnP n0 (size s). | |
by rewrite -{1}(subKn (ltnW lt_n0s)) -{1}[size s]size_rotr; apply: rotK. | |
by rewrite -[in RHS](rot_oversize ge_n0s) /rotr (eqnP ge_n0s) rot0. | |
Qed. | |
Lemma rotr_inj : injective (@rotr T n0). | |
Proof. exact (can_inj rotrK). Qed. | |
Lemma take_rev s : take n0 (rev s) = rev (drop (size s - n0) s). | |
Proof. | |
set m := _ - n0; rewrite -[s in LHS](cat_take_drop m) rev_cat take_cat. | |
rewrite size_rev size_drop -minnE minnC leq_min ltnn /m. | |
by have [_|/eqnP->] := ltnP; rewrite ?subnn take0 cats0. | |
Qed. | |
Lemma rev_take s : rev (take n0 s) = drop (size s - n0) (rev s). | |
Proof. by rewrite -[s in take _ s]revK take_rev revK size_rev. Qed. | |
Lemma drop_rev s : drop n0 (rev s) = rev (take (size s - n0) s). | |
Proof. | |
set m := _ - n0; rewrite -[s in LHS](cat_take_drop m) rev_cat drop_cat. | |
rewrite size_rev size_drop -minnE minnC leq_min ltnn /m. | |
by have [_|/eqnP->] := ltnP; rewrite ?take0 // subnn drop0. | |
Qed. | |
Lemma rev_drop s : rev (drop n0 s) = take (size s - n0) (rev s). | |
Proof. by rewrite -[s in drop _ s]revK drop_rev revK size_rev. Qed. | |
Lemma rev_rotr s : rev (rotr n0 s) = rot n0 (rev s). | |
Proof. by rewrite rev_cat -take_rev -drop_rev. Qed. | |
Lemma rev_rot s : rev (rot n0 s) = rotr n0 (rev s). | |
Proof. by apply: canLR revK _; rewrite rev_rotr revK. Qed. | |
End RotrLemmas. | |
Arguments rotrK n0 {T} s : rename. | |
Arguments rotr_inj {n0 T} [s1 s2] eq_rotr_s12 : rename. | |
Section RotCompLemmas. | |
Variable T : Type. | |
Implicit Type s : seq T. | |
Lemma rotD m n s : m + n <= size s -> rot (m + n) s = rot m (rot n s). | |
Proof. | |
move=> sz_s; rewrite [LHS]/rot -[take _ s](cat_take_drop n). | |
rewrite 5!(catA, =^~ rot_size_cat) !cat_take_drop. | |
by rewrite size_drop !size_takel ?leq_addl ?addnK. | |
Qed. | |
Lemma rotS n s : n < size s -> rot n.+1 s = rot 1 (rot n s). | |
Proof. exact: (@rotD 1). Qed. | |
Lemma rot_add_mod m n s : n <= size s -> m <= size s -> | |
rot m (rot n s) = rot (if m + n <= size s then m + n else m + n - size s) s. | |
Proof. | |
move=> Hn Hm; case: leqP => [/rotD // | /ltnW Hmn]; symmetry. | |
by rewrite -{2}(rotK n s) /rotr -rotD size_rot addnBA ?subnK ?addnK. | |
Qed. | |
Lemma rot_minn n s : rot n s = rot (minn n (size s)) s. | |
Proof. | |
by case: (leqP n (size s)) => // /leqW ?; rewrite rot_size rot_oversize. | |
Qed. | |
Definition rot_add s n m (k := size s) (p := minn m k + minn n k) := | |
locked (if p <= k then p else p - k). | |
Lemma leq_rot_add n m s : rot_add s n m <= size s. | |
Proof. | |
by unlock rot_add; case: ifP; rewrite // leq_subLR leq_add // geq_minr. | |
Qed. | |
Lemma rot_addC n m s : rot_add s n m = rot_add s m n. | |
Proof. by unlock rot_add; rewrite ![minn n _ + _]addnC. Qed. | |
Lemma rot_rot_add n m s : rot m (rot n s) = rot (rot_add s n m) s. | |
Proof. | |
unlock rot_add. | |
by rewrite (rot_minn n) (rot_minn m) rot_add_mod ?size_rot ?geq_minr. | |
Qed. | |
Lemma rot_rot m n s : rot m (rot n s) = rot n (rot m s). | |
Proof. by rewrite rot_rot_add rot_addC -rot_rot_add. Qed. | |
Lemma rot_rotr m n s : rot m (rotr n s) = rotr n (rot m s). | |
Proof. by rewrite [RHS]/rotr size_rot rot_rot. Qed. | |
Lemma rotr_rotr m n s : rotr m (rotr n s) = rotr n (rotr m s). | |
Proof. by rewrite /rotr !size_rot rot_rot. Qed. | |
End RotCompLemmas. | |
Section Mask. | |
Variables (n0 : nat) (T : Type). | |
Implicit Types (m : bitseq) (s : seq T). | |
Fixpoint mask m s {struct m} := | |
match m, s with | |
| b :: m', x :: s' => if b then x :: mask m' s' else mask m' s' | |
| _, _ => [::] | |
end. | |
Lemma mask_false s n : mask (nseq n false) s = [::]. | |
Proof. by elim: s n => [|x s IHs] [|n] /=. Qed. | |
Lemma mask_true s n : size s <= n -> mask (nseq n true) s = s. | |
Proof. by elim: s n => [|x s IHs] [|n] //= Hn; congr (_ :: _); apply: IHs. Qed. | |
Lemma mask0 m : mask m [::] = [::]. | |
Proof. by case: m. Qed. | |
Lemma mask0s s : mask [::] s = [::]. Proof. by []. Qed. | |
Lemma mask1 b x : mask [:: b] [:: x] = nseq b x. | |
Proof. by case: b. Qed. | |
Lemma mask_cons b m x s : mask (b :: m) (x :: s) = nseq b x ++ mask m s. | |
Proof. by case: b. Qed. | |
Lemma size_mask m s : size m = size s -> size (mask m s) = count id m. | |
Proof. by move: m s; apply: seq_ind2 => // -[] x m s /= _ ->. Qed. | |
Lemma mask_cat m1 m2 s1 s2 : | |
size m1 = size s1 -> mask (m1 ++ m2) (s1 ++ s2) = mask m1 s1 ++ mask m2 s2. | |
Proof. by move: m1 s1; apply: seq_ind2 => // -[] m1 x1 s1 /= _ ->. Qed. | |
Lemma mask_rcons b m x s : size m = size s -> | |
mask (rcons m b) (rcons s x) = mask m s ++ nseq b x. | |
Proof. by move=> ms; rewrite -!cats1 mask_cat//; case: b. Qed. | |
Lemma all_mask a m s : all a s -> all a (mask m s). | |
Proof. by elim: s m => [|x s IHs] [|[] m]//= /andP[ax /IHs->]; rewrite ?ax. Qed. | |
Lemma has_mask_cons a b m x s : | |
has a (mask (b :: m) (x :: s)) = b && a x || has a (mask m s). | |
Proof. by case: b. Qed. | |
Lemma has_mask a m s : has a (mask m s) -> has a s. | |
Proof. by apply/contraTT; rewrite -!all_predC; apply: all_mask. Qed. | |
Lemma rev_mask m s : size m = size s -> rev (mask m s) = mask (rev m) (rev s). | |
Proof. | |
move: m s; apply: seq_ind2 => //= b x m s eq_size_sm IH. | |
by case: b; rewrite !rev_cons mask_rcons ?IH ?size_rev// (cats1, cats0). | |
Qed. | |
Lemma mask_rot m s : size m = size s -> | |
mask (rot n0 m) (rot n0 s) = rot (count id (take n0 m)) (mask m s). | |
Proof. | |
move=> Ems; rewrite mask_cat ?size_drop ?Ems // -rot_size_cat. | |
by rewrite size_mask -?mask_cat ?size_take ?Ems // !cat_take_drop. | |
Qed. | |
Lemma resize_mask m s : {m1 | size m1 = size s & mask m s = mask m1 s}. | |
Proof. | |
exists (take (size s) m ++ nseq (size s - size m) false). | |
by elim: s m => [|x s IHs] [|b m] //=; rewrite (size_nseq, IHs). | |
by elim: s m => [|x s IHs] [|b m] //=; rewrite (mask_false, IHs). | |
Qed. | |
Lemma takeEmask i s : take i s = mask (nseq i true) s. | |
Proof. by elim: i s => [s|i IHi []// ? ?]; rewrite ?take0 //= IHi. Qed. | |
Lemma dropEmask i s : | |
drop i s = mask (nseq i false ++ nseq (size s - i) true) s. | |
Proof. by elim: i s => [s|? ? []//]; rewrite drop0/= mask_true// subn0. Qed. | |
End Mask. | |
Arguments mask _ !_ !_. | |
Section EqMask. | |
Variables (n0 : nat) (T : eqType). | |
Implicit Types (s : seq T) (m : bitseq). | |
Lemma mem_mask_cons x b m y s : | |
(x \in mask (b :: m) (y :: s)) = b && (x == y) || (x \in mask m s). | |
Proof. by case: b. Qed. | |
Lemma mem_mask x m s : x \in mask m s -> x \in s. | |
Proof. by rewrite -!has_pred1 => /has_mask. Qed. | |
Lemma in_mask x m s : | |
uniq s -> x \in mask m s = (x \in s) && nth false m (index x s). | |
Proof. | |
elim: s m => [|y s IHs] [|[] m]//= /andP[yNs ?]; rewrite ?in_cons ?IHs //=; | |
by have [->|neq_xy] //= := eqVneq; rewrite ?andbF // (negPf yNs). | |
Qed. | |
Lemma mask_uniq s : uniq s -> forall m, uniq (mask m s). | |
Proof. | |
elim: s => [|x s IHs] Uxs [|b m] //=. | |
case: b Uxs => //= /andP[s'x Us]; rewrite {}IHs // andbT. | |
by apply: contra s'x; apply: mem_mask. | |
Qed. | |
Lemma mem_mask_rot m s : | |
size m = size s -> mask (rot n0 m) (rot n0 s) =i mask m s. | |
Proof. by move=> Ems x; rewrite mask_rot // mem_rot. Qed. | |
End EqMask. | |
Section Subseq. | |
Variable T : eqType. | |
Implicit Type s : seq T. | |
Fixpoint subseq s1 s2 := | |
if s2 is y :: s2' then | |
if s1 is x :: s1' then subseq (if x == y then s1' else s1) s2' else true | |
else s1 == [::]. | |
Lemma sub0seq s : subseq [::] s. Proof. by case: s. Qed. | |
Lemma subseq0 s : subseq s [::] = (s == [::]). Proof. by []. Qed. | |
Lemma subseq_refl s : subseq s s. | |
Proof. by elim: s => //= x s IHs; rewrite eqxx. Qed. | |
Hint Resolve subseq_refl : core. | |
Lemma subseqP s1 s2 : | |
reflect (exists2 m, size m = size s2 & s1 = mask m s2) (subseq s1 s2). | |
Proof. | |
elim: s2 s1 => [|y s2 IHs2] [|x s1]. | |
- by left; exists [::]. | |
- by right=> -[m /eqP/nilP->]. | |
- by left; exists (nseq (size s2).+1 false); rewrite ?size_nseq //= mask_false. | |
apply: {IHs2}(iffP (IHs2 _)) => [] [m sz_m def_s1]. | |
by exists ((x == y) :: m); rewrite /= ?sz_m // -def_s1; case: eqP => // ->. | |
case: eqP => [_ | ne_xy]; last first. | |
by case: m def_s1 sz_m => [|[] m] //; [case | move=> -> [<-]; exists m]. | |
pose i := index true m; have def_m_i: take i m = nseq (size (take i m)) false. | |
apply/all_pred1P; apply/(all_nthP true) => j. | |
rewrite size_take ltnNge geq_min negb_or -ltnNge => /andP[lt_j_i _]. | |
rewrite nth_take //= -negb_add addbF -addbT -negb_eqb. | |
by rewrite [_ == _](before_find _ lt_j_i). | |
have lt_i_m: i < size m. | |
rewrite ltnNge; apply/negP=> le_m_i; rewrite take_oversize // in def_m_i. | |
by rewrite def_m_i mask_false in def_s1. | |
rewrite size_take lt_i_m in def_m_i. | |
exists (take i m ++ drop i.+1 m). | |
rewrite size_cat size_take size_drop lt_i_m. | |
by rewrite sz_m in lt_i_m *; rewrite subnKC. | |
rewrite {s1 def_s1}[s1](congr1 behead def_s1). | |
rewrite -[s2](cat_take_drop i) -[m in LHS](cat_take_drop i) {}def_m_i -cat_cons. | |
have sz_i_s2: size (take i s2) = i by apply: size_takel; rewrite sz_m in lt_i_m. | |
rewrite lastI cat_rcons !mask_cat ?size_nseq ?size_belast ?mask_false //=. | |
by rewrite (drop_nth true) // nth_index -?index_mem. | |
Qed. | |
Lemma mask_subseq m s : subseq (mask m s) s. | |
Proof. by apply/subseqP; have [m1] := resize_mask m s; exists m1. Qed. | |
Lemma subseq_trans : transitive subseq. | |
Proof. | |
move=> _ _ s /subseqP[m2 _ ->] /subseqP[m1 _ ->]. | |
elim: s => [|x s IHs] in m2 m1 *; first by rewrite !mask0. | |
case: m1 => [|[] m1]; first by rewrite mask0. | |
case: m2 => [|[] m2] //; first by rewrite /= eqxx IHs. | |
case/subseqP: (IHs m2 m1) => m sz_m def_s; apply/subseqP. | |
by exists (false :: m); rewrite //= sz_m. | |
case/subseqP: (IHs m2 m1) => m sz_m def_s; apply/subseqP. | |
by exists (false :: m); rewrite //= sz_m. | |
Qed. | |
Lemma cat_subseq s1 s2 s3 s4 : | |
subseq s1 s3 -> subseq s2 s4 -> subseq (s1 ++ s2) (s3 ++ s4). | |
Proof. | |
case/subseqP=> m1 sz_m1 -> /subseqP [m2 sz_m2 ->]; apply/subseqP. | |
by exists (m1 ++ m2); rewrite ?size_cat ?mask_cat ?sz_m1 ?sz_m2. | |
Qed. | |
Lemma prefix_subseq s1 s2 : subseq s1 (s1 ++ s2). | |
Proof. by rewrite -[s1 in subseq s1]cats0 cat_subseq ?sub0seq. Qed. | |
Lemma suffix_subseq s1 s2 : subseq s2 (s1 ++ s2). | |
Proof. exact: cat_subseq (sub0seq s1) _. Qed. | |
Lemma take_subseq s i : subseq (take i s) s. | |
Proof. by rewrite -[s in X in subseq _ X](cat_take_drop i) prefix_subseq. Qed. | |
Lemma drop_subseq s i : subseq (drop i s) s. | |
Proof. by rewrite -[s in X in subseq _ X](cat_take_drop i) suffix_subseq. Qed. | |
Lemma mem_subseq s1 s2 : subseq s1 s2 -> {subset s1 <= s2}. | |
Proof. by case/subseqP=> m _ -> x; apply: mem_mask. Qed. | |
Lemma sub1seq x s : subseq [:: x] s = (x \in s). | |
Proof. by elim: s => //= y s /[1!inE]; case: ifP; rewrite ?sub0seq. Qed. | |
Lemma size_subseq s1 s2 : subseq s1 s2 -> size s1 <= size s2. | |
Proof. by case/subseqP=> m sz_m ->; rewrite size_mask -sz_m ?count_size. Qed. | |
Lemma size_subseq_leqif s1 s2 : | |
subseq s1 s2 -> size s1 <= size s2 ?= iff (s1 == s2). | |
Proof. | |
move=> sub12; split; first exact: size_subseq. | |
apply/idP/eqP=> [|-> //]; case/subseqP: sub12 => m sz_m ->{s1}. | |
rewrite size_mask -sz_m // -all_count -(eq_all eqb_id). | |
by move/(@all_pred1P _ true)->; rewrite sz_m mask_true. | |
Qed. | |
Lemma subseq_anti : antisymmetric subseq. | |
Proof. | |
move=> s1 s2 /andP[] /size_subseq_leqif /leqifP. | |
by case: eqP => [//|_] + /size_subseq; rewrite ltnNge => /negP. | |
Qed. | |
Lemma subseq_cons s x : subseq s (x :: s). | |
Proof. exact: suffix_subseq [:: x] s. Qed. | |
Lemma cons_subseq s1 s2 x : subseq (x :: s1) s2 -> subseq s1 s2. | |
Proof. exact/subseq_trans/subseq_cons. Qed. | |
Lemma subseq_rcons s x : subseq s (rcons s x). | |
Proof. by rewrite -cats1 prefix_subseq. Qed. | |
Lemma subseq_uniq s1 s2 : subseq s1 s2 -> uniq s2 -> uniq s1. | |
Proof. by case/subseqP=> m _ -> Us2; apply: mask_uniq. Qed. | |
Lemma take_uniq s n : uniq s -> uniq (take n s). | |
Proof. exact/subseq_uniq/take_subseq. Qed. | |
Lemma drop_uniq s n : uniq s -> uniq (drop n s). | |
Proof. exact/subseq_uniq/drop_subseq. Qed. | |
Lemma undup_subseq s : subseq (undup s) s. | |
Proof. | |
elim: s => //= x s; case: (_ \in _); last by rewrite eqxx. | |
by case: (undup s) => //= y u; case: (_ == _) => //=; apply: cons_subseq. | |
Qed. | |
Lemma subseq_rev s1 s2 : subseq (rev s1) (rev s2) = subseq s1 s2. | |
Proof. | |
wlog suff W : s1 s2 / subseq s1 s2 -> subseq (rev s1) (rev s2). | |
by apply/idP/idP => /W //; rewrite !revK. | |
by case/subseqP => m size_m ->; rewrite rev_mask // mask_subseq. | |
Qed. | |
Lemma subseq_cat2l s s1 s2 : subseq (s ++ s1) (s ++ s2) = subseq s1 s2. | |
Proof. by elim: s => // x s IHs; rewrite !cat_cons /= eqxx. Qed. | |
Lemma subseq_cat2r s s1 s2 : subseq (s1 ++ s) (s2 ++ s) = subseq s1 s2. | |
Proof. by rewrite -subseq_rev !rev_cat subseq_cat2l subseq_rev. Qed. | |
Lemma subseq_rot p s n : | |
subseq p s -> exists2 k, k <= n & subseq (rot k p) (rot n s). | |
Proof. | |
move=> /subseqP[m size_m ->]. | |
exists (count id (take n m)); last by rewrite -mask_rot // mask_subseq. | |
by rewrite (leq_trans (count_size _ _))// size_take_min geq_minl. | |
Qed. | |
End Subseq. | |
Prenex Implicits subseq. | |
Arguments subseqP {T s1 s2}. | |
#[global] Hint Resolve subseq_refl : core. | |
Section Rem. | |
Variables (T : eqType) (x : T). | |
Fixpoint rem s := if s is y :: t then (if y == x then t else y :: rem t) else s. | |
Lemma rem_cons y s : rem (y :: s) = if y == x then s else y :: rem s. | |
Proof. by []. Qed. | |
Lemma remE s : rem s = take (index x s) s ++ drop (index x s).+1 s. | |
Proof. by elim: s => //= y s ->; case: eqVneq; rewrite ?drop0. Qed. | |
Lemma rem_id s : x \notin s -> rem s = s. | |
Proof. by elim: s => //= y s IHs /norP[neq_yx /IHs->]; case: eqVneq neq_yx. Qed. | |
Lemma perm_to_rem s : x \in s -> perm_eq s (x :: rem s). | |
Proof. | |
move=> xs; rewrite remE -[X in perm_eq X](cat_take_drop (index x s)). | |
by rewrite drop_index// -cat1s perm_catCA cat1s. | |
Qed. | |
Lemma size_rem s : x \in s -> size (rem s) = (size s).-1. | |
Proof. by move/perm_to_rem/perm_size->. Qed. | |
Lemma rem_subseq s : subseq (rem s) s. | |
Proof. | |
elim: s => //= y s IHs; rewrite eq_sym. | |
by case: ifP => _; [apply: subseq_cons | rewrite eqxx]. | |
Qed. | |
Lemma rem_uniq s : uniq s -> uniq (rem s). | |
Proof. by apply: subseq_uniq; apply: rem_subseq. Qed. | |
Lemma mem_rem s : {subset rem s <= s}. | |
Proof. exact: mem_subseq (rem_subseq s). Qed. | |
Lemma rem_filter s : uniq s -> rem s = filter (predC1 x) s. | |
Proof. | |
elim: s => //= y s IHs /andP[not_s_y /IHs->]. | |
by case: eqP => //= <-; apply/esym/all_filterP; rewrite all_predC has_pred1. | |
Qed. | |
Lemma mem_rem_uniq s : uniq s -> rem s =i [predD1 s & x]. | |
Proof. by move/rem_filter=> -> y; rewrite mem_filter. Qed. | |
Lemma mem_rem_uniqF s : uniq s -> x \in rem s = false. | |
Proof. by move/mem_rem_uniq->; rewrite inE eqxx. Qed. | |
Lemma count_rem P s : count P (rem s) = count P s - (x \in s) && P x. | |
Proof. | |
have [/perm_to_rem/permP->|xNs]/= := boolP (x \in s); first by rewrite addKn. | |
by rewrite subn0 rem_id. | |
Qed. | |
Lemma count_mem_rem y s : count_mem y (rem s) = count_mem y s - (x == y). | |
Proof. | |
rewrite count_rem; have []//= := boolP (x \in s). | |
by case: eqP => // <- /count_memPn->. | |
Qed. | |
End Rem. | |
Section Map. | |
Variables (n0 : nat) (T1 : Type) (x1 : T1). | |
Variables (T2 : Type) (x2 : T2) (f : T1 -> T2). | |
Fixpoint map s := if s is x :: s' then f x :: map s' else [::]. | |
Lemma map_cons x s : map (x :: s) = f x :: map s. | |
Proof. by []. Qed. | |
Lemma map_nseq x : map (nseq n0 x) = nseq n0 (f x). | |
Proof. by elim: n0 => // *; congr (_ :: _). Qed. | |
Lemma map_cat s1 s2 : map (s1 ++ s2) = map s1 ++ map s2. | |
Proof. by elim: s1 => [|x s1 IHs] //=; rewrite IHs. Qed. | |
Lemma size_map s : size (map s) = size s. | |
Proof. by elim: s => //= x s ->. Qed. | |
Lemma behead_map s : behead (map s) = map (behead s). | |
Proof. by case: s. Qed. | |
Lemma nth_map n s : n < size s -> nth x2 (map s) n = f (nth x1 s n). | |
Proof. by elim: s n => [|x s IHs] []. Qed. | |
Lemma map_rcons s x : map (rcons s x) = rcons (map s) (f x). | |
Proof. by rewrite -!cats1 map_cat. Qed. | |
Lemma last_map s x : last (f x) (map s) = f (last x s). | |
Proof. by elim: s x => /=. Qed. | |
Lemma belast_map s x : belast (f x) (map s) = map (belast x s). | |
Proof. by elim: s x => //= y s IHs x; rewrite IHs. Qed. | |
Lemma filter_map a s : filter a (map s) = map (filter (preim f a) s). | |
Proof. by elim: s => //= x s IHs; rewrite (fun_if map) /= IHs. Qed. | |
Lemma find_map a s : find a (map s) = find (preim f a) s. | |
Proof. by elim: s => //= x s ->. Qed. | |
Lemma has_map a s : has a (map s) = has (preim f a) s. | |
Proof. by elim: s => //= x s ->. Qed. | |
Lemma all_map a s : all a (map s) = all (preim f a) s. | |
Proof. by elim: s => //= x s ->. Qed. | |
Lemma count_map a s : count a (map s) = count (preim f a) s. | |
Proof. by elim: s => //= x s ->. Qed. | |
Lemma map_take s : map (take n0 s) = take n0 (map s). | |
Proof. by elim: n0 s => [|n IHn] [|x s] //=; rewrite IHn. Qed. | |
Lemma map_drop s : map (drop n0 s) = drop n0 (map s). | |
Proof. by elim: n0 s => [|n IHn] [|x s] //=; rewrite IHn. Qed. | |
Lemma map_rot s : map (rot n0 s) = rot n0 (map s). | |
Proof. by rewrite /rot map_cat map_take map_drop. Qed. | |
Lemma map_rotr s : map (rotr n0 s) = rotr n0 (map s). | |
Proof. by apply: canRL (rotK n0) _; rewrite -map_rot rotrK. Qed. | |
Lemma map_rev s : map (rev s) = rev (map s). | |
Proof. by elim: s => //= x s IHs; rewrite !rev_cons -!cats1 map_cat IHs. Qed. | |
Lemma map_mask m s : map (mask m s) = mask m (map s). | |
Proof. by elim: m s => [|[|] m IHm] [|x p] //=; rewrite IHm. Qed. | |
Lemma inj_map : injective f -> injective map. | |
Proof. by move=> injf; elim=> [|y1 s1 IHs] [|y2 s2] //= [/injf-> /IHs->]. Qed. | |
End Map. | |
Notation "[ 'seq' E | i <- s ]" := (map (fun i => E) s) | |
(at level 0, E at level 99, i name, | |
format "[ '[hv' 'seq' E '/ ' | i <- s ] ']'") : seq_scope. | |
Notation "[ 'seq' E | i <- s & C ]" := [seq E | i <- [seq i <- s | C]] | |
(at level 0, E at level 99, i name, | |
format "[ '[hv' 'seq' E '/ ' | i <- s '/ ' & C ] ']'") : seq_scope. | |
Notation "[ 'seq' E | i : T <- s ]" := (map (fun i : T => E) s) | |
(at level 0, E at level 99, i name, only parsing) : seq_scope. | |
Notation "[ 'seq' E | i : T <- s & C ]" := | |
[seq E | i : T <- [seq i : T <- s | C]] | |
(at level 0, E at level 99, i name, only parsing) : seq_scope. | |
Notation "[ 'seq' E : R | i <- s ]" := (@map _ R (fun i => E) s) | |
(at level 0, E at level 99, i name, only parsing) : seq_scope. | |
Notation "[ 'seq' E : R | i <- s & C ]" := [seq E : R | i <- [seq i <- s | C]] | |
(at level 0, E at level 99, i name, only parsing) : seq_scope. | |
Notation "[ 'seq' E : R | i : T <- s ]" := (@map T R (fun i : T => E) s) | |
(at level 0, E at level 99, i name, only parsing) : seq_scope. | |
Notation "[ 'seq' E : R | i : T <- s & C ]" := | |
[seq E : R | i : T <- [seq i : T <- s | C]] | |
(at level 0, E at level 99, i name, only parsing) : seq_scope. | |
Lemma filter_mask T a (s : seq T) : filter a s = mask (map a s) s. | |
Proof. by elim: s => //= x s <-; case: (a x). Qed. | |
Lemma all_sigP T a (s : seq T) : all a s -> {s' : seq (sig a) | s = map sval s'}. | |
Proof. | |
elim: s => /= [_|x s ihs /andP [ax /ihs [s' ->]]]; first by exists [::]. | |
by exists (exist a x ax :: s'). | |
Qed. | |
Section MiscMask. | |
Lemma leq_count_mask T (P : {pred T}) m s : count P (mask m s) <= count P s. | |
Proof. | |
by elim: s m => [|x s IHs] [|[] m]//=; | |
rewrite ?leq_add2l (leq_trans (IHs _)) ?leq_addl. | |
Qed. | |
Variable (T : eqType). | |
Implicit Types (s : seq T) (m : bitseq). | |
Lemma mask_filter s m : uniq s -> mask m s = [seq i <- s | i \in mask m s]. | |
Proof. | |
elim: m s => [|[] m IH] [|x s /= /andP[/negP xS uS]]; rewrite ?filter_pred0 //. | |
rewrite inE eqxx /=; congr cons; rewrite [LHS]IH//. | |
by apply/eq_in_filter => ? /[1!inE]; case: eqP => [->|]. | |
by case: ifP => [/mem_mask //|_]; apply: IH. | |
Qed. | |
Lemma leq_count_subseq P s1 s2 : subseq s1 s2 -> count P s1 <= count P s2. | |
Proof. by move=> /subseqP[m _ ->]; rewrite leq_count_mask. Qed. | |
Lemma count_maskP s1 s2 : | |
(forall x, count_mem x s1 <= count_mem x s2) <-> | |
exists2 m : bitseq, size m = size s2 & perm_eq s1 (mask m s2). | |
Proof. | |
split=> [s1_le|[m _ /permP s1ms2 x]]; last by rewrite s1ms2 leq_count_mask. | |
suff [m mP]: exists m, perm_eq s1 (mask m s2). | |
by have [m' sm' eqm] := resize_mask m s2; exists m'; rewrite -?eqm. | |
elim: s2 => [|x s2 IHs]//= in s1 s1_le *. | |
by exists [::]; apply/allP => x _/=; rewrite eqn_leq s1_le. | |
have [y|m s1s2] := IHs (rem x s1); first by rewrite count_mem_rem leq_subLR. | |
exists ((x \in s1) :: m); have [|/rem_id<-//] := boolP (x \in s1). | |
by move/perm_to_rem/permPl->; rewrite perm_cons. | |
Qed. | |
Lemma count_subseqP s1 s2 : | |
(forall x, count_mem x s1 <= count_mem x s2) <-> | |
exists2 s, subseq s s2 & perm_eq s1 s. | |
Proof. | |
rewrite count_maskP; split=> [[m _]|[_/subseqP[m sm ->]]]; last by exists m. | |
by exists (mask m s2); rewrite ?mask_subseq. | |
Qed. | |
End MiscMask. | |
Section FilterSubseq. | |
Variable T : eqType. | |
Implicit Types (s : seq T) (a : pred T). | |
Lemma filter_subseq a s : subseq (filter a s) s. | |
Proof. by apply/subseqP; exists (map a s); rewrite ?size_map ?filter_mask. Qed. | |
Lemma subseq_filter s1 s2 a : | |
subseq s1 (filter a s2) = all a s1 && subseq s1 s2. | |
Proof. | |
elim: s2 s1 => [|x s2 IHs] [|y s1] //=; rewrite ?andbF ?sub0seq //. | |
by case a_x: (a x); rewrite /= !IHs /=; case: eqP => // ->; rewrite a_x. | |
Qed. | |
Lemma subseq_uniqP s1 s2 : | |
uniq s2 -> reflect (s1 = filter (mem s1) s2) (subseq s1 s2). | |
Proof. | |
move=> uniq_s2; apply: (iffP idP) => [ss12 | ->]; last exact: filter_subseq. | |
apply/eqP; rewrite -size_subseq_leqif ?subseq_filter ?(introT allP) //. | |
apply/eqP/esym/perm_size. | |
rewrite uniq_perm ?filter_uniq ?(subseq_uniq ss12) // => x. | |
by rewrite mem_filter; apply: andb_idr; apply: (mem_subseq ss12). | |
Qed. | |
Lemma uniq_subseq_pivot x (s1 s2 s3 s4 : seq T) (s := s3 ++ x :: s4) : | |
uniq s -> subseq (s1 ++ x :: s2) s = (subseq s1 s3 && subseq s2 s4). | |
Proof. | |
move=> uniq_s; apply/idP/idP => [sub_s'_s|/andP[? ?]]; last first. | |
by rewrite cat_subseq //= eqxx. | |
have uniq_s' := subseq_uniq sub_s'_s uniq_s. | |
have/eqP {sub_s'_s uniq_s} := subseq_uniqP _ uniq_s sub_s'_s. | |
rewrite !filter_cat /= mem_cat inE eqxx orbT /=. | |
rewrite uniq_eqseq_pivotl // => /andP [/eqP -> /eqP ->]. | |
by rewrite !filter_subseq. | |
Qed. | |
Lemma perm_to_subseq s1 s2 : | |
subseq s1 s2 -> {s3 | perm_eq s2 (s1 ++ s3)}. | |
Proof. | |
elim Ds2: s2 s1 => [|y s2' IHs] [|x s1] //=; try by exists s2; rewrite Ds2. | |
case: eqP => [-> | _] /IHs[s3 perm_s2] {IHs}. | |
by exists s3; rewrite perm_cons. | |
by exists (rcons s3 y); rewrite -cat_cons -perm_rcons -!cats1 catA perm_cat2r. | |
Qed. | |
Lemma subseq_rem x : {homo rem x : s1 s2 / @subseq T s1 s2}. | |
Proof. | |
move=> s1 s2; elim: s2 s1 => [|x2 s2 IHs2] [|x1 s1]; rewrite ?sub0seq //=. | |
have [->|_] := eqVneq x1 x2; first by case: eqP => //= _ /IHs2; rewrite eqxx. | |
move=> /IHs2/subseq_trans->//. | |
by have [->|_] := eqVneq x x2; [apply: rem_subseq|apply: subseq_cons]. | |
Qed. | |
End FilterSubseq. | |
Arguments subseq_uniqP [T s1 s2]. | |
Section EqMap. | |
Variables (n0 : nat) (T1 : eqType) (x1 : T1). | |
Variables (T2 : eqType) (x2 : T2) (f : T1 -> T2). | |
Implicit Type s : seq T1. | |
Lemma map_f s x : x \in s -> f x \in map f s. | |
Proof. | |
by elim: s => //= y s IHs /predU1P[->|/IHs]; [apply: predU1l | apply: predU1r]. | |
Qed. | |
Lemma mapP s y : reflect (exists2 x, x \in s & y = f x) (y \in map f s). | |
Proof. | |
elim: s => [|x s IHs]; [by right; case|rewrite /= inE]. | |
exact: equivP (orPP eqP IHs) (iff_sym exists_cons). | |
Qed. | |
Lemma map_uniq s : uniq (map f s) -> uniq s. | |
Proof. | |
elim: s => //= x s IHs /andP[not_sfx /IHs->]; rewrite andbT. | |
by apply: contra not_sfx => sx; apply/mapP; exists x. | |
Qed. | |
Lemma map_inj_in_uniq s : {in s &, injective f} -> uniq (map f s) = uniq s. | |
Proof. | |
elim: s => //= x s IHs //= injf; congr (~~ _ && _). | |
apply/mapP/idP=> [[y sy /injf] | ]; last by exists x. | |
by rewrite mem_head mem_behead // => ->. | |
by apply: IHs => y z sy sz; apply: injf => //; apply: predU1r. | |
Qed. | |
Lemma map_subseq s1 s2 : subseq s1 s2 -> subseq (map f s1) (map f s2). | |
Proof. | |
case/subseqP=> m sz_m ->; apply/subseqP. | |
by exists m; rewrite ?size_map ?map_mask. | |
Qed. | |
Lemma nth_index_map s x0 x : | |
{in s &, injective f} -> x \in s -> nth x0 s (index (f x) (map f s)) = x. | |
Proof. | |
elim: s => //= y s IHs inj_f s_x; rewrite (inj_in_eq inj_f) ?mem_head //. | |
move: s_x; rewrite inE; have [-> // | _] := eqVneq; apply: IHs. | |
by apply: sub_in2 inj_f => z; apply: predU1r. | |
Qed. | |
Lemma perm_map s t : perm_eq s t -> perm_eq (map f s) (map f t). | |
Proof. by move/permP=> Est; apply/permP=> a; rewrite !count_map Est. Qed. | |
Lemma sub_map s1 s2 : {subset s1 <= s2} -> {subset map f s1 <= map f s2}. | |
Proof. by move=> sub_s ? /mapP[x x_s ->]; rewrite map_f ?sub_s. Qed. | |
Lemma eq_mem_map s1 s2 : s1 =i s2 -> map f s1 =i map f s2. | |
Proof. by move=> Es x; apply/idP/idP; apply: sub_map => ?; rewrite Es. Qed. | |
Hypothesis Hf : injective f. | |
Lemma mem_map s x : (f x \in map f s) = (x \in s). | |
Proof. by apply/mapP/idP=> [[y Hy /Hf->] //|]; exists x. Qed. | |
Lemma index_map s x : index (f x) (map f s) = index x s. | |
Proof. by rewrite /index; elim: s => //= y s IHs; rewrite (inj_eq Hf) IHs. Qed. | |
Lemma map_inj_uniq s : uniq (map f s) = uniq s. | |
Proof. by apply: map_inj_in_uniq; apply: in2W. Qed. | |
Lemma undup_map_inj s : undup (map f s) = map f (undup s). | |
Proof. by elim: s => //= s0 s ->; rewrite mem_map //; case: (_ \in _). Qed. | |
Lemma perm_map_inj s t : perm_eq (map f s) (map f t) -> perm_eq s t. | |
Proof. | |
move/permP=> Est; apply/allP=> x _ /=. | |
have Dx: pred1 x =1 preim f (pred1 (f x)) by move=> y /=; rewrite inj_eq. | |
by rewrite !(eq_count Dx) -!count_map Est. | |
Qed. | |
End EqMap. | |
Arguments mapP {T1 T2 f s y}. | |
Lemma map_of_seq (T1 : eqType) T2 (s : seq T1) (fs : seq T2) (y0 : T2) : | |
{f | uniq s -> size fs = size s -> map f s = fs}. | |
Proof. | |
exists (fun x => nth y0 fs (index x s)) => uAs eq_sz. | |
apply/esym/(@eq_from_nth _ y0); rewrite ?size_map eq_sz // => i ltis. | |
by have x0 : T1 by [case: (s) ltis]; rewrite (nth_map x0) // index_uniq. | |
Qed. | |
Section MapComp. | |
Variable T1 T2 T3 : Type. | |
Lemma map_id (s : seq T1) : map id s = s. | |
Proof. by elim: s => //= x s ->. Qed. | |
Lemma eq_map (f1 f2 : T1 -> T2) : f1 =1 f2 -> map f1 =1 map f2. | |
Proof. by move=> Ef; elim=> //= x s ->; rewrite Ef. Qed. | |
Lemma map_comp (f1 : T2 -> T3) (f2 : T1 -> T2) s : | |
map (f1 \o f2) s = map f1 (map f2 s). | |
Proof. by elim: s => //= x s ->. Qed. | |
Lemma mapK (f1 : T1 -> T2) (f2 : T2 -> T1) : | |
cancel f1 f2 -> cancel (map f1) (map f2). | |
Proof. by move=> eq_f12; elim=> //= x s ->; rewrite eq_f12. Qed. | |
End MapComp. | |
Lemma eq_in_map (T1 : eqType) T2 (f1 f2 : T1 -> T2) (s : seq T1) : | |
{in s, f1 =1 f2} <-> map f1 s = map f2 s. | |
Proof. by elim: s => //= x s IHs; rewrite forall_cons IHs; split => -[-> ->]. Qed. | |
Lemma map_id_in (T : eqType) f (s : seq T) : {in s, f =1 id} -> map f s = s. | |
Proof. by move/eq_in_map->; apply: map_id. Qed. | |
(* Map a partial function *) | |
Section Pmap. | |
Variables (aT rT : Type) (f : aT -> option rT) (g : rT -> aT). | |
Fixpoint pmap s := | |
if s is x :: s' then let r := pmap s' in oapp (cons^~ r) r (f x) else [::]. | |
Lemma map_pK : pcancel g f -> cancel (map g) pmap. | |
Proof. by move=> gK; elim=> //= x s ->; rewrite gK. Qed. | |
Lemma size_pmap s : size (pmap s) = count [eta f] s. | |
Proof. by elim: s => //= x s <-; case: (f _). Qed. | |
Lemma pmapS_filter s : map some (pmap s) = map f (filter [eta f] s). | |
Proof. by elim: s => //= x s; case fx: (f x) => //= [u] <-; congr (_ :: _). Qed. | |
Hypothesis fK : ocancel f g. | |
Lemma pmap_filter s : map g (pmap s) = filter [eta f] s. | |
Proof. by elim: s => //= x s <-; rewrite -{3}(fK x); case: (f _). Qed. | |
Lemma pmap_cat s t : pmap (s ++ t) = pmap s ++ pmap t. | |
Proof. by elim: s => //= x s ->; case/f: x. Qed. | |
Lemma all_pmap (p : pred rT) s : | |
all p (pmap s) = all [pred i | oapp p true (f i)] s. | |
Proof. by elim: s => //= x s <-; case: f. Qed. | |
End Pmap. | |
Lemma eq_in_pmap (aT : eqType) rT (f1 f2 : aT -> option rT) s : | |
{in s, f1 =1 f2} -> pmap f1 s = pmap f2 s. | |
Proof. by elim: s => //= a s IHs /forall_cons [-> /IHs ->]. Qed. | |
Lemma eq_pmap aT rT (f1 f2 : aT -> option rT) : | |
f1 =1 f2 -> pmap f1 =1 pmap f2. | |
Proof. by move=> Ef; elim => //= a s ->; rewrite Ef. Qed. | |
Section EqPmap. | |
Variables (aT rT : eqType) (f : aT -> option rT) (g : rT -> aT). | |
Lemma mem_pmap s u : (u \in pmap f s) = (Some u \in map f s). | |
Proof. by elim: s => //= x s IHs; rewrite in_cons -IHs; case: (f x). Qed. | |
Hypothesis fK : ocancel f g. | |
Lemma can2_mem_pmap : pcancel g f -> forall s u, (u \in pmap f s) = (g u \in s). | |
Proof. | |
by move=> gK s u; rewrite -(mem_map (pcan_inj gK)) pmap_filter // mem_filter gK. | |
Qed. | |
Lemma pmap_uniq s : uniq s -> uniq (pmap f s). | |
Proof. move/(filter_uniq f); rewrite -(pmap_filter fK); exact: map_uniq. Qed. | |
Lemma perm_pmap s t : perm_eq s t -> perm_eq (pmap f s) (pmap f t). | |
Proof. | |
move=> eq_st; apply/(perm_map_inj Some_inj); rewrite !pmapS_filter. | |
exact/perm_map/perm_filter. | |
Qed. | |
End EqPmap. | |
Section PmapSub. | |
Variables (T : Type) (p : pred T) (sT : subType p). | |
Lemma size_pmap_sub s : size (pmap (insub : T -> option sT) s) = count p s. | |
Proof. by rewrite size_pmap (eq_count (isSome_insub _)). Qed. | |
End PmapSub. | |
Section EqPmapSub. | |
Variables (T : eqType) (p : pred T) (sT : subType p). | |
Let insT : T -> option sT := insub. | |
Lemma mem_pmap_sub s u : (u \in pmap insT s) = (val u \in s). | |
Proof. exact/(can2_mem_pmap (insubK _))/valK. Qed. | |
Lemma pmap_sub_uniq s : uniq s -> uniq (pmap insT s). | |
Proof. exact: (pmap_uniq (insubK _)). Qed. | |
End EqPmapSub. | |
(* Index sequence *) | |
Fixpoint iota m n := if n is n'.+1 then m :: iota m.+1 n' else [::]. | |
Lemma size_iota m n : size (iota m n) = n. | |
Proof. by elim: n m => //= n IHn m; rewrite IHn. Qed. | |
Lemma iotaD m n1 n2 : iota m (n1 + n2) = iota m n1 ++ iota (m + n1) n2. | |
Proof. by elim: n1 m => [|n1 IHn1] m; rewrite ?addn0 // -addSnnS /= -IHn1. Qed. | |
Lemma iotaDl m1 m2 n : iota (m1 + m2) n = map (addn m1) (iota m2 n). | |
Proof. by elim: n m2 => //= n IHn m2; rewrite -addnS IHn. Qed. | |
Lemma nth_iota p m n i : i < n -> nth p (iota m n) i = m + i. | |
Proof. | |
by move/subnKC <-; rewrite addSnnS iotaD nth_cat size_iota ltnn subnn. | |
Qed. | |
Lemma mem_iota m n i : (i \in iota m n) = (m <= i < m + n). | |
Proof. | |
elim: n m => [|n IHn] /= m; first by rewrite addn0 ltnNge andbN. | |
by rewrite in_cons IHn addnS ltnS; case: ltngtP => // ->; rewrite leq_addr. | |
Qed. | |
Lemma iota_uniq m n : uniq (iota m n). | |
Proof. by elim: n m => //= n IHn m; rewrite mem_iota ltnn /=. Qed. | |
Lemma take_iota k m n : take k (iota m n) = iota m (minn k n). | |
Proof. | |
have [lt_k_n|le_n_k] := ltnP. | |
by elim: k n lt_k_n m => [|k IHk] [|n] //= H m; rewrite IHk. | |
by apply: take_oversize; rewrite size_iota. | |
Qed. | |
Lemma drop_iota k m n : drop k (iota m n) = iota (m + k) (n - k). | |
Proof. | |
by elim: k m n => [|k IHk] m [|n] //=; rewrite ?addn0 // IHk addnS subSS. | |
Qed. | |
Lemma filter_iota_ltn m n j : j <= n -> | |
[seq i <- iota m n | i < m + j] = iota m j. | |
Proof. | |
elim: n m j => [m j|n IHn m [|j] jlen]; first by rewrite leqn0 => /eqP ->. | |
rewrite (@eq_in_filter _ _ pred0) ?filter_pred0// => i. | |
by rewrite addn0 ltnNge mem_iota => /andP[->]. | |
by rewrite /= addnS leq_addr -addSn IHn. | |
Qed. | |
Lemma filter_iota_leq n m j : j < n -> | |
[seq i <- iota m n | i <= m + j] = iota m j.+1. | |
Proof. | |
elim: n m j => [//|n IHn] m [|j] jlen /=; rewrite leq_addr. | |
rewrite (@eq_in_filter _ _ pred0) ?filter_pred0// => i. | |
by rewrite addn0 leqNgt mem_iota => /andP[->]. | |
by rewrite addnS -addSn IHn -1?ltnS. | |
Qed. | |
(* Making a sequence of a specific length, using indexes to compute items. *) | |
Section MakeSeq. | |
Variables (T : Type) (x0 : T). | |
Definition mkseq f n : seq T := map f (iota 0 n). | |
Lemma size_mkseq f n : size (mkseq f n) = n. | |
Proof. by rewrite size_map size_iota. Qed. | |
Lemma mkseqS f n : | |
mkseq f n.+1 = rcons (mkseq f n) (f n). | |
Proof. by rewrite /mkseq -addn1 iotaD add0n map_cat cats1. Qed. | |
Lemma eq_mkseq f g : f =1 g -> mkseq f =1 mkseq g. | |
Proof. by move=> Efg n; apply: eq_map Efg _. Qed. | |
Lemma nth_mkseq f n i : i < n -> nth x0 (mkseq f n) i = f i. | |
Proof. by move=> Hi; rewrite (nth_map 0) ?nth_iota ?size_iota. Qed. | |
Lemma mkseq_nth s : mkseq (nth x0 s) (size s) = s. | |
Proof. | |
by apply: (@eq_from_nth _ x0); rewrite size_mkseq // => i Hi; rewrite nth_mkseq. | |
Qed. | |
Variant mkseq_spec s : seq T -> Type := | |
| MapIota n f : s = mkseq f n -> mkseq_spec s (mkseq f n). | |
Lemma mkseqP s : mkseq_spec s s. | |
Proof. by rewrite -[s]mkseq_nth; constructor. Qed. | |
Lemma map_nth_iota0 s i : | |
i <= size s -> [seq nth x0 s j | j <- iota 0 i] = take i s. | |
Proof. | |
by move=> ile; rewrite -[s in RHS]mkseq_nth -map_take take_iota (minn_idPl _). | |
Qed. | |
Lemma map_nth_iota s i j : j <= size s - i -> | |
[seq nth x0 s k | k <- iota i j] = take j (drop i s). | |
Proof. | |
elim: i => [|i IH] in s j *; first by rewrite subn0 drop0 => /map_nth_iota0->. | |
case: s => [|x s /IH<-]; first by rewrite leqn0 => /eqP->. | |
by rewrite -add1n iotaDl -map_comp. | |
Qed. | |
End MakeSeq. | |
Section MakeEqSeq. | |
Variable T : eqType. | |
Lemma mkseq_uniqP (f : nat -> T) n : | |
reflect {in gtn n &, injective f} (uniq (mkseq f n)). | |
Proof. | |
apply: (equivP (uniqP (f 0))); rewrite size_mkseq. | |
by split=> injf i j lti ltj; have:= injf i j lti ltj; rewrite !nth_mkseq. | |
Qed. | |
Lemma mkseq_uniq (f : nat -> T) n : injective f -> uniq (mkseq f n). | |
Proof. by move/map_inj_uniq->; apply: iota_uniq. Qed. | |
Lemma perm_iotaP {s t : seq T} x0 (It := iota 0 (size t)) : | |
reflect (exists2 Is, perm_eq Is It & s = map (nth x0 t) Is) (perm_eq s t). | |
Proof. | |
apply: (iffP idP) => [Est | [Is eqIst ->]]; last first. | |
by rewrite -{2}[t](mkseq_nth x0) perm_map. | |
elim: t => [|x t IHt] in s It Est *. | |
by rewrite (perm_small_eq _ Est) //; exists [::]. | |
have /rot_to[k s1 Ds]: x \in s by rewrite (perm_mem Est) mem_head. | |
have [|Is1 eqIst1 Ds1] := IHt s1; first by rewrite -(perm_cons x) -Ds perm_rot. | |
exists (rotr k (0 :: map succn Is1)). | |
by rewrite perm_rot /It /= perm_cons (iotaDl 1) perm_map. | |
by rewrite map_rotr /= -map_comp -(@eq_map _ _ (nth x0 t)) // -Ds1 -Ds rotK. | |
Qed. | |
End MakeEqSeq. | |
Arguments perm_iotaP {T s t}. | |
Section FoldRight. | |
Variables (T : Type) (R : Type) (f : T -> R -> R) (z0 : R). | |
Fixpoint foldr s := if s is x :: s' then f x (foldr s') else z0. | |
End FoldRight. | |
Section FoldRightComp. | |
Variables (T1 T2 : Type) (h : T1 -> T2). | |
Variables (R : Type) (f : T2 -> R -> R) (z0 : R). | |
Lemma foldr_cat s1 s2 : foldr f z0 (s1 ++ s2) = foldr f (foldr f z0 s2) s1. | |
Proof. by elim: s1 => //= x s1 ->. Qed. | |
Lemma foldr_rcons s x : foldr f z0 (rcons s x) = foldr f (f x z0) s. | |
Proof. by rewrite -cats1 foldr_cat. Qed. | |
Lemma foldr_map s : foldr f z0 (map h s) = foldr (fun x z => f (h x) z) z0 s. | |
Proof. by elim: s => //= x s ->. Qed. | |
End FoldRightComp. | |
(* Quick characterization of the null sequence. *) | |
Definition sumn := foldr addn 0. | |
Lemma sumn_nseq x n : sumn (nseq n x) = x * n. | |
Proof. by rewrite mulnC; elim: n => //= n ->. Qed. | |
Lemma sumn_cat s1 s2 : sumn (s1 ++ s2) = sumn s1 + sumn s2. | |
Proof. by elim: s1 => //= x s1 ->; rewrite addnA. Qed. | |
Lemma sumn_count T (a : pred T) s : sumn [seq a i : nat | i <- s] = count a s. | |
Proof. by elim: s => //= s0 s /= ->. Qed. | |
Lemma sumn_rcons s n : sumn (rcons s n) = sumn s + n. | |
Proof. by rewrite -cats1 sumn_cat /= addn0. Qed. | |
Lemma perm_sumn s1 s2 : perm_eq s1 s2 -> sumn s1 = sumn s2. | |
Proof. | |
by apply/catCA_perm_subst: s1 s2 => s1 s2 s3; rewrite !sumn_cat addnCA. | |
Qed. | |
Lemma sumn_rot s n : sumn (rot n s) = sumn s. | |
Proof. by apply/perm_sumn; rewrite perm_rot. Qed. | |
Lemma sumn_rev s : sumn (rev s) = sumn s. | |
Proof. by apply/perm_sumn; rewrite perm_rev. Qed. | |
Lemma natnseq0P s : reflect (s = nseq (size s) 0) (sumn s == 0). | |
Proof. | |
apply: (iffP idP) => [|->]; last by rewrite sumn_nseq. | |
by elim: s => //= x s IHs; rewrite addn_eq0 => /andP[/eqP-> /IHs <-]. | |
Qed. | |
Section FoldLeft. | |
Variables (T R : Type) (f : R -> T -> R). | |
Fixpoint foldl z s := if s is x :: s' then foldl (f z x) s' else z. | |
Lemma foldl_rev z s : foldl z (rev s) = foldr (fun x z => f z x) z s. | |
Proof. | |
by elim/last_ind: s z => // s x IHs z; rewrite rev_rcons -cats1 foldr_cat -IHs. | |
Qed. | |
Lemma foldl_cat z s1 s2 : foldl z (s1 ++ s2) = foldl (foldl z s1) s2. | |
Proof. | |
by rewrite -(revK (s1 ++ s2)) foldl_rev rev_cat foldr_cat -!foldl_rev !revK. | |
Qed. | |
Lemma foldl_rcons z s x : foldl z (rcons s x) = f (foldl z s) x. | |
Proof. by rewrite -cats1 foldl_cat. Qed. | |
End FoldLeft. | |
Section Scan. | |
Variables (T1 : Type) (x1 : T1) (T2 : Type) (x2 : T2). | |
Variables (f : T1 -> T1 -> T2) (g : T1 -> T2 -> T1). | |
Fixpoint pairmap x s := if s is y :: s' then f x y :: pairmap y s' else [::]. | |
Lemma size_pairmap x s : size (pairmap x s) = size s. | |
Proof. by elim: s x => //= y s IHs x; rewrite IHs. Qed. | |
Lemma pairmap_cat x s1 s2 : | |
pairmap x (s1 ++ s2) = pairmap x s1 ++ pairmap (last x s1) s2. | |
Proof. by elim: s1 x => //= y s1 IHs1 x; rewrite IHs1. Qed. | |
Lemma nth_pairmap s n : n < size s -> | |
forall x, nth x2 (pairmap x s) n = f (nth x1 (x :: s) n) (nth x1 s n). | |
Proof. by elim: s n => [|y s IHs] [|n] //= Hn x; apply: IHs. Qed. | |
Fixpoint scanl x s := | |
if s is y :: s' then let x' := g x y in x' :: scanl x' s' else [::]. | |
Lemma size_scanl x s : size (scanl x s) = size s. | |
Proof. by elim: s x => //= y s IHs x; rewrite IHs. Qed. | |
Lemma scanl_cat x s1 s2 : | |
scanl x (s1 ++ s2) = scanl x s1 ++ scanl (foldl g x s1) s2. | |
Proof. by elim: s1 x => //= y s1 IHs1 x; rewrite IHs1. Qed. | |
Lemma scanl_rcons x s1 y : | |
scanl x (rcons s1 y) = rcons (scanl x s1) (foldl g x (rcons s1 y)). | |
Proof. by rewrite -!cats1 scanl_cat foldl_cat. Qed. | |
Lemma nth_cons_scanl s n : n <= size s -> | |
forall x, nth x1 (x :: scanl x s) n = foldl g x (take n s). | |
Proof. by elim: s n => [|y s IHs] [|n] Hn x //=; rewrite IHs. Qed. | |
Lemma nth_scanl s n : n < size s -> | |
forall x, nth x1 (scanl x s) n = foldl g x (take n.+1 s). | |
Proof. by move=> n_lt x; rewrite -nth_cons_scanl. Qed. | |
Lemma scanlK : | |
(forall x, cancel (g x) (f x)) -> forall x, cancel (scanl x) (pairmap x). | |
Proof. by move=> Hfg x s; elim: s x => //= y s IHs x; rewrite Hfg IHs. Qed. | |
Lemma pairmapK : | |
(forall x, cancel (f x) (g x)) -> forall x, cancel (pairmap x) (scanl x). | |
Proof. by move=> Hgf x s; elim: s x => //= y s IHs x; rewrite Hgf IHs. Qed. | |
End Scan. | |
Prenex Implicits mask map pmap foldr foldl scanl pairmap. | |
Section Zip. | |
Variables (S T : Type) (r : S -> T -> bool). | |
Fixpoint zip (s : seq S) (t : seq T) {struct t} := | |
match s, t with | |
| x :: s', y :: t' => (x, y) :: zip s' t' | |
| _, _ => [::] | |
end. | |
Definition unzip1 := map (@fst S T). | |
Definition unzip2 := map (@snd S T). | |
Fixpoint all2 s t := | |
match s, t with | |
| [::], [::] => true | |
| x :: s, y :: t => r x y && all2 s t | |
| _, _ => false | |
end. | |
Lemma zip_unzip s : zip (unzip1 s) (unzip2 s) = s. | |
Proof. by elim: s => [|[x y] s /= ->]. Qed. | |
Lemma unzip1_zip s t : size s <= size t -> unzip1 (zip s t) = s. | |
Proof. by elim: s t => [|x s IHs] [|y t] //= le_s_t; rewrite IHs. Qed. | |
Lemma unzip2_zip s t : size t <= size s -> unzip2 (zip s t) = t. | |
Proof. by elim: s t => [|x s IHs] [|y t] //= le_t_s; rewrite IHs. Qed. | |
Lemma size1_zip s t : size s <= size t -> size (zip s t) = size s. | |
Proof. by elim: s t => [|x s IHs] [|y t] //= Hs; rewrite IHs. Qed. | |
Lemma size2_zip s t : size t <= size s -> size (zip s t) = size t. | |
Proof. by elim: s t => [|x s IHs] [|y t] //= Hs; rewrite IHs. Qed. | |
Lemma size_zip s t : size (zip s t) = minn (size s) (size t). | |
Proof. by elim: s t => [|x s IHs] [|t2 t] //=; rewrite IHs minnSS. Qed. | |
Lemma zip_cat s1 s2 t1 t2 : | |
size s1 = size t1 -> zip (s1 ++ s2) (t1 ++ t2) = zip s1 t1 ++ zip s2 t2. | |
Proof. by move: s1 t1; apply: seq_ind2 => //= x y s1 t1 _ ->. Qed. | |
Lemma nth_zip x y s t i : | |
size s = size t -> nth (x, y) (zip s t) i = (nth x s i, nth y t i). | |
Proof. by elim: i s t => [|i IHi] [|y1 s1] [|y2 t] //= [/IHi->]. Qed. | |
Lemma nth_zip_cond p s t i : | |
nth p (zip s t) i | |
= (if i < size (zip s t) then (nth p.1 s i, nth p.2 t i) else p). | |
Proof. | |
rewrite size_zip ltnNge geq_min. | |
by elim: s t i => [|x s IHs] [|y t] [|i] //=; rewrite ?orbT -?IHs. | |
Qed. | |
Lemma zip_rcons s t x y : | |
size s = size t -> zip (rcons s x) (rcons t y) = rcons (zip s t) (x, y). | |
Proof. by move=> eq_sz; rewrite -!cats1 zip_cat //= eq_sz. Qed. | |
Lemma rev_zip s t : size s = size t -> rev (zip s t) = zip (rev s) (rev t). | |
Proof. | |
move: s t; apply: seq_ind2 => //= x y s t eq_sz IHs. | |
by rewrite !rev_cons IHs zip_rcons ?size_rev. | |
Qed. | |
Lemma all2E s t : | |
all2 s t = (size s == size t) && all [pred xy | r xy.1 xy.2] (zip s t). | |
Proof. by elim: s t => [|x s IHs] [|y t] //=; rewrite IHs andbCA. Qed. | |
Lemma zip_map I f g (s : seq I) : | |
zip (map f s) (map g s) = [seq (f i, g i) | i <- s]. | |
Proof. by elim: s => //= i s ->. Qed. | |
End Zip. | |
Prenex Implicits zip unzip1 unzip2 all2. | |
Lemma eqseq_all (T : eqType) (s t : seq T) : (s == t) = all2 eq_op s t. | |
Proof. by elim: s t => [|x s +] [|y t]//= => <-. Qed. | |
Lemma eq_map_all I (T : eqType) (f g : I -> T) (s : seq I) : | |
(map f s == map g s) = all [pred xy | xy.1 == xy.2] [seq (f i, g i) | i <- s]. | |
Proof. by rewrite eqseq_all all2E !size_map eqxx zip_map. Qed. | |
Section Flatten. | |
Variable T : Type. | |
Implicit Types (s : seq T) (ss : seq (seq T)). | |
Definition flatten := foldr cat (Nil T). | |
Definition shape := map (@size T). | |
Fixpoint reshape sh s := | |
if sh is n :: sh' then take n s :: reshape sh' (drop n s) else [::]. | |
Definition flatten_index sh r c := sumn (take r sh) + c. | |
Definition reshape_index sh i := find (pred1 0) (scanl subn i.+1 sh). | |
Definition reshape_offset sh i := i - sumn (take (reshape_index sh i) sh). | |
Lemma size_flatten ss : size (flatten ss) = sumn (shape ss). | |
Proof. by elim: ss => //= s ss <-; rewrite size_cat. Qed. | |
Lemma flatten_cat ss1 ss2 : flatten (ss1 ++ ss2) = flatten ss1 ++ flatten ss2. | |
Proof. by elim: ss1 => //= s ss1 ->; rewrite catA. Qed. | |
Lemma size_reshape sh s : size (reshape sh s) = size sh. | |
Proof. by elim: sh s => //= s0 sh IHsh s; rewrite IHsh. Qed. | |
Lemma nth_reshape (sh : seq nat) l n : | |
nth [::] (reshape sh l) n = take (nth 0 sh n) (drop (sumn (take n sh)) l). | |
Proof. | |
elim: n sh l => [| n IHn] [| sh0 sh] l; rewrite ?take0 ?drop0 //=. | |
by rewrite addnC -drop_drop; apply: IHn. | |
Qed. | |
Lemma flattenK ss : reshape (shape ss) (flatten ss) = ss. | |
Proof. | |
by elim: ss => //= s ss IHss; rewrite take_size_cat ?drop_size_cat ?IHss. | |
Qed. | |
Lemma reshapeKr sh s : size s <= sumn sh -> flatten (reshape sh s) = s. | |
Proof. | |
elim: sh s => [[]|n sh IHsh] //= s sz_s; rewrite IHsh ?cat_take_drop //. | |
by rewrite size_drop leq_subLR. | |
Qed. | |
Lemma reshapeKl sh s : size s >= sumn sh -> shape (reshape sh s) = sh. | |
Proof. | |
elim: sh s => [[]|n sh IHsh] //= s sz_s. | |
rewrite size_takel; last exact: leq_trans (leq_addr _ _) sz_s. | |
by rewrite IHsh // -(leq_add2l n) size_drop -maxnE leq_max sz_s orbT. | |
Qed. | |
Lemma flatten_rcons ss s : flatten (rcons ss s) = flatten ss ++ s. | |
Proof. by rewrite -cats1 flatten_cat /= cats0. Qed. | |
Lemma flatten_seq1 s : flatten [seq [:: x] | x <- s] = s. | |
Proof. by elim: s => //= s0 s ->. Qed. | |
Lemma count_flatten ss P : | |
count P (flatten ss) = sumn [seq count P x | x <- ss]. | |
Proof. by elim: ss => //= s ss IHss; rewrite count_cat IHss. Qed. | |
Lemma filter_flatten ss (P : pred T) : | |
filter P (flatten ss) = flatten [seq filter P i | i <- ss]. | |
Proof. by elim: ss => // s ss /= <-; apply: filter_cat. Qed. | |
Lemma rev_flatten ss : | |
rev (flatten ss) = flatten (rev (map rev ss)). | |
Proof. | |
by elim: ss => //= s ss IHss; rewrite rev_cons flatten_rcons -IHss rev_cat. | |
Qed. | |
Lemma nth_shape ss i : nth 0 (shape ss) i = size (nth [::] ss i). | |
Proof. | |
rewrite /shape; case: (ltnP i (size ss)) => Hi; first exact: nth_map. | |
by rewrite !nth_default // size_map. | |
Qed. | |
Lemma shape_rev ss : shape (rev ss) = rev (shape ss). | |
Proof. exact: map_rev. Qed. | |
Lemma eq_from_flatten_shape ss1 ss2 : | |
flatten ss1 = flatten ss2 -> shape ss1 = shape ss2 -> ss1 = ss2. | |
Proof. by move=> Eflat Esh; rewrite -[LHS]flattenK Eflat Esh flattenK. Qed. | |
Lemma rev_reshape sh s : | |
size s = sumn sh -> rev (reshape sh s) = map rev (reshape (rev sh) (rev s)). | |
Proof. | |
move=> sz_s; apply/(canLR revK)/eq_from_flatten_shape. | |
rewrite reshapeKr ?sz_s // -rev_flatten reshapeKr ?revK //. | |
by rewrite size_rev sumn_rev sz_s. | |
transitivity (rev (shape (reshape (rev sh) (rev s)))). | |
by rewrite !reshapeKl ?revK ?size_rev ?sz_s ?sumn_rev. | |
rewrite shape_rev; congr (rev _); rewrite -[RHS]map_comp. | |
by under eq_map do rewrite /= size_rev. | |
Qed. | |
Lemma reshape_rcons s sh n (m := sumn sh) : | |
m + n = size s -> | |
reshape (rcons sh n) s = rcons (reshape sh (take m s)) (drop m s). | |
Proof. | |
move=> Dmn; apply/(can_inj revK); rewrite rev_reshape ?rev_rcons ?sumn_rcons //. | |
rewrite /= take_rev drop_rev -Dmn addnK revK -rev_reshape //. | |
by rewrite size_takel // -Dmn leq_addr. | |
Qed. | |
Lemma flatten_indexP sh r c : | |
c < nth 0 sh r -> flatten_index sh r c < sumn sh. | |
Proof. | |
move=> lt_c_sh; rewrite -[sh in sumn sh](cat_take_drop r) sumn_cat ltn_add2l. | |
suffices lt_r_sh: r < size sh by rewrite (drop_nth 0 lt_r_sh) ltn_addr. | |
by case: ltnP => // le_sh_r; rewrite nth_default in lt_c_sh. | |
Qed. | |
Lemma reshape_indexP sh i : i < sumn sh -> reshape_index sh i < size sh. | |
Proof. | |
rewrite /reshape_index; elim: sh => //= n sh IHsh in i *; rewrite subn_eq0. | |
by have [// | le_n_i] := ltnP i n; rewrite -leq_subLR subSn // => /IHsh. | |
Qed. | |
Lemma reshape_offsetP sh i : | |
i < sumn sh -> reshape_offset sh i < nth 0 sh (reshape_index sh i). | |
Proof. | |
rewrite /reshape_offset /reshape_index; elim: sh => //= n sh IHsh in i *. | |
rewrite subn_eq0; have [| le_n_i] := ltnP i n; first by rewrite subn0. | |
by rewrite -leq_subLR /= subnDA subSn // => /IHsh. | |
Qed. | |
Lemma reshape_indexK sh i : | |
flatten_index sh (reshape_index sh i) (reshape_offset sh i) = i. | |
Proof. | |
rewrite /reshape_offset /reshape_index /flatten_index -subSKn. | |
elim: sh => //= n sh IHsh in i *; rewrite subn_eq0; have [//|le_n_i] := ltnP. | |
by rewrite /= subnDA subSn // -addnA IHsh subnKC. | |
Qed. | |
Lemma flatten_indexKl sh r c : | |
c < nth 0 sh r -> reshape_index sh (flatten_index sh r c) = r. | |
Proof. | |
rewrite /reshape_index /flatten_index. | |
elim: sh r => [|n sh IHsh] [|r] //= lt_c_sh; first by rewrite ifT. | |
by rewrite -addnA -addnS addKn IHsh. | |
Qed. | |
Lemma flatten_indexKr sh r c : | |
c < nth 0 sh r -> reshape_offset sh (flatten_index sh r c) = c. | |
Proof. | |
rewrite /reshape_offset /reshape_index /flatten_index. | |
elim: sh r => [|n sh IHsh] [|r] //= lt_c_sh; first by rewrite ifT ?subn0. | |
by rewrite -addnA -addnS addKn /= subnDl IHsh. | |
Qed. | |
Lemma nth_flatten x0 ss i (r := reshape_index (shape ss) i) : | |
nth x0 (flatten ss) i = nth x0 (nth [::] ss r) (reshape_offset (shape ss) i). | |
Proof. | |
rewrite /reshape_offset -subSKn {}/r /reshape_index. | |
elim: ss => //= s ss IHss in i *; rewrite subn_eq0 nth_cat. | |
by have [//|le_s_i] := ltnP; rewrite subnDA subSn /=. | |
Qed. | |
Lemma reshape_leq sh i1 i2 | |
(r1 := reshape_index sh i1) (c1 := reshape_offset sh i1) | |
(r2 := reshape_index sh i2) (c2 := reshape_offset sh i2) : | |
(i1 <= i2) = ((r1 < r2) || ((r1 == r2) && (c1 <= c2))). | |
Proof. | |
rewrite {}/r1 {}/c1 {}/r2 {}/c2 /reshape_offset /reshape_index. | |
elim: sh => [|s0 s IHs] /= in i1 i2 *; rewrite ?subn0 ?subn_eq0 //. | |
have [[] i1s0 [] i2s0] := (ltnP i1 s0, ltnP i2 s0); first by rewrite !subn0. | |
- by apply: leq_trans i2s0; apply/ltnW. | |
- by apply/negP => /(leq_trans i1s0); rewrite leqNgt i2s0. | |
by rewrite !subSn // !eqSS !ltnS !subnDA -IHs leq_subLR subnKC. | |
Qed. | |
End Flatten. | |
Prenex Implicits flatten shape reshape. | |
Lemma map_flatten S T (f : T -> S) ss : | |
map f (flatten ss) = flatten (map (map f) ss). | |
Proof. by elim: ss => // s ss /= <-; apply: map_cat. Qed. | |
Lemma flatten_map1 (S T : Type) (f : S -> T) s : | |
flatten [seq [:: f x] | x <- s] = map f s. | |
Proof. by elim: s => //= s0 s ->. Qed. | |
Lemma undup_flatten_nseq n (T : eqType) (s : seq T) : 0 < n -> | |
undup (flatten (nseq n s)) = undup s. | |
Proof. | |
elim: n => [|[|n]/= IHn]//= _; rewrite ?cats0// undup_cat {}IHn//. | |
rewrite (@eq_in_filter _ _ pred0) ?filter_pred0// => x. | |
by rewrite mem_undup mem_cat => ->. | |
Qed. | |
Lemma sumn_flatten (ss : seq (seq nat)) : | |
sumn (flatten ss) = sumn (map sumn ss). | |
Proof. by elim: ss => // s ss /= <-; apply: sumn_cat. Qed. | |
Lemma map_reshape T S (f : T -> S) sh s : | |
map (map f) (reshape sh s) = reshape sh (map f s). | |
Proof. by elim: sh s => //= sh0 sh IHsh s; rewrite map_take IHsh map_drop. Qed. | |
Section EqFlatten. | |
Variables S T : eqType. | |
Lemma flattenP (A : seq (seq T)) x : | |
reflect (exists2 s, s \in A & x \in s) (x \in flatten A). | |
Proof. | |
elim: A => /= [|s A IH_A]; [by right; case | rewrite mem_cat]. | |
by apply: equivP (iff_sym exists_cons); apply: (orPP idP IH_A). | |
Qed. | |
Arguments flattenP {A x}. | |
Lemma flatten_mapP (A : S -> seq T) s y : | |
reflect (exists2 x, x \in s & y \in A x) (y \in flatten (map A s)). | |
Proof. | |
apply: (iffP flattenP) => [[_ /mapP[x sx ->]] | [x sx]] Axy; first by exists x. | |
by exists (A x); rewrite ?map_f. | |
Qed. | |
Lemma perm_flatten (ss1 ss2 : seq (seq T)) : | |
perm_eq ss1 ss2 -> perm_eq (flatten ss1) (flatten ss2). | |
Proof. | |
move=> eq_ss; apply/permP=> a; apply/catCA_perm_subst: ss1 ss2 eq_ss. | |
by move=> ss1 ss2 ss3; rewrite !flatten_cat !count_cat addnCA. | |
Qed. | |
End EqFlatten. | |
Arguments flattenP {T A x}. | |
Arguments flatten_mapP {S T A s y}. | |
Notation "[ 'seq' E | x <- s , y <- t ]" := | |
(flatten [seq [seq E | y <- t] | x <- s]) | |
(at level 0, E at level 99, x name, y name, | |
format "[ '[hv' 'seq' E '/ ' | x <- s , '/ ' y <- t ] ']'") | |
: seq_scope. | |
Notation "[ 'seq' E | x : S <- s , y : T <- t ]" := | |
(flatten [seq [seq E | y : T <- t] | x : S <- s]) | |
(at level 0, E at level 99, x name, y name, only parsing) : seq_scope. | |
Notation "[ 'seq' E : R | x : S <- s , y : T <- t ]" := | |
(flatten [seq [seq E : R | y : T <- t] | x : S <- s]) | |
(at level 0, E at level 99, x name, y name, only parsing) : seq_scope. | |
Notation "[ 'seq' E : R | x <- s , y <- t ]" := | |
(flatten [seq [seq E : R | y <- t] | x <- s]) | |
(at level 0, E at level 99, x name, y name, only parsing) : seq_scope. | |
Section PrefixSuffixInfix. | |
Variables T : eqType. | |
Implicit Type s : seq T. | |
Fixpoint prefix s1 s2 {struct s2} := | |
if s1 isn't x :: s1' then true else | |
if s2 isn't y :: s2' then false else | |
(x == y) && prefix s1' s2'. | |
Lemma prefixE s1 s2 : prefix s1 s2 = (take (size s1) s2 == s1). | |
Proof. by elim: s2 s1 => [|y s2 +] [|x s1]//= => ->; rewrite eq_sym. Qed. | |
Lemma prefix_refl s : prefix s s. Proof. by rewrite prefixE take_size. Qed. | |
Lemma prefixs0 s : prefix s [::] = (s == [::]). Proof. by case: s. Qed. | |
Lemma prefix0s s : prefix [::] s. Proof. by case: s. Qed. | |
Lemma prefix_cons s1 s2 x y : | |
prefix (x :: s1) (y :: s2) = (x == y) && prefix s1 s2. | |
Proof. by []. Qed. | |
Lemma prefix_catr s1 s2 s1' s3 : size s1 = size s1' -> | |
prefix (s1 ++ s2) (s1' ++ s3) = (s1 == s1') && prefix s2 s3. | |
Proof. | |
elim: s1 s1' => [|x s1 IHs1] [|y s1']//= [eqs1]. | |
by rewrite IHs1// eqseq_cons andbA. | |
Qed. | |
Lemma prefix_prefix s1 s2 : prefix s1 (s1 ++ s2). | |
Proof. by rewrite prefixE take_cat ltnn subnn take0 cats0. Qed. | |
Hint Resolve prefix_prefix : core. | |
Lemma prefixP {s1 s2} : | |
reflect (exists s2' : seq T, s2 = s1 ++ s2') (prefix s1 s2). | |
Proof. | |
apply: (iffP idP) => [|[{}s2 ->]]; last exact: prefix_prefix. | |
by rewrite prefixE => /eqP<-; exists (drop (size s1) s2); rewrite cat_take_drop. | |
Qed. | |
Lemma prefix_trans : transitive prefix. | |
Proof. by move=> _ s2 _ /prefixP[s1 ->] /prefixP[s3 ->]; rewrite -catA. Qed. | |
Lemma prefixs1 s x : prefix s [:: x] = (s == [::]) || (s == [:: x]). | |
Proof. by case: s => //= y s; rewrite prefixs0 eqseq_cons. Qed. | |
Lemma catl_prefix s1 s2 s3 : prefix (s1 ++ s3) s2 -> prefix s1 s2. | |
Proof. by move=> /prefixP [s2'] ->; rewrite -catA. Qed. | |
Lemma prefix_catl s1 s2 s3 : prefix s1 s2 -> prefix s1 (s2 ++ s3). | |
Proof. by move=> /prefixP [s2'] ->; rewrite -catA. Qed. | |
Lemma prefix_rcons s x : prefix s (rcons s x). | |
Proof. by rewrite -cats1 prefix_prefix. Qed. | |
Definition suffix s1 s2 := prefix (rev s1) (rev s2). | |
Lemma suffixE s1 s2 : suffix s1 s2 = (drop (size s2 - size s1) s2 == s1). | |
Proof. by rewrite /suffix prefixE take_rev (can_eq revK) size_rev. Qed. | |
Lemma suffix_refl s : suffix s s. | |
Proof. exact: prefix_refl. Qed. | |
Lemma suffixs0 s : suffix s [::] = (s == [::]). | |
Proof. by rewrite /suffix prefixs0 -!nilpE rev_nilp. Qed. | |
Lemma suffix0s s : suffix [::] s. | |
Proof. exact: prefix0s. Qed. | |
Lemma prefix_rev s1 s2 : prefix (rev s1) (rev s2) = suffix s1 s2. | |
Proof. by []. Qed. | |
Lemma prefix_revLR s1 s2 : prefix (rev s1) s2 = suffix s1 (rev s2). | |
Proof. by rewrite -prefix_rev revK. Qed. | |
Lemma suffix_rev s1 s2 : suffix (rev s1) (rev s2) = prefix s1 s2. | |
Proof. by rewrite -prefix_rev !revK. Qed. | |
Lemma suffix_revLR s1 s2 : suffix (rev s1) s2 = prefix s1 (rev s2). | |
Proof. by rewrite -prefix_rev revK. Qed. | |
Lemma suffix_suffix s1 s2 : suffix s2 (s1 ++ s2). | |
Proof. by rewrite /suffix rev_cat prefix_prefix. Qed. | |
Hint Resolve suffix_suffix : core. | |
Lemma suffixP {s1 s2} : | |
reflect (exists s2' : seq T, s2 = s2' ++ s1) (suffix s1 s2). | |
Proof. | |
apply: (iffP prefixP) => [[s2' rev_s2]|[s2' ->]]; exists (rev s2'); last first. | |
by rewrite rev_cat. | |
by rewrite -[s2]revK rev_s2 rev_cat revK. | |
Qed. | |
Lemma suffix_trans : transitive suffix. | |
Proof. by move=> _ s2 _ /suffixP[s1 ->] /suffixP[s3 ->]; rewrite catA. Qed. | |
Lemma suffix_rcons s1 s2 x y : | |
suffix (rcons s1 x) (rcons s2 y) = (x == y) && suffix s1 s2. | |
Proof. by rewrite /suffix 2!rev_rcons prefix_cons. Qed. | |
Lemma suffix_catl s1 s2 s3 s3' : size s3 = size s3' -> | |
suffix (s1 ++ s3) (s2 ++ s3') = (s3 == s3') && suffix s1 s2. | |
Proof. | |
by move=> eqs3; rewrite /suffix !rev_cat prefix_catr ?size_rev// (can_eq revK). | |
Qed. | |
Lemma suffix_catr s1 s2 s3 : suffix s1 s2 -> suffix s1 (s3 ++ s2). | |
Proof. by move=> /suffixP [s2'] ->; rewrite catA suffix_suffix. Qed. | |
Lemma catl_suffix s s1 s2 : suffix (s ++ s1) s2 -> suffix s1 s2. | |
Proof. by move=> /suffixP [s2'] ->; rewrite catA suffix_suffix. Qed. | |
Lemma suffix_cons s x : suffix s (x :: s). | |
Proof. by rewrite /suffix rev_cons prefix_rcons. Qed. | |
Fixpoint infix s1 s2 := | |
if s2 is y :: s2' then prefix s1 s2 || infix s1 s2' else s1 == [::]. | |
Fixpoint infix_index s1 s2 := | |
if prefix s1 s2 then 0 | |
else if s2 is y :: s2' then (infix_index s1 s2').+1 else 1. | |
Lemma infix0s s : infix [::] s. Proof. by case: s. Qed. | |
Lemma infixs0 s : infix s [::] = (s == [::]). Proof. by case: s. Qed. | |
Lemma infix_consl s1 y s2 : | |
infix s1 (y :: s2) = prefix s1 (y :: s2) || infix s1 s2. | |
Proof. by []. Qed. | |
Lemma infix_indexss s : infix_index s s = 0. | |
Proof. by case: s => //= x s; rewrite eqxx prefix_refl. Qed. | |
Lemma infix_index_le s1 s2 : infix_index s1 s2 <= (size s2).+1. | |
Proof. by elim: s2 => [|x s2'] /=; case: ifP. Qed. | |
Lemma infixTindex s1 s2 : (infix_index s1 s2 <= size s2) = infix s1 s2. | |
Proof. by elim: s2 s1 => [|y s2 +] [|x s1]//= => <-; case: ifP. Qed. | |
Lemma infixPn s1 s2 : | |
reflect (infix_index s1 s2 = (size s2).+1) (~~ infix s1 s2). | |
Proof. | |
rewrite -infixTindex -ltnNge; apply: (iffP idP) => [s2lt|->//]. | |
by apply/eqP; rewrite eqn_leq s2lt infix_index_le. | |
Qed. | |
Lemma infix_index0s s : infix_index [::] s = 0. | |
Proof. by case: s. Qed. | |
Lemma infix_indexs0 s : infix_index s [::] = (s != [::]). | |
Proof. by case: s. Qed. | |
Lemma infixE s1 s2 : infix s1 s2 = | |
(take (size s1) (drop (infix_index s1 s2) s2) == s1). | |
Proof. | |
elim: s2 s1 => [|y s2 +] [|x s1]//= => -> /=. | |
by case: ifP => // /andP[/eqP-> ps1s2/=]; rewrite eqseq_cons -prefixE eqxx. | |
Qed. | |
Lemma infix_refl s : infix s s. | |
Proof. by rewrite infixE infix_indexss// drop0 take_size. Qed. | |
Lemma prefixW s1 s2 : prefix s1 s2 -> infix s1 s2. | |
Proof. by elim: s2 s1 => [|y s2 IHs2] [|x s1]//=->. Qed. | |
Lemma prefix_infix s1 s2 : infix s1 (s1 ++ s2). | |
Proof. exact: prefixW. Qed. | |
Hint Resolve prefix_infix : core. | |
Lemma infix_infix s1 s2 s3 : infix s2 (s1 ++ s2 ++ s3). | |
Proof. by elim: s1 => //= x s1 ->; rewrite orbT. Qed. | |
Hint Resolve infix_infix : core. | |
Lemma suffix_infix s1 s2 : infix s2 (s1 ++ s2). | |
Proof. by rewrite -[X in s1 ++ X]cats0. Qed. | |
Hint Resolve suffix_infix : core. | |
Lemma infixP {s1 s2} : | |
reflect (exists s s' : seq T, s2 = s ++ s1 ++ s') (infix s1 s2). | |
Proof. | |
apply: (iffP idP) => [|[p [s {s2}->]]]//=; rewrite infixE => /eqP<-. | |
set k := infix_index _ _; exists (take k s2), (drop (size s1 + k) s2). | |
by rewrite -drop_drop !cat_take_drop. | |
Qed. | |
Lemma infix_rev s1 s2 : infix (rev s1) (rev s2) = infix s1 s2. | |
Proof. | |
gen have sr : s1 s2 / infix s1 s2 -> infix (rev s1) (rev s2); last first. | |
by apply/idP/idP => /sr; rewrite ?revK. | |
by move=> /infixP[s [p ->]]; rewrite !rev_cat -catA. | |
Qed. | |
Lemma suffixW s1 s2 : suffix s1 s2 -> infix s1 s2. | |
Proof. by rewrite -infix_rev; apply: prefixW. Qed. | |
Lemma infix_trans : transitive infix. | |
Proof. | |
move=> s s1 s2 /infixP[s1p [s1s def_s]] /infixP[sp [ss def_s2]]. | |
by apply/infixP; exists (sp ++ s1p),(s1s ++ ss); rewrite def_s2 def_s -!catA. | |
Qed. | |
Lemma infix_revLR s1 s2 : infix (rev s1) s2 = infix s1 (rev s2). | |
Proof. by rewrite -infix_rev revK. Qed. | |
Lemma infix_rconsl s1 s2 y : | |
infix s1 (rcons s2 y) = suffix s1 (rcons s2 y) || infix s1 s2. | |
Proof. | |
rewrite -infix_rev rev_rcons infix_consl. | |
by rewrite -rev_rcons prefix_rev infix_rev. | |
Qed. | |
Lemma infix_cons s x : infix s (x :: s). | |
Proof. by rewrite -cat1s suffix_infix. Qed. | |
Lemma infixs1 s x : infix s [:: x] = (s == [::]) || (s == [:: x]). | |
Proof. by rewrite infix_consl prefixs1 orbC orbA orbb. Qed. | |
Lemma catl_infix s s1 s2 : infix (s ++ s1) s2 -> infix s1 s2. | |
Proof. apply: infix_trans; exact/suffixW/suffix_suffix. Qed. | |
Lemma catr_infix s s1 s2 : infix (s1 ++ s) s2 -> infix s1 s2. | |
Proof. | |
by rewrite -infix_rev rev_cat => /catl_infix; rewrite infix_rev. | |
Qed. | |
Lemma cons2_infix s1 s2 x : infix (x :: s1) (x :: s2) -> infix s1 s2. | |
Proof. | |
by rewrite /= eqxx /= -cat1s => /orP[/prefixW//|]; exact: catl_infix. | |
Qed. | |
Lemma rcons2_infix s1 s2 x : infix (rcons s1 x) (rcons s2 x) -> infix s1 s2. | |
Proof. by rewrite -infix_rev !rev_rcons => /cons2_infix; rewrite infix_rev. Qed. | |
Lemma catr2_infix s s1 s2 : infix (s ++ s1) (s ++ s2) -> infix s1 s2. | |
Proof. by elim: s => //= x s IHs /cons2_infix. Qed. | |
Lemma catl2_infix s s1 s2 : infix (s1 ++ s) (s2 ++ s) -> infix s1 s2. | |
Proof. by rewrite -infix_rev !rev_cat => /catr2_infix; rewrite infix_rev. Qed. | |
Lemma infix_catl s1 s2 s3 : infix s1 s2 -> infix s1 (s3 ++ s2). | |
Proof. by move=> is12; apply: infix_trans is12 (suffix_infix _ _). Qed. | |
Lemma infix_catr s1 s2 s3 : infix s1 s2 -> infix s1 (s2 ++ s3). | |
Proof. | |
case: s3 => [|x s /infixP [p [sf]] ->]; first by rewrite cats0. | |
by rewrite -catA; apply: infix_catl; rewrite -catA prefix_infix. | |
Qed. | |
Lemma prefix_infix_trans s2 s1 s3 : | |
prefix s1 s2 -> infix s2 s3 -> infix s1 s3. | |
Proof. by move=> /prefixW/infix_trans; apply. Qed. | |
Lemma suffix_infix_trans s2 s1 s3 : | |
suffix s1 s2 -> infix s2 s3 -> infix s1 s3. | |
Proof. by move=> /suffixW/infix_trans; apply. Qed. | |
Lemma infix_prefix_trans s2 s1 s3 : | |
infix s1 s2 -> prefix s2 s3 -> infix s1 s3. | |
Proof. by move=> + /prefixW; apply: infix_trans. Qed. | |
Lemma infix_suffix_trans s2 s1 s3 : | |
infix s1 s2 -> suffix s2 s3 -> infix s1 s3. | |
Proof. by move=> + /suffixW; apply: infix_trans. Qed. | |
Lemma prefix_suffix_trans s2 s1 s3 : | |
prefix s1 s2 -> suffix s2 s3 -> infix s1 s3. | |
Proof. by move=> /prefixW + /suffixW +; apply: infix_trans. Qed. | |
Lemma suffix_prefix_trans s2 s1 s3 : | |
suffix s1 s2 -> prefix s2 s3 -> infix s1 s3. | |
Proof. by move=> /suffixW + /prefixW +; apply: infix_trans. Qed. | |
Lemma infixW s1 s2 : infix s1 s2 -> subseq s1 s2. | |
Proof. | |
move=> /infixP[sp [ss ->]]. | |
exact: subseq_trans (prefix_subseq _ _) (suffix_subseq _ _). | |
Qed. | |
Lemma mem_infix s1 s2 : infix s1 s2 -> {subset s1 <= s2}. | |
Proof. by move=> /infixW subH; apply: mem_subseq. Qed. | |
Lemma infix1s s x : infix [:: x] s = (x \in s). | |
Proof. by elim: s => // x' s /= ->; rewrite in_cons prefix0s andbT. Qed. | |
Lemma prefix1s s x : prefix [:: x] s -> x \in s. | |
Proof. by rewrite -infix1s => /prefixW. Qed. | |
Lemma suffix1s s x : suffix [:: x] s -> x \in s. | |
Proof. by rewrite -infix1s => /suffixW. Qed. | |
Lemma infix_rcons s x : infix s (rcons s x). | |
Proof. by rewrite -cats1 prefix_infix. Qed. | |
Lemma infix_uniq s1 s2 : infix s1 s2 -> uniq s2 -> uniq s1. | |
Proof. by move=> /infixW /subseq_uniq subH. Qed. | |
Lemma prefix_uniq s1 s2 : prefix s1 s2 -> uniq s2 -> uniq s1. | |
Proof. by move=> /prefixW /infix_uniq preH. Qed. | |
Lemma suffix_uniq s1 s2 : suffix s1 s2 -> uniq s2 -> uniq s1. | |
Proof. by move=> /suffixW /infix_uniq preH. Qed. | |
Lemma prefix_take s i : prefix (take i s) s. | |
Proof. by rewrite -{2}[s](cat_take_drop i). Qed. | |
Lemma suffix_drop s i : suffix (drop i s) s. | |
Proof. by rewrite -{2}[s](cat_take_drop i). Qed. | |
Lemma infix_take s i : infix (take i s) s. | |
Proof. by rewrite prefixW // prefix_take. Qed. | |
Lemma prefix_drop_gt0 s i : ~~ prefix (drop i s) s -> i > 0. | |
Proof. by case: i => //=; rewrite drop0 ltnn prefix_refl. Qed. | |
Lemma infix_drop s i : infix (drop i s) s. | |
Proof. by rewrite -{2}[s](cat_take_drop i). Qed. | |
Lemma consr_infix s1 s2 x : infix (x :: s1) s2 -> infix [:: x] s2. | |
Proof. by rewrite -cat1s => /catr_infix. Qed. | |
Lemma consl_infix s1 s2 x : infix (x :: s1) s2 -> infix s1 s2. | |
Proof. by rewrite -cat1s => /catl_infix. Qed. | |
Lemma prefix_index s1 s2 : prefix s1 s2 -> infix_index s1 s2 = 0. | |
Proof. by case: s1 s2 => [|x s1] [|y s2] //= ->. Qed. | |
Lemma size_infix s1 s2 : infix s1 s2 -> size s1 <= size s2. | |
Proof. by move=> /infixW; apply: size_subseq. Qed. | |
Lemma size_prefix s1 s2 : prefix s1 s2 -> size s1 <= size s2. | |
Proof. by move=> /prefixW; apply: size_infix. Qed. | |
Lemma size_suffix s1 s2 : suffix s1 s2 -> size s1 <= size s2. | |
Proof. by move=> /suffixW; apply: size_infix. Qed. | |
End PrefixSuffixInfix. | |
Section AllPairsDep. | |
Variables (S S' : Type) (T T' : S -> Type) (R : Type). | |
Implicit Type f : forall x, T x -> R. | |
Definition allpairs_dep f s t := [seq f x y | x <- s, y <- t x]. | |
Lemma size_allpairs_dep f s t : | |
size [seq f x y | x <- s, y <- t x] = sumn [seq size (t x) | x <- s]. | |
Proof. by elim: s => //= x s IHs; rewrite size_cat size_map IHs. Qed. | |
Lemma allpairs0l f t : [seq f x y | x <- [::], y <- t x] = [::]. | |
Proof. by []. Qed. | |
Lemma allpairs0r f s : [seq f x y | x <- s, y <- [::]] = [::]. | |
Proof. by elim: s. Qed. | |
Lemma allpairs1l f x t : | |
[seq f x y | x <- [:: x], y <- t x] = [seq f x y | y <- t x]. | |
Proof. exact: cats0. Qed. | |
Lemma allpairs1r f s y : | |
[seq f x y | x <- s, y <- [:: y x]] = [seq f x (y x) | x <- s]. | |
Proof. exact: flatten_map1. Qed. | |
Lemma allpairs_cons f x s t : | |
[seq f x y | x <- x :: s, y <- t x] = | |
[seq f x y | y <- t x] ++ [seq f x y | x <- s, y <- t x]. | |
Proof. by []. Qed. | |
Lemma eq_allpairs (f1 f2 : forall x, T x -> R) s t : | |
(forall x, f1 x =1 f2 x) -> | |
[seq f1 x y | x <- s, y <- t x] = [seq f2 x y | x <- s, y <- t x]. | |
Proof. by move=> eq_f; under eq_map do under eq_map do rewrite eq_f. Qed. | |
Lemma eq_allpairsr (f : forall x, T x -> R) s t1 t2 : (forall x, t1 x = t2 x) -> | |
[seq f x y | x <- s, y <- t1 x] = [seq f x y | x <- s, y <- t2 x]. | |
Proof. by move=> eq_t; under eq_map do rewrite eq_t. Qed. | |
Lemma allpairs_cat f s1 s2 t : | |
[seq f x y | x <- s1 ++ s2, y <- t x] = | |
[seq f x y | x <- s1, y <- t x] ++ [seq f x y | x <- s2, y <- t x]. | |
Proof. by rewrite map_cat flatten_cat. Qed. | |
Lemma allpairs_rcons f x s t : | |
[seq f x y | x <- rcons s x, y <- t x] = | |
[seq f x y | x <- s, y <- t x] ++ [seq f x y | y <- t x]. | |
Proof. by rewrite -cats1 allpairs_cat allpairs1l. Qed. | |
Lemma allpairs_mapl f (g : S' -> S) s t : | |
[seq f x y | x <- map g s, y <- t x] = [seq f (g x) y | x <- s, y <- t (g x)]. | |
Proof. by rewrite -map_comp. Qed. | |
Lemma allpairs_mapr f (g : forall x, T' x -> T x) s t : | |
[seq f x y | x <- s, y <- map (g x) (t x)] = | |
[seq f x (g x y) | x <- s, y <- t x]. | |
Proof. by under eq_map do rewrite -map_comp. Qed. | |
End AllPairsDep. | |
Arguments allpairs_dep {S T R} f s t /. | |
Lemma map_allpairs S T R R' (g : R' -> R) f s t : | |
map g [seq f x y | x : S <- s, y : T x <- t x] = | |
[seq g (f x y) | x <- s, y <- t x]. | |
Proof. by rewrite map_flatten allpairs_mapl allpairs_mapr. Qed. | |
Section AllPairsNonDep. | |
Variables (S T R : Type) (f : S -> T -> R). | |
Implicit Types (s : seq S) (t : seq T). | |
Definition allpairs s t := [seq f x y | x <- s, y <- t]. | |
Lemma size_allpairs s t : size [seq f x y | x <- s, y <- t] = size s * size t. | |
Proof. by elim: s => //= x s IHs; rewrite size_cat size_map IHs. Qed. | |
End AllPairsNonDep. | |
Arguments allpairs {S T R} f s t /. | |
Section EqAllPairsDep. | |
Variables (S : eqType) (T : S -> eqType). | |
Implicit Types (R : eqType) (s : seq S) (t : forall x, seq (T x)). | |
Lemma allpairsPdep R (f : forall x, T x -> R) s t (z : R) : | |
reflect (exists x y, [/\ x \in s, y \in t x & z = f x y]) | |
(z \in [seq f x y | x <- s, y <- t x]). | |
Proof. | |
apply: (iffP flatten_mapP); first by case=> x sx /mapP[y ty ->]; exists x, y. | |
by case=> x [y [sx ty ->]]; exists x; last apply: map_f. | |
Qed. | |
Variable R : eqType. | |
Implicit Type f : forall x, T x -> R. | |
Lemma allpairs_f_dep f s t x y : | |
x \in s -> y \in t x -> f x y \in [seq f x y | x <- s, y <- t x]. | |
Proof. by move=> sx ty; apply/allpairsPdep; exists x, y. Qed. | |
Lemma eq_in_allpairs_dep f1 f2 s t : | |
{in s, forall x, {in t x, f1 x =1 f2 x}} <-> | |
[seq f1 x y : R | x <- s, y <- t x] = [seq f2 x y | x <- s, y <- t x]. | |
Proof. | |
split=> [eq_f | eq_fst x s_x]. | |
by congr flatten; apply/eq_in_map=> x s_x; apply/eq_in_map/eq_f. | |
apply/eq_in_map; apply/eq_in_map: x s_x; apply/eq_from_flatten_shape => //. | |
by rewrite /shape -!map_comp; apply/eq_map=> x /=; rewrite !size_map. | |
Qed. | |
Lemma mem_allpairs_dep f s1 t1 s2 t2 : | |
s1 =i s2 -> {in s1, forall x, t1 x =i t2 x} -> | |
[seq f x y | x <- s1, y <- t1 x] =i [seq f x y | x <- s2, y <- t2 x]. | |
Proof. | |
move=> eq_s eq_t z; apply/allpairsPdep/allpairsPdep=> -[x [y [sx ty ->]]]; | |
by exists x, y; rewrite -eq_s in sx *; rewrite eq_t in ty *. | |
Qed. | |
Lemma allpairs_uniq_dep f s t (st := [seq Tagged T y | x <- s, y <- t x]) : | |
let g (p : {x : S & T x}) : R := f (tag p) (tagged p) in | |
uniq s -> {in s, forall x, uniq (t x)} -> {in st &, injective g} -> | |
uniq [seq f x y | x <- s, y <- t x]. | |
Proof. | |
move=> g Us Ut; rewrite -(map_allpairs g (existT T)) => /map_inj_in_uniq->{f g}. | |
elim: s Us => //= x s IHs /andP[s'x Us] in st Ut *; rewrite {st}cat_uniq. | |
rewrite {}IHs {Us}// ?andbT => [|x1 s_s1]; last exact/Ut/mem_behead. | |
have injT: injective (existT T x) by move=> y z /eqP; rewrite eq_Tagged => /eqP. | |
rewrite (map_inj_in_uniq (in2W injT)) {injT}Ut ?mem_head // has_sym has_map. | |
by apply: contra s'x => /hasP[y _ /allpairsPdep[z [_ [? _ /(congr1 tag)/=->]]]]. | |
Qed. | |
End EqAllPairsDep. | |
Arguments allpairsPdep {S T R f s t z}. | |
Section MemAllPairs. | |
Variables (S : Type) (T : S -> Type) (R : eqType). | |
Implicit Types (f : forall x, T x -> R) (s : seq S). | |
Lemma perm_allpairs_catr f s t1 t2 : | |
perm_eql [seq f x y | x <- s, y <- t1 x ++ t2 x] | |
([seq f x y | x <- s, y <- t1 x] ++ [seq f x y | x <- s, y <- t2 x]). | |
Proof. | |
apply/permPl; rewrite perm_sym; elim: s => //= x s ihs. | |
by rewrite perm_catACA perm_cat ?map_cat. | |
Qed. | |
Lemma mem_allpairs_catr f s y0 t : | |
[seq f x y | x <- s, y <- y0 x ++ t x] =i | |
[seq f x y | x <- s, y <- y0 x] ++ [seq f x y | x <- s, y <- t x]. | |
Proof. exact/perm_mem/permPl/perm_allpairs_catr. Qed. | |
Lemma perm_allpairs_consr f s y0 t : | |
perm_eql [seq f x y | x <- s, y <- y0 x :: t x] | |
([seq f x (y0 x) | x <- s] ++ [seq f x y | x <- s, y <- t x]). | |
Proof. | |
by apply/permPl; rewrite (perm_allpairs_catr _ _ (fun=> [:: _])) allpairs1r. | |
Qed. | |
Lemma mem_allpairs_consr f s t y0 : | |
[seq f x y | x <- s, y <- y0 x :: t x] =i | |
[seq f x (y0 x) | x <- s] ++ [seq f x y | x <- s, y <- t x]. | |
Proof. exact/perm_mem/permPl/perm_allpairs_consr. Qed. | |
Lemma allpairs_rconsr f s y0 t : | |
perm_eql [seq f x y | x <- s, y <- rcons (t x) (y0 x)] | |
([seq f x y | x <- s, y <- t x] ++ [seq f x (y0 x) | x <- s]). | |
Proof. | |
apply/permPl; rewrite -(eq_allpairsr _ _ (fun=> cats1 _ _)). | |
by rewrite perm_allpairs_catr allpairs1r. | |
Qed. | |
Lemma mem_allpairs_rconsr f s t y0 : | |
[seq f x y | x <- s, y <- rcons (t x) (y0 x)] =i | |
([seq f x y | x <- s, y <- t x] ++ [seq f x (y0 x) | x <- s]). | |
Proof. exact/perm_mem/permPl/allpairs_rconsr. Qed. | |
End MemAllPairs. | |
Lemma all_allpairsP | |
(S : eqType) (T : S -> eqType) (R : Type) | |
(p : pred R) (f : forall x : S, T x -> R) | |
(s : seq S) (t : forall x : S, seq (T x)) : | |
reflect (forall (x : S) (y : T x), x \in s -> y \in t x -> p (f x y)) | |
(all p [seq f x y | x <- s, y <- t x]). | |
Proof. | |
elim: s => [|x s IHs]; first by constructor. | |
rewrite /= all_cat all_map /preim. | |
apply/(iffP andP)=> [[/allP /= ? ? x' y x'_in_xs]|p_xs_t]. | |
by move: x'_in_xs y => /[1!inE] /predU1P [-> //|? ?]; exact: IHs. | |
split; first by apply/allP => ?; exact/p_xs_t/mem_head. | |
by apply/IHs => x' y x'_in_s; apply: p_xs_t; rewrite inE x'_in_s orbT. | |
Qed. | |
Arguments all_allpairsP {S T R p f s t}. | |
Section EqAllPairs. | |
Variables S T R : eqType. | |
Implicit Types (f : S -> T -> R) (s : seq S) (t : seq T). | |
Lemma allpairsP f s t (z : R) : | |
reflect (exists p, [/\ p.1 \in s, p.2 \in t & z = f p.1 p.2]) | |
(z \in [seq f x y | x <- s, y <- t]). | |
Proof. | |
by apply: (iffP allpairsPdep) => [[x[y]]|[[x y]]]; [exists (x, y)|exists x, y]. | |
Qed. | |
Lemma allpairs_f f s t x y : | |
x \in s -> y \in t -> f x y \in [seq f x y | x <- s, y <- t]. | |
Proof. exact: allpairs_f_dep. Qed. | |
Lemma eq_in_allpairs f1 f2 s t : | |
{in s & t, f1 =2 f2} <-> | |
[seq f1 x y : R | x <- s, y <- t] = [seq f2 x y | x <- s, y <- t]. | |
Proof. | |
split=> [eq_f | /eq_in_allpairs_dep-eq_f x y /eq_f/(_ y)//]. | |
by apply/eq_in_allpairs_dep=> x /eq_f. | |
Qed. | |
Lemma mem_allpairs f s1 t1 s2 t2 : | |
s1 =i s2 -> t1 =i t2 -> | |
[seq f x y | x <- s1, y <- t1] =i [seq f x y | x <- s2, y <- t2]. | |
Proof. by move=> eq_s eq_t; apply: mem_allpairs_dep. Qed. | |
Lemma allpairs_uniq f s t (st := [seq (x, y) | x <- s, y <- t]) : | |
uniq s -> uniq t -> {in st &, injective (uncurry f)} -> | |
uniq [seq f x y | x <- s, y <- t]. | |
Proof. | |
move=> Us Ut inj_f; rewrite -(map_allpairs (uncurry f) (@pair S T)) -/st. | |
rewrite map_inj_in_uniq // allpairs_uniq_dep {Us Ut st inj_f}//. | |
by apply: in2W => -[x1 y1] [x2 y2] /= [-> ->]. | |
Qed. | |
End EqAllPairs. | |
Arguments allpairsP {S T R f s t z}. | |
Arguments perm_nilP {T s}. | |
Arguments perm_consP {T x s t}. | |
Section AllRel. | |
Variables (T S : Type) (r : T -> S -> bool). | |
Implicit Types (x : T) (y : S) (xs : seq T) (ys : seq S). | |
Definition allrel xs ys := all [pred x | all (r x) ys] xs. | |
Lemma allrel0l ys : allrel [::] ys. Proof. by []. Qed. | |
Lemma allrel0r xs : allrel xs [::]. Proof. by elim: xs. Qed. | |
Lemma allrel_consl x xs ys : allrel (x :: xs) ys = all (r x) ys && allrel xs ys. | |
Proof. by []. Qed. | |
Lemma allrel_consr xs y ys : | |
allrel xs (y :: ys) = all (r^~ y) xs && allrel xs ys. | |
Proof. exact: all_predI. Qed. | |
Lemma allrel_cons2 x y xs ys : | |
allrel (x :: xs) (y :: ys) = | |
[&& r x y, all (r x) ys, all (r^~ y) xs & allrel xs ys]. | |
Proof. by rewrite /= allrel_consr -andbA. Qed. | |
Lemma allrel1l x ys : allrel [:: x] ys = all (r x) ys. Proof. exact: andbT. Qed. | |
Lemma allrel1r xs y : allrel xs [:: y] = all (r^~ y) xs. | |
Proof. by rewrite allrel_consr allrel0r andbT. Qed. | |
Lemma allrel_catl xs xs' ys : | |
allrel (xs ++ xs') ys = allrel xs ys && allrel xs' ys. | |
Proof. exact: all_cat. Qed. | |
Lemma allrel_catr xs ys ys' : | |
allrel xs (ys ++ ys') = allrel xs ys && allrel xs ys'. | |
Proof. | |
elim: ys => /= [|y ys ihys]; first by rewrite allrel0r. | |
by rewrite !allrel_consr ihys andbA. | |
Qed. | |
Lemma allrel_maskl m xs ys : allrel xs ys -> allrel (mask m xs) ys. | |
Proof. | |
by elim: m xs => [|[] m IHm] [|x xs] //= /andP [xys /IHm->]; rewrite ?xys. | |
Qed. | |
Lemma allrel_maskr m xs ys : allrel xs ys -> allrel xs (mask m ys). | |
Proof. by elim: xs => //= x xs IHxs /andP [/all_mask->]. Qed. | |
Lemma allrel_filterl a xs ys : allrel xs ys -> allrel (filter a xs) ys. | |
Proof. by rewrite filter_mask; apply: allrel_maskl. Qed. | |
Lemma allrel_filterr a xs ys : allrel xs ys -> allrel xs (filter a ys). | |
Proof. by rewrite filter_mask; apply: allrel_maskr. Qed. | |
Lemma allrel_allpairsE xs ys : | |
allrel xs ys = all id [seq r x y | x <- xs, y <- ys]. | |
Proof. by elim: xs => //= x xs ->; rewrite all_cat all_map. Qed. | |
End AllRel. | |
Arguments allrel {T S} r xs ys : simpl never. | |
Arguments allrel0l {T S} r ys. | |
Arguments allrel0r {T S} r xs. | |
Arguments allrel_consl {T S} r x xs ys. | |
Arguments allrel_consr {T S} r xs y ys. | |
Arguments allrel1l {T S} r x ys. | |
Arguments allrel1r {T S} r xs y. | |
Arguments allrel_catl {T S} r xs xs' ys. | |
Arguments allrel_catr {T S} r xs ys ys'. | |
Arguments allrel_maskl {T S} r m xs ys. | |
Arguments allrel_maskr {T S} r m xs ys. | |
Arguments allrel_filterl {T S} r a xs ys. | |
Arguments allrel_filterr {T S} r a xs ys. | |
Arguments allrel_allpairsE {T S} r xs ys. | |
Notation all2rel r xs := (allrel r xs xs). | |
Lemma sub_in_allrel | |
{T S : Type} (P : {pred T}) (Q : {pred S}) (r r' : T -> S -> bool) : | |
{in P & Q, forall x y, r x y -> r' x y} -> | |
forall xs ys, all P xs -> all Q ys -> allrel r xs ys -> allrel r' xs ys. | |
Proof. | |
move=> rr' + ys; elim=> //= x xs IHxs /andP [Px Pxs] Qys. | |
rewrite !allrel_consl => /andP [+ {}/IHxs-> //]; rewrite andbT. | |
by elim: ys Qys => //= y ys IHys /andP [Qy Qys] /andP [/rr'-> // /IHys->]. | |
Qed. | |
Lemma sub_allrel {T S : Type} (r r' : T -> S -> bool) : | |
(forall x y, r x y -> r' x y) -> | |
forall xs ys, allrel r xs ys -> allrel r' xs ys. | |
Proof. | |
by move=> rr' xs ys; apply/sub_in_allrel/all_predT/all_predT; apply: in2W. | |
Qed. | |
Lemma eq_in_allrel {T S : Type} (P : {pred T}) (Q : {pred S}) r r' : | |
{in P & Q, r =2 r'} -> | |
forall xs ys, all P xs -> all Q ys -> allrel r xs ys = allrel r' xs ys. | |
Proof. | |
move=> rr' xs ys Pxs Qys. | |
by apply/idP/idP; apply/sub_in_allrel/Qys/Pxs => ? ? ? ?; rewrite rr'. | |
Qed. | |
Lemma eq_allrel {T S : Type} (r r' : T -> S -> bool) : | |
r =2 r' -> allrel r =2 allrel r'. | |
Proof. by move=> rr' xs ys; apply/eq_in_allrel/all_predT/all_predT. Qed. | |
Lemma allrelC {T S : Type} (r : T -> S -> bool) xs ys : | |
allrel r xs ys = allrel (fun y => r^~ y) ys xs. | |
Proof. by elim: xs => [|x xs ih]; [elim: ys | rewrite allrel_consr -ih]. Qed. | |
Lemma allrel_mapl {T T' S : Type} (f : T' -> T) (r : T -> S -> bool) xs ys : | |
allrel r (map f xs) ys = allrel (fun x => r (f x)) xs ys. | |
Proof. exact: all_map. Qed. | |
Lemma allrel_mapr {T S S' : Type} (f : S' -> S) (r : T -> S -> bool) xs ys : | |
allrel r xs (map f ys) = allrel (fun x y => r x (f y)) xs ys. | |
Proof. by rewrite allrelC allrel_mapl allrelC. Qed. | |
Lemma allrelP {T S : eqType} {r : T -> S -> bool} {xs ys} : | |
reflect {in xs & ys, forall x y, r x y} (allrel r xs ys). | |
Proof. by rewrite allrel_allpairsE; exact: all_allpairsP. Qed. | |
Lemma allrelT {T S : Type} (xs : seq T) (ys : seq S) : | |
allrel (fun _ _ => true) xs ys = true. | |
Proof. by elim: xs => //= ? ?; rewrite allrel_consl all_predT. Qed. | |
Lemma allrel_relI {T S : Type} (r r' : T -> S -> bool) xs ys : | |
allrel (fun x y => r x y && r' x y) xs ys = allrel r xs ys && allrel r' xs ys. | |
Proof. by rewrite -all_predI; apply: eq_all => ?; rewrite /= -all_predI. Qed. | |
Section All2Rel. | |
Variable (T : nonPropType) (r : rel T). | |
Implicit Types (x y z : T) (xs : seq T). | |
Hypothesis (rsym : symmetric r). | |
Lemma all2rel1 x : all2rel r [:: x] = r x x. | |
Proof. by rewrite /allrel /= !andbT. Qed. | |
Lemma all2rel2 x y : all2rel r [:: x; y] = r x x && r y y && r x y. | |
Proof. by rewrite /allrel /= rsym; do 3 case: r. Qed. | |
Lemma all2rel_cons x xs : | |
all2rel r (x :: xs) = [&& r x x, all (r x) xs & all2rel r xs]. | |
Proof. | |
rewrite allrel_cons2; congr andb; rewrite andbA -all_predI; congr andb. | |
by elim: xs => //= y xs ->; rewrite rsym andbb. | |
Qed. | |
End All2Rel. | |
Section Pairwise. | |
Variables (T : Type) (r : T -> T -> bool). | |
Implicit Types (x y : T) (xs ys : seq T). | |
Fixpoint pairwise xs : bool := | |
if xs is x :: xs then all (r x) xs && pairwise xs else true. | |
Lemma pairwise_cons x xs : pairwise (x :: xs) = all (r x) xs && pairwise xs. | |
Proof. by []. Qed. | |
Lemma pairwise_cat xs ys : | |
pairwise (xs ++ ys) = [&& allrel r xs ys, pairwise xs & pairwise ys]. | |
Proof. by elim: xs => //= x xs ->; rewrite all_cat -!andbA; bool_congr. Qed. | |
Lemma pairwise_rcons xs x : | |
pairwise (rcons xs x) = all (r^~ x) xs && pairwise xs. | |
Proof. by rewrite -cats1 pairwise_cat allrel1r andbT. Qed. | |
Lemma pairwise2 x y : pairwise [:: x; y] = r x y. | |
Proof. by rewrite /= !andbT. Qed. | |
Lemma pairwise_mask m xs : pairwise xs -> pairwise (mask m xs). | |
Proof. | |
by elim: m xs => [|[] m IHm] [|x xs] //= /andP [? ?]; rewrite ?IHm // all_mask. | |
Qed. | |
Lemma pairwise_filter a xs : pairwise xs -> pairwise (filter a xs). | |
Proof. by rewrite filter_mask; apply: pairwise_mask. Qed. | |
Lemma pairwiseP x0 xs : | |
reflect {in gtn (size xs) &, {homo nth x0 xs : i j / i < j >-> r i j}} | |
(pairwise xs). | |
Proof. | |
elim: xs => /= [|x xs IHxs]; first exact: (iffP idP). | |
apply: (iffP andP) => [[r_x_xs pxs] i j|Hnth]; rewrite -?topredE /= ?ltnS. | |
by case: i j => [|i] [|j] //= gti gtj ij; [exact/all_nthP | exact/IHxs]. | |
split; last by apply/IHxs => // i j; apply/(Hnth i.+1 j.+1). | |
by apply/(all_nthP x0) => i gti; apply/(Hnth 0 i.+1). | |
Qed. | |
Lemma pairwise_all2rel : | |
reflexive r -> symmetric r -> forall xs, pairwise xs = all2rel r xs. | |
Proof. | |
by move=> r_refl r_sym; elim => //= x xs ->; rewrite all2rel_cons // r_refl. | |
Qed. | |
End Pairwise. | |
Arguments pairwise {T} r xs. | |
Arguments pairwise_cons {T} r x xs. | |
Arguments pairwise_cat {T} r xs ys. | |
Arguments pairwise_rcons {T} r xs x. | |
Arguments pairwise2 {T} r x y. | |
Arguments pairwise_mask {T r} m {xs}. | |
Arguments pairwise_filter {T r} a {xs}. | |
Arguments pairwiseP {T r} x0 {xs}. | |
Arguments pairwise_all2rel {T r} r_refl r_sym xs. | |
Lemma sub_in_pairwise {T : Type} (P : {pred T}) (r r' : rel T) : | |
{in P &, subrel r r'} -> | |
forall xs, all P xs -> pairwise r xs -> pairwise r' xs. | |
Proof. | |
move=> rr'; elim=> //= x xs IHxs /andP [Px Pxs] /andP [+ {}/IHxs->] //. | |
rewrite andbT; elim: xs Pxs => //= x' xs IHxs /andP [? ?] /andP [+ /IHxs->] //. | |
by rewrite andbT; apply: rr'. | |
Qed. | |
Lemma sub_pairwise {T : Type} (r r' : rel T) xs : | |
subrel r r' -> pairwise r xs -> pairwise r' xs. | |
Proof. by move=> rr'; apply/sub_in_pairwise/all_predT; apply: in2W. Qed. | |
Lemma eq_in_pairwise {T : Type} (P : {pred T}) (r r' : rel T) : | |
{in P &, r =2 r'} -> forall xs, all P xs -> pairwise r xs = pairwise r' xs. | |
Proof. | |
move=> rr' xs Pxs. | |
by apply/idP/idP; apply/sub_in_pairwise/Pxs => ? ? ? ?; rewrite rr'. | |
Qed. | |
Lemma eq_pairwise {T : Type} (r r' : rel T) : | |
r =2 r' -> pairwise r =i pairwise r'. | |
Proof. by move=> rr' xs; apply/eq_in_pairwise/all_predT. Qed. | |
Lemma pairwise_map {T T' : Type} (f : T' -> T) (r : rel T) xs : | |
pairwise r (map f xs) = pairwise (relpre f r) xs. | |
Proof. by elim: xs => //= x xs ->; rewrite all_map. Qed. | |
Lemma pairwise_relI {T : Type} (r r' : rel T) (s : seq T) : | |
pairwise [rel x y | r x y && r' x y] s = pairwise r s && pairwise r' s. | |
Proof. by elim: s => //= x s ->; rewrite andbACA all_predI. Qed. | |
Section EqPairwise. | |
Variables (T : eqType) (r : T -> T -> bool). | |
Implicit Types (xs ys : seq T). | |
Lemma subseq_pairwise xs ys : subseq xs ys -> pairwise r ys -> pairwise r xs. | |
Proof. by case/subseqP => m _ ->; apply: pairwise_mask. Qed. | |
Lemma uniq_pairwise xs : uniq xs = pairwise [rel x y | x != y] xs. | |
Proof. | |
elim: xs => //= x xs ->; congr andb; rewrite -has_pred1 -all_predC. | |
by elim: xs => //= x' xs ->; case: eqVneq. | |
Qed. | |
Lemma pairwise_uniq xs : irreflexive r -> pairwise r xs -> uniq xs. | |
Proof. | |
move=> r_irr; rewrite uniq_pairwise; apply/sub_pairwise => x y. | |
by apply: contraTneq => ->; rewrite r_irr. | |
Qed. | |
Lemma pairwise_eq : antisymmetric r -> | |
forall xs ys, pairwise r xs -> pairwise r ys -> perm_eq xs ys -> xs = ys. | |
Proof. | |
move=> r_asym; elim=> [|x xs IHxs] [|y ys] //=; try by move=> ? ? /perm_size. | |
move=> /andP [r_x_xs pxs] /andP [r_y_ys pys] eq_xs_ys. | |
move: (mem_head y ys) (mem_head x xs). | |
rewrite -(perm_mem eq_xs_ys) [x \in _](perm_mem eq_xs_ys) !inE. | |
case: eqVneq eq_xs_ys => /= [->|ne_xy] eq_xs_ys ys_x xs_y. | |
by rewrite (IHxs ys) // -(perm_cons x). | |
by case/eqP: ne_xy; apply: r_asym; rewrite (allP r_x_xs) ?(allP r_y_ys). | |
Qed. | |
Lemma pairwise_trans s : antisymmetric r -> | |
pairwise r s -> {in s & &, transitive r}. | |
Proof. | |
move=> /(_ _ _ _)/eqP r_anti + y x z => /pairwiseP-/(_ y) ltP ys xs zs. | |
have [-> //|neqxy] := eqVneq x y; have [-> //|neqzy] := eqVneq z y. | |
move=> lxy lyz; move: ys xs zs lxy neqxy lyz neqzy. | |
move=> /(nthP y)[j jlt <-] /(nthP y)[i ilt <-] /(nthP y)[k klt <-]. | |
have [ltij|ltji|->] := ltngtP i j; last 2 first. | |
- by move=> leij; rewrite r_anti// leij ltP. | |
- by move=> lejj; rewrite r_anti// lejj. | |
move=> _ _; have [ltjk|ltkj|->] := ltngtP j k; last 2 first. | |
- by move=> lejk; rewrite r_anti// lejk ltP. | |
- by move=> lekk; rewrite r_anti// lekk. | |
by move=> _ _; apply: (ltP) => //; apply: ltn_trans ltjk. | |
Qed. | |
End EqPairwise. | |
Arguments subseq_pairwise {T r xs ys}. | |
Arguments uniq_pairwise {T} xs. | |
Arguments pairwise_uniq {T r xs}. | |
Arguments pairwise_eq {T r} r_asym {xs ys}. | |
Section Permutations. | |
Variable T : eqType. | |
Implicit Types (x : T) (s t : seq T) (bs : seq (T * nat)) (acc : seq (seq T)). | |
Fixpoint incr_tally bs x := | |
if bs isn't b :: bs then [:: (x, 1)] else | |
if x == b.1 then (x, b.2.+1) :: bs else b :: incr_tally bs x. | |
Definition tally s := foldl incr_tally [::] s. | |
Definition wf_tally := | |
[qualify a bs : seq (T * nat) | uniq (unzip1 bs) && (0 \notin unzip2 bs)]. | |
Definition tally_seq bs := flatten [seq nseq b.2 b.1 | b <- bs]. | |
Local Notation tseq := tally_seq. | |
Lemma size_tally_seq bs : size (tally_seq bs) = sumn (unzip2 bs). | |
Proof. | |
by rewrite size_flatten /shape -map_comp; under eq_map do rewrite /= size_nseq. | |
Qed. | |
Lemma tally_seqK : {in wf_tally, cancel tally_seq tally}. | |
Proof. | |
move=> bs /andP[]; elim: bs => [|[x [|n]] bs IHbs] //= /andP[bs'x Ubs] bs'0. | |
rewrite inE /tseq /tally /= -[n.+1]addn1 in bs'0 *. | |
elim: n 1 => /= [|n IHn] m; last by rewrite eqxx IHn addnS. | |
rewrite -{}[in RHS]IHbs {Ubs bs'0}// /tally /tally_seq add0n. | |
elim: bs bs'x [::] => [|[y n] bs IHbs] //= /[1!inE] /norP[y'x bs'x]. | |
by elim: n => [|n IHn] bs1 /=; [rewrite IHbs | rewrite eq_sym ifN // IHn]. | |
Qed. | |
Lemma incr_tallyP x : {homo incr_tally^~ x : bs / bs \in wf_tally}. | |
Proof. | |
move=> bs /andP[]; rewrite unfold_in. | |
elim: bs => [|[y [|n]] bs IHbs] //= /andP[bs'y Ubs] /[1!inE] /= bs'0. | |
have [<- | y'x] /= := eqVneq y; first by rewrite bs'y Ubs. | |
rewrite -andbA {}IHbs {Ubs bs'0}// andbT. | |
elim: bs bs'y => [|b bs IHbs] /=; rewrite inE ?y'x // => /norP[b'y bs'y]. | |
by case: ifP => _; rewrite /= inE negb_or ?y'x // b'y IHbs. | |
Qed. | |
Lemma tallyP s : tally s \is a wf_tally. | |
Proof. | |
rewrite /tally; set bs := [::]; have: bs \in wf_tally by []. | |
by elim: s bs => //= x s IHs bs /(incr_tallyP x)/IHs. | |
Qed. | |
Lemma tallyK s : perm_eq (tally_seq (tally s)) s. | |
Proof. | |
rewrite -[s in perm_eq _ s]cats0 -[nil]/(tseq [::]) /tally. | |
elim: s [::] => //= x s IHs bs; rewrite {IHs}(permPl (IHs _)). | |
rewrite perm_sym -cat1s perm_catCA {s}perm_cat2l. | |
elim: bs => //= b bs IHbs; case: eqP => [-> | _] //=. | |
by rewrite -cat1s perm_catCA perm_cat2l. | |
Qed. | |
Lemma tallyEl s : perm_eq (unzip1 (tally s)) (undup s). | |
Proof. | |
have /andP[Ubs bs'0] := tallyP s; set bs := tally s in Ubs bs'0 *. | |
rewrite uniq_perm ?undup_uniq {Ubs}// => x. | |
rewrite mem_undup -(perm_mem (tallyK s)) -/bs. | |
elim: bs => [|[y [|m]] bs IHbs] //= in bs'0 *. | |
by rewrite inE IHbs // mem_cat mem_nseq. | |
Qed. | |
Lemma tallyE s : perm_eq (tally s) [seq (x, count_mem x s) | x <- undup s]. | |
Proof. | |
have /andP[Ubs _] := tallyP s; pose b := [fun s x => (x, count_mem x (tseq s))]. | |
suffices /permPl->: perm_eq (tally s) (map (b (tally s)) (unzip1 (tally s))). | |
congr perm_eq: (perm_map (b (tally s)) (tallyEl s)). | |
by under eq_map do rewrite /= (permP (tallyK s)). | |
elim: (tally s) Ubs => [|[x m] bs IH] //= /andP[bs'x /IH-IHbs {IH}]. | |
rewrite /tseq /= -/(tseq _) count_cat count_nseq /= eqxx mul1n. | |
rewrite (count_memPn _) ?addn0 ?perm_cons; last first. | |
apply: contra bs'x; elim: {b IHbs}bs => //= b bs IHbs. | |
by rewrite mem_cat mem_nseq inE andbC; case: (_ == _). | |
congr perm_eq: IHbs; apply/eq_in_map=> y bs_y; congr (y, _). | |
by rewrite count_cat count_nseq /= (negPf (memPnC bs'x y bs_y)). | |
Qed. | |
Lemma perm_tally s1 s2 : perm_eq s1 s2 -> perm_eq (tally s1) (tally s2). | |
Proof. | |
move=> eq_s12; apply: (@perm_trans _ [seq (x, count_mem x s2) | x <- undup s1]). | |
by congr perm_eq: (tallyE s1); under eq_map do rewrite (permP eq_s12). | |
by rewrite (permPr (tallyE s2)); apply/perm_map/perm_undup/(perm_mem eq_s12). | |
Qed. | |
Lemma perm_tally_seq bs1 bs2 : | |
perm_eq bs1 bs2 -> perm_eq (tally_seq bs1) (tally_seq bs2). | |
Proof. by move=> Ebs12; rewrite perm_flatten ?perm_map. Qed. | |
Local Notation perm_tseq := perm_tally_seq. | |
Lemma perm_count_undup s : | |
perm_eq (flatten [seq nseq (count_mem x s) x | x <- undup s]) s. | |
Proof. | |
by rewrite -(permPr (tallyK s)) (permPr (perm_tseq (tallyE s))) /tseq -map_comp. | |
Qed. | |
Local Fixpoint cons_perms_ perms_rec (s : seq T) bs bs2 acc := | |
if bs isn't b :: bs1 then acc else | |
if b isn't (x, m.+1) then cons_perms_ perms_rec s bs1 bs2 acc else | |
let acc_xs := perms_rec (x :: s) ((x, m) :: bs1 ++ bs2) acc in | |
cons_perms_ perms_rec s bs1 (b :: bs2) acc_xs. | |
Local Fixpoint perms_rec n s bs acc := | |
if n isn't n.+1 then s :: acc else cons_perms_ (perms_rec n) s bs [::] acc. | |
Local Notation cons_perms n := (cons_perms_ (perms_rec n) [::]). | |
Definition permutations s := perms_rec (size s) [::] (tally s) [::]. | |
Let permsP s : exists n bs, | |
[/\ permutations s = perms_rec n [::] bs [::], | |
size (tseq bs) == n, perm_eq (tseq bs) s & uniq (unzip1 bs)]. | |
Proof. | |
have /andP[Ubs _] := tallyP s; exists (size s), (tally s). | |
by rewrite (perm_size (tallyK s)) tallyK. | |
Qed. | |
Local Notation bsCA := (permEl (perm_catCA _ [:: _] _)). | |
Let cons_permsE : forall n x bs bs1 bs2, | |
let cp := cons_perms n bs bs2 in let perms s := perms_rec n s bs1 [::] in | |
cp (perms [:: x]) = cp [::] ++ [seq rcons t x | t <- perms [::]]. | |
Proof. | |
pose is_acc f := forall acc, f acc = f [::] ++ acc. (* f is accumulating. *) | |
have cpE: forall f & forall s bs, is_acc (f s bs), is_acc (cons_perms_ f _ _ _). | |
move=> s bs bs2 f fE acc; elim: bs => [|[x [|m]] bs IHbs] //= in s bs2 acc *. | |
by rewrite fE IHbs catA -IHbs. | |
have prE: is_acc (perms_rec _ _ _) by elim=> //= n IHn s bs; apply: cpE. | |
pose has_suffix f := forall s : seq T, f s = [seq t ++ s | t <- f [::]]. | |
suffices prEs n bs: has_suffix (fun s => perms_rec n s bs [::]). | |
move=> n x bs bs1 bs2 /=; rewrite cpE // prEs. | |
by under eq_map do rewrite cats1. | |
elim: n bs => //= n IHn bs s; elim: bs [::] => [|[x [|m]] bs IHbs] //= bs1. | |
rewrite cpE // IHbs IHn [in RHS]cpE // [in RHS]IHn map_cat -map_comp. | |
by congr (_ ++ _); apply: eq_map => t /=; rewrite -catA. | |
Qed. | |
Lemma mem_permutations s t : (t \in permutations s) = perm_eq t s. | |
Proof. | |
have{s} [n [bs [-> Dn /permPr<- _]]] := permsP s. | |
elim: n => [|n IHn] /= in t bs Dn *. | |
by rewrite inE (nilP Dn); apply/eqP/perm_nilP. | |
rewrite -[bs in tseq bs]cats0 in Dn *; have x0 : T by case: (tseq _) Dn. | |
rewrite -[RHS](@andb_idl (last x0 t \in tseq bs)); last first. | |
case/lastP: t {IHn} => [|t x] Dt; first by rewrite -(perm_size Dt) in Dn. | |
by rewrite -[bs]cats0 -(perm_mem Dt) last_rcons mem_rcons mem_head. | |
elim: bs [::] => [|[x [|m]] bs IHbs] //= bs2 in Dn *. | |
rewrite cons_permsE -!cat_cons !mem_cat (mem_nseq m.+1) orbC andb_orl. | |
rewrite {}IHbs ?(perm_size (perm_tseq bsCA)) //= (permPr (perm_tseq bsCA)). | |
congr (_ || _); apply/mapP/andP=> [[t1 Dt1 ->] | [/eqP]]. | |
by rewrite last_rcons perm_rcons perm_cons IHn in Dt1 *. | |
case/lastP: t => [_ /perm_size//|t y]; rewrite last_rcons perm_rcons => ->. | |
by rewrite perm_cons; exists t; rewrite ?IHn. | |
Qed. | |
Lemma permutations_uniq s : uniq (permutations s). | |
Proof. | |
have{s} [n [bs [-> Dn _ Ubs]]] := permsP s. | |
elim: n => //= n IHn in bs Dn Ubs *; rewrite -[bs]cats0 /unzip1 in Dn Ubs. | |
elim: bs [::] => [|[x [|m]] bs IHbs] //= bs2 in Dn Ubs *. | |
by case/andP: Ubs => _ /IHbs->. | |
rewrite /= cons_permsE cat_uniq has_sym andbCA andbC. | |
rewrite {}IHbs; first 1 last; first by rewrite (perm_size (perm_tseq bsCA)). | |
by rewrite (perm_uniq (perm_map _ bsCA)). | |
rewrite (map_inj_uniq (rcons_injl x)) {}IHn {Dn}//=. | |
have: x \notin unzip1 bs by apply: contraL Ubs; rewrite map_cat mem_cat => ->. | |
move: {bs2 m Ubs}(perms_rec n _ _ _) (_ :: bs2) => ts. | |
elim: bs => [|[y [|m]] bs IHbs] //= /[1!inE] bs2 /norP[x'y /IHbs//]. | |
rewrite cons_permsE has_cat negb_or has_map => ->. | |
by apply/hasPn=> t _; apply: contra x'y => /mapP[t1 _ /rcons_inj[_ ->]]. | |
Qed. | |
Notation perms := permutations. | |
Lemma permutationsE s : | |
0 < size s -> | |
perm_eq (perms s) [seq x :: t | x <- undup s, t <- perms (rem x s)]. | |
Proof. | |
move=> nt_s; apply/uniq_perm=> [||t]; first exact: permutations_uniq. | |
apply/allpairs_uniq_dep=> [|x _|]; rewrite ?undup_uniq ?permutations_uniq //. | |
by case=> [_ _] [x t] _ _ [-> ->]. | |
rewrite mem_permutations; apply/idP/allpairsPdep=> [Dt | [x [t1 []]]]. | |
rewrite -(perm_size Dt) in nt_s; case: t nt_s => // x t _ in Dt *. | |
have s_x: x \in s by rewrite -(perm_mem Dt) mem_head. | |
exists x, t; rewrite mem_undup mem_permutations; split=> //. | |
by rewrite -(perm_cons x) (permPl Dt) perm_to_rem. | |
rewrite mem_undup mem_permutations -(perm_cons x) => s_x Dt1 ->. | |
by rewrite (permPl Dt1) perm_sym perm_to_rem. | |
Qed. | |
Lemma permutationsErot x s (le_x := fun t => iota 0 (index x t + 1)) : | |
perm_eq (perms (x :: s)) [seq rot i (x :: t) | t <- perms s, i <- le_x t]. | |
Proof. | |
have take'x t i: i <= index x t -> i <= size t /\ x \notin take i t. | |
move=> le_i_x; have le_i_t: i <= size t := leq_trans le_i_x (index_size x t). | |
case: (nthP x) => // -[j lt_j_i /eqP]; rewrite size_takel // in lt_j_i. | |
by rewrite nth_take // [_ == _](before_find x (leq_trans lt_j_i le_i_x)). | |
pose xrot t i := rot i (x :: t); pose xrotV t := index x (rev (rot 1 t)). | |
have xrotK t: {in le_x t, cancel (xrot t) xrotV}. | |
move=> i; rewrite mem_iota addn1 /xrotV => /take'x[le_i_t ti'x]. | |
rewrite -rotD ?rev_cat //= rev_cons cat_rcons index_cat mem_rev size_rev. | |
by rewrite ifN // size_takel //= eqxx addn0. | |
apply/uniq_perm=> [||t]; first exact: permutations_uniq. | |
apply/allpairs_uniq_dep=> [|t _|]; rewrite ?permutations_uniq ?iota_uniq //. | |
move=> _ _ /allpairsPdep[t [i [_ ? ->]]] /allpairsPdep[u [j [_ ? ->]]] Etu. | |
have Eij: i = j by rewrite -(xrotK t i) // /xrot Etu xrotK. | |
by move: Etu; rewrite Eij => /rot_inj[->]. | |
rewrite mem_permutations; apply/esym; apply/allpairsPdep/idP=> [[u [i]] | Dt]. | |
rewrite mem_permutations => -[Du _ /(canLR (rotK i))]; rewrite /rotr. | |
by set j := (j in rot j _) => Dt; apply/perm_consP; exists j, u. | |
pose r := rev (rot 1 t); pose i := index x r; pose u := rev (take i r). | |
have r_x: x \in r by rewrite mem_rev mem_rot (perm_mem Dt) mem_head. | |
have [v Duv]: {v | rot i (x :: u ++ v) = t}; first exists (rev (drop i.+1 r)). | |
rewrite -rev_cat -rev_rcons -rot1_cons -cat_cons -(nth_index x r_x). | |
by rewrite -drop_nth ?index_mem // rot_rot !rev_rot revK rotK rotrK. | |
exists (u ++ v), i; rewrite mem_permutations -(perm_cons x) -(perm_rot i) Duv. | |
rewrite mem_iota addn1 ltnS /= index_cat mem_rev size_rev. | |
by have /take'x[le_i_t ti'x] := leqnn i; rewrite ifN ?size_takel ?leq_addr. | |
Qed. | |
Lemma size_permutations s : uniq s -> size (permutations s) = (size s)`!. | |
Proof. | |
move Dn: (size s) => n Us; elim: n s => [[]|n IHn s] //= in Dn Us *. | |
rewrite (perm_size (permutationsE _)) ?Dn // undup_id // factS -Dn. | |
rewrite -(size_iota 0 n`!) -(size_allpairs (fun=>id)) !size_allpairs_dep. | |
by apply/congr1/eq_in_map=> x sx; rewrite size_iota IHn ?size_rem ?Dn ?rem_uniq. | |
Qed. | |
Lemma permutations_all_uniq s : uniq s -> all uniq (permutations s). | |
Proof. | |
by move=> Us; apply/allP=> t; rewrite mem_permutations => /perm_uniq->. | |
Qed. | |
Lemma perm_permutations s t : | |
perm_eq s t -> perm_eq (permutations s) (permutations t). | |
Proof. | |
move=> Est; apply/uniq_perm; try exact: permutations_uniq. | |
by move=> u; rewrite !mem_permutations (permPr Est). | |
Qed. | |
End Permutations. | |
Section AllIff. | |
(* The Following Are Equivalent *) | |
(* We introduce a specific conjunction, used to chain the consecutive *) | |
(* items in a circular list of implications *) | |
Inductive all_iff_and (P Q : Prop) : Prop := AllIffConj of P & Q. | |
Definition all_iff (P0 : Prop) (Ps : seq Prop) : Prop := | |
let fix loop (P : Prop) (Qs : seq Prop) : Prop := | |
if Qs is Q :: Qs then all_iff_and (P -> Q) (loop Q Qs) else P -> P0 in | |
loop P0 Ps. | |
Lemma all_iffLR P0 Ps : all_iff P0 Ps -> | |
forall m n, nth P0 (P0 :: Ps) m -> nth P0 (P0 :: Ps) n. | |
Proof. | |
move=> iffPs; have PsS n: nth P0 Ps n -> nth P0 Ps n.+1. | |
elim: n P0 Ps iffPs => [|n IHn] P0 [|P [|Q Ps]] //= [iP0P] //; first by case. | |
by rewrite nth_nil. | |
by case=> iPQ iffPs; apply: IHn; split=> // /iP0P. | |
have{PsS} lePs: {homo nth P0 Ps : m n / m <= n >-> (m -> n)}. | |
by move=> m n /subnK<-; elim: {n}(n - m) => // n IHn /IHn; apply: PsS. | |
move=> m n P_m; have{m P_m} hP0: P0. | |
case: m P_m => //= m /(lePs m _ (leq_maxl m (size Ps))). | |
by rewrite nth_default ?leq_maxr. | |
case: n =>// n; apply: lePs 0 n (leq0n n) _. | |
by case: Ps iffPs hP0 => // P Ps []. | |
Qed. | |
Lemma all_iffP P0 Ps : | |
all_iff P0 Ps -> forall m n, nth P0 (P0 :: Ps) m <-> nth P0 (P0 :: Ps) n. | |
Proof. by move=> /all_iffLR-iffPs m n; split => /iffPs. Qed. | |
End AllIff. | |
Arguments all_iffLR {P0 Ps}. | |
Arguments all_iffP {P0 Ps}. | |
Coercion all_iffP : all_iff >-> Funclass. | |
(* This means "the following are all equivalent: P0, ... Pn" *) | |
Notation "[ '<->' P0 ; P1 ; .. ; Pn ]" := | |
(all_iff P0 (@cons Prop P1 (.. (@cons Prop Pn nil) ..))) : form_scope. | |
Ltac tfae := do !apply: AllIffConj. | |
(* Temporary backward compatibility. *) | |
#[deprecated(since="mathcomp 1.13.0", note="Use iotaD instead.")] | |
Notation iota_add := iotaD (only parsing). | |