Datasets:

Modalities:
Text
Languages:
English
Libraries:
Datasets
License:
proof-pile / formal /hol /Geometric_Algebra /geometricalgebra.ml
Zhangir Azerbayev
squashed?
4365a98
raw
history blame
136 kB
(* ========================================================================= *)
(* Geometric algebra G(P,Q,R) is formalized with the multivector structure *)
(* (P,Q,R)multivector, which can formulate positive definite, negative *)
(* definite and zero quadratic forms. *)
(* *)
(* (c) Copyright, Capital Normal University, China, 2018. *)
(* Authors: Liming Li, Zhiping Shi, Yong Guan, Guohui Wang, Sha Ma. *)
(* ========================================================================= *)
needs "Multivariate/clifford.ml";;
prioritize_real();;
(* ------------------------------------------------------------------------- *)
(* Add some theorems to clifford.ml *)
(* ------------------------------------------------------------------------- *)
let GEOM_MBASIS_LID = prove
(`!x. mbasis{} * x = x`,
MATCH_MP_TAC MBASIS_EXTENSION THEN SIMP_TAC[GEOM_RMUL; GEOM_RADD] THEN
SIMP_TAC[GEOM_MBASIS; DIFF_EMPTY; EMPTY_DIFF; UNION_EMPTY; EMPTY_SUBSET] THEN
REWRITE_TAC[SET_RULE `{i,j | i IN {} /\ j IN s /\ i:num > j} = {}`] THEN
REWRITE_TAC[CARD_CLAUSES; real_pow; REAL_MUL_LID; VECTOR_MUL_LID]);;
let GEOM_MBASIS_RID = prove
(`!x. x * mbasis{} = x`,
MATCH_MP_TAC MBASIS_EXTENSION THEN SIMP_TAC[GEOM_LMUL; GEOM_LADD] THEN
SIMP_TAC[GEOM_MBASIS; DIFF_EMPTY; EMPTY_DIFF; UNION_EMPTY; EMPTY_SUBSET] THEN
REWRITE_TAC[SET_RULE `{i,j | i IN s /\ j IN {} /\ i:num > j} = {}`] THEN
REWRITE_TAC[CARD_CLAUSES; real_pow; REAL_MUL_LID; VECTOR_MUL_LID]);;
let GEOM_MBASIS_SKEWSYM = prove
(`!i j. mbasis{i} * mbasis{j} =
if i = j then mbasis{j} * mbasis{i} else --(mbasis{j} * mbasis{i})`,
REPEAT GEN_TAC THEN COND_CASES_TAC THEN ASM_REWRITE_TAC[GEOM_MBASIS_SING] THEN
FIRST_ASSUM(DISJ_CASES_TAC o MATCH_MP (ARITH_RULE
`~(i:num = j) ==> i < j /\ ~(j < i) \/ j < i /\ ~(i < j)`)) THEN
ASM_REWRITE_TAC[CONJ_ACI] THEN COND_CASES_TAC THEN
ASM_REWRITE_TAC[VECTOR_NEG_NEG; VECTOR_NEG_0] THEN
REPEAT AP_TERM_TAC THEN SET_TAC[]);;
let GEOM_MBASIS_REFL = prove
(`!i. mbasis{i}:real^(N)multivector * mbasis{i} =
if i IN 1..dimindex (:N) then mbasis {}
else vec 0`,
GEN_TAC THEN REWRITE_TAC[GEOM_MBASIS_SING]);;
(* ------------------------------------------------------------------------- *)
(* Add some basic theorems to the library of clifford *)
(* ------------------------------------------------------------------------- *)
let G_P_Q_R_WITH_G_N = prove
(`!p q r i e.
1 <= p + q + r /\ p + 3 * q + 4 * r <= dimindex(:N) /\
(e i = if 1 <= i /\ i <= p then (mbasis {i}:real^(N)multivector)
else if p + 1 <= i /\ i <= p + q then
(mbasis {(3 * i - 2 * p + r) - 2} * mbasis {(3 * i - 2 * p + r) - 1} * mbasis {3 * i - 2 * p + r })
else if p + q + 1 <= i /\ i <= p + q + r then
(mbasis {i - q} + mbasis {(4 * i - 3 * p - q) - 2} * mbasis {(4 * i - 3 * p - q) - 1} * mbasis {(4 * i - 3 * p) - q })
else vec 0) ==>
e i * e i = if 1 <= i /\ i <= p then mbasis {}
else if p + 1 <= i /\ i <= p + q then -- mbasis {}
else vec 0`,
let lemma = prove
(`!i. 2 < i /\ i<= dimindex(:N) ==>
(mbasis {i-2} * mbasis {i-1} * (mbasis {i}:real^(N)multivector)) * (mbasis {i-2} * mbasis {i-1} * mbasis {i}) = --mbasis {}`,
REPEAT STRIP_TAC THEN
GEN_REWRITE_TAC (LAND_CONV o RAND_CONV o ONCE_DEPTH_CONV)[GEOM_MBASIS_SKEWSYM] THEN
ASM_SIMP_TAC[ARITH_RULE `2 < i ==> ~(i - 1 = i)`] THEN
REWRITE_TAC[GEOM_RNEG] THEN AP_TERM_TAC THEN
GEN_REWRITE_TAC (LAND_CONV o RAND_CONV o ONCE_DEPTH_CONV)[GEOM_ASSOC] THEN
GEN_REWRITE_TAC (LAND_CONV o RAND_CONV o ONCE_DEPTH_CONV)[GEOM_MBASIS_SKEWSYM] THEN
ASM_SIMP_TAC[ARITH_RULE `2 < i ==> ~(i - 2 = i)`] THEN
REWRITE_TAC[GEOM_LNEG; GEOM_RNEG; GSYM GEOM_ASSOC] THEN
GEN_REWRITE_TAC (LAND_CONV o RAND_CONV o RAND_CONV o RAND_CONV o ONCE_DEPTH_CONV)[GEOM_ASSOC] THEN
ASM_REWRITE_TAC[IN_NUMSEG; GEOM_MBASIS_REFL] THEN
ASM_SIMP_TAC[ARITH_RULE `2 < i ==> 1 <= i`; GEOM_MBASIS_LID] THEN
ONCE_REWRITE_TAC[GEOM_MBASIS_SKEWSYM] THEN
ASM_SIMP_TAC[ARITH_RULE `2 < i ==> ~(i - 2 = i - 1)`] THEN
REWRITE_TAC[GEOM_RNEG; VECTOR_NEG_NEG] THEN
GEN_REWRITE_TAC (LAND_CONV o RAND_CONV o ONCE_DEPTH_CONV)[GEOM_ASSOC] THEN
REWRITE_TAC[GEOM_MBASIS_REFL; IN_NUMSEG] THEN
ASM_SIMP_TAC[ARITH_RULE `2 < i /\ i <= dimindex (:N) ==> 1 <= i - 1 /\ i - 1 <= dimindex (:N)`] THEN
REWRITE_TAC[GEOM_MBASIS_LID; GEOM_MBASIS_REFL; IN_NUMSEG] THEN
ASM_SIMP_TAC[ARITH_RULE `2 < i /\ i <= dimindex (:N) ==> 1 <= i - 2 /\ i - 2 <= dimindex (:N)`]) in
REPEAT STRIP_TAC THEN COND_CASES_TAC THENL
[ASM_REWRITE_TAC[GEOM_MBASIS_REFL; IN_NUMSEG] THEN ASM_ARITH_TAC; ALL_TAC] THEN
COND_CASES_TAC THENL
[SUBGOAL_THEN `2 < 3 * i - 2 * p + r /\ 3 * i - 2 * p + r <= dimindex (:N)` ASSUME_TAC THENL
[ASM_ARITH_TAC; ALL_TAC] THEN ASM_SIMP_TAC[lemma]; ALL_TAC] THEN
ASM_REWRITE_TAC[] THEN COND_CASES_TAC THEN REWRITE_TAC[GEOM_LADD; GEOM_RADD; GEOM_RZERO] THEN
ONCE_REWRITE_TAC[VECTOR_ARITH `(a + b) + c + d = (a + d)+(b + c:real^N)`] THEN
GEN_REWRITE_TAC (RAND_CONV o ONCE_DEPTH_CONV)[GSYM VECTOR_ADD_LID] THEN
BINOP_TAC THEN REWRITE_TAC[VECTOR_ARITH `a + b = vec 0 <=> b = --a`] THENL
[REWRITE_TAC[GEOM_MBASIS_REFL; IN_NUMSEG] THEN
SUBGOAL_THEN `2 < 4 * i - 3 * p - q /\ 4 * i - 3 * p - q <= dimindex (:N)` ASSUME_TAC THENL
[ASM_ARITH_TAC; ALL_TAC] THEN ASM_SIMP_TAC[lemma] THEN ASM_ARITH_TAC; ALL_TAC] THEN
REWRITE_TAC[GSYM GEOM_ASSOC] THEN
GEN_REWRITE_TAC (LAND_CONV o ONCE_DEPTH_CONV)[GEOM_MBASIS_SKEWSYM] THEN
ASM_SIMP_TAC[ARITH_RULE `p + q + 1<= i ==> ~(4 * i - 3 * p - q = i - q:num)`] THEN
REWRITE_TAC[GEOM_RNEG] THEN AP_TERM_TAC THEN REWRITE_TAC[GEOM_ASSOC] THEN
AP_THM_TAC THEN AP_TERM_TAC THEN
GEN_REWRITE_TAC (RAND_CONV o ONCE_DEPTH_CONV)[GEOM_MBASIS_SKEWSYM] THEN
ASM_SIMP_TAC[ARITH_RULE `p + q + 1<= i ==> ~(4 * i - 3 * p - q - 2 = i - q:num)`] THEN
REWRITE_TAC[GEOM_LNEG; GSYM GEOM_ASSOC] THEN ONCE_REWRITE_TAC[GSYM GEOM_RNEG] THEN
AP_TERM_TAC THEN GEN_REWRITE_TAC (LAND_CONV o ONCE_DEPTH_CONV)[GEOM_MBASIS_SKEWSYM] THEN
ASM_SIMP_TAC[ARITH_RULE `p + q + 1<= i ==> ~(4 * i - 3 * p - q - 1 = i - q:num)`]);;
(* ------------------------------------------------------------------------- *)
(* Some basic lemmas, mostly set theory. *)
(* ------------------------------------------------------------------------- *)
let FINITE_POWERSET_CART_SUBSET_LEMMA = prove
(`!P m n. FINITE {i,j | i IN {s | s SUBSET 1..m} /\ j IN {s | s SUBSET 1..n} /\ P i j}`,
REPEAT STRIP_TAC THEN MATCH_MP_TAC FINITE_SUBSET THEN
EXISTS_TAC `{i,j | i IN {s | s SUBSET 1..m} /\ j IN {s | s SUBSET 1..n}}` THEN
SIMP_TAC[SUBSET; FINITE_PRODUCT; FINITE_NUMSEG; FINITE_POWERSET] THEN
SIMP_TAC[FORALL_PAIR_THM; IN_ELIM_PAIR_THM]);;
let FINITE_CART_SUBSET_LEMMA1 = prove (*More convenient than FINITE_CART_SUBSET_LEMMA. *)
(`!P m n m' n'. FINITE {i,j | i IN m..n /\ j IN m'..n' /\ P i j}`,
REPEAT STRIP_TAC THEN MATCH_MP_TAC FINITE_SUBSET THEN
EXISTS_TAC `{i,j | i IN m..n /\ j IN m'..n'}` THEN
SIMP_TAC[SUBSET; FINITE_PRODUCT; FINITE_NUMSEG] THEN
SIMP_TAC[FORALL_PAIR_THM; IN_ELIM_PAIR_THM]);;
(* ------------------------------------------------------------------------- *)
(* Pseudo dimindex. *)
(* ------------------------------------------------------------------------- *)
let pdimindex = new_definition
`pdimindex(s:A->bool) = dimindex(s) - 1`;;
let PDIMINDEX_SUC_DIMINDEX = prove
(`dimindex(s:A->bool) = pdimindex(s) + 1`,
SIMP_TAC[pdimindex; DIMINDEX_GE_1; SUB_ADD]);;
let PDIMINDEX_LT_DIMINDEX = prove
(`pdimindex(s:A->bool) < dimindex(s)`,
REWRITE_TAC[PDIMINDEX_SUC_DIMINDEX; LT_ADD] THEN ARITH_TAC);;
let PDIMINDEX_LE_IMP_DIMINDEX_LE = prove
(`!x. x <= pdimindex s ==> x <= dimindex s`,
MESON_TAC[PDIMINDEX_LT_DIMINDEX; LET_TRANS; LT_IMP_LE]);;
let PDIMINDEX_UNIQUE = prove
(`(:A) HAS_SIZE n + 1 ==> pdimindex(:A) = n`,
MESON_TAC[dimindex; HAS_SIZE; pdimindex; ADD_SUB]);;
let define_pseudo_finite_type =
let lemma_pre = prove
(`?x. x IN 1..n+1`,
EXISTS_TAC `1` THEN REWRITE_TAC[IN_NUMSEG] THEN ARITH_TAC)
and lemma_post = prove
(`(!a:A. mk(dest a) = a) /\ (!r. r IN 1..n+1 <=> dest(mk r) = r)
==> (:A) HAS_SIZE n+1`,
REPEAT STRIP_TAC THEN
SUBGOAL_THEN `(:A) = IMAGE mk (1..n+1)` SUBST1_TAC THENL
[REWRITE_TAC[EXTENSION; IN_IMAGE; IN_UNIV];
MATCH_MP_TAC HAS_SIZE_IMAGE_INJ] THEN
ASM_MESON_TAC[HAS_SIZE_NUMSEG_1]) in
let POST_RULE = MATCH_MP lemma_post and n_tm = `n:num` in
fun n ->
let ns = "'"^string_of_int n in
let ns' = "auto_define_finite_type_"^ns in
let th = INST [mk_small_numeral n,n_tm] lemma_pre in
POST_RULE(new_type_definition ns ("mk_"^ns',"dest_"^ns') th);;
let HAS_PSEUDO_SIZE_0 = define_pseudo_finite_type 0;;
let HAS_PSEUDO_SIZE_1 = define_pseudo_finite_type 1;;
let HAS_PSEUDO_SIZE_2 = define_pseudo_finite_type 2;;
let HAS_PSEUDO_SIZE_3 = define_pseudo_finite_type 3;;
let HAS_PSEUDO_SIZE_4 = define_pseudo_finite_type 4;;
let PDIMINDEX_0 = MATCH_MP PDIMINDEX_UNIQUE HAS_PSEUDO_SIZE_0;;
let PDIMINDEX_1 = MATCH_MP PDIMINDEX_UNIQUE HAS_PSEUDO_SIZE_1;;
let PDIMINDEX_2 = MATCH_MP PDIMINDEX_UNIQUE HAS_PSEUDO_SIZE_2;;
let PDIMINDEX_3 = MATCH_MP PDIMINDEX_UNIQUE HAS_PSEUDO_SIZE_3;;
let PDIMINDEX_4 = MATCH_MP PDIMINDEX_UNIQUE HAS_PSEUDO_SIZE_4;;
(* ------------------------------------------------------------------------- *)
(* Index type for "trip_fin_sum", denote the vector of (P,Q,R). *)
(* ------------------------------------------------------------------------- *)
let trip_fin_sum_tybij =
let th = prove
(`?x. x IN 1..(if 1 <= pdimindex(:P) + pdimindex(:Q) + pdimindex(:R)
then pdimindex(:P) + pdimindex(:Q) + pdimindex(:R) else 1)`,
EXISTS_TAC `1` THEN REWRITE_TAC[IN_NUMSEG] THEN ARITH_TAC) in
new_type_definition "trip_fin_sum" ("mk_trip_fin_sum","dest_trip_fin_sum") th;;
let TRIPLE_FINITE_SUM_IMAGE = prove
(`UNIV:(P,Q,R)trip_fin_sum->bool =
IMAGE mk_trip_fin_sum
(1..(if 1 <= pdimindex(:P) + pdimindex(:Q) + pdimindex(:R)
then pdimindex(:P) + pdimindex(:Q) + pdimindex(:R) else 1))`,
REWRITE_TAC[EXTENSION; IN_UNIV; IN_IMAGE] THEN
MESON_TAC[trip_fin_sum_tybij]);;
let DIMINDEX_HAS_SIZE_TRIPLE_FINITE_SUM = prove
(`(UNIV:(P,Q,R)trip_fin_sum->bool) HAS_SIZE
(if 1 <= pdimindex(:P) + pdimindex(:Q) + pdimindex(:R)
then pdimindex(:P) + pdimindex(:Q) + pdimindex(:R) else 1)`,
SIMP_TAC[TRIPLE_FINITE_SUM_IMAGE] THEN
MATCH_MP_TAC HAS_SIZE_IMAGE_INJ THEN
REWRITE_TAC[HAS_SIZE_NUMSEG_1] THEN
MESON_TAC[trip_fin_sum_tybij]);;
let DIMINDEX_TRIPLE_FINITE_SUM = prove
(`dimindex(:(P,Q,R)trip_fin_sum) =
if 1 <= pdimindex(:P) + pdimindex(:Q) + pdimindex(:R)
then pdimindex(:P) + pdimindex(:Q) + pdimindex(:R) else 1`,
GEN_REWRITE_TAC LAND_CONV [dimindex] THEN
REWRITE_TAC[REWRITE_RULE[HAS_SIZE] DIMINDEX_HAS_SIZE_TRIPLE_FINITE_SUM] THEN ARITH_TAC);;
(* ------------------------------------------------------------------------- *)
(* Index type for "multivectors" of (P,Q,R).(k-vectors for all k <= P+Q+R). *)
(* ------------------------------------------------------------------------- *)
let geomalg_tybij_th = prove
(`?s. s SUBSET (1..(pdimindex(:P) + pdimindex(:Q) + pdimindex(:R)))`,
MESON_TAC[EMPTY_SUBSET]);;
let geomalg_tybij =
new_type_definition "geomalg" ("mk_geomalg","dest_geomalg")
geomalg_tybij_th;;
let GEOMALG_IMAGE = prove
(`(:(P,Q,R)geomalg) = IMAGE mk_geomalg {s | s SUBSET 1..pdimindex(:P) + pdimindex(:Q) + pdimindex(:R)}`,
REWRITE_TAC[EXTENSION; IN_UNIV; IN_IMAGE; IN_ELIM_THM] THEN
MESON_TAC[geomalg_tybij]);;
let HAS_SIZE_GEOMALG = prove
(`(:(P,Q,R)geomalg) HAS_SIZE (2 EXP (pdimindex(:P) + pdimindex(:Q) + pdimindex(:R)))`,
REWRITE_TAC[GEOMALG_IMAGE] THEN MATCH_MP_TAC HAS_SIZE_IMAGE_INJ THEN
SIMP_TAC[HAS_SIZE_POWERSET; HAS_SIZE_NUMSEG_1; IN_ELIM_THM] THEN
MESON_TAC[geomalg_tybij]);;
let FINITE_GEOMALG = prove
(`FINITE(:(P,Q,R)geomalg)`,
MESON_TAC[HAS_SIZE; HAS_SIZE_GEOMALG]);;
let DIMINDEX_GEOMALG = prove
(`dimindex(:(P,Q,R)geomalg) = 2 EXP (pdimindex(:P) + pdimindex(:Q) + pdimindex(:R))`,
MESON_TAC[DIMINDEX_UNIQUE; HAS_SIZE_GEOMALG]);;
let DEST_MK_GEOMALG = prove
(`!s. s SUBSET 1..pdimindex(:P) + pdimindex(:Q) + pdimindex(:R)
==> dest_geomalg(mk_geomalg s:(P,Q,R)geomalg) = s`,
REPEAT STRIP_TAC THEN GEN_REWRITE_TAC I [GSYM geomalg_tybij] THEN
ASM_REWRITE_TAC[]);;
let FORALL_GEOMALG = prove
(`(!s. s SUBSET 1..(pdimindex(:P) + pdimindex(:Q) + pdimindex(:R)) ==> P(mk_geomalg s)) <=>
(!m:(P,Q,R)geomalg. P m)`,
EQ_TAC THENL [ALL_TAC; SIMP_TAC[]] THEN DISCH_TAC THEN GEN_TAC THEN
MP_TAC(ISPEC `m:(P,Q,R)geomalg`
(REWRITE_RULE[EXTENSION] GEOMALG_IMAGE)) THEN
REWRITE_TAC[IN_UNIV; IN_IMAGE; EXISTS_PAIR_THM; IN_ELIM_THM] THEN
ASM_MESON_TAC[]);;
(* ------------------------------------------------------------------------- *)
(* Indexing directly via subsets. *)
(* ------------------------------------------------------------------------- *)
make_overloadable "$$" `:real^N->(num->bool)->real`;;
overload_interface("$$",`setindex:real^(P,Q,R)geomalg->(num->bool)->real`);;
let setindex = new_definition
`(x:real^(P,Q,R)geomalg) $$ s = x$(setcode s)`;;
make_overloadable "lambdas" `:((num->bool)->real)->real^N`;;
overload_interface("lambdas",`lambdaset:((num->bool)->real)->real^(P,Q,R)geomalg`);;
let lambdaset = new_definition
`(lambdaset) (g:(num->bool)->real) =
(lambda i. g(codeset i)):real^(P,Q,R)geomalg`;;
(* ------------------------------------------------------------------------- *)
(* Crucial properties. *)
(* ------------------------------------------------------------------------- *)
let GEOMALG_EQ = prove
(`!x y:real^(P,Q,R)geomalg.
x = y <=> !s. s SUBSET 1..(pdimindex(:P) + pdimindex(:Q) + pdimindex(:R)) ==> x$$s = y$$s`,
SIMP_TAC[CART_EQ; setindex; FORALL_SETCODE; GSYM IN_NUMSEG;
DIMINDEX_GEOMALG]);;
let GEOMALG_BETA = prove
(`!s. s SUBSET 1..(pdimindex(:P) + pdimindex(:Q) + pdimindex(:R))
==> ((lambdas) g :real^(P,Q,R)geomalg)$$s = g s`,
SIMP_TAC[setindex; lambdaset; LAMBDA_BETA; SETCODE_BOUNDS;
DIMINDEX_GEOMALG; GSYM IN_NUMSEG] THEN
MESON_TAC[CODESET_SETCODE_BIJECTIONS]);;
let GEOMALG_UNIQUE = prove
(`!m:real^(P,Q,R)geomalg g.
(!s. s SUBSET 1..(pdimindex(:P) + pdimindex(:Q) + pdimindex(:R)) ==> m$$s = g s)
==> (lambdas) g = m`,
SIMP_TAC[GEOMALG_EQ; GEOMALG_BETA] THEN MESON_TAC[]);;
let GEOMALG_ETA = prove(*lambdas s. m$$s =lambdas (\s. m$$s) *)
(`(lambdas s. m$$s) = m`,
SIMP_TAC[GEOMALG_EQ; GEOMALG_BETA]);;
(* ------------------------------------------------------------------------- *)
(* Also componentwise operations; they all work in this style. *)
(* ------------------------------------------------------------------------- *)
let GEOMALG_ADD_COMPONENT = prove
(`!x y:real^(P,Q,R)geomalg s.
s SUBSET 1..pdimindex(:P) + pdimindex(:Q) + pdimindex(:R) ==> (x + y)$$s = x$$s + y$$s`,
SIMP_TAC[setindex; SETCODE_BOUNDS; DIMINDEX_GEOMALG;
GSYM IN_NUMSEG; VECTOR_ADD_COMPONENT]);;
let GEOMALG_MUL_COMPONENT = prove
(`!c x:real^(P,Q,R)geomalg s.
s SUBSET 1..pdimindex(:P) + pdimindex(:Q) + pdimindex(:R) ==> (c % x)$$s = c * x$$s`,
SIMP_TAC[setindex; SETCODE_BOUNDS; DIMINDEX_GEOMALG;
GSYM IN_NUMSEG; VECTOR_MUL_COMPONENT]);;
let GEOMALG_VEC_COMPONENT = prove
(`!k s. s SUBSET 1..pdimindex(:P) + pdimindex(:Q) + pdimindex(:R) ==> (vec k :real^(P,Q,R)geomalg)$$s = &k`,
SIMP_TAC[setindex; SETCODE_BOUNDS; DIMINDEX_GEOMALG;
GSYM IN_NUMSEG; VEC_COMPONENT]);;
let GEOMALG_VSUM_COMPONENT = prove
(`!f:A->real^(P,Q,R)geomalg t s.
s SUBSET 1..pdimindex(:P) + pdimindex(:Q) + pdimindex(:R)
==> (vsum t f)$$s = sum t (\x. (f x)$$s)`,
SIMP_TAC[vsum; setindex; LAMBDA_BETA; SETCODE_BOUNDS; GSYM IN_NUMSEG;
DIMINDEX_GEOMALG]);;
let GEOMALG_VSUM = prove
(`!t f. vsum t f = lambdas s. sum t (\x. (f x)$$s)`,
SIMP_TAC[GEOMALG_EQ; GEOMALG_BETA; GEOMALG_VSUM_COMPONENT]);;
(* ------------------------------------------------------------------------- *)
(* Basis vectors indexed by subsets of 1..p+q+r. *)
(* ------------------------------------------------------------------------- *)
make_overloadable "mbasis" `:(num->bool)->real^N`;;
overload_interface("mbasis",`mvbasis:(num->bool)->real^(P,Q,R)geomalg`);;
let mvbasis = new_definition
`mvbasis i = lambdas s. if i = s then &1 else &0`;;
let MVBASIS_COMPONENT = prove
(`!s t. s SUBSET 1..pdimindex(:P) + pdimindex(:Q) + pdimindex(:R)
==> (mbasis t :real^(P,Q,R)geomalg)$$s = if s = t then &1 else &0`,
SIMP_TAC[mvbasis; IN_ELIM_THM; GEOMALG_BETA] THEN MESON_TAC[]);;
let MVBASIS_EQ_0 = prove
(`!s. (mbasis s :real^(P,Q,R)geomalg = vec 0) <=>
~(s SUBSET 1..pdimindex(:P) + pdimindex(:Q) + pdimindex(:R))`,
SIMP_TAC[GEOMALG_EQ; MVBASIS_COMPONENT; GEOMALG_VEC_COMPONENT] THEN
MESON_TAC[REAL_ARITH `~(&1 = &0)`]);;
let MVBASIS_NONZERO = prove
(`!s. s SUBSET 1..pdimindex(:P) + pdimindex(:Q) + pdimindex(:R) ==> ~(mbasis s :real^(P,Q,R)geomalg = vec 0)`,
REWRITE_TAC[MVBASIS_EQ_0]);;
let MVBASIS_EXPANSION = prove
(`!x:real^(P,Q,R)geomalg.
vsum {s | s SUBSET 1..pdimindex(:P) + pdimindex(:Q) + pdimindex(:R)} (\s. x$$s % mbasis s) = x`,
SIMP_TAC[GEOMALG_EQ; GEOMALG_VSUM_COMPONENT;
GEOMALG_MUL_COMPONENT; MVBASIS_COMPONENT] THEN
REPEAT STRIP_TAC THEN
GEN_REWRITE_TAC (LAND_CONV o ONCE_DEPTH_CONV) [EQ_SYM_EQ] THEN
ASM_SIMP_TAC[REAL_ARITH `x * (if p then &1 else &0) = if p then x else &0`;
SUM_DELTA; IN_ELIM_THM]);;
let SPAN_MVBASIS = prove
(`span {mbasis s :real^(P,Q,R)geomalg | s SUBSET 1..pdimindex(:P) + pdimindex(:Q) + pdimindex(:R)} = UNIV`,
REWRITE_TAC[EXTENSION; IN_UNIV] THEN X_GEN_TAC `x:real^(P,Q,R)geomalg` THEN
GEN_REWRITE_TAC LAND_CONV [GSYM MVBASIS_EXPANSION] THEN
MATCH_MP_TAC SPAN_VSUM THEN
SIMP_TAC[FINITE_NUMSEG; FINITE_POWERSET; IN_ELIM_THM] THEN
REPEAT STRIP_TAC THEN MATCH_MP_TAC SPAN_MUL THEN
MATCH_MP_TAC SPAN_SUPERSET THEN REWRITE_TAC[IN_ELIM_THM] THEN
ASM_MESON_TAC[]);;
let MVBASIS_BASIS = prove
(`s SUBSET 1..pdimindex (:P) + pdimindex (:Q) + pdimindex (:R)
==> (mbasis s):real^(P,Q,R)geomalg = basis (setcode s)`,
SIMP_TAC[mvbasis; basis; lambdaset; CART_EQ; LAMBDA_BETA] THEN
REWRITE_TAC[GSYM IN_NUMSEG; DIMINDEX_GEOMALG; GSYM FORALL_SETCODE] THEN
ASM_MESON_TAC[CODESET_SETCODE_BIJECTIONS]);;
let MVBASIS_INJ = prove
(`!s t. s SUBSET 1..pdimindex(:P) + pdimindex(:Q) + pdimindex(:R) /\
t SUBSET 1..pdimindex(:P) + pdimindex(:Q) + pdimindex(:R) /\
(mbasis s :real^(P,Q,R)geomalg = mbasis t)
==> (s = t)`,
SIMP_TAC[mvbasis; GEOMALG_EQ; GEOMALG_BETA] THEN
REPEAT STRIP_TAC THEN FIRST_X_ASSUM(MP_TAC o SPEC `s:num->bool`) THEN
ONCE_REWRITE_TAC[GSYM CONTRAPOS_THM] THEN
ASM_SIMP_TAC[REAL_OF_NUM_EQ; ARITH_EQ]);;
let MVBASIS_INJ_SING = prove
(`!i j. i IN 1..pdimindex(:P) + pdimindex(:Q) + pdimindex(:R) /\
j IN 1..pdimindex(:P) + pdimindex(:Q) + pdimindex(:R) /\
(mbasis {i}:real^(P,Q,R)geomalg) = mbasis {j}
==> i = j`,
SIMP_TAC[mvbasis; GEOMALG_EQ; GEOMALG_BETA] THEN
REPEAT STRIP_TAC THEN FIRST_X_ASSUM(MP_TAC o SPEC `{i}:num->bool`) THEN
ONCE_REWRITE_TAC[GSYM CONTRAPOS_THM] THEN
REWRITE_TAC[SUBSET; EXTENSION; IN_SING] THEN
ASM_MESON_TAC[REAL_OF_NUM_EQ; ARITH_EQ]);;
(* ------------------------------------------------------------------------- *)
(* Dot of Multivector. *)
(* ------------------------------------------------------------------------- *)
let DOT_MVBASIS = prove
(`!x:real^(P,Q,R)geomalg s.
s SUBSET 1..pdimindex(:P) + pdimindex(:Q) + pdimindex(:R)
==> ((mbasis s) dot x = x$$s) /\ (x dot (mbasis s) = x$$s)`,
REPEAT GEN_TAC THEN SIMP_TAC[MVBASIS_BASIS] THEN REWRITE_TAC[setindex] THEN
ASM_SIMP_TAC[SETCODE_BOUNDS; DIMINDEX_GEOMALG; GSYM IN_NUMSEG; DOT_BASIS]);;
let DOT_MVBASIS_MVBASIS = prove
(`!s t. s SUBSET 1..pdimindex(:P) + pdimindex(:Q) + pdimindex(:R) /\
t SUBSET 1..pdimindex(:P) + pdimindex(:Q) + pdimindex(:R)
==> (mbasis s:real^(P,Q,R)geomalg) dot (mbasis t) = if s = t then &1 else &0`,
SIMP_TAC[DOT_MVBASIS; MVBASIS_COMPONENT]);;
let DOT_MVBASIS_MVBASIS_UNEQUAL = prove
(`!s t. ~(s = t) ==> (mbasis s) dot (mbasis t) = &0`,
SIMP_TAC[mvbasis; dot; lambdaset; LAMBDA_BETA] THEN
ONCE_REWRITE_TAC[COND_RAND] THEN REPEAT STRIP_TAC THEN
MATCH_MP_TAC SUM_EQ_0 THEN REWRITE_TAC[] THEN
REPEAT STRIP_TAC THEN ASM_MESON_TAC[SUM_0; REAL_MUL_RZERO; REAL_MUL_LZERO; COND_ID]);;
let IN_SPAN_IMAGE_MVBASIS = prove
(`!x:real^(P,Q,R)geomalg s.
x IN span(IMAGE mbasis s) <=>
!t. t SUBSET 1..pdimindex(:P) + pdimindex(:Q) + pdimindex(:R) /\ ~(t IN s) ==> x$$t = &0`,
REPEAT GEN_TAC THEN EQ_TAC THENL
[SPEC_TAC(`x:real^(P,Q,R)geomalg`,`x:real^(P,Q,R)geomalg`) THEN MATCH_MP_TAC SPAN_INDUCT THEN
SIMP_TAC[subspace; IN_ELIM_THM; GEOMALG_VEC_COMPONENT; GEOMALG_ADD_COMPONENT;
GEOMALG_MUL_COMPONENT; REAL_MUL_RZERO; REAL_ADD_RID] THEN
SIMP_TAC[FORALL_IN_IMAGE; MVBASIS_COMPONENT] THEN MESON_TAC[]; ALL_TAC] THEN
DISCH_TAC THEN REWRITE_TAC[SPAN_EXPLICIT; IN_ELIM_THM] THEN
EXISTS_TAC `(IMAGE mbasis ({t|t SUBSET 1..pdimindex(:P) + pdimindex(:Q) + pdimindex(:R)} INTER s)):real^(P,Q,R)geomalg->bool` THEN
SIMP_TAC[FINITE_IMAGE; FINITE_INTER; FINITE_NUMSEG; FINITE_POWERSET] THEN
REWRITE_TAC[RIGHT_EXISTS_AND_THM] THEN
CONJ_TAC THENL [SET_TAC[]; ALL_TAC] THEN
EXISTS_TAC `\v:real^(P,Q,R)geomalg. x dot v` THEN
W(MP_TAC o PART_MATCH (lhs o rand) VSUM_IMAGE o lhand o snd) THEN
ANTS_TAC THENL
[SIMP_TAC[FINITE_IMAGE; FINITE_INTER; FINITE_NUMSEG; FINITE_POWERSET] THEN
REWRITE_TAC[IN_INTER; IN_ELIM_THM] THEN MESON_TAC[MVBASIS_INJ]; ALL_TAC] THEN
DISCH_THEN SUBST1_TAC THEN REWRITE_TAC[o_DEF] THEN
SIMP_TAC[GEOMALG_EQ; GEOMALG_VSUM_COMPONENT; GEOMALG_MUL_COMPONENT; MVBASIS_COMPONENT] THEN
ONCE_REWRITE_TAC[COND_RAND] THEN
ONCE_REWRITE_TAC[MESON[]
`(if x = y then p else q) = (if y = x then p else q)`] THEN
SIMP_TAC[SUM_DELTA; REAL_MUL_RZERO; IN_INTER; IN_ELIM_THM; DOT_MVBASIS] THEN
ASM_MESON_TAC[REAL_MUL_RID]);;
let INDEPENDENT_STDMVBASIS = prove
(`independent {mbasis s :real^(P,Q,R)geomalg | s SUBSET 1..pdimindex(:P) + pdimindex(:Q) + pdimindex(:R)}`,
SUBGOAL_THEN
`{mbasis s:real^(P,Q,R)geomalg | s SUBSET 1..pdimindex(:P) + pdimindex(:Q) + pdimindex(:R)} =
{basis i| 1 <= i /\ i <= dimindex (:(P,Q,R)geomalg)}`
SUBST1_TAC THENL
[REWRITE_TAC[EXTENSION; IN_ELIM_THM; GSYM IN_NUMSEG; DIMINDEX_GEOMALG] THEN
MESON_TAC[CODESET_SETCODE_BIJECTIONS; MVBASIS_BASIS]; ALL_TAC] THEN
MATCH_ACCEPT_TAC INDEPENDENT_STDBASIS);;
let INDEPENDENT_STDMVBASIS_SING = prove
(`independent {mbasis {i} :real^(P,Q,R)geomalg | 1 <= i /\ i <= pdimindex(:P) + pdimindex(:Q) + pdimindex(:R)}`,
MATCH_MP_TAC INDEPENDENT_MONO THEN
EXISTS_TAC `{mbasis s :real^(P,Q,R)geomalg | s SUBSET 1..pdimindex(:P) + pdimindex(:Q) + pdimindex(:R)}` THEN
REWRITE_TAC[INDEPENDENT_STDMVBASIS] THEN
ONCE_REWRITE_TAC[SET_RULE `{f x | P x} = IMAGE f {x | P x}`] THEN
REWRITE_TAC[SUBSET; IN_IMAGE; IN_ELIM_THM] THEN
X_GEN_TAC `t:real^(P,Q,R)geomalg` THEN
DISCH_THEN(X_CHOOSE_THEN `i:num` ASSUME_TAC) THEN
EXISTS_TAC `{i}:num->bool` THEN ASM_MESON_TAC[IN_SING; IN_NUMSEG]);;
(* ------------------------------------------------------------------------- *)
(* About norm. *)
(* ------------------------------------------------------------------------- *)
let NORM_MVBASIS = prove
(`!s. s SUBSET 1..pdimindex (:P) + pdimindex (:Q) + pdimindex (:R)
==> (norm(mbasis s :real^(P,Q,R)geomalg) = &1)`,
REPEAT STRIP_TAC THEN
SUBGOAL_THEN
`(mbasis s):real^(P,Q,R)geomalg =
(basis (setcode s)):real^(P,Q,R)geomalg` SUBST1_TAC THENL
[REWRITE_TAC[mvbasis; lambdaset] THEN
SIMP_TAC[CART_EQ; LAMBDA_BETA; BASIS_COMPONENT] THEN
SIMP_TAC[GSYM FORALL_SETCODE; DIMINDEX_GEOMALG; GSYM IN_NUMSEG] THEN
ASM_MESON_TAC[CODESET_SETCODE_BIJECTIONS]; ALL_TAC] THEN
ASM_SIMP_TAC[SETCODE_BOUNDS; DIMINDEX_GEOMALG; GSYM IN_NUMSEG; NORM_BASIS]);;
(* ------------------------------------------------------------------------- *)
(* Linear and bilinear functions are determined by their effect on basis. *)
(* ------------------------------------------------------------------------- *)
let LINEAR_EQ_MVBASIS = prove
(`!f:real^(P,Q,R)geomalg->real^N g b s.
linear f /\ linear g /\
(!s. s SUBSET 1..pdimindex(:P) + pdimindex(:Q) + pdimindex(:R) ==> f(mbasis s) = g(mbasis s))
==> f = g`,
REPEAT STRIP_TAC THEN
SUBGOAL_THEN `!x. x IN UNIV ==> (f:real^(P,Q,R)geomalg->real^N) x = g x`
(fun th -> MP_TAC th THEN REWRITE_TAC[FUN_EQ_THM; IN_UNIV]) THEN
MATCH_MP_TAC LINEAR_EQ THEN
EXISTS_TAC `{mbasis s :real^(P,Q,R)geomalg | s SUBSET 1..pdimindex(:P) + pdimindex(:Q) + pdimindex(:R)}` THEN
ASM_REWRITE_TAC[SPAN_MVBASIS; SUBSET_REFL; IN_ELIM_THM] THEN
ASM_MESON_TAC[]);;
let BILINEAR_EQ_MVBASIS = prove
(`!f:real^(P,Q,R)geomalg->real^(P',Q',R')geomalg->real^N g b s.
bilinear f /\ bilinear g /\
(!s t. s SUBSET 1..pdimindex(:P) + pdimindex(:Q) + pdimindex(:R) /\
t SUBSET 1..pdimindex(:P') + pdimindex(:Q') + pdimindex(:R')
==> f (mbasis s) (mbasis t) = g (mbasis s) (mbasis t))
==> f = g`,
REPEAT STRIP_TAC THEN SUBGOAL_THEN
`!x y. x IN UNIV /\ y IN UNIV
==> (f:real^(P,Q,R)geomalg->real^(P',Q',R')geomalg->real^N) x y = g x y`
(fun th -> MP_TAC th THEN REWRITE_TAC[FUN_EQ_THM; IN_UNIV]) THEN
MATCH_MP_TAC BILINEAR_EQ THEN
EXISTS_TAC `{mbasis s :real^(P,Q,R)geomalg | s SUBSET 1..pdimindex(:P) + pdimindex(:Q) + pdimindex(:R)}` THEN
EXISTS_TAC `{mbasis t :real^(P',Q',R')geomalg | t SUBSET 1..pdimindex(:P') + pdimindex(:Q') + pdimindex(:R')}` THEN
ASM_REWRITE_TAC[SPAN_MVBASIS; SUBSET_REFL; IN_ELIM_THM] THEN
ASM_MESON_TAC[]);;
(* ------------------------------------------------------------------------- *)
(* A way of proving linear properties by extension from basis. *)
(* ------------------------------------------------------------------------- *)
let MVBASIS_EXTENSION = prove
(`!P. (!s. s SUBSET 1..pdimindex(:P) + pdimindex(:Q) + pdimindex(:R) ==> P(mbasis s)) /\
(!c x. P x ==> P(c % x)) /\ (!x y. P x /\ P y ==> P(x + y))
==> !x:real^(P,Q,R)geomalg. P x`,
REPEAT STRIP_TAC THEN GEN_REWRITE_TAC RAND_CONV [GSYM MVBASIS_EXPANSION] THEN
MATCH_MP_TAC(SIMP_RULE[RIGHT_IMP_FORALL_THM; IMP_IMP] LINEAR_PROPERTY) THEN
ASM_SIMP_TAC[FINITE_POWERSET; FINITE_NUMSEG; IN_ELIM_THM] THEN
ASM_MESON_TAC[EMPTY_SUBSET; VECTOR_MUL_LZERO]);;
(* ------------------------------------------------------------------------- *)
(* Injection from regular vectors. *)
(* ------------------------------------------------------------------------- *)
make_overloadable "multivec" `:real^M->real^N`;;
overload_interface("multivec",`multivect:real^(P, Q, R)trip_fin_sum->real^(P,Q,R)geomalg`);;
let multivect = new_definition
`(multivect:real^(P,Q,R)trip_fin_sum->real^(P,Q,R)geomalg) x =
vsum(1..pdimindex(:P) + pdimindex(:Q) + pdimindex(:R)) (\i. x$i % mbasis{i})`;;
let LINEAR_MULTIVECT = prove
(`linear (multivec:real^(P,Q,R)trip_fin_sum->real^(P,Q,R)geomalg)`,
REWRITE_TAC[linear; multivect; VECTOR_ADD_COMPONENT; VECTOR_MUL_COMPONENT;
VECTOR_ADD_RDISTRIB; GSYM VECTOR_MUL_ASSOC] THEN
SIMP_TAC[FINITE_NUMSEG; VSUM_ADD; VSUM_LMUL]);;
let MULTIVECT_ADD = CONJUNCT1 (REWRITE_RULE[LINEAR_MULTIVECT]
(ISPEC `multivec:real^(P,Q,R)trip_fin_sum->real^(P,Q,R)geomalg` linear));;
let MULTIVECT_MUL = CONJUNCT2 (REWRITE_RULE[LINEAR_MULTIVECT]
(ISPEC `multivec:real^(P,Q,R)trip_fin_sum->real^(P,Q,R)geomalg` linear));;
let MULTIVECT_0 = REWRITE_RULE[VECTOR_MUL_LZERO](SPEC `&0:real` MULTIVECT_MUL);;
let MULTIVECT_BASIS = prove
(`!i. multivec (basis i:real^(P,Q,R)trip_fin_sum) = mbasis {i}`,
GEN_TAC THEN REWRITE_TAC[multivect] THEN
SUBGOAL_THEN
`mbasis {i}:real^(P,Q,R)geomalg =
vsum (1..pdimindex(:P) + pdimindex(:Q) + pdimindex(:R)) (\i'. if i' = i then mbasis {i} else vec 0)`
SUBST1_TAC THENL
[REWRITE_TAC[VSUM_DELTA] THEN COND_CASES_TAC THEN REWRITE_TAC[MVBASIS_EQ_0] THEN ASM SET_TAC[]; ALL_TAC] THEN
MATCH_MP_TAC VSUM_EQ THEN REWRITE_TAC[IN_NUMSEG] THEN REPEAT STRIP_TAC THEN
ASM_CASES_TAC `1 <= pdimindex (:P) + pdimindex (:Q) + pdimindex (:R)` THENL[ALL_TAC; ASM_ARITH_TAC] THEN
ASM_SIMP_TAC[DIMINDEX_TRIPLE_FINITE_SUM; BASIS_COMPONENT] THEN
COND_CASES_TAC THEN ASM_REWRITE_TAC[VECTOR_MUL_LID; VECTOR_MUL_LZERO]);;
let MULTIVECT_EQ_0 = prove
(`!x:real^(P, Q, R)trip_fin_sum.
1 <= pdimindex (:P) + pdimindex (:Q) + pdimindex (:R) ==> (x = vec 0 <=> multivec x = vec 0)`,
REPEAT STRIP_TAC THEN EQ_TAC THENL [DISCH_TAC THEN ASM_REWRITE_TAC[MULTIVECT_0]; ALL_TAC] THEN
REWRITE_TAC[multivect] THEN
MP_TAC(ISPEC `{mbasis {i} :real^(P,Q,R)geomalg | 1 <= i /\ i <= pdimindex(:P) + pdimindex(:Q) + pdimindex(:R)}` INDEPENDENT_EXPLICIT) THEN
REWRITE_TAC[INDEPENDENT_STDMVBASIS_SING; GSYM IN_NUMSEG; SIMPLE_IMAGE] THEN SIMP_TAC[FINITE_NUMSEG; FINITE_IMAGE] THEN
ASSUME_TAC MVBASIS_INJ_SING THEN FIRST_ASSUM(MP_TAC o GEN_REWRITE_RULE I [INJECTIVE_ON_LEFT_INVERSE]) THEN
DISCH_THEN(X_CHOOSE_TAC `g:real^(P,Q,R)geomalg->num`) THEN
ONCE_REWRITE_TAC[GSYM CONTRAPOS_THM] THEN REWRITE_TAC[NOT_FORALL_THM] THEN REWRITE_TAC[TAUT `~(a==>b) <=> a /\ ~b`] THEN
STRIP_TAC THEN EXISTS_TAC `\v. (x:real^(P, Q, R)trip_fin_sum)$((g:real^(P,Q,R)geomalg->num) v)` THEN
CONJ_TAC THENL
[W(MP_TAC o PART_MATCH (lhs o rand) VSUM_IMAGE o lhand o snd) THEN REWRITE_TAC[FINITE_NUMSEG; MVBASIS_INJ_SING; o_DEF] THEN
DISCH_THEN SUBST1_TAC THEN FIRST_ASSUM(SUBST1_TAC o SYM) THEN MATCH_MP_TAC VSUM_EQ THEN ASM_MESON_TAC[]; ALL_TAC] THEN
POP_ASSUM MP_TAC THEN SIMP_TAC[CART_EQ; VEC_COMPONENT; DIMINDEX_TRIPLE_FINITE_SUM] THEN
ASM_REWRITE_TAC[GSYM IN_NUMSEG] THEN ASM_MESON_TAC[IN_IMAGE]);;
let MULTIVECT_EQ = prove
(`!x y:real^(P, Q, R)trip_fin_sum.
1 <= pdimindex (:P) + pdimindex (:Q) + pdimindex (:R) ==>
(x = y <=> multivec x = multivec y)`,
REPEAT STRIP_TAC THEN ONCE_REWRITE_TAC[GSYM VECTOR_SUB_EQ; GSYM REAL_SUB_0] THEN
SIMP_TAC[LINEAR_MULTIVECT; GSYM LINEAR_SUB; GSYM VECTOR_SUB_COMPONENT] THEN
ASM_SIMP_TAC[MULTIVECT_EQ_0]);;
(* ------------------------------------------------------------------------- *)
(* Subspace of k-vectors. *)
(* ------------------------------------------------------------------------- *)
make_overloadable "multivector" `:num->real^N->bool`;;
overload_interface("multivector",`multivectorga:num->real^(P,Q,R)geomalg->bool`);;
let multivectorga = new_definition
`k multivector (p:real^(P,Q,R)geomalg) <=>
!s. s SUBSET (1..pdimindex(:P) + pdimindex(:Q) + pdimindex(:R)) /\ ~(p$$s = &0)
==> s HAS_SIZE k`;;
let FORALL_MULTIVECTORGA_VEC0 = prove
(`!k. k multivector (vec 0:real^(P,Q,R)geomalg)`,
MESON_TAC[multivectorga; GEOMALG_VEC_COMPONENT]);;
(* ------------------------------------------------------------------------- *)
(* k-grade part of a multivector. *)
(* ------------------------------------------------------------------------- *)
make_overloadable "grade" `:num->real^N->real^N`;;
overload_interface("grade",`grade_geomalg:num->real^(P,Q,R)geomalg->real^(P,Q,R)geomalg`);;
let grade_geomalg = new_definition
`k grade (p:real^(P,Q,R)geomalg) =
(lambdas s. if s HAS_SIZE k then p$$s else &0):real^(P,Q,R)geomalg`;;
let GEOMALG_GRADE = prove
(`!k x. k multivector (k grade x)`,
SIMP_TAC[multivectorga; grade_geomalg; GEOMALG_BETA; IMP_CONJ] THEN
MESON_TAC[]);;
let GRADE_ADD_GEOMALG = prove
(`!x y k. k grade (x + y) = (k grade x) + (k grade y)`,
SIMP_TAC[grade_geomalg; GEOMALG_EQ; GEOMALG_ADD_COMPONENT;
GEOMALG_BETA; COND_COMPONENT] THEN
REAL_ARITH_TAC);;
let GRADE_CMUL_GEOMALG = prove
(`!c x k. k grade (c % x) = c % (k grade x)`,
SIMP_TAC[grade_geomalg; GEOMALG_EQ; GEOMALG_MUL_COMPONENT;
GEOMALG_BETA; COND_COMPONENT] THEN
REAL_ARITH_TAC);;
(* ------------------------------------------------------------------------- *)
(* General product construct. *)
(* ------------------------------------------------------------------------- *)
parse_as_infix("SYMDIFF",(18,"left"));;
let SYMDIFF = new_definition `s SYMDIFF t = (s DIFF t) UNION (t DIFF s)`;;
let SYMDIFF_EMPTY = prove
(`(!s. s SYMDIFF {} = s) /\ (!s. {} SYMDIFF s = s)`,
REWRITE_TAC[SYMDIFF; DIFF_EMPTY; EMPTY_DIFF; UNION_EMPTY]);;
let SYMDIFF_COMM = prove
(`(!s t. s SYMDIFF t = t SYMDIFF s)`,
REWRITE_TAC[SYMDIFF; UNION_COMM]);;
let SYMDIFF_SUBSET = prove
(`!s t u. s SUBSET u /\ t SUBSET u ==> (s SYMDIFF t) SUBSET u`,
REWRITE_TAC[SYMDIFF] THEN SET_TAC[]);;
let SYMDIFF_ASSOC = prove
(`!s t u. s SYMDIFF (t SYMDIFF u) = (s SYMDIFF t) SYMDIFF u`,
REWRITE_TAC[SYMDIFF] THEN SET_TAC[]);;
let Productga_DEF = new_definition
`(Productga sgn
:real^(P,Q,R)geomalg->real^(P,Q,R)geomalg->real^(P,Q,R)geomalg) x y =
vsum {s | s SUBSET 1..(pdimindex(:P) + pdimindex(:Q) + pdimindex(:R))}
(\s. vsum {s | s SUBSET 1..(pdimindex(:P) + pdimindex(:Q) + pdimindex(:R))}
(\t. (sgn s t * x$$s * y$$t) % mbasis (s SYMDIFF t)))`;;
(* ------------------------------------------------------------------------- *)
(* This is always bilinear. *)
(* ------------------------------------------------------------------------- *)
let BILINEAR_PRODUCTGA = prove
(`!sgn. bilinear(Productga sgn)`,
REWRITE_TAC[bilinear; linear; Productga_DEF] THEN
SIMP_TAC[GSYM VSUM_LMUL; GEOMALG_MUL_COMPONENT] THEN
REWRITE_TAC[VECTOR_MUL_ASSOC; REAL_MUL_AC] THEN
REPEAT STRIP_TAC THEN
SIMP_TAC[GSYM VSUM_ADD; FINITE_POWERSET; FINITE_NUMSEG] THEN
REPEAT(MATCH_MP_TAC VSUM_EQ THEN REWRITE_TAC[IN_ELIM_THM] THEN
REPEAT STRIP_TAC) THEN
ASM_SIMP_TAC[GEOMALG_ADD_COMPONENT] THEN VECTOR_ARITH_TAC);;
let PRODUCTGA_LADD = (MATCH_MP BILINEAR_LADD o SPEC_ALL) BILINEAR_PRODUCTGA;;
let PRODUCTGA_RADD = (MATCH_MP BILINEAR_RADD o SPEC_ALL) BILINEAR_PRODUCTGA;;
let PRODUCTGA_LMUL = (MATCH_MP BILINEAR_LMUL o SPEC_ALL) BILINEAR_PRODUCTGA;;
let PRODUCTGA_RMUL = (MATCH_MP BILINEAR_RMUL o SPEC_ALL) BILINEAR_PRODUCTGA;;
let PRODUCTGA_LNEG = (MATCH_MP BILINEAR_LNEG o SPEC_ALL) BILINEAR_PRODUCTGA;;
let PRODUCTGA_RNEG = (MATCH_MP BILINEAR_RNEG o SPEC_ALL) BILINEAR_PRODUCTGA;;
let PRODUCTGA_LZERO = (MATCH_MP BILINEAR_LZERO o SPEC_ALL) BILINEAR_PRODUCTGA;;
let PRODUCTGA_RZERO = (MATCH_MP BILINEAR_RZERO o SPEC_ALL) BILINEAR_PRODUCTGA;;
(* ------------------------------------------------------------------------- *)
(* Under suitable conditions, it's also associative. *)
(* ------------------------------------------------------------------------- *)
let PRODUCTGA_ASSOCIATIVE = prove
(`!sgn1 sgn2.
(!s t u. sgn1 t u * sgn2 s (t SYMDIFF u) = sgn2 s t * sgn1 (s SYMDIFF t) u)
==> !x y z:real^(P,Q,R)geomalg.
Productga sgn2 x (Productga sgn1 y z) =
Productga sgn1 (Productga sgn2 x y) z`,
let SUM_SWAP_POWERSET =
SIMP_RULE[FINITE_POWERSET; FINITE_NUMSEG]
(repeat(SPEC `{s | s SUBSET 1..(pdimindex(:P) + pdimindex(:Q) + pdimindex(:R))}`)
(ISPEC `f:(num->bool)->(num->bool)->real` SUM_SWAP)) in
let SWAP_TAC cnv n =
GEN_REWRITE_TAC (cnv o funpow n BINDER_CONV) [SUM_SWAP_POWERSET] THEN
REWRITE_TAC[] in
let SWAPS_TAC cnv ns x =
MAP_EVERY (SWAP_TAC cnv) ns THEN MATCH_MP_TAC SUM_EQ THEN X_GEN_TAC x THEN
REWRITE_TAC[IN_ELIM_THM] THEN STRIP_TAC in
REWRITE_TAC[Productga_DEF] THEN REPEAT STRIP_TAC THEN
SIMP_TAC[GEOMALG_EQ; GEOMALG_VSUM_COMPONENT; MVBASIS_COMPONENT;
GEOMALG_MUL_COMPONENT] THEN
SIMP_TAC[GSYM SUM_LMUL; GSYM SUM_RMUL] THEN
X_GEN_TAC `r:num->bool` THEN STRIP_TAC THEN
SWAPS_TAC RAND_CONV [1;0] `s:num->bool` THEN
SWAP_TAC LAND_CONV 0 THEN SWAPS_TAC RAND_CONV [1;0] `t:num->bool` THEN
SWAP_TAC RAND_CONV 0 THEN SWAPS_TAC LAND_CONV [0] `u:num->bool` THEN
REWRITE_TAC[GSYM REAL_MUL_ASSOC;
REAL_ARITH `(if p then a else &0) * b = if p then a * b else &0`;
REAL_ARITH `a * (if p then b else &0) = if p then a * b else &0`] THEN
SIMP_TAC[SUM_DELTA] THEN ASM_SIMP_TAC[IN_ELIM_THM; SYMDIFF_SUBSET; SYMDIFF_ASSOC] THEN
COND_CASES_TAC THEN ASM_REWRITE_TAC[REAL_MUL_LID; REAL_MUL_RID] THEN
REWRITE_TAC[REAL_MUL_AC]THEN ASM_REWRITE_TAC[REAL_MUL_ASSOC] THEN REWRITE_TAC[REAL_MUL_AC]);;
(* --------------------------------------------------------------------------*)
(* Geometric product. *)
(* ------------------------------------------------------------------------- *)
overload_interface
("*",`geomga_mul:real^(P,Q,R)geomalg->real^(P,Q,R)geomalg->real^(P,Q,R)geomalg`);;
let geomga_mul = new_definition
`(x:real^(P,Q,R)geomalg) * y =
Productga (\s t.
--(&1) pow CARD {i,j | i IN 1..pdimindex(:P) + pdimindex(:Q) + pdimindex(:R) /\
j IN 1..pdimindex(:P) + pdimindex(:Q) + pdimindex(:R) /\
i IN s /\ j IN t /\ i > j} *
--(&1) pow CARD ((pdimindex(:P) + 1..pdimindex(:P) + pdimindex(:Q)) INTER s INTER t) *
&0 pow CARD ((pdimindex(:P) + pdimindex(:Q) + 1..pdimindex(:P) + pdimindex(:Q) + pdimindex(:R)) INTER s INTER t))
x y`;;
let BILINEAR_GEOMGA = prove
(`bilinear(geomga_mul)`,
REWRITE_TAC[REWRITE_RULE[GSYM FUN_EQ_THM; ETA_AX] geomga_mul] THEN
MATCH_ACCEPT_TAC BILINEAR_PRODUCTGA);;
let GEOMGA_LADD = (MATCH_MP BILINEAR_LADD o SPEC_ALL) BILINEAR_GEOMGA;;
let GEOMGA_RADD = (MATCH_MP BILINEAR_RADD o SPEC_ALL) BILINEAR_GEOMGA;;
let GEOMGA_LMUL = (MATCH_MP BILINEAR_LMUL o SPEC_ALL) BILINEAR_GEOMGA;;
let GEOMGA_RMUL = (MATCH_MP BILINEAR_RMUL o SPEC_ALL) BILINEAR_GEOMGA;;
let GEOMGA_LNEG = (MATCH_MP BILINEAR_LNEG o SPEC_ALL) BILINEAR_GEOMGA;;
let GEOMGA_RNEG = (MATCH_MP BILINEAR_RNEG o SPEC_ALL) BILINEAR_GEOMGA;;
let GEOMGA_LZERO = (MATCH_MP BILINEAR_LZERO o SPEC_ALL) BILINEAR_GEOMGA;;
let GEOMGA_RZERO = (MATCH_MP BILINEAR_RZERO o SPEC_ALL) BILINEAR_GEOMGA;;
let GEOMGA_ASSOC = prove
(`!x y z:real^(P,Q,R)geomalg. x * (y * z) = (x * y) * z`,
REWRITE_TAC[geomga_mul] THEN MATCH_MP_TAC PRODUCTGA_ASSOCIATIVE THEN
REPEAT GEN_TAC THEN SIMP_TAC[REAL_ARITH`(a:real * b*c) * (d*e*f) = (a*d)*(b*e)*(c*f)`] THEN
REWRITE_TAC[GSYM REAL_POW_ADD; SYMDIFF] THEN BINOP_TAC THENL[ALL_TAC; BINOP_TAC THENL[ALL_TAC;
REWRITE_TAC[REAL_POW_ZERO] THEN
AP_THM_TAC THEN AP_THM_TAC THEN AP_TERM_TAC THEN
SIMP_TAC[ADD_EQ_0; FINITE_NUMSEG; FINITE_INTER; CARD_EQ_0] THEN
SIMP_TAC[GSYM EMPTY_UNION] THEN
AP_THM_TAC THEN AP_TERM_TAC THEN SET_TAC[]]] THEN
REWRITE_TAC[REAL_POW_NEG; REAL_POW_ONE] THEN
AP_THM_TAC THEN AP_THM_TAC THEN AP_TERM_TAC THEN
REWRITE_TAC[EVEN_ADD] THEN
W(fun (_,w) -> let tu = funpow 2 lhand w in
let su = vsubst[`s:num->bool`,`t:num->bool`] tu in
let st = vsubst[`t:num->bool`,`u:num->bool`] su in
MATCH_MP_TAC EQ_TRANS THEN
EXISTS_TAC(end_itlist (curry mk_eq) [st; su; tu])) THEN
CONJ_TAC THENL
[MATCH_MP_TAC(TAUT `(x <=> y <=> z) ==> ((a <=> x) <=> (y <=> z <=> a))`);
AP_TERM_TAC THEN CONV_TAC SYM_CONV;
MATCH_MP_TAC(TAUT `(x <=> y <=> z) ==> ((a <=> x) <=> (y <=> z <=> a))`);
AP_TERM_TAC THEN CONV_TAC SYM_CONV] THEN
MATCH_MP_TAC SYMDIFF_PARITY_LEMMA THEN
SIMP_TAC[FINITE_CART_SUBSET_LEMMA1; FINITE_NUMSEG; FINITE_INTER] THEN
REWRITE_TAC[EXTENSION; FORALL_PAIR_THM; IN_ELIM_PAIR_THM; IN_ELIM_THM;
IN_UNION; IN_DIFF; IN_INTER] THEN
CONV_TAC TAUT);;
(* ------------------------------------------------------------------------- *)
(* Outer product. *)
(* ------------------------------------------------------------------------- *)
make_overloadable "outer" `:real^N->real^N->real^N`;;
overload_interface
("outer",`outerga:real^(P,Q,R)geomalg->real^(P,Q,R)geomalg->real^(P,Q,R)geomalg`);;
let outerga = new_definition
`x outer y:real^(P,Q,R)geomalg =
Productga (\s t. if ~(s INTER t = {}) then &0
else --(&1) pow CARD {i,j | i IN 1..(pdimindex(:P) + pdimindex(:Q) + pdimindex(:R)) /\
j IN 1..(pdimindex(:P) + pdimindex(:Q) + pdimindex(:R)) /\
i IN s /\ j IN t /\ i > j})
x y`;;
let BILINEAR_OUTERGA = prove
(`bilinear(outer)`,
REWRITE_TAC[REWRITE_RULE[GSYM FUN_EQ_THM; ETA_AX] outerga] THEN
MATCH_ACCEPT_TAC BILINEAR_PRODUCTGA);;
let OUTERGA_LADD = (MATCH_MP BILINEAR_LADD o SPEC_ALL) BILINEAR_OUTERGA;;
let OUTERGA_RADD = (MATCH_MP BILINEAR_RADD o SPEC_ALL) BILINEAR_OUTERGA;;
let OUTERGA_LMUL = (MATCH_MP BILINEAR_LMUL o SPEC_ALL) BILINEAR_OUTERGA;;
let OUTERGA_RMUL = (MATCH_MP BILINEAR_RMUL o SPEC_ALL) BILINEAR_OUTERGA;;
let OUTERGA_LNEG = (MATCH_MP BILINEAR_LNEG o SPEC_ALL) BILINEAR_OUTERGA;;
let OUTERGA_RNEG = (MATCH_MP BILINEAR_RNEG o SPEC_ALL) BILINEAR_OUTERGA;;
let OUTERGA_LZERO = (MATCH_MP BILINEAR_LZERO o SPEC_ALL) BILINEAR_OUTERGA;;
let OUTERGA_RZERO = (MATCH_MP BILINEAR_RZERO o SPEC_ALL) BILINEAR_OUTERGA;;
let OUTERGA_ASSOC = prove
(`!x y z:real^(P,Q,R)geomalg. x outer (y outer z) = (x outer y) outer z`,
REWRITE_TAC[outerga] THEN MATCH_MP_TAC PRODUCTGA_ASSOCIATIVE THEN
REPEAT GEN_TAC THEN
MAP_EVERY ASM_CASES_TAC
[`s INTER t :num->bool = {}`;
`s INTER u :num->bool = {}`;
`t INTER u :num->bool = {}`] THEN
ASM_SIMP_TAC[SYMDIFF;
SET_RULE `(s INTER t = {}) ==> (s DIFF t) UNION (t DIFF s) = s UNION t`;
SET_RULE `s INTER (t UNION u) = (s INTER t) UNION (s INTER u)`;
SET_RULE `(t UNION u) INTER s = (t INTER s) UNION (u INTER s)`] THEN
REWRITE_TAC[EMPTY_UNION] THEN
ASM_REWRITE_TAC[REAL_MUL_LZERO; REAL_MUL_RZERO] THEN
REWRITE_TAC[GSYM REAL_POW_ADD] THEN AP_TERM_TAC THEN
MATCH_MP_TAC CARD_UNION_LEMMA THEN REWRITE_TAC[FINITE_CART_SUBSET_LEMMA1] THEN
SIMP_TAC[EXTENSION; FORALL_PAIR_THM; NOT_IN_EMPTY; IN_UNION; IN_INTER] THEN
REWRITE_TAC[IN_ELIM_PAIR_THM] THEN ASM SET_TAC []);;
(* ------------------------------------------------------------------------- *)
(* Inner product. *)
(* ------------------------------------------------------------------------- *)
make_overloadable "inner" `:real^N->real^N->real^N`;;
overload_interface
("inner",`innerga:real^(P,Q,R)geomalg->real^(P,Q,R)geomalg->real^(P,Q,R)geomalg`);;
let innerga = new_definition
`x inner y:real^(P,Q,R)geomalg=
Productga (\s t. if s = {} \/ t = {} \/ ~(s SUBSET t) /\ ~(t SUBSET s)
then &0
else --(&1) pow CARD {i,j | i IN 1..(pdimindex(:P) + pdimindex(:Q) + pdimindex(:R)) /\
j IN 1..(pdimindex(:P) + pdimindex(:Q) + pdimindex(:R)) /\
i IN s /\ j IN t /\ i > j} *
--(&1) pow CARD ((pdimindex(:P) + 1..pdimindex(:P) + pdimindex(:Q)) INTER s INTER t) *
&0 pow CARD ((pdimindex(:P) + pdimindex(:Q) + 1..pdimindex(:P) + pdimindex(:Q) + pdimindex(:R)) INTER s INTER t))
x y`;;
parse_as_infix("lcinner",(20,"right"));;
let lcinner = new_definition
`!x y:real^(P,Q,R)geomalg.
x lcinner y =
Productga (\s t. if s = {} \/ t = {} \/ ~(s SUBSET t)
then &0
else --(&1) pow CARD {i,j | i IN 1..(pdimindex(:P) + pdimindex(:Q) + pdimindex(:R)) /\
j IN 1..(pdimindex(:P) + pdimindex(:Q) + pdimindex(:R)) /\
i IN s /\ j IN t /\ i > j}*
--(&1) pow CARD ((pdimindex(:P) + 1..pdimindex(:P) + pdimindex(:Q)) INTER s INTER t) *
&0 pow CARD ((pdimindex(:P) + pdimindex(:Q) + 1..pdimindex(:P) + pdimindex(:Q) + pdimindex(:R)) INTER s INTER t))
x y`;;
parse_as_infix("rcinner",(20,"right"));;
let rcinner = new_definition
`!x y:real^(P,Q,R)geomalg.
x rcinner y =
Productga (\s t. if s = {} \/ t = {} \/ ~(t SUBSET s)
then &0
else --(&1) pow CARD {i,j | i IN 1..(pdimindex(:P) + pdimindex(:Q) + pdimindex(:R)) /\
j IN 1..(pdimindex(:P) + pdimindex(:Q) + pdimindex(:R)) /\
i IN s /\ j IN t /\ i > j}*
--(&1) pow CARD ((pdimindex(:P) + 1..pdimindex(:P) + pdimindex(:Q)) INTER s INTER t) *
&0 pow CARD ((pdimindex(:P) + pdimindex(:Q) + 1..pdimindex(:P) + pdimindex(:Q) + pdimindex(:R)) INTER s INTER t))
x y`;;
parse_as_infix("scalarinner",(20,"right"));;
let scalarinner = new_definition
`!x y:real^(P,Q,R)geomalg.
x scalarinner y =
Productga (\s t. if s = {} \/ t = {} \/ ~(s = t)
then &0
else --(&1) pow CARD ((pdimindex(:P) + 1..pdimindex(:P) + pdimindex(:Q)) INTER s INTER t) *
&0 pow CARD ((pdimindex(:P) + pdimindex(:Q) + 1..pdimindex(:P) + pdimindex(:Q) + pdimindex(:R)) INTER s INTER t))
x y`;;
let BILINEAR_INNERGA = prove
(`bilinear(inner)`,
REWRITE_TAC[REWRITE_RULE[GSYM FUN_EQ_THM; ETA_AX] innerga] THEN
MATCH_ACCEPT_TAC BILINEAR_PRODUCTGA);;
let INNERGA_LADD = (MATCH_MP BILINEAR_LADD o SPEC_ALL) BILINEAR_INNERGA;;
let INNERGA_RADD = (MATCH_MP BILINEAR_RADD o SPEC_ALL) BILINEAR_INNERGA;;
let INNERGA_LMUL = (MATCH_MP BILINEAR_LMUL o SPEC_ALL) BILINEAR_INNERGA;;
let INNERGA_RMUL = (MATCH_MP BILINEAR_RMUL o SPEC_ALL) BILINEAR_INNERGA;;
let INNERGA_LNEG = (MATCH_MP BILINEAR_LNEG o SPEC_ALL) BILINEAR_INNERGA;;
let INNERGA_RNEG = (MATCH_MP BILINEAR_RNEG o SPEC_ALL) BILINEAR_INNERGA;;
let INNERGA_LZERO = (MATCH_MP BILINEAR_LZERO o SPEC_ALL) BILINEAR_INNERGA;;
let INNERGA_RZERO = (MATCH_MP BILINEAR_RZERO o SPEC_ALL) BILINEAR_INNERGA;;
let BILINEAR_LCINNER = prove
(`bilinear(lcinner)`,
REWRITE_TAC[REWRITE_RULE[GSYM FUN_EQ_THM; ETA_AX] lcinner] THEN
MATCH_ACCEPT_TAC BILINEAR_PRODUCTGA);;
let LCINNER_LADD = (MATCH_MP BILINEAR_LADD o SPEC_ALL) BILINEAR_LCINNER;;
let LCINNER_RADD = (MATCH_MP BILINEAR_RADD o SPEC_ALL) BILINEAR_LCINNER;;
let LCINNER_LMUL = (MATCH_MP BILINEAR_LMUL o SPEC_ALL) BILINEAR_LCINNER;;
let LCINNER_RMUL = (MATCH_MP BILINEAR_RMUL o SPEC_ALL) BILINEAR_LCINNER;;
let LCINNER_LNEG = (MATCH_MP BILINEAR_LNEG o SPEC_ALL) BILINEAR_LCINNER;;
let LCINNER_RNEG = (MATCH_MP BILINEAR_RNEG o SPEC_ALL) BILINEAR_LCINNER;;
let LCINNER_LZERO = (MATCH_MP BILINEAR_LZERO o SPEC_ALL) BILINEAR_LCINNER;;
let LCINNER_RZERO = (MATCH_MP BILINEAR_RZERO o SPEC_ALL) BILINEAR_LCINNER;;
let BILINEAR_RCINNER = prove
(`bilinear(rcinner)`,
REWRITE_TAC[REWRITE_RULE[GSYM FUN_EQ_THM; ETA_AX] rcinner] THEN
MATCH_ACCEPT_TAC BILINEAR_PRODUCTGA);;
let RCINNER_LADD = (MATCH_MP BILINEAR_LADD o SPEC_ALL) BILINEAR_RCINNER;;
let RCINNER_RADD = (MATCH_MP BILINEAR_RADD o SPEC_ALL) BILINEAR_RCINNER;;
let RCINNER_LMUL = (MATCH_MP BILINEAR_LMUL o SPEC_ALL) BILINEAR_RCINNER;;
let RCINNER_RMUL = (MATCH_MP BILINEAR_RMUL o SPEC_ALL) BILINEAR_RCINNER;;
let RCINNER_LNEG = (MATCH_MP BILINEAR_LNEG o SPEC_ALL) BILINEAR_RCINNER;;
let RCINNER_RNEG = (MATCH_MP BILINEAR_RNEG o SPEC_ALL) BILINEAR_RCINNER;;
let RCINNER_LZERO = (MATCH_MP BILINEAR_LZERO o SPEC_ALL) BILINEAR_RCINNER;;
let RCINNER_RZERO = (MATCH_MP BILINEAR_RZERO o SPEC_ALL) BILINEAR_RCINNER;;
let BILINEAR_SCALARINNER = prove
(`bilinear(scalarinner)`,
REWRITE_TAC[REWRITE_RULE[GSYM FUN_EQ_THM; ETA_AX] scalarinner] THEN
MATCH_ACCEPT_TAC BILINEAR_PRODUCTGA);;
let SCALARINNER_LADD = (MATCH_MP BILINEAR_LADD o SPEC_ALL) BILINEAR_SCALARINNER;;
let SCALARINNER_RADD = (MATCH_MP BILINEAR_RADD o SPEC_ALL) BILINEAR_SCALARINNER;;
let SCALARINNER_LMUL = (MATCH_MP BILINEAR_LMUL o SPEC_ALL) BILINEAR_SCALARINNER;;
let SCALARINNER_RMUL = (MATCH_MP BILINEAR_RMUL o SPEC_ALL) BILINEAR_SCALARINNER;;
let SCALARINNER_LNEG = (MATCH_MP BILINEAR_LNEG o SPEC_ALL) BILINEAR_SCALARINNER;;
let SCALARINNER_RNEG = (MATCH_MP BILINEAR_RNEG o SPEC_ALL) BILINEAR_SCALARINNER;;
let SCALARINNER_LZERO = (MATCH_MP BILINEAR_LZERO o SPEC_ALL) BILINEAR_SCALARINNER;;
let SCALARINNER_RZERO = (MATCH_MP BILINEAR_RZERO o SPEC_ALL) BILINEAR_SCALARINNER;;
(* ------------------------------------------------------------------------- *)
(* Actions of products on basis and singleton basis. *)
(* ------------------------------------------------------------------------- *)
let PRODUCTGA_MVBASIS = prove
(`!s t. Productga sgn (mbasis s) (mbasis t) :real^(P,Q,R)geomalg =
if s SUBSET 1..(pdimindex(:P) + pdimindex(:Q) + pdimindex(:R)) /\
t SUBSET 1..(pdimindex(:P) + pdimindex(:Q) + pdimindex(:R))
then sgn s t % mbasis(s SYMDIFF t)
else vec 0`,
REPEAT GEN_TAC THEN REWRITE_TAC[Productga_DEF] THEN
SIMP_TAC[GEOMALG_MUL_COMPONENT; MVBASIS_COMPONENT] THEN
REWRITE_TAC[REAL_ARITH
`x * (if p then &1 else &0) * (if q then &1 else &0) =
if q then if p then x else &0 else &0`] THEN
REPEAT
(GEN_REWRITE_TAC (LAND_CONV o ONCE_DEPTH_CONV) [COND_RAND] THEN
GEN_REWRITE_TAC (LAND_CONV o ONCE_DEPTH_CONV) [COND_RATOR] THEN
SIMP_TAC[VECTOR_MUL_LZERO; COND_ID; VSUM_DELTA; IN_ELIM_THM; VSUM_0] THEN
ASM_CASES_TAC `t SUBSET 1..(pdimindex(:P) + pdimindex(:Q) + pdimindex(:R))` THEN
ASM_REWRITE_TAC[]));;
let PRODUCTGA_MVBASIS_SING = prove
(`!i j. Productga sgn (mbasis{i}) (mbasis{j}) :real^(P,Q,R)geomalg =
if i IN 1..pdimindex(:P) + pdimindex(:Q) + pdimindex(:R) /\
j IN 1..pdimindex(:P) + pdimindex(:Q) + pdimindex(:R)
then sgn {i} {j} % mbasis({i} SYMDIFF {j})
else vec 0`,
REWRITE_TAC[PRODUCTGA_MVBASIS; SET_RULE `{x} SUBSET s <=> x IN s`]);;
let GEOM_MVBASIS = prove
(`!s t.
mbasis s * mbasis t:real^(P,Q,R)geomalg =
(if s SUBSET 1..pdimindex(:P) + pdimindex(:Q) + pdimindex(:R) /\
t SUBSET 1..pdimindex(:P) + pdimindex(:Q) + pdimindex(:R)
then (-- &1 pow CARD {i,j | i IN s /\ j IN t /\ i > j} *
-- &1 pow CARD ((pdimindex(:P) + 1..pdimindex(:P) + pdimindex(:Q)) INTER s INTER t) *
&0 pow CARD ((pdimindex(:P) + pdimindex(:Q) + 1..pdimindex(:P) + pdimindex(:Q) + pdimindex(:R)) INTER s INTER t)) %
mbasis (s SYMDIFF t)
else vec 0)`,
REPEAT GEN_TAC THEN REWRITE_TAC[geomga_mul; PRODUCTGA_MVBASIS] THEN
COND_CASES_TAC THEN ASM_REWRITE_TAC[] THEN
REPEAT(AP_THM_TAC THEN AP_TERM_TAC) THEN AP_TERM_TAC THEN AP_TERM_TAC THEN
REWRITE_TAC[EXTENSION; IN_ELIM_PAIR_THM; FORALL_PAIR_THM] THEN
ASM_MESON_TAC[SUBSET]);;
let INNER_MVBASIS = prove
(`!s t.
mbasis s inner mbasis t:real^(P,Q,R)geomalg =
(if s SUBSET 1..pdimindex(:P) + pdimindex(:Q) + pdimindex(:R) /\
t SUBSET 1..pdimindex(:P) + pdimindex(:Q) + pdimindex(:R) /\
~(s = {}) /\ ~(t = {}) /\ (s SUBSET t \/ t SUBSET s)
then (-- &1 pow CARD {i,j | i IN s /\ j IN t /\ i > j} *
-- &1 pow CARD ((pdimindex(:P) + 1..pdimindex(:P) + pdimindex(:Q)) INTER s INTER t) *
&0 pow CARD ((pdimindex(:P) + pdimindex(:Q) + 1..pdimindex(:P) + pdimindex(:Q) + pdimindex(:R)) INTER s INTER t)) %
mbasis (s SYMDIFF t)
else vec 0)`,
REPEAT GEN_TAC THEN REWRITE_TAC[innerga; PRODUCTGA_MVBASIS] THEN
COND_CASES_TAC THENL[ALL_TAC; ASM_MESON_TAC[]] THEN COND_CASES_TAC THEN
ASM_REWRITE_TAC[TAUT `~(s = {}) /\ ~(t = {}) /\ (s SUBSET t \/ t SUBSET s) <=>
~(s = {} \/ t = {} \/ ~(s SUBSET t) /\ ~(t SUBSET s))`;
VECTOR_MUL_LZERO] THEN
REPEAT(AP_THM_TAC THEN AP_TERM_TAC) THEN AP_TERM_TAC THEN AP_TERM_TAC THEN
REWRITE_TAC[EXTENSION; IN_ELIM_PAIR_THM; FORALL_PAIR_THM] THEN
ASM_MESON_TAC[SUBSET]);;
let GEOM_MVBASIS_SING = prove
(`!i j.
mbasis {i} * mbasis {j} :real^(P,Q,R)geomalg=
(if i IN 1..pdimindex (:P) + pdimindex (:Q) + pdimindex (:R) /\
j IN 1..pdimindex (:P) + pdimindex (:Q) + pdimindex (:R)
then if i = j
then if i IN 1..pdimindex (:P)
then mbasis {}
else if i IN pdimindex (:P) + 1..pdimindex (:P) + pdimindex (:Q)
then --mbasis {}
else vec 0
else if i < j then mbasis {i, j} else --mbasis {i, j}
else vec 0)`,
REPEAT GEN_TAC THEN REWRITE_TAC[geomga_mul; PRODUCTGA_MVBASIS_SING; IN_NUMSEG] THEN
COND_CASES_TAC THEN ASM_REWRITE_TAC[IN_SING] THEN
SUBGOAL_THEN
`{i',j' | (1 <= i' /\ i' <= pdimindex (:P) + pdimindex (:Q) + pdimindex (:R)) /\
(1 <= j' /\ j' <= (pdimindex(:P) + pdimindex(:Q) + pdimindex (:R))) /\
i' = i /\
j' = j /\
i' > j'} =
if i > j then {(i,j)} else {}`SUBST1_TAC THENL
[REWRITE_TAC[EXTENSION; FORALL_PAIR_THM; IN_ELIM_PAIR_THM; IN_SING] THEN
COND_CASES_TAC THEN ASM_REWRITE_TAC[IN_SING; NOT_IN_EMPTY; PAIR_EQ] THEN
ASM_MESON_TAC[LT_REFL];
ALL_TAC] THEN
ASM_CASES_TAC `i:num = j` THEN ASM_REWRITE_TAC[GT; LT_REFL] THENL
[ALL_TAC;
FIRST_ASSUM(SUBST1_TAC o MATCH_MP (ARITH_RULE
`~(i:num = j) ==> (j < i <=> ~(i < j))`)) THEN ASM_CASES_TAC `i:num < j`] THEN
ASM_REWRITE_TAC[CARD_SING; GSYM ONE; CARD_CLAUSES; real_pow; REAL_MUL_LID; REAL_ARITH `(-- &1) pow 1 = -- &1`] THENL
[COND_CASES_TAC THENL [ALL_TAC; COND_CASES_TAC];
ALL_TAC;
ALL_TAC] THEN
ASM_SIMP_TAC[SYMDIFF; DIFF_EQ_EMPTY; UNION_EMPTY;
SET_RULE `~(i = j) ==> ({i} DIFF {j}) UNION ({j} DIFF {i}) = {i,j}`] THENL
[GEN_REWRITE_TAC (RAND_CONV o ONCE_DEPTH_CONV) [GSYM VECTOR_MUL_LID];
GEN_REWRITE_TAC (RAND_CONV o ONCE_DEPTH_CONV) [GSYM VECTOR_MUL_LID] THEN REWRITE_TAC[VECTOR_MUL_RNEG; GSYM VECTOR_MUL_LNEG];
GEN_REWRITE_TAC (RAND_CONV o ONCE_DEPTH_CONV) [GSYM (ISPEC `(mbasis {}):real^(P,Q,R)geomalg` VECTOR_MUL_LZERO)];
GEN_REWRITE_TAC (RAND_CONV o ONCE_DEPTH_CONV) [GSYM VECTOR_MUL_LID];
GEN_REWRITE_TAC (RAND_CONV o ONCE_DEPTH_CONV) [GSYM VECTOR_MUL_LID] THEN REWRITE_TAC[VECTOR_MUL_RNEG; GSYM VECTOR_MUL_LNEG]] THEN
AP_THM_TAC THEN AP_TERM_TAC THENL
[GEN_REWRITE_TAC (RAND_CONV o ONCE_DEPTH_CONV)[GSYM REAL_MUL_RID];
GEN_REWRITE_TAC (RAND_CONV o ONCE_DEPTH_CONV)[GSYM REAL_MUL_RID];
GEN_REWRITE_TAC (RAND_CONV o ONCE_DEPTH_CONV)[GSYM REAL_MUL_LID];
GEN_REWRITE_TAC (RAND_CONV o ONCE_DEPTH_CONV)[GSYM REAL_MUL_RID];
GEN_REWRITE_TAC (RAND_CONV o ONCE_DEPTH_CONV)[GSYM REAL_MUL_RID] THEN AP_TERM_TAC THEN
GEN_REWRITE_TAC (RAND_CONV o ONCE_DEPTH_CONV)[GSYM REAL_MUL_RID]] THEN
BINOP_TAC THENL
[GEN_REWRITE_TAC (RAND_CONV o ONCE_DEPTH_CONV) [GSYM (REAL_ARITH `(-- &1) pow 0 = &1`)];
REWRITE_TAC[GSYM (REAL_ARITH `&0 pow 0 = &1`)];
GEN_REWRITE_TAC (RAND_CONV o ONCE_DEPTH_CONV) [GSYM (REAL_ARITH `(-- &1) pow 1 = -- &1`)];
REWRITE_TAC[GSYM (REAL_ARITH `&0 pow 0 = &1`)];
GEN_REWRITE_TAC (RAND_CONV o ONCE_DEPTH_CONV) [GSYM (REAL_ARITH `(-- &1) pow 0 = &1`)];
GEN_REWRITE_TAC (RAND_CONV o ONCE_DEPTH_CONV)[GSYM (REAL_ARITH `&0 pow 1 = &0`)];
GEN_REWRITE_TAC (RAND_CONV o ONCE_DEPTH_CONV) [GSYM (REAL_ARITH `(-- &1) pow 0 = &1`)];
REWRITE_TAC[GSYM (REAL_ARITH `&0 pow 0 = &1`)];
GEN_REWRITE_TAC (RAND_CONV o ONCE_DEPTH_CONV) [GSYM (REAL_ARITH `(-- &1) pow 0 = &1`)];
REWRITE_TAC[GSYM (REAL_ARITH `&0 pow 0 = &1`)]] THEN
AP_TERM_TAC THENL
[SIMP_TAC[FINITE_NUMSEG; FINITE_INTER; CARD_EQ_0];
SIMP_TAC[FINITE_NUMSEG; FINITE_INTER; CARD_EQ_0];
GEN_REWRITE_TAC (RAND_CONV o ONCE_DEPTH_CONV) [GSYM (prove(`CARD {j:num} = 1`, REWRITE_TAC[CARD_SING]))] THEN AP_TERM_TAC;
SIMP_TAC[FINITE_NUMSEG; FINITE_INTER; CARD_EQ_0];
SIMP_TAC[FINITE_NUMSEG; FINITE_INTER; CARD_EQ_0];
GEN_REWRITE_TAC (RAND_CONV o ONCE_DEPTH_CONV) [GSYM (prove(`CARD {j:num} = 1`, REWRITE_TAC[CARD_SING]))] THEN AP_TERM_TAC;
SIMP_TAC[FINITE_NUMSEG; FINITE_INTER; CARD_EQ_0];
SIMP_TAC[FINITE_NUMSEG; FINITE_INTER; CARD_EQ_0];
SIMP_TAC[FINITE_NUMSEG; FINITE_INTER; CARD_EQ_0];
SIMP_TAC[FINITE_NUMSEG; FINITE_INTER; CARD_EQ_0]] THEN
REWRITE_TAC[IN_INTER; CARD_SING; IN_NUMSEG; EXTENSION; IN_ELIM_THM; NOT_IN_EMPTY; IN_SING] THEN
ASM_MESON_TAC[NOT_LE; LT_SUC_LE; ADD1; ADD_ASSOC; ARITH_RULE `j:num<=p ==> j< p + q + 1`]);;
let INNER_MVBASIS_SING = prove
(`!i j.
mbasis {i} inner mbasis {j} :real^(P,Q,R)geomalg =
(if i IN 1..pdimindex (:P) + pdimindex (:Q) + pdimindex (:R) /\
j IN 1..pdimindex (:P) + pdimindex (:Q) + pdimindex (:R) /\
i = j
then if i IN 1..pdimindex (:P)
then mbasis {}
else if i IN pdimindex (:P) + 1..pdimindex (:P) + pdimindex (:Q)
then --mbasis {}
else vec 0
else vec 0)`,
REPEAT GEN_TAC THEN REWRITE_TAC[innerga; PRODUCTGA_MVBASIS_SING; IN_NUMSEG] THEN
COND_CASES_TAC THEN ASM_REWRITE_TAC[CONJ_ASSOC; AND_CLAUSES; IN_SING; SET_RULE `~({i} = {})`] THEN
ASM_CASES_TAC `i:num = j` THENL[ALL_TAC; ASM_REWRITE_TAC[SING_SUBSET; IN_SING; VECTOR_MUL_LZERO]] THEN
SUBGOAL_THEN
`{i',j' | (((((1 <= i' /\ i' <= (pdimindex (:P) + pdimindex (:Q) + pdimindex (:R))) /\
1 <= j') /\ j' <= pdimindex (:P) + pdimindex (:Q) + pdimindex (:R)) /\
i' = i) /\ j' = j) /\ i' > j'} = {}` SUBST1_TAC THENL
[REWRITE_TAC[EXTENSION; FORALL_PAIR_THM; IN_ELIM_PAIR_THM] THEN
ASM_REWRITE_TAC[NOT_IN_EMPTY; PAIR_EQ] THEN
MESON_TAC[GT; LT_REFL];
ALL_TAC] THEN
ASM_REWRITE_TAC[SUBSET_REFL; CARD_CLAUSES; real_pow; REAL_MUL_LID] THEN
COND_CASES_TAC THENL [ALL_TAC; COND_CASES_TAC] THEN
ASM_SIMP_TAC[SYMDIFF; DIFF_EQ_EMPTY; UNION_EMPTY] THENL
[GEN_REWRITE_TAC (RAND_CONV o ONCE_DEPTH_CONV) [GSYM VECTOR_MUL_LID];
GEN_REWRITE_TAC (RAND_CONV o ONCE_DEPTH_CONV) [GSYM VECTOR_MUL_LID] THEN REWRITE_TAC[VECTOR_MUL_RNEG; GSYM VECTOR_MUL_LNEG];
GEN_REWRITE_TAC (RAND_CONV o ONCE_DEPTH_CONV) [GSYM (ISPEC `(mbasis {}):real^(P,Q,R)geomalg` VECTOR_MUL_LZERO)]] THEN
AP_THM_TAC THEN AP_TERM_TAC THENL
[GEN_REWRITE_TAC (RAND_CONV o ONCE_DEPTH_CONV)[GSYM REAL_MUL_RID];
GEN_REWRITE_TAC (RAND_CONV o ONCE_DEPTH_CONV)[GSYM REAL_MUL_RID];
GEN_REWRITE_TAC (RAND_CONV o ONCE_DEPTH_CONV)[GSYM REAL_MUL_LID]] THEN
BINOP_TAC THENL
[GEN_REWRITE_TAC (RAND_CONV o ONCE_DEPTH_CONV) [GSYM (REAL_ARITH `(-- &1) pow 0 = &1`)];
REWRITE_TAC[GSYM (REAL_ARITH `&0 pow 0 = &1`)];
GEN_REWRITE_TAC (RAND_CONV o ONCE_DEPTH_CONV) [GSYM (REAL_ARITH `(-- &1) pow 1 = -- &1`)];
REWRITE_TAC[GSYM (REAL_ARITH `&0 pow 0 = &1`)];
GEN_REWRITE_TAC (RAND_CONV o ONCE_DEPTH_CONV) [GSYM (REAL_ARITH `(-- &1) pow 0 = &1`)];
GEN_REWRITE_TAC (RAND_CONV o ONCE_DEPTH_CONV)[GSYM (REAL_ARITH `&0 pow 1 = &0`)]] THEN
AP_TERM_TAC THENL
[SIMP_TAC[FINITE_NUMSEG; FINITE_INTER; CARD_EQ_0];
SIMP_TAC[FINITE_NUMSEG; FINITE_INTER; CARD_EQ_0];
GEN_REWRITE_TAC (RAND_CONV o ONCE_DEPTH_CONV) [GSYM (prove(`CARD {j:num} = 1`, REWRITE_TAC[CARD_SING]))] THEN AP_TERM_TAC;
SIMP_TAC[FINITE_NUMSEG; FINITE_INTER; CARD_EQ_0];
SIMP_TAC[FINITE_NUMSEG; FINITE_INTER; CARD_EQ_0];
GEN_REWRITE_TAC (RAND_CONV o ONCE_DEPTH_CONV) [GSYM (prove(`CARD {j:num} = 1`, REWRITE_TAC[CARD_SING]))] THEN AP_TERM_TAC] THEN
REWRITE_TAC[IN_INTER; CARD_SING; IN_NUMSEG; EXTENSION; IN_ELIM_THM; NOT_IN_EMPTY; IN_SING] THEN
ASM_MESON_TAC[NOT_LE; LT_SUC_LE; ADD1; ADD_ASSOC; ARITH_RULE `j:num<=p ==> j< p + q + 1`]);;
let OUTER_MVBASIS = prove
(`!s t. (mbasis s) outer (mbasis t) :real^(P,Q,R)geomalg =
if s SUBSET 1..(pdimindex(:P) + pdimindex(:Q) + pdimindex(:R)) /\ t SUBSET 1..(pdimindex(:P) + pdimindex(:Q) + pdimindex(:R)) /\
s INTER t = {}
then --(&1) pow CARD {i,j | i IN s /\ j IN t /\ i > j} %
mbasis(s UNION t)
else vec 0`,
REPEAT GEN_TAC THEN REWRITE_TAC[outerga; PRODUCTGA_MVBASIS] THEN
ASM_CASES_TAC `(s:num->bool) INTER t = {}` THEN
ASM_REWRITE_TAC[VECTOR_MUL_LZERO; COND_ID] THEN
COND_CASES_TAC THEN ASM_SIMP_TAC[SYMDIFF; SET_RULE `s INTER t = {} ==> s DIFF t UNION t DIFF s = s UNION t`] THEN
AP_THM_TAC THEN AP_TERM_TAC THEN AP_TERM_TAC THEN AP_TERM_TAC THEN
REWRITE_TAC[EXTENSION; IN_ELIM_PAIR_THM; FORALL_PAIR_THM] THEN
ASM_MESON_TAC[SUBSET]);;
let OUTER_MVBASIS_SING = prove
(`!i j. mbasis{i} outer mbasis{j} :real^(P,Q,R)geomalg =
if i IN 1..(pdimindex(:P) + pdimindex(:Q) + pdimindex(:R)) /\ j IN 1..(pdimindex(:P) + pdimindex(:Q) + pdimindex(:R)) /\ ~(i = j)
then if i < j then mbasis{i,j} else --(mbasis{i,j})
else vec 0`,
REPEAT GEN_TAC THEN REWRITE_TAC[outerga; PRODUCTGA_MVBASIS_SING] THEN
REWRITE_TAC[SET_RULE `{i} INTER {j} = {} <=> ~(i = j)`] THEN
ASM_CASES_TAC `i:num = j` THEN
ASM_REWRITE_TAC[VECTOR_MUL_LZERO; COND_ID] THEN
COND_CASES_TAC THEN ASM_REWRITE_TAC[IN_SING] THEN
SUBGOAL_THEN
`{i',j' | i' IN 1 .. pdimindex(:P) + pdimindex(:Q) + pdimindex(:R) /\
j' IN 1 .. pdimindex(:P) + pdimindex(:Q) + pdimindex(:R) /\
i' = i /\
j' = j /\
i' > j'} =
if i > j then {(i,j)} else {}`
SUBST1_TAC THENL
[REWRITE_TAC[EXTENSION; FORALL_PAIR_THM; IN_ELIM_PAIR_THM; IN_SING] THEN
COND_CASES_TAC THEN ASM_REWRITE_TAC[IN_SING; NOT_IN_EMPTY; PAIR_EQ] THEN
ASM_MESON_TAC[LT_REFL];
ALL_TAC] THEN
ASM_SIMP_TAC[GT; SYMDIFF; SET_RULE `~(i = j) ==> ({i} DIFF {j}) UNION ({j} DIFF {i}) = {i,j}`] THEN
FIRST_ASSUM(SUBST1_TAC o MATCH_MP (ARITH_RULE
`~(i:num = j) ==> (j < i <=> ~(i < j))`)) THEN
ASM_CASES_TAC `i:num < j` THEN ASM_REWRITE_TAC[] THEN
ASM_SIMP_TAC[CARD_CLAUSES; real_pow; VECTOR_MUL_LID; FINITE_RULES;
NOT_IN_EMPTY] THEN
VECTOR_ARITH_TAC);;
let GEOM_OUTER_MVBASIS_EQ = prove
(`!s t. s INTER t = {} ==>
(mbasis s) * (mbasis t) :real^(P,Q,R)geomalg = (mbasis s) outer (mbasis t)`,
REPEAT STRIP_TAC THEN ASM_REWRITE_TAC[GEOM_MVBASIS; OUTER_MVBASIS; INTER_EMPTY; CARD_CLAUSES; real_pow; REAL_MUL_RID] THEN
ASM_SIMP_TAC[SYMDIFF; SET_RULE `s INTER t = {} ==> s DIFF t UNION t DIFF s = s UNION t`]);;
let MVBASIS_OUTER_GEOM = prove
(`!s t. (mbasis s) outer (mbasis t) :real^(P,Q,R)geomalg =
if s INTER t = {} then mbasis s * mbasis t else vec 0`,
REPEAT STRIP_TAC THEN COND_CASES_TAC THEN
ASM_REWRITE_TAC[GEOM_MVBASIS; OUTER_MVBASIS; INTER_EMPTY; CARD_CLAUSES; real_pow; REAL_MUL_RID] THEN
ASM_SIMP_TAC[SYMDIFF; SET_RULE `s INTER t = {} ==> s DIFF t UNION t DIFF s = s UNION t`]);;
let MVBASIS_INNER_GEOM = prove
(`!s t. (mbasis s) inner (mbasis t) :real^(P,Q,R)geomalg =
if ~(s = {}) /\ ~(t = {}) /\ (s SUBSET t \/ t SUBSET s) then mbasis s * mbasis t else vec 0`,
REPEAT STRIP_TAC THEN COND_CASES_TAC THEN
ASM_REWRITE_TAC[GEOM_MVBASIS; INNER_MVBASIS] THEN ASM_MESON_TAC[]);;
let OUTER_GEOM_MVBASIS_LASSOC = prove
(`!s t u.
s INTER u = {} ==>
(mbasis s):real^(P,Q,R)geomalg * (mbasis t outer mbasis u) =
(mbasis s * mbasis t) outer mbasis u`,
REPEAT STRIP_TAC THEN MAP_EVERY ASM_CASES_TAC
[`s SUBSET 1..pdimindex(:P) + pdimindex(:Q) + pdimindex(:R)`;
`t SUBSET 1..pdimindex(:P) + pdimindex(:Q) + pdimindex(:R)`;
`u SUBSET 1..pdimindex(:P) + pdimindex(:Q) + pdimindex(:R)`] THEN
ASM_CASES_TAC `t:num->bool INTER u = {}` THEN
ASM_REWRITE_TAC[OUTER_MVBASIS; GEOM_MVBASIS; OUTERGA_LMUL; GEOMGA_RMUL; UNION_SUBSET] THEN
ASSUME_TAC (prove(`(s INTER u = {} ==> t INTER u = {} ==> (s SYMDIFF t) INTER u = {}) /\
(s INTER u = {} ==> ~(t INTER u = {}) ==> ~((s SYMDIFF t) INTER u = {}))`,
REWRITE_TAC[SYMDIFF] THEN SET_TAC[])) THEN
ASM_SIMP_TAC[SYMDIFF_SUBSET; SET_RULE `t INTER u = {} ==> t UNION u = t DIFF u UNION u DIFF t`;
GSYM SYMDIFF; SYMDIFF_ASSOC; VECTOR_MUL_ASSOC; VECTOR_MUL_RZERO; GEOMGA_RZERO; OUTERGA_LZERO] THEN
AP_THM_TAC THEN AP_TERM_TAC THEN
REWRITE_TAC[REAL_ARITH `(a * c * d) * b = a:real * b * c * d`; REAL_MUL_ASSOC; SYMDIFF] THEN
BINOP_TAC THENL
[BINOP_TAC THENL
[ALL_TAC;
AP_TERM_TAC THEN AP_TERM_TAC THEN ASM SET_TAC[]
];
AP_TERM_TAC THEN AP_TERM_TAC THEN ASM SET_TAC[]] THEN
REWRITE_TAC[GSYM REAL_POW_ADD; REAL_POW_NEG; REAL_POW_ONE] THEN
AP_THM_TAC THEN AP_THM_TAC THEN AP_TERM_TAC THEN
REWRITE_TAC[EVEN_ADD] THEN
W(fun (_,w) -> let tu = funpow 2 lhand w in
let su = vsubst[`s:num->bool`,`t:num->bool`] tu in
let st = vsubst[`t:num->bool`,`u:num->bool`] su in
MATCH_MP_TAC EQ_TRANS THEN
EXISTS_TAC(end_itlist (curry mk_eq) [st; su; tu])) THEN
CONJ_TAC THENL
[MATCH_MP_TAC(TAUT `(x <=> y <=> z) ==> ((a <=> x) <=> (y <=> z <=> a))`);
AP_TERM_TAC THEN CONV_TAC SYM_CONV] THEN
MATCH_MP_TAC SYMDIFF_PARITY_LEMMA THEN CONJ_TAC THENL
[ALL_TAC;
CONJ_TAC THENL
[ALL_TAC;
REWRITE_TAC[EXTENSION; FORALL_PAIR_THM; IN_ELIM_PAIR_THM;
IN_UNION; IN_DIFF] THEN CONV_TAC TAUT];
ALL_TAC;
CONJ_TAC THENL
[ALL_TAC;
REWRITE_TAC[EXTENSION; FORALL_PAIR_THM; IN_ELIM_PAIR_THM;
IN_UNION; IN_DIFF] THEN CONV_TAC TAUT]] THEN
MATCH_MP_TAC FINITE_SUBSET THEN
EXISTS_TAC `{i,j | i IN 1..pdimindex (:P) + pdimindex (:Q) + pdimindex (:R) /\
j IN 1..pdimindex (:P) + pdimindex (:Q) + pdimindex (:R) /\ i > j}` THEN
ASM SET_TAC[FINITE_CART_SUBSET_LEMMA1]);;
let OUTER_GEOM_MVBASIS_RASSOC = prove
(`!s t u.
s INTER u = {} ==>
(mbasis s outer mbasis t) * (mbasis u):real^(P,Q,R)geomalg =
mbasis s outer (mbasis t * mbasis u)`,
REPEAT STRIP_TAC THEN MAP_EVERY ASM_CASES_TAC
[`s SUBSET 1..pdimindex(:P) + pdimindex(:Q) + pdimindex(:R)`;
`t SUBSET 1..pdimindex(:P) + pdimindex(:Q) + pdimindex(:R)`;
`u SUBSET 1..pdimindex(:P) + pdimindex(:Q) + pdimindex(:R)`] THEN
ASM_CASES_TAC `s:num->bool INTER t = {}` THEN
ASM_REWRITE_TAC[OUTER_MVBASIS; GEOM_MVBASIS; OUTERGA_RMUL; GEOMGA_LMUL; UNION_SUBSET] THEN
ASSUME_TAC (prove(`(s INTER u = {} ==> s INTER t = {} ==> s INTER (t SYMDIFF u) = {}) /\
(s INTER u = {} ==> ~(s INTER t = {}) ==> ~(s INTER (t SYMDIFF u) = {}))`,
REWRITE_TAC[SYMDIFF] THEN SET_TAC[])) THEN
ASM_SIMP_TAC[SYMDIFF_SUBSET; SET_RULE `s INTER t = {} ==> s UNION t = s DIFF t UNION t DIFF s`;
GSYM SYMDIFF; SYMDIFF_ASSOC; VECTOR_MUL_ASSOC; VECTOR_MUL_RZERO; GEOMGA_LZERO; OUTERGA_RZERO] THEN
AP_THM_TAC THEN AP_TERM_TAC THEN
REWRITE_TAC[REAL_ARITH `(a * c * d) * b = a:real * b * c * d`; REAL_MUL_ASSOC; SYMDIFF] THEN
BINOP_TAC THENL
[BINOP_TAC THENL
[ALL_TAC;
AP_TERM_TAC THEN AP_TERM_TAC THEN ASM SET_TAC[]
];
AP_TERM_TAC THEN AP_TERM_TAC THEN ASM SET_TAC[]] THEN
REWRITE_TAC[GSYM REAL_POW_ADD; REAL_POW_NEG; REAL_POW_ONE] THEN
AP_THM_TAC THEN AP_THM_TAC THEN AP_TERM_TAC THEN
REWRITE_TAC[EVEN_ADD] THEN
W(fun (_,w) -> let st = funpow 2 lhand w in
let su = vsubst[`u:num->bool`,`t:num->bool`] st in
let tu = vsubst[`t:num->bool`,`s:num->bool`] su in
MATCH_MP_TAC EQ_TRANS THEN
EXISTS_TAC(end_itlist (curry mk_eq) [tu; su; st])) THEN
CONJ_TAC THENL
[MATCH_MP_TAC(TAUT `(x <=> y <=> z) ==> ((a <=> x) <=> (y <=> z <=> a))`);
AP_TERM_TAC THEN CONV_TAC SYM_CONV] THEN
MATCH_MP_TAC SYMDIFF_PARITY_LEMMA THEN CONJ_TAC THENL
[ALL_TAC;
CONJ_TAC THENL
[ALL_TAC;
REWRITE_TAC[EXTENSION; FORALL_PAIR_THM; IN_ELIM_PAIR_THM;
IN_UNION; IN_DIFF] THEN CONV_TAC TAUT];
ALL_TAC;
CONJ_TAC THENL
[ALL_TAC;
REWRITE_TAC[EXTENSION; FORALL_PAIR_THM; IN_ELIM_PAIR_THM;
IN_UNION; IN_DIFF] THEN CONV_TAC TAUT]] THEN
MATCH_MP_TAC FINITE_SUBSET THEN
EXISTS_TAC `{i,j | i IN 1..pdimindex (:P) + pdimindex (:Q) + pdimindex (:R) /\
j IN 1..pdimindex (:P) + pdimindex (:Q) + pdimindex (:R) /\ i > j}` THEN
ASM SET_TAC[FINITE_CART_SUBSET_LEMMA1]);;
(* ------------------------------------------------------------------------- *)
(* Some simple consequences about outer product. *)
(* ------------------------------------------------------------------------- *)
let OUTER_MVBASIS_SKEWSYM = prove
(`!i j. mbasis{i} outer mbasis{j} = --(mbasis{j} outer mbasis{i})`,
REPEAT GEN_TAC THEN REWRITE_TAC[OUTER_MVBASIS_SING] THEN
ASM_CASES_TAC `i:num = j` THEN ASM_REWRITE_TAC[VECTOR_NEG_0] THEN
FIRST_ASSUM(DISJ_CASES_TAC o MATCH_MP (ARITH_RULE
`~(i:num = j) ==> i < j /\ ~(j < i) \/ j < i /\ ~(i < j)`)) THEN
ASM_REWRITE_TAC[CONJ_ACI] THEN COND_CASES_TAC THEN
ASM_REWRITE_TAC[VECTOR_NEG_NEG; VECTOR_NEG_0] THEN
REPEAT AP_TERM_TAC THEN SET_TAC[]);;
let OUTER_MVBASIS_REFL = prove
(`!i. mbasis{i} outer mbasis{i} = vec 0`,
GEN_TAC THEN MATCH_MP_TAC(VECTOR_ARITH
`!x:real^N. x = --x ==> x = vec 0`) THEN
MATCH_ACCEPT_TAC OUTER_MVBASIS_SKEWSYM);;
let OUTER_MVBASIS_LSCALAR = prove
(`!x. mbasis{} outer x = x`,
MATCH_MP_TAC MVBASIS_EXTENSION THEN SIMP_TAC[OUTERGA_RMUL; OUTERGA_RADD] THEN
SIMP_TAC[OUTER_MVBASIS; EMPTY_SUBSET; INTER_EMPTY; UNION_EMPTY] THEN
REWRITE_TAC[SET_RULE `{i,j | i IN {} /\ j IN s /\ i:num > j} = {}`] THEN
REWRITE_TAC[CARD_CLAUSES; real_pow; VECTOR_MUL_LID]);;
let OUTER_MVBASIS_RSCALAR = prove
(`!x. x outer mbasis{} = x`,
MATCH_MP_TAC MVBASIS_EXTENSION THEN SIMP_TAC[OUTERGA_LMUL; OUTERGA_LADD] THEN
SIMP_TAC[OUTER_MVBASIS; EMPTY_SUBSET; INTER_EMPTY; UNION_EMPTY] THEN
REWRITE_TAC[SET_RULE `{i,j | i IN s /\ j IN {} /\ i:num > j} = {}`] THEN
REWRITE_TAC[CARD_CLAUSES; real_pow; VECTOR_MUL_LID]);;
let OUTER_MVBASIS_SING_EQ_0 = prove
(`!i j.
mbasis{i} outer (mbasis{j}:real^(P,Q,R)geomalg) = vec 0
<=> ~(i IN 1..pdimindex(:P) + pdimindex(:Q) + pdimindex(:R)
/\ j IN 1..pdimindex(:P) + pdimindex(:Q) + pdimindex(:R)
/\ ~(i = j))`,
REPEAT GEN_TAC THEN REWRITE_TAC[OUTER_MVBASIS_SING] THEN REPEAT COND_CASES_TAC THEN
REWRITE_TAC[VECTOR_NEG_EQ_0] THEN MATCH_MP_TAC MVBASIS_NONZERO THEN
ASM_REWRITE_TAC[INSERT_SUBSET; EMPTY_SUBSET]);;
let MVBASIS_SPLIT = prove
(`!a s. (!x. x IN s ==> a < x)
==> mbasis (a INSERT s) = mbasis{a} outer mbasis s`,
REPEAT STRIP_TAC THEN REWRITE_TAC[OUTER_MVBASIS] THEN
SUBGOAL_THEN `{a:num} INTER s = {}` SUBST1_TAC THENL
[ASM SET_TAC [LT_REFL]; ALL_TAC] THEN
SIMP_TAC[SET_RULE`{a} SUBSET t /\ s SUBSET t <=> (a INSERT s) SUBSET t`] THEN
COND_CASES_TAC THENL [ALL_TAC; ASM_MESON_TAC[MVBASIS_EQ_0]] THEN
REWRITE_TAC[SET_RULE `{a} UNION s = a INSERT s`] THEN
SUBGOAL_THEN `{(i:num),(j:num) | i IN {a} /\ j IN s /\ i > j} = {}`
(fun th -> SIMP_TAC[th; CARD_CLAUSES; real_pow; VECTOR_MUL_LID]) THEN
REWRITE_TAC[EXTENSION; FORALL_PAIR_THM; IN_ELIM_PAIR_THM; IN_SING;
NOT_IN_EMPTY] THEN
ASM_MESON_TAC[ARITH_RULE `~(n < m /\ n:num > m)`]);;
(* ------------------------------------------------------------------------- *)
(* Some simple consequences about geometric product. *)
(* ------------------------------------------------------------------------- *)
let GEOM_MVBASIS_SKEWSYM = prove
(`!i j. mbasis{i} * mbasis{j} =
if i = j then mbasis{j} * mbasis{i} else --(mbasis{j} * mbasis{i})`,
REPEAT GEN_TAC THEN COND_CASES_TAC THEN ASM_REWRITE_TAC[GEOM_MVBASIS_SING] THEN
FIRST_ASSUM(DISJ_CASES_TAC o MATCH_MP (ARITH_RULE
`~(i:num = j) ==> i < j /\ ~(j < i) \/ j < i /\ ~(i < j)`)) THEN
ASM_REWRITE_TAC[CONJ_ACI] THEN COND_CASES_TAC THEN
ASM_REWRITE_TAC[VECTOR_NEG_NEG; VECTOR_NEG_0] THEN
REPEAT AP_TERM_TAC THEN SET_TAC[]);;
let GEOM_MVBASIS_REFL = prove
(`!i. mbasis{i}:real^(P,Q,R)geomalg * mbasis{i} =
if i IN 1..pdimindex (:P)
then mbasis {}
else if i IN pdimindex (:P) + 1..pdimindex (:P) + pdimindex (:Q)
then --mbasis {}
else vec 0`,
GEN_TAC THEN REWRITE_TAC[GEOM_MVBASIS_SING] THEN
COND_CASES_TAC THEN POP_ASSUM MP_TAC THEN REWRITE_TAC[IN_NUMSEG] THEN ARITH_TAC);;
let GEOM_MVBASIS_LID = prove
(`!x. mbasis{} * x = x`,
MATCH_MP_TAC MVBASIS_EXTENSION THEN SIMP_TAC[GEOMGA_RMUL; GEOMGA_RADD] THEN
SIMP_TAC[GEOM_MVBASIS; SYMDIFF_EMPTY; EMPTY_SUBSET; INTER_EMPTY] THEN
REWRITE_TAC[SET_RULE `{i,j | i IN {} /\ j IN s /\ i:num > j} = {}`] THEN
REWRITE_TAC[CARD_CLAUSES; real_pow; REAL_MUL_LID; VECTOR_MUL_LID]);;
let GEOM_MVBASIS_RID = prove
(`!x. x * mbasis{} = x`,
MATCH_MP_TAC MVBASIS_EXTENSION THEN SIMP_TAC[GEOMGA_LMUL; GEOMGA_LADD] THEN
SIMP_TAC[GEOM_MVBASIS; SYMDIFF_EMPTY; EMPTY_SUBSET; INTER_EMPTY] THEN
REWRITE_TAC[SET_RULE `{i,j | i IN s /\ j IN {} /\ i:num > j} = {}`] THEN
REWRITE_TAC[CARD_CLAUSES; real_pow; REAL_MUL_LID; VECTOR_MUL_LID]);;
let MVBASIS_SPLIT_GEOM = prove
(`!a s. (!x. x IN s ==> a < x)
==> mbasis (a INSERT s) = mbasis{a} * mbasis s`,
REPEAT STRIP_TAC THEN
SUBGOAL_THEN `{a:num} INTER s = {}` ASSUME_TAC THENL
[ASM SET_TAC [LT_REFL]; ALL_TAC] THEN
ASM_SIMP_TAC[MVBASIS_SPLIT; GEOM_OUTER_MVBASIS_EQ]);;
(* ------------------------------------------------------------------------- *)
(* Some simple consequences about inner product. *)
(* ------------------------------------------------------------------------- *)
let INNER_MVBASIS_SKEWSYM = prove
(`!i j. mbasis{i} inner mbasis{j} = mbasis{j} inner mbasis{i}`,
REPEAT GEN_TAC THEN ASM_REWRITE_TAC[INNER_MVBASIS_SING] THEN
ASM_CASES_TAC `i:num = j` THEN
ASM_REWRITE_TAC[]);;
let INNER_MVBASIS_REFL = prove
(`!i. mbasis{i}:real^(P,Q,R)geomalg inner mbasis{i} =
if i IN 1..pdimindex (:P)
then mbasis {}
else if i IN pdimindex (:P) + 1..pdimindex (:P) + pdimindex (:Q)
then --mbasis {}
else vec 0`,
GEN_TAC THEN REWRITE_TAC[INNER_MVBASIS_SING] THEN
COND_CASES_TAC THEN POP_ASSUM MP_TAC THEN REWRITE_TAC[IN_NUMSEG] THEN ARITH_TAC);;
(* ------------------------------------------------------------------------- *)
(* Some simple consequences about vector. *)
(* ------------------------------------------------------------------------- *)
let swappair = new_definition
`swappair p = (SND p, FST p)`;;
let VECTOR_GEOM_EQ_OUTER_ADD_INNER = prove
(`!x y:real^(P,Q,R)trip_fin_sum.
(multivec x) * (multivec y) = (multivec x) outer (multivec y) + (multivec x) inner (multivec y)`,
REWRITE_TAC[multivect] THEN
SIMP_TAC[FINITE_NUMSEG; BILINEAR_INNERGA; BILINEAR_OUTERGA; BILINEAR_GEOMGA ;BILINEAR_VSUM] THEN
SIMP_TAC[FINITE_NUMSEG; FINITE_CROSS; GSYM VSUM_ADD] THEN
REPEAT GEN_TAC THEN MATCH_MP_TAC VSUM_EQ THEN
REWRITE_TAC[FORALL_PAIR_THM; IN_CROSS]THEN REPEAT STRIP_TAC THEN
REWRITE_TAC[GEOMGA_RMUL; GEOMGA_LMUL; OUTERGA_RMUL; OUTERGA_LMUL; INNERGA_RMUL; INNERGA_LMUL] THEN
REWRITE_TAC[VECTOR_MUL_ASSOC; GSYM VECTOR_ADD_LDISTRIB] THEN AP_TERM_TAC THEN
ASM_REWRITE_TAC[GEOM_MVBASIS_SING; OUTER_MVBASIS_SING; INNER_MVBASIS_SING] THEN
COND_CASES_TAC THEN ASM_REWRITE_TAC[VECTOR_ADD_LID; VECTOR_ADD_RID]);;
let VECTOR_OUTERGA_SKEWSYM = prove
( `!x y:real^(P,Q,R)trip_fin_sum. (multivec x) outer (multivec y) = --((multivec y) outer (multivec x))`,
REPEAT STRIP_TAC THEN REWRITE_TAC[multivect] THEN
SIMP_TAC[FINITE_NUMSEG; BILINEAR_OUTERGA; BILINEAR_VSUM] THEN
REWRITE_TAC[CROSS; OUTERGA_LMUL; OUTERGA_RMUL] THEN
GEN_REWRITE_TAC(RAND_CONV o ONCE_DEPTH_CONV)[OUTER_MVBASIS_SKEWSYM] THEN
REWRITE_TAC[VECTOR_MUL_RNEG; LAMBDA_PAIR; VSUM_NEG] THEN
REWRITE_TAC[VECTOR_NEG_NEG; GSYM LAMBDA_PAIR] THEN
GEN_REWRITE_TAC (RAND_CONV o ONCE_DEPTH_CONV)[prove(`!P. (\(x,y). P x y) = (\(x,y). P y x) o swappair`,
REWRITE_TAC[FUN_EQ_THM; o_THM; FORALL_PAIR_THM; swappair])] THEN
REWRITE_TAC[VECTOR_MUL_ASSOC] THEN
GEN_REWRITE_TAC (LAND_CONV o ONCE_DEPTH_CONV)[
prove(`!s. {x,y | x IN s /\ y IN s} = IMAGE swappair {x,y | x IN s /\ y IN s}`,
REWRITE_TAC[EXTENSION; IN_IMAGE; FORALL_PAIR_THM; EXISTS_PAIR_THM; IN_ELIM_PAIR_THM; swappair] THEN MESON_TAC[PAIR_EQ])] THEN
GEN_REWRITE_TAC(RAND_CONV o ONCE_DEPTH_CONV)[REAL_MUL_SYM] THEN
MATCH_MP_TAC VSUM_IMAGE THEN REWRITE_TAC[GSYM IN_CROSS; GSYM SET_PAIR_THM; IN_ELIM_THM; IN_GSPEC] THEN
SIMP_TAC[FINITE_NUMSEG; FINITE_CROSS] THEN REWRITE_TAC[swappair; FORALL_PAIR_THM] THEN
MESON_TAC[PAIR_EQ]);;
let VECTOR_OUTERGA_REFL = prove
(`!x:real^(P,Q,R)trip_fin_sum. (multivec x) outer (multivec x) = vec 0`,
GEN_TAC THEN MATCH_MP_TAC (VECTOR_ARITH `x = --x ==> x = vec 0:real^N`) THEN
MATCH_ACCEPT_TAC VECTOR_OUTERGA_SKEWSYM);;
let VECTOR_INNERGA_REFL = prove
(`!x:real^(P,Q,R)trip_fin_sum.
multivec x inner multivec x =
(sum(1..pdimindex (:P))(\i. x$i * x$i) - sum(1..pdimindex (:Q)) (\i. x$(i+pdimindex (:P)) * x$(i+pdimindex (:P)))) % mbasis {}`,
GEN_TAC THEN
REWRITE_TAC[multivect] THEN SIMP_TAC[FINITE_NUMSEG; BILINEAR_INNERGA; BILINEAR_VSUM] THEN REWRITE_TAC[CROSS] THEN
SIMP_TAC[FINITE_NUMSEG; GSYM VSUM_VSUM_PRODUCT] THEN MATCH_MP_TAC EQ_TRANS THEN
EXISTS_TAC
`vsum(1..pdimindex(:P) + pdimindex(:Q) + pdimindex(:R))
(\i. ((x:real^(P,Q,R)trip_fin_sum)$i * x$i) % (mbasis {i} inner mbasis {i})):real^(P,Q,R)geomalg` THEN CONJ_TAC THENL
[MATCH_MP_TAC VSUM_EQ THEN REWRITE_TAC[INNERGA_RMUL; INNERGA_LMUL; VECTOR_MUL_ASSOC] THEN
REPEAT STRIP_TAC THEN
REWRITE_TAC[INNER_MVBASIS_SING] THEN ONCE_REWRITE_TAC[COND_RAND] THEN GEN_REWRITE_TAC (LAND_CONV o ONCE_DEPTH_CONV)[EQ_SYM_EQ; VECTOR_MUL_RZERO] THEN
ASM_SIMP_TAC[VSUM_DELTA]; ALL_TAC] THEN
REWRITE_TAC[VECTOR_SUB_RDISTRIB; VECTOR_SUB] THEN SIMP_TAC[LE_ADDR; VSUM_ADD_SPLIT] THEN BINOP_TAC THENL
[REWRITE_TAC[GSYM VSUM_RMUL] THEN MATCH_MP_TAC VSUM_EQ THEN MESON_TAC[INNER_MVBASIS_REFL]; ALL_TAC] THEN
GEN_REWRITE_TAC (LAND_CONV o ONCE_DEPTH_CONV)[ADD_SYM] THEN REWRITE_TAC[VSUM_OFFSET] THEN
REWRITE_TAC[GSYM VECTOR_MUL_RNEG; GSYM VSUM_RMUL] THEN MATCH_MP_TAC VSUM_EQ_SUPERSET THEN REWRITE_TAC[FINITE_NUMSEG] THEN CONJ_TAC THENL
[REWRITE_TAC[SUBSET_NUMSEG] THEN ARITH_TAC; ALL_TAC] THEN
REWRITE_TAC[INNER_MVBASIS_REFL; IN_NUMSEG] THEN CONJ_TAC THEN REPEAT STRIP_TAC THEN
ASM_SIMP_TAC[ARITH_RULE `1 <= (i:num) ==> ~(i + n <= n)`] THEN
ASM_MESON_TAC[ADD_SYM; LE_ADD_LCANCEL; VECTOR_MUL_RZERO]);;
let VECTOR_GEOMGA_INNER_REFL_EQ = prove
(`!x:real^(P,Q,R)trip_fin_sum.
multivec x * multivec x = multivec x inner multivec x`,
REWRITE_TAC[VECTOR_GEOM_EQ_OUTER_ADD_INNER; VECTOR_OUTERGA_REFL; VECTOR_ADD_LID]);;
let VECTOR_GEOMGA_REFL = prove
(`!x:real^(P,Q,R)trip_fin_sum.
multivec x * multivec x =
(sum(1..pdimindex (:P))(\i. x$i * x$i) - sum(1..pdimindex (:Q)) (\i. x$(i+pdimindex (:P)) * x$(i+pdimindex (:P)))) % mbasis {}`,
REWRITE_TAC[VECTOR_GEOM_EQ_OUTER_ADD_INNER; VECTOR_OUTERGA_REFL; VECTOR_INNERGA_REFL; VECTOR_ADD_LID]);;
(* ------------------------------------------------------------------------- *)
(* Conversion to split extended basis combinations. *)
(* From Harrision's library. *)
(* Also 1-step merge from left, which can be DEPTH_CONV'd. In this case the *)
(* order must be correct. *)
(* ------------------------------------------------------------------------- *)
let MVBASIS_SPLIT_CONV,MVBASIS_MERGE_CONV =
let setlemma = SET_RULE
`((!x:num. x IN {} ==> a < x) <=> T) /\
((!x:num. x IN (y INSERT s) ==> a < x) <=>
a < y /\ (!x. x IN s ==> a < x))` in
let SET_CHECK_CONV =
GEN_REWRITE_CONV TOP_SWEEP_CONV [setlemma] THENC NUM_REDUCE_CONV
and INST_SPLIT = PART_MATCH (lhs o rand) MVBASIS_SPLIT
and INST_MERGE = PART_MATCH (lhs o rand) (GSYM MVBASIS_SPLIT) in
let rec conv tm =
if length(dest_setenum(rand tm)) <= 1 then REFL tm else
let th = MP_CONV SET_CHECK_CONV (INST_SPLIT tm) in
let th' = RAND_CONV conv (rand(concl th)) in
TRANS th th' in
(fun tm ->
try let op,se = dest_comb tm in
if fst(dest_const op) = "mvbasis" && forall is_numeral (dest_setenum se)
then (RAND_CONV SETENUM_NORM_CONV THENC conv) tm
else fail()
with Failure _ -> failwith "MVBASIS_SPLIT_CONV"),
(fun tm -> try MP_CONV SET_CHECK_CONV (INST_MERGE tm)
with Failure _ -> failwith "MVBASIS_MERGE_CONV");;
MVBASIS_SPLIT_CONV `mbasis {1,2}`;;
(* ------------------------------------------------------------------------- *)
(* Conversion to split extended basis combinations(with geometric product). *)
(* Also 1-step merge from left, which can be DEPTH_CONV'd. In this case the *)
(* order must be correct. *)
(* ------------------------------------------------------------------------- *)
let GEOM_MVBASIS_SPLIT_CONV,GEOM_MVBASIS_MERGE_CONV =
let setlemma = SET_RULE
`((!x:num. x IN {} ==> a < x) <=> T) /\
((!x:num. x IN (y INSERT s) ==> a < x) <=>
a < y /\ (!x. x IN s ==> a < x))` in
let SET_CHECK_CONV =
GEN_REWRITE_CONV TOP_SWEEP_CONV [setlemma] THENC NUM_REDUCE_CONV
and INST_SPLIT = PART_MATCH (lhs o rand) MVBASIS_SPLIT_GEOM
and INST_MERGE = PART_MATCH (lhs o rand) (GSYM MVBASIS_SPLIT_GEOM) in
let rec conv tm =
if length(dest_setenum(rand tm)) <= 1 then REFL tm else
let th = MP_CONV SET_CHECK_CONV (INST_SPLIT tm) in
let th' = RAND_CONV conv (rand(concl th)) in
TRANS th th' in
(fun tm ->
try let op,se = dest_comb tm in
if fst(dest_const op) = "mvbasis" && forall is_numeral (dest_setenum se)
then (RAND_CONV SETENUM_NORM_CONV THENC conv) tm
else fail()
with Failure _ -> failwith "GEOM_MVBASIS_SPLIT_CONV"),
(fun tm -> try MP_CONV SET_CHECK_CONV (INST_MERGE tm)
with Failure _ -> failwith "GEOM_MVBASIS_MERGE_CONV");;
GEOM_MVBASIS_SPLIT_CONV `mbasis {1,2}`;;
(* ------------------------------------------------------------------------------------ *)
(* Convergent (if slow) rewrite set to bubble into position. From Harrision's library. *)
(* ------------------------------------------------------------------------------------ *)
let OUTERGA_ACI = prove
(`(!x y z. (x outer y) outer z = x outer (y outer z)) /\
(!i j. i > j
==> mbasis{i} outer mbasis{j} =
--(&1) % (mbasis{j} outer mbasis{i})) /\
(!i j x. i > j
==> mbasis{i} outer mbasis{j} outer x =
--(&1) % (mbasis{j} outer mbasis{i} outer x)) /\
(!i. mbasis{i} outer mbasis{i} = vec 0) /\
(!i x. mbasis{i} outer mbasis{i} outer x = vec 0) /\
(!x. mbasis{} outer x = x) /\
(!x. x outer mbasis{} = x)`,
REWRITE_TAC[OUTERGA_ASSOC; OUTERGA_LZERO; OUTERGA_RZERO; OUTERGA_LADD;
OUTERGA_RADD; OUTERGA_LMUL; OUTERGA_RMUL; OUTERGA_LZERO; OUTERGA_RZERO] THEN
REWRITE_TAC[OUTER_MVBASIS_REFL; OUTERGA_LZERO] THEN
REWRITE_TAC[OUTER_MVBASIS_LSCALAR; OUTER_MVBASIS_RSCALAR] THEN
SIMP_TAC[GSYM VECTOR_NEG_MINUS1; VECTOR_ARITH `x - y:real^N = x + --y`] THEN
MESON_TAC[OUTER_MVBASIS_SKEWSYM; OUTERGA_LNEG]);;
(* ------------------------------------------------------------------------- *)
(* Geometric product ACI. *)
(* ------------------------------------------------------------------------- *)
let GEOM_ACI = prove
(`(!x y z:real^(P,Q,R)geomalg. (x * y) * z = x * (y * z)) /\
(!i j. i > j
==> mbasis{i}:real^(P,Q,R)geomalg * mbasis{j} =
--(&1) % (mbasis{j} * mbasis{i})) /\
(!i j x:real^(P,Q,R)geomalg. i > j
==> mbasis{i} * mbasis{j} * x =
--(&1) % (mbasis{j} * mbasis{i} * x)) /\
(!i. mbasis{i}:real^(P,Q,R)geomalg * mbasis{i} = (if i IN 1..pdimindex (:P)
then mbasis{}
else if i IN pdimindex (:P) + 1..pdimindex (:P) + pdimindex (:Q)
then --(&1) % mbasis{}
else vec 0)) /\
(!i x:real^(P,Q,R)geomalg. mbasis{i} * mbasis{i} * x = if i IN 1..pdimindex (:P)
then x
else if i IN pdimindex (:P) + 1..pdimindex (:P) + pdimindex (:Q)
then --(&1) % x
else vec 0) /\
(!x:real^(P,Q,R)geomalg. mbasis{} * x = x) /\
(!x:real^(P,Q,R)geomalg. x * mbasis{} = x) /\
(!p x y z:real^(P,Q,R)geomalg. x * (if p then y else z) =
if p then x * y else x * z)`,
REWRITE_TAC[GEOMGA_ASSOC; GEOM_MVBASIS_REFL; GEOM_MVBASIS_LID; GEOM_MVBASIS_RID] THEN
SIMP_TAC[GSYM VECTOR_NEG_MINUS1] THEN
MESON_TAC[ARITH_RULE `i:num > j ==> ~(i = j)`; GEOM_MVBASIS_SKEWSYM;
GEOMGA_LNEG; GEOM_MVBASIS_LID; GEOMGA_LZERO; COND_RAND]);;
(* ------------------------------------------------------------------------- *)
(* Group the final "c1 % mbasis s1 + ... + cn % mbasis sn". *)
(* From Harrision's library. *)
(* ------------------------------------------------------------------------- *)
MBASIS_GROUP_CONV `&2 % mbasis{1,2} + &3 % mbasis{2} + &2 % mbasis{1,3} + --(&3) % mbasis{1}:real^('4,'1,'1)geomalg`;;
(* ------------------------------------------------------------------------- *)
(* Overall conversion. *)
(* ------------------------------------------------------------------------- *)
let OUTERGA_CANON_CONV =
ONCE_DEPTH_CONV MVBASIS_SPLIT_CONV THENC
GEN_REWRITE_CONV TOP_DEPTH_CONV
[VECTOR_SUB; VECTOR_NEG_MINUS1;
OUTERGA_LADD; OUTERGA_RADD; OUTERGA_LMUL; OUTERGA_RMUL; OUTERGA_LZERO; OUTERGA_RZERO;
VECTOR_ADD_LDISTRIB; VECTOR_ADD_RDISTRIB; VECTOR_MUL_ASSOC;
VECTOR_MUL_LZERO; VECTOR_MUL_RZERO] THENC
REAL_RAT_REDUCE_CONV THENC
PURE_SIMP_CONV[OUTERGA_ACI; ARITH_GT; ARITH_GE; OUTERGA_LMUL; OUTERGA_RMUL;
OUTERGA_LZERO; OUTERGA_RZERO] THENC
PURE_REWRITE_CONV[VECTOR_MUL_LZERO; VECTOR_MUL_RZERO;
VECTOR_ADD_LID; VECTOR_ADD_RID; VECTOR_MUL_ASSOC] THENC
GEN_REWRITE_CONV I [GSYM VECTOR_MUL_LID] THENC
PURE_REWRITE_CONV
[VECTOR_ADD_LDISTRIB; VECTOR_ADD_RDISTRIB; VECTOR_MUL_ASSOC] THENC
REAL_RAT_REDUCE_CONV THENC PURE_REWRITE_CONV[GSYM VECTOR_ADD_ASSOC] THENC
DEPTH_CONV MVBASIS_MERGE_CONV THENC
MBASIS_GROUP_CONV THENC
GEN_REWRITE_CONV DEPTH_CONV [GSYM VECTOR_ADD_RDISTRIB] THENC
REAL_RAT_REDUCE_CONV;;
let GEOM_CANON_CONV =
ONCE_DEPTH_CONV GEOM_MVBASIS_SPLIT_CONV THENC
GEN_REWRITE_CONV TOP_DEPTH_CONV
[VECTOR_SUB; VECTOR_NEG_MINUS1;
GEOMGA_LADD; GEOMGA_RADD; GEOMGA_LMUL; GEOMGA_RMUL; GEOMGA_LZERO; GEOMGA_RZERO;
VECTOR_ADD_LDISTRIB; VECTOR_ADD_RDISTRIB; VECTOR_MUL_ASSOC;
VECTOR_MUL_LZERO; VECTOR_MUL_RZERO] THENC
REAL_RAT_REDUCE_CONV THENC
PURE_SIMP_CONV[GEOM_ACI; ARITH_GT; ARITH_GE; GEOMGA_LMUL; GEOMGA_RMUL;
GEOMGA_LZERO; GEOMGA_RZERO] THENC
PURE_REWRITE_CONV[PDIMINDEX_0; PDIMINDEX_1; PDIMINDEX_2; PDIMINDEX_3; PDIMINDEX_4; IN_NUMSEG] THENC
NUM_REDUCE_CONV THENC
PURE_REWRITE_CONV[VECTOR_MUL_LZERO; VECTOR_MUL_RZERO;
VECTOR_ADD_LID; VECTOR_ADD_RID; VECTOR_MUL_ASSOC] THENC
GEN_REWRITE_CONV I [GSYM VECTOR_MUL_LID] THENC
PURE_REWRITE_CONV
[VECTOR_ADD_LDISTRIB; VECTOR_ADD_RDISTRIB; VECTOR_MUL_ASSOC] THENC
REAL_RAT_REDUCE_CONV THENC PURE_REWRITE_CONV[GSYM VECTOR_ADD_ASSOC] THENC
DEPTH_CONV GEOM_MVBASIS_MERGE_CONV THENC
MBASIS_GROUP_CONV THENC
GEN_REWRITE_CONV DEPTH_CONV [GSYM VECTOR_ADD_RDISTRIB] THENC
REAL_RAT_REDUCE_CONV THENC
PURE_REWRITE_CONV[VECTOR_MUL_LZERO; VECTOR_ADD_LID; VECTOR_ADD_RID];;
GEOM_CANON_CONV `(mbasis{2,3}:real^('3,'0,'1)geomalg) * mbasis{1,2,3,4}`;;
let GA_GEOM_CONV =
PURE_REWRITE_CONV[MVBASIS_OUTER_GEOM; MVBASIS_INNER_GEOM] THENC
SIMP_CONV[EXTENSION; IN_INTER; IN_INSERT; SUBSET; NOT_IN_EMPTY;
NOT_FORALL_THM; GSYM NOT_EXISTS_THM; EXISTS_REFL;
ARITH_RULE `!a b x:num. ~(a=b) ==> ~(x=a /\ x=b)`;
EXISTS_OR_THM; ARITH_EQ];;
GA_GEOM_CONV `mbasis{1} *(mbasis{1} inner mbasis{1,3} +
mbasis{1} outer mbasis{2}:real^('4,'1,'1)geomalg)`;;
(GA_GEOM_CONV THENC GEOM_CANON_CONV)
`mbasis{1} *(mbasis{1} inner mbasis{1,3} +
mbasis{1} outer mbasis{2}:real^('4,'1,'1)geomalg)`;;
let GEOM_ARITH tm =
let l,r = dest_eq tm in
let th,th' = GEOM_CANON_CONV l, GEOM_CANON_CONV r in
TRANS th (SYM th');;
let OUTERGA_VECTOR_CONV =
REWRITE_CONV[REWRITE_RULE[LINEAR_MULTIVECT](ISPEC `multivec:real^(P,Q,R)trip_fin_sum->real^(P,Q,R)geomalg` linear);
MULTIVECT_BASIS; VECTOR_SUB; VECTOR_NEG_MINUS1] THENC OUTERGA_CANON_CONV;;
OUTERGA_VECTOR_CONV
`(multivec (basis 1 + basis 2)) outer (multivec (basis 2 + basis 3)) outer (multivec (basis 1 - (basis 3)))`;;
OUTERGA_VECTOR_CONV
`(multivec (basis 1 + basis 2)) outer (multivec (basis 2 + basis 3)) outer (multivec (basis 1 + (basis 3)))`;;
(* ------------------------------------------------------------------------- *)
(* Invertibility of geomalgs. *)
(* ------------------------------------------------------------------------- *)
let mvinvertible = new_definition
`mvinvertible (x:real^(P,Q,R)geomalg) <=> (?x'. x' * x = mbasis {} /\ x * x' = mbasis {})`;;
let mvinverse = new_definition
`mvinverse (x:real^(P,Q,R)geomalg) = (@x'. x' * x = mbasis {} /\ x * x' = mbasis {})`;;
let MVINVERTIBLE_MVINVERSE = prove
(`!x:real^(P,Q,R)geomalg.
mvinvertible x <=> mvinverse x * x = mbasis {} /\ x * mvinverse x = mbasis {}`,
MESON_TAC[mvinvertible; mvinverse]);;
let MV_LEFT_RIGHT_INVERSE = prove
(`!x y:real^(P,Q,R)geomalg. x * y = mbasis {} <=> y * x = mbasis {}`,
SUBGOAL_THEN
`!x y:real^(P,Q,R)geomalg. (x * y = mbasis {}) ==> (y * x = mbasis {})`
(fun th -> MESON_TAC[th]) THEN
REPEAT STRIP_TAC THEN
MP_TAC(ISPEC `\z:real^(P,Q,R)geomalg. x:(real^(P,Q,R)geomalg) * z`
LINEAR_SURJECTIVE_ISOMORPHISM) THEN
REWRITE_TAC[REWRITE_RULE[bilinear] BILINEAR_GEOMGA] THEN ANTS_TAC THENL
[X_GEN_TAC `z:real^(P,Q,R)geomalg` THEN
EXISTS_TAC `(y:real^(P,Q,R)geomalg) * (z:real^(P,Q,R)geomalg)` THEN
ASM_REWRITE_TAC[GEOMGA_ASSOC; GEOM_MVBASIS_LID]; ALL_TAC] THEN
DISCH_THEN(X_CHOOSE_THEN `f':real^(P,Q,R)geomalg->real^(P,Q,R)geomalg` STRIP_ASSUME_TAC) THEN
SUBGOAL_THEN `(f':real^(P,Q,R)geomalg->real^(P,Q,R)geomalg) (x:real^(P,Q,R)geomalg) = mbasis {}`
MP_TAC THENL
[GEN_REWRITE_TAC (LAND_CONV o RAND_CONV o ONCE_DEPTH_CONV)[GSYM GEOM_MVBASIS_RID] THEN
ASM_REWRITE_TAC[]; ALL_TAC] THEN
GEN_REWRITE_TAC (LAND_CONV o LAND_CONV o RAND_CONV o ONCE_DEPTH_CONV)[GSYM GEOM_MVBASIS_LID] THEN
ASSUM_LIST(fun thl -> REWRITE_TAC(map GSYM thl)) THEN
ASM_REWRITE_TAC[GSYM GEOMGA_ASSOC]);;
let MVINVERTIBLE_LEFT_INVERSE = prove
(`mvinvertible (x:real^(P,Q,R)geomalg) <=> (?x'. x' * x = mbasis {})`,
MESON_TAC[mvinvertible; MV_LEFT_RIGHT_INVERSE]);;
let MVINVERTIBLE_RIGHT_INVERSE = prove
(`mvinvertible (x:real^(P,Q,R)geomalg) <=> (?x'. x * x' = mbasis {})`,
MESON_TAC[mvinvertible; MV_LEFT_RIGHT_INVERSE]);;
let is_null = new_definition
`is_null (x:real^(P,Q,R)geomalg) <=> x inner x = vec 0`;;
let MVINVERTIBLE_VECTOR_EQ = prove
(`!x:real^(P, Q, R)trip_fin_sum. ~(is_null(multivec x)) <=> mvinvertible (multivec x)`,
GEN_TAC THEN REWRITE_TAC[is_null; MVINVERTIBLE_LEFT_INVERSE; GSYM VECTOR_GEOMGA_INNER_REFL_EQ] THEN EQ_TAC THENL
[DISCH_TAC THEN EXISTS_TAC
`inv(sum (1..pdimindex (:P)) (\i. x$i * x$i) -
sum (1..pdimindex (:Q))
(\i. x$(i + pdimindex (:P)) * x$(i + pdimindex (:P)))) % multivec (x:real^(P, Q, R)trip_fin_sum)` THEN
POP_ASSUM MP_TAC THEN REWRITE_TAC[GEOMGA_LMUL] THEN REWRITE_TAC[VECTOR_GEOMGA_REFL] THEN
REWRITE_TAC[VECTOR_MUL_EQ_0; MVBASIS_EQ_0; EMPTY_SUBSET; VECTOR_MUL_ASSOC] THEN SIMP_TAC[REAL_MUL_LINV; VECTOR_MUL_LID]; ALL_TAC] THEN
DISCH_THEN(X_CHOOSE_TAC `x':real^(P,Q,R)geomalg`) THEN
DISCH_THEN(MP_TAC o AP_TERM `\y:real^(P,Q,R)geomalg. (x':real^(P,Q,R)geomalg) * x' * y`) THEN
ASM_REWRITE_TAC[GEOM_ARITH `a * b * c * d = a * (b * c) * d:real^(P,Q,R)geomalg`; GEOM_MVBASIS_LID; GEOMGA_RZERO] THEN
REWRITE_TAC[MVBASIS_EQ_0; EMPTY_SUBSET]);;
let MVINVERTIBLE_GEOM = prove
(`!a b:real^(P,Q,R)geomalg. mvinvertible a /\ mvinvertible b==> mvinvertible (a * b)`,
REWRITE_TAC[MVINVERTIBLE_LEFT_INVERSE] THEN REPEAT GEN_TAC THEN
REWRITE_TAC[GSYM RIGHT_EXISTS_AND_THM; GSYM LEFT_EXISTS_AND_THM] THEN
DISCH_THEN(X_CHOOSE_THEN `a':real^(P,Q,R)geomalg` MP_TAC) THEN
DISCH_THEN(X_CHOOSE_THEN `b':real^(P,Q,R)geomalg` MP_TAC) THEN
STRIP_TAC THEN EXISTS_TAC `b' * (a':real^(P,Q,R)geomalg)` THEN
REWRITE_TAC[GSYM GEOMGA_ASSOC] THEN
GEN_REWRITE_TAC (LAND_CONV o RAND_CONV o ONCE_DEPTH_CONV)[GEOMGA_ASSOC] THEN
ASM_REWRITE_TAC[GEOM_MVBASIS_LID]);;
let MVINVERTIBLE_LMUL_EQ= prove
(`!a b x:real^(P,Q,R)geomalg. mvinvertible x ==> (a = b <=> (x * a = x * b))`,
REWRITE_TAC[MVINVERTIBLE_MVINVERSE] THEN REPEAT STRIP_TAC THEN
ASM_MESON_TAC[GEOMGA_ASSOC; GEOM_MVBASIS_LID]);;
let MVINVERTIBLE_EQ_LMUL = prove
(`!a b x:real^(P,Q,R)geomalg. mvinvertible x /\ x * a = x * b ==> a = b`,
MESON_TAC[MVINVERTIBLE_LMUL_EQ]);;
let MVINVERSE_GEOM = prove
(`!a b:real^(P,Q,R)geomalg. mvinvertible a /\ mvinvertible b ==> mvinverse b * mvinverse a = mvinverse (a * b)`,
REPEAT STRIP_TAC THEN
ASSUME_TAC(SPECL [`a:real^(P,Q,R)geomalg`; `b:real^(P,Q,R)geomalg`]MVINVERTIBLE_GEOM) THEN
POP_ASSUM MP_TAC THEN ASM_REWRITE_TAC[] THEN STRIP_TAC THEN
MATCH_MP_TAC MVINVERTIBLE_EQ_LMUL THEN
EXISTS_TAC `a * b:real^(P,Q,R)geomalg` THEN
ASM_REWRITE_TAC[] THEN
GEN_REWRITE_TAC(LAND_CONV o ONCE_DEPTH_CONV)[GSYM GEOMGA_ASSOC] THEN
GEN_REWRITE_TAC(LAND_CONV o RAND_CONV o ONCE_DEPTH_CONV)[GEOMGA_ASSOC] THEN
POP_ASSUM MP_TAC THEN REWRITE_TAC[MVINVERTIBLE_MVINVERSE] THEN
STRIP_TAC THEN ASSUME_TAC(SPEC `b:real^(P,Q,R)geomalg` MVINVERTIBLE_MVINVERSE) THEN
POP_ASSUM MP_TAC THEN ASM_REWRITE_TAC[] THEN
ASSUME_TAC(SPEC `a:real^(P,Q,R)geomalg` MVINVERTIBLE_MVINVERSE) THEN
POP_ASSUM MP_TAC THEN ASM_REWRITE_TAC[] THEN
REPEAT STRIP_TAC THEN ASM_REWRITE_TAC[GEOM_MVBASIS_LID]);;
(* ------------------------------------------------------------------------- *)
(* Outermorphism extension. *)
(* ------------------------------------------------------------------------- *)
make_overloadable "outermorphism" `:(real^M->real^N)->real^A->real^B`;;
overload_interface ("outermorphism",`outergamorphism:(real^(P,Q,R)trip_fin_sum->real^(S,T,U)trip_fin_sum)->real^(P,Q,R)geomalg->real^(S,T,U)geomalg`);;
let outergamorphism = new_definition
`outermorphism(f:real^(P,Q,R)trip_fin_sum->real^(S,T,U)trip_fin_sum) (x:real^(P,Q,R)geomalg) =
vsum {s | s SUBSET 1..pdimindex(:P) + pdimindex(:Q) + pdimindex(:R)}
(\s. x$$s % seqiterate(outer) s (multivec o f o basis))`;;
let NEUTRAL_OUTERGA = prove
(`neutral(outer) = mbasis{}`,
REWRITE_TAC[neutral] THEN MATCH_MP_TAC SELECT_UNIQUE THEN
MESON_TAC[OUTER_MVBASIS_LSCALAR; OUTER_MVBASIS_RSCALAR]);;
let NEUTRAL_GEOMGA = prove
(`neutral( * ) = mbasis{}`,
REWRITE_TAC[neutral] THEN MATCH_MP_TAC SELECT_UNIQUE THEN
MESON_TAC[GEOM_MVBASIS_LID; GEOM_MVBASIS_RID]);;
let OUTERMORPHISM_MVBASIS = prove
(`!f:real^(P,Q,R)trip_fin_sum->real^(S,T,U)trip_fin_sum s t.
s SUBSET 1..(pdimindex(:P) + pdimindex(:Q) + pdimindex(:R))
==> outermorphism f (mbasis s) =
seqiterate(outer) s (multivec o f o basis)`,
REWRITE_TAC[outergamorphism] THEN SIMP_TAC[MVBASIS_COMPONENT] THEN
ONCE_REWRITE_TAC[COND_RAND] THEN ONCE_REWRITE_TAC[COND_RATOR] THEN
SIMP_TAC[VECTOR_MUL_LZERO; VSUM_DELTA; IN_ELIM_THM; VECTOR_MUL_LID]);;
let OUTERMORPHISM_MVBASIS_EMPTY = prove
(`!f. outermorphism f (mbasis {}) = mbasis {}`,
SIMP_TAC[OUTERMORPHISM_MVBASIS; EMPTY_SUBSET; SEQITERATE_CLAUSES] THEN
REWRITE_TAC[NEUTRAL_OUTERGA]);;
(* ------------------------------------------------------------------------- *)
(* Properties about SEQITERATE. *)
(* ------------------------------------------------------------------------- *)
let SEQITERATE_NUMSEG_IMAGE = prove
(`!n op m p f:num->real^(P,Q,R)geomalg.
seqiterate op (IMAGE (\i. i + p) (m..n)) f = seqiterate op (m..n) (f o (\i. i + p))`,
INDUCT_TAC THENL
[REPEAT GEN_TAC THEN ASM_CASES_TAC `m = 0:num` THENL
[ALL_TAC;
POP_ASSUM MP_TAC THEN
REWRITE_TAC[REWRITE_RULE[LT_NZ](GSYM (SPECL [`m:num`; `0:num`] NUMSEG_EMPTY))] THEN
DISCH_THEN(SUBST1_TAC)] THEN ASM_REWRITE_TAC[NUMSEG_SING; IMAGE_CLAUSES; SEQITERATE_CLAUSES; o_THM]; ALL_TAC] THEN
REPEAT GEN_TAC THEN ASM_CASES_TAC `m:num <= SUC n` THENL
[ASM_SIMP_TAC[GSYM NUMSEG_LREC; IMAGE_CLAUSES; o_THM] THEN
POP_ASSUM MP_TAC THEN REWRITE_TAC[LE_LT] THEN STRIP_TAC THENL
[MP_TAC
(ISPECL [`op:real^(P,Q,R)geomalg->real^(P,Q,R)geomalg->real^(P,Q,R)geomalg`;
`f:num->real^(P,Q,R)geomalg`; `m + p:num`; `(IMAGE (\i. i + p) (m + 1..SUC n)):num->bool`]
(last(CONJUNCTS SEQITERATE_CLAUSES))) THEN
MP_TAC
(ISPECL [`op:real^(P,Q,R)geomalg->real^(P,Q,R)geomalg->real^(P,Q,R)geomalg`;
`(f o (\i. i + p)):num->real^(P,Q,R)geomalg`; `m:num`; `(m + 1..SUC n):num->bool`]
(last(CONJUNCTS SEQITERATE_CLAUSES))) THEN
SIMP_TAC[FINITE_NUMSEG; FINITE_IMAGE; IMAGE_EQ_EMPTY; EXTENSION; IN_NUMSEG; NOT_IN_EMPTY; IN_IMAGE] THEN
REPEAT
(ANTS_TAC THENL
[CONJ_TAC THENL[REWRITE_TAC[NOT_FORALL_THM] THEN EXISTS_TAC `SUC n:num`; ALL_TAC] THEN ASM_ARITH_TAC; ALL_TAC] THEN
DISCH_THEN(SUBST1_TAC)) THEN
REWRITE_TAC[o_THM] THEN AP_TERM_TAC THEN
ASM_REWRITE_TAC[ADD1; NUMSEG_OFFSET_IMAGE; GSYM IMAGE_o; o_DEF; GSYM ADD_ASSOC]; ALL_TAC] THEN
ASM_REWRITE_TAC[REWRITE_RULE[ARITH_RULE `n < n + 1`](GSYM (SPECL [`n + 1:num`; `n:num`] NUMSEG_EMPTY))] THEN
REWRITE_TAC[IMAGE_CLAUSES; SEQITERATE_CLAUSES; o_THM]; ALL_TAC] THEN
POP_ASSUM MP_TAC THEN REWRITE_TAC[REWRITE_RULE[GSYM NOT_LE](GSYM (SPECL [`m:num`; `SUC n:num`] NUMSEG_EMPTY))] THEN
DISCH_THEN(SUBST1_TAC) THEN REWRITE_TAC[IMAGE_CLAUSES; SEQITERATE_CLAUSES; o_THM]);;
let SEQITERATE_NUMSEG_SUC = prove
(`!n m op f:num->real^(P,Q,R)geomalg.
(!x y z. op (op x y) z = op x (op y z) /\ op (neutral op) x = x) ==>
m <= SUC n ==>
seqiterate op (m..SUC n) f = op (seqiterate op (m..n) f) (f (SUC n))`,
INDUCT_TAC THEN SIMP_TAC[GSYM NUMSEG_LREC] THEN REPEAT GEN_TAC THEN DISCH_TAC THEN
REWRITE_TAC[LE_LT] THEN REWRITE_TAC[LT_SUC_LE] THEN STRIP_TAC THENL
[FIRST_ASSUM(fun th ->REWRITE_TAC[REWRITE_RULE[LE]th]) THEN
REWRITE_TAC[ARITH; NUMSEG_SING] THEN REWRITE_TAC[SEQITERATE_CLAUSES] THEN
GEN_REWRITE_TAC(RAND_CONV o RAND_CONV o ONCE_DEPTH_CONV)[GSYM SEQITERATE_CLAUSES] THEN
MATCH_MP_TAC (last(CONJUNCTS SEQITERATE_CLAUSES)) THEN
REWRITE_TAC[FINITE_SING; EXTENSION; IN_SING; NOT_IN_EMPTY] THEN
MESON_TAC[ARITH_RULE `0 < 1`];
ASM_REWRITE_TAC[GSYM ONE] THEN
GEN_REWRITE_TAC(RAND_CONV o LAND_CONV o DEPTH_CONV)[ONE; ADD1] THEN
REWRITE_TAC[REWRITE_RULE[ARITH_RULE `n < n + 1`](GSYM (SPECL [`n + 1:num`; `n:num`]NUMSEG_EMPTY))] THEN
ASM_REWRITE_TAC[SEQITERATE_CLAUSES];
MP_TAC
(ISPECL [`op:real^(P,Q,R)geomalg->real^(P,Q,R)geomalg->real^(P,Q,R)geomalg`;
`f:num->real^(P,Q,R)geomalg`; `m:num`; `(m + 1..SUC (SUC n)):num->bool`]
(last(CONJUNCTS SEQITERATE_CLAUSES))) THEN
POP_ASSUM MP_TAC THEN SIMP_TAC[GSYM NUMSEG_LREC] THEN REWRITE_TAC[LE_LT] THEN STRIP_TAC THENL
[MP_TAC
(ISPECL [`op:real^(P,Q,R)geomalg->real^(P,Q,R)geomalg->real^(P,Q,R)geomalg`;
`f:num->real^(P,Q,R)geomalg`; `m:num`; `(m + 1..SUC n):num->bool`]
(last(CONJUNCTS SEQITERATE_CLAUSES))) THEN
REWRITE_TAC[FINITE_NUMSEG; EXTENSION; IN_NUMSEG; NOT_IN_EMPTY] THEN
REPEAT
(ANTS_TAC THENL
[CONJ_TAC THENL[REWRITE_TAC[NOT_FORALL_THM] THEN EXISTS_TAC `SUC n:num`; ALL_TAC] THEN ASM_ARITH_TAC; ALL_TAC] THEN
DISCH_THEN(SUBST1_TAC)) THEN
ASM_REWRITE_TAC[] THEN AP_TERM_TAC THEN ONCE_REWRITE_TAC[ADD1] THEN
REWRITE_TAC[NUMSEG_OFFSET_IMAGE; SEQITERATE_NUMSEG_IMAGE] THEN
POP_ASSUM MP_TAC THEN ASM_SIMP_TAC[LT_IMP_LE; o_THM]; ALL_TAC] THEN
REWRITE_TAC[FINITE_NUMSEG; EXTENSION; IN_NUMSEG; NOT_IN_EMPTY] THEN
ANTS_TAC THENL
[CONJ_TAC THENL[REWRITE_TAC[NOT_FORALL_THM] THEN EXISTS_TAC `SUC (SUC n):num`; ALL_TAC] THEN ASM_ARITH_TAC; ALL_TAC] THEN
DISCH_THEN(SUBST1_TAC) THEN
ASM_REWRITE_TAC[REWRITE_RULE[ARITH_RULE `n < n + 1`](GSYM (SPECL [`n + 1:num`; `n:num`]NUMSEG_EMPTY))] THEN
REWRITE_TAC[ADD1; NUMSEG_SING; SEQITERATE_CLAUSES; o_THM];
ASM_REWRITE_TAC[ADD1; REWRITE_RULE[ARITH_RULE `n < n + 1`](GSYM (SPECL [`n + 1:num`; `n:num`]NUMSEG_EMPTY))] THEN
ASM_REWRITE_TAC[SEQITERATE_CLAUSES]]);;
let SEQITERATE_OUTERGA_LREC = prove
(`!n m f:num->real^(P,Q,R)geomalg.
m <= n ==>
seqiterate (outer) (m..n) f = (f m) outer (seqiterate (outer) (m + 1..n) f)`,
REPEAT STRIP_TAC THEN ASM_SIMP_TAC[GSYM NUMSEG_LREC] THEN
POP_ASSUM MP_TAC THEN REWRITE_TAC[LE_LT] THEN STRIP_TAC THENL
[MP_TAC
(ISPECL [`outerga:real^(P,Q,R)geomalg->real^(P,Q,R)geomalg->real^(P,Q,R)geomalg`;
`f:num->real^(P,Q,R)geomalg`; `m:num`; `(m + 1..n):num->bool`]
(last(CONJUNCTS SEQITERATE_CLAUSES))) THEN
REWRITE_TAC[FINITE_NUMSEG; EXTENSION; IN_NUMSEG; NOT_IN_EMPTY] THEN
ANTS_TAC THENL
[CONJ_TAC THENL[REWRITE_TAC[NOT_FORALL_THM] THEN EXISTS_TAC `n:num`; ALL_TAC] THEN ASM_ARITH_TAC; ALL_TAC] THEN
DISCH_THEN(fun th ->REWRITE_TAC[th]); ALL_TAC] THEN
ASM_REWRITE_TAC[REWRITE_RULE[ARITH_RULE `n < n + 1`](GSYM (SPECL [`n + 1:num`; `n:num`]NUMSEG_EMPTY))] THEN
REWRITE_TAC[SEQITERATE_CLAUSES; NEUTRAL_OUTERGA; OUTER_MVBASIS_RSCALAR]);;
let SEQITERATE_OUTERGA_RREC =
GENL[`n:num`; `m:num`]
(REWRITE_RULE[OUTERGA_ASSOC; NEUTRAL_OUTERGA; OUTER_MVBASIS_LSCALAR]
(ISPECL[`n:num`; `m:num`; `outerga:real^(P,Q,R)geomalg->real^(P,Q,R)geomalg->real^(P,Q,R)geomalg`]
SEQITERATE_NUMSEG_SUC));;
let SEQITERATE_GEOMGA_LREC = prove
(`!n m f:num->real^(P,Q,R)geomalg.
m <= n ==>
seqiterate ( * ) (m..n) f = (f m) * (seqiterate ( * ) (m + 1..n) f)`,
REPEAT STRIP_TAC THEN ASM_SIMP_TAC[GSYM NUMSEG_LREC] THEN
POP_ASSUM MP_TAC THEN REWRITE_TAC[LE_LT] THEN STRIP_TAC THENL
[MP_TAC
(ISPECL [`geomga_mul:real^(P,Q,R)geomalg->real^(P,Q,R)geomalg->real^(P,Q,R)geomalg`;
`f:num->real^(P,Q,R)geomalg`; `m:num`; `(m + 1..n):num->bool`]
(last(CONJUNCTS SEQITERATE_CLAUSES))) THEN
REWRITE_TAC[FINITE_NUMSEG; EXTENSION; IN_NUMSEG; NOT_IN_EMPTY] THEN
ANTS_TAC THENL
[CONJ_TAC THENL[REWRITE_TAC[NOT_FORALL_THM] THEN EXISTS_TAC `n:num`; ALL_TAC] THEN ASM_ARITH_TAC; ALL_TAC] THEN
DISCH_THEN(fun th ->REWRITE_TAC[th]); ALL_TAC] THEN
ASM_REWRITE_TAC[REWRITE_RULE[ARITH_RULE `n < n + 1`](GSYM (SPECL [`n + 1:num`; `n:num`]NUMSEG_EMPTY))] THEN
REWRITE_TAC[SEQITERATE_CLAUSES; NEUTRAL_GEOMGA; GEOM_MVBASIS_RID]);;
let SEQITERATE_GEOMGA_RREC =
GENL[`n:num`; `m:num`]
(REWRITE_RULE[GEOMGA_ASSOC; NEUTRAL_GEOMGA; GEOM_MVBASIS_LID]
(ISPECL[`n:num`; `m:num`; `geomga_mul:real^(P,Q,R)geomalg->real^(P,Q,R)geomalg->real^(P,Q,R)geomalg`] SEQITERATE_NUMSEG_SUC));;
let OUTER_SEQITERATE_SYM = prove
(`!n m x:real^(P, Q, R)trip_fin_sum f.
m <= n ==>
(multivec x) outer seqiterate (outer) (m..n) (multivec o f) =
(--(&1)) pow (n - m + 1) % (seqiterate (outer) (m..n) (multivec o f) outer (multivec x))`,
INDUCT_TAC THEN REWRITE_TAC[LE] THEN REPEAT STRIP_TAC THEN
ASM_SIMP_TAC[NUMSEG_SING; SEQITERATE_CLAUSES; ARITH; o_THM; ARITH_RULE `m <= n ==> m <= SUC n`; SEQITERATE_OUTERGA_RREC] THEN
ASM_SIMP_TAC[OUTERGA_ASSOC] THEN REWRITE_TAC[OUTERGA_LMUL; GSYM OUTERGA_ASSOC] THEN
GEN_REWRITE_TAC(LAND_CONV o ONCE_DEPTH_CONV)[VECTOR_OUTERGA_SKEWSYM] THEN
REWRITE_TAC[VECTOR_NEG_MINUS1; VECTOR_MUL_ASSOC; OUTERGA_RNEG; VECTOR_MUL_RNEG; GSYM VECTOR_MUL_LNEG] THEN
AP_THM_TAC THEN AP_TERM_TAC THEN
ASM_SIMP_TAC[ARITH_RULE `m <= n ==> SUC n - m + 1 = SUC (n - m + 1)`] THEN
REWRITE_TAC[SUB_REFL; ARITH; real_pow] THEN REAL_ARITH_TAC);;
let SEQITERATE_SPLIT_NUMSEG_OUTERGA = prove
(`!i m n f:num->real^(P,Q,R)geomalg.
m <= i /\ i <= n
==> seqiterate (outer) (m..n) f =
seqiterate (outer) (m..i) f outer
seqiterate (outer) (i + 1..n) f`,
INDUCT_TAC THEN REWRITE_TAC[LE] THEN REPEAT STRIP_TAC THENL
[ASM_REWRITE_TAC[NUMSEG_SING; SEQITERATE_CLAUSES];
ASM_REWRITE_TAC[NUMSEG_SING; SEQITERATE_CLAUSES];
SUBGOAL_THEN `m <= i /\ i <= n:num` ASSUME_TAC THENL
[ASM_ARITH_TAC; ALL_TAC] THEN
ASM_SIMP_TAC[ARITH_RULE `m <= i ==> m <= SUC i`; SEQITERATE_OUTERGA_RREC] THEN
REWRITE_TAC[GSYM OUTERGA_ASSOC] THEN
AP_TERM_TAC THEN GEN_REWRITE_TAC (LAND_CONV o DEPTH_CONV)[GSYM ADD1]] THEN
MATCH_MP_TAC SEQITERATE_OUTERGA_LREC THEN
ASM_REWRITE_TAC[]);;
let SEQITERATE_SPLIT_NUMSEG_GEOMGA = prove
(`!i m n f:num->real^(P,Q,R)geomalg.
m <= i /\ i <= n
==> seqiterate ( * ) (m..n) f =
seqiterate ( * ) (m..i) f *
seqiterate ( * ) (i + 1..n) f`,
INDUCT_TAC THEN REWRITE_TAC[LE] THEN REPEAT STRIP_TAC THENL
[ASM_REWRITE_TAC[NUMSEG_SING; SEQITERATE_CLAUSES];
ASM_REWRITE_TAC[NUMSEG_SING; SEQITERATE_CLAUSES];
SUBGOAL_THEN `m <= i /\ i <= n:num` ASSUME_TAC THENL
[ASM_ARITH_TAC; ALL_TAC] THEN
ASM_SIMP_TAC[ARITH_RULE `m <= i ==> m <= SUC i`; SEQITERATE_GEOMGA_RREC] THEN
REWRITE_TAC[GSYM GEOMGA_ASSOC] THEN
AP_TERM_TAC THEN GEN_REWRITE_TAC (LAND_CONV o DEPTH_CONV)[GSYM ADD1]] THEN
MATCH_MP_TAC SEQITERATE_GEOMGA_LREC THEN
ASM_REWRITE_TAC[]);;
let SEQITERATE_OUTERGA_SPLIT3 = prove
(`!i j m n f:num->real^(P,Q,R)geomalg.
0 < i /\ m <= i /\ i <= n /\
m <= j /\ j <= n /\ i < j
==> seqiterate (outer) (m..n) f =
seqiterate (outer) (m..i-1) f outer
f i outer
seqiterate (outer) (i+1..j-1) f outer
f j outer
seqiterate (outer) (j + 1..n) f`,
REPEAT STRIP_TAC THEN
ASM_SIMP_TAC[SEQITERATE_SPLIT_NUMSEG_OUTERGA] THEN
SUBGOAL_THEN `i = SUC (i - 1)` ASSUME_TAC THENL[ASM_ARITH_TAC; ALL_TAC] THEN
FIRST_ASSUM (fun th -> GEN_REWRITE_TAC(LAND_CONV o LAND_CONV o DEPTH_CONV)[th]) THEN
SUBGOAL_THEN `m <= SUC (i - 1)` ASSUME_TAC THENL[ASM_ARITH_TAC; ALL_TAC] THEN
ASM_SIMP_TAC[SEQITERATE_OUTERGA_RREC] THEN REWRITE_TAC[GSYM OUTERGA_ASSOC] THEN
AP_TERM_TAC THEN FIRST_ASSUM(SUBST1_TAC o SYM) THEN AP_TERM_TAC THEN
SUBGOAL_THEN `j = SUC (j - 1)` ASSUME_TAC THENL[ASM_ARITH_TAC; ALL_TAC] THEN
FIRST_ASSUM (fun th -> GEN_REWRITE_TAC(RAND_CONV o RAND_CONV o LAND_CONV o DEPTH_CONV)[th]) THEN
REWRITE_TAC[OUTERGA_ASSOC] THEN
SUBGOAL_THEN `i + 1 <= SUC (j - 1)` ASSUME_TAC THENL[ASM_ARITH_TAC; ALL_TAC] THEN
ASM_SIMP_TAC[GSYM SEQITERATE_OUTERGA_RREC] THEN
FIRST_ASSUM(SUBST1_TAC o SYM) THEN
MATCH_MP_TAC SEQITERATE_SPLIT_NUMSEG_OUTERGA THEN
ASM_ARITH_TAC);;
let SEQITERATE_ZERO_OUTERGA = prove
(`!a:num->real^(P,Q,R)geomalg i m n.
m <= i /\ i <= n /\ a i = vec 0 ==> seqiterate (outer) (m..n) a = vec 0`,
REPEAT GEN_TAC THEN ASM_CASES_TAC `i:num = 0` THENL
[ASM_REWRITE_TAC[LE] THEN REPEAT STRIP_TAC THEN
ASM_SIMP_TAC[SEQITERATE_OUTERGA_LREC] THEN REWRITE_TAC[OUTERGA_LZERO];
ALL_TAC] THEN
POP_ASSUM (MP_TAC o REWRITE_RULE[GSYM LT_NZ]) THEN
REPEAT STRIP_TAC THEN
ASM_SIMP_TAC[SEQITERATE_SPLIT_NUMSEG_OUTERGA] THEN
SUBGOAL_THEN `i = SUC (i - 1)` SUBST_ALL_TAC THENL[ASM_ARITH_TAC; ALL_TAC] THEN
ASM_SIMP_TAC[SEQITERATE_OUTERGA_RREC] THEN
REWRITE_TAC[OUTERGA_LZERO; OUTERGA_RZERO]);;
let SEQITERATE_OUTERGA_NUMSEG_EQ = prove
(`!n m f:num->real^(P,Q,R)geomalg g.
(!x. m <= x /\ x <= n ==> f x = g x) ==>
seqiterate (outer) (m..n) f = seqiterate (outer) (m..n) g`,
REPEAT GEN_TAC THEN
MP_TAC (SPECL [`m:num`; `n:num`] LET_CASES) THEN
STRIP_TAC THEN
POP_ASSUM MP_TAC THENL
[SPEC_TAC (`n:num`,`n:num`) THEN SPEC_TAC (`m:num`,`m:num`) THEN MATCH_MP_TAC LE_INDUCT; ALL_TAC] THEN
MESON_TAC[NUMSEG_EMPTY; NUMSEG_SING; SEQITERATE_CLAUSES; ARITH_RULE `m <= n ==> m <= SUC n`; SEQITERATE_OUTERGA_RREC; LE_REFL]);;
let SEQITERATE_IDENTICAL_OUTERGA = prove
(`!a:num->real^(P, Q, R)trip_fin_sum i j m n.
m <= i /\ i <= n /\
m <= j /\ j <= n /\
~(i = j) /\ a i = a j
==> seqiterate (outer) (m..n) (multivec o a) = vec 0`,
REWRITE_TAC[ARITH_RULE `~(i = j:num) <=> i < j \/ j < i`] THEN
SUBGOAL_THEN
`!a:num->real^(P, Q, R)trip_fin_sum i j m n.
m <= i /\ i <= n /\
m <= j /\ j <= n /\
i < j /\ a i = a j
==> seqiterate (outer) (m..n) (multivec o a) = vec 0`
(fun th -> MESON_TAC[th]) THEN
REPEAT GEN_TAC THEN
ASM_CASES_TAC `i:num = 0` THENL
[ASM_REWRITE_TAC[LE] THEN REPEAT STRIP_TAC THEN ASM_SIMP_TAC[SEQITERATE_OUTERGA_LREC] THEN
UNDISCH_TAC `0 < j:num` THEN REWRITE_TAC[GSYM LE_SUC_LT; ARITH] THEN
REWRITE_TAC[LE_LT] THEN STRIP_TAC THENL
[ALL_TAC;
POP_ASSUM (SUBST_ALL_TAC o SYM) THEN
ASM_SIMP_TAC[SEQITERATE_OUTERGA_LREC; OUTERGA_ASSOC; o_THM; VECTOR_OUTERGA_REFL; OUTERGA_LZERO]] THEN
MP_TAC
(SPECL [`j:num`; `1:num`; `n:num`; `(multivec o a):num->real^(P,Q,R)geomalg`]
SEQITERATE_SPLIT_NUMSEG_OUTERGA) THEN
ASM_SIMP_TAC[LT_IMP_LE] THEN DISCH_THEN SUBST1_TAC THEN
SUBGOAL_THEN `j:num = SUC (j - 1)` SUBST_ALL_TAC THENL[ASM_ARITH_TAC; ALL_TAC] THEN
ASM_SIMP_TAC[LT_IMP_LE; SEQITERATE_OUTERGA_RREC] THEN
POP_ASSUM (MP_TAC o REWRITE_RULE[LT_SUC_LE]) THEN
REWRITE_TAC[GSYM OUTERGA_ASSOC] THEN REWRITE_TAC[OUTERGA_ASSOC] THEN
SIMP_TAC[o_THM; OUTER_SEQITERATE_SYM] THEN
ONCE_REWRITE_TAC[OUTERGA_LMUL] THEN REWRITE_TAC[GSYM OUTERGA_ASSOC] THEN
ASM_REWRITE_TAC[VECTOR_OUTERGA_REFL; OUTERGA_RZERO; VECTOR_MUL_RZERO; OUTERGA_LZERO]; ALL_TAC] THEN
POP_ASSUM (MP_TAC o REWRITE_RULE[GSYM LT_NZ]) THEN
REPEAT STRIP_TAC THEN
ASM_SIMP_TAC[SEQITERATE_OUTERGA_SPLIT3] THEN
GEN_REWRITE_TAC(LAND_CONV o RAND_CONV o ONCE_DEPTH_CONV)[OUTERGA_ASSOC] THEN
ASM_CASES_TAC `i:num = j - 1` THENL
[FIRST_ASSUM(SUBST1_TAC o SYM) THEN
REWRITE_TAC[REWRITE_RULE[ARITH_RULE `n < n + 1`](GSYM (SPECL [`n + 1:num`; `n:num`]NUMSEG_EMPTY))] THEN
REWRITE_TAC[SEQITERATE_CLAUSES; NEUTRAL_OUTERGA; OUTER_MVBASIS_RSCALAR; o_THM] THEN
GEN_REWRITE_TAC(LAND_CONV o RAND_CONV o ONCE_DEPTH_CONV)[OUTERGA_ASSOC] THEN
ASM_REWRITE_TAC[VECTOR_OUTERGA_REFL; OUTERGA_LZERO; OUTERGA_RZERO]; ALL_TAC] THEN
SUBGOAL_THEN `i + 1 <= j:num - 1` ASSUME_TAC THENL [ASM_ARITH_TAC; ALL_TAC] THEN
ASM_SIMP_TAC[o_THM; OUTER_SEQITERATE_SYM] THEN
REWRITE_TAC[OUTERGA_LMUL; GSYM OUTERGA_ASSOC] THEN
GEN_REWRITE_TAC(LAND_CONV o RAND_CONV o RAND_CONV o RAND_CONV o ONCE_DEPTH_CONV)[OUTERGA_ASSOC] THEN
REWRITE_TAC[VECTOR_OUTERGA_REFL; OUTERGA_LZERO; OUTERGA_RZERO; VECTOR_MUL_RZERO]);;
let SEQITERATE_ADD_OUTERGA = prove
(`!a b c:num->real^(P,Q,R)geomalg k m n.
m <= k /\ k <= n ==>
seqiterate (outer) (m..n) (\i. if i = k then a + b else c i) =
seqiterate (outer) (m..n) (\i. if i = k then a else c i) +
seqiterate (outer) (m..n) (\i. if i = k then b else c i)`,
REPEAT STRIP_TAC THEN
MP_TAC
(SPECL [`k:num`; `m:num`; `n:num`; `(\i. if i = k then a + b else c i):num->real^(P,Q,R)geomalg`]
SEQITERATE_SPLIT_NUMSEG_OUTERGA) THEN
MP_TAC
(SPECL [`k:num`; `m:num`; `n:num`; `(\i. if i = k then a else c i):num->real^(P,Q,R)geomalg`]
SEQITERATE_SPLIT_NUMSEG_OUTERGA) THEN
MP_TAC
(SPECL [`k:num`; `m:num`; `n:num`; `(\i. if i = k then b else c i):num->real^(P,Q,R)geomalg`]
SEQITERATE_SPLIT_NUMSEG_OUTERGA) THEN
ASM_REWRITE_TAC[] THEN REPEAT (DISCH_THEN SUBST1_TAC) THEN
ASM_CASES_TAC `k:num = 0` THENL
[UNDISCH_TAC `m <= k:num` THEN ASM_REWRITE_TAC[LE] THEN DISCH_THEN SUBST1_TAC THEN
REWRITE_TAC[NUMSEG_SING; SEQITERATE_CLAUSES] THEN
REWRITE_TAC[OUTERGA_LADD] THEN BINOP_TAC THEN AP_TERM_TAC THEN
MATCH_MP_TAC SEQITERATE_OUTERGA_NUMSEG_EQ THEN ASM_ARITH_TAC; ALL_TAC] THEN
SUBGOAL_THEN `k:num = SUC (k - 1)` SUBST_ALL_TAC THENL[ASM_ARITH_TAC; ALL_TAC] THEN
ASM_SIMP_TAC[SEQITERATE_OUTERGA_RREC] THEN
REWRITE_TAC[OUTERGA_RADD; OUTERGA_LADD] THEN
BINOP_TAC THEN BINOP_TAC THENL
[AP_THM_TAC THEN AP_TERM_TAC; ALL_TAC; AP_THM_TAC THEN AP_TERM_TAC; ALL_TAC] THEN
MATCH_MP_TAC SEQITERATE_OUTERGA_NUMSEG_EQ THEN ASM_ARITH_TAC);;
let SEQITERATE_MUL_OUTERGA = prove
(`!a b:num->real^(P,Q,R)geomalg c k m n.
m <= k /\ k <= n
==> seqiterate (outer) (m..n) (\i. if i = k then c % a else b i) =
c % seqiterate (outer) (m..n) (\i. if i = k then a else b i)`,
REPEAT STRIP_TAC THEN
MP_TAC
(SPECL [`k:num`; `m:num`; `n:num`; `(\i. if i = k then c % a else b i):num->real^(P,Q,R)geomalg`]
SEQITERATE_SPLIT_NUMSEG_OUTERGA) THEN
MP_TAC
(SPECL [`k:num`; `m:num`; `n:num`; `(\i. if i = k then a else b i):num->real^(P,Q,R)geomalg`]
SEQITERATE_SPLIT_NUMSEG_OUTERGA) THEN
ASM_REWRITE_TAC[] THEN REPEAT (DISCH_THEN SUBST1_TAC) THEN
ASM_CASES_TAC `k:num = 0` THENL
[UNDISCH_TAC `m <= k:num` THEN ASM_REWRITE_TAC[LE] THEN DISCH_THEN SUBST1_TAC THEN
REWRITE_TAC[NUMSEG_SING; SEQITERATE_CLAUSES] THEN
REWRITE_TAC[OUTERGA_LMUL] THEN AP_TERM_TAC THEN AP_TERM_TAC THEN
MATCH_MP_TAC SEQITERATE_OUTERGA_NUMSEG_EQ THEN ASM_ARITH_TAC; ALL_TAC] THEN
SUBGOAL_THEN `k:num = SUC (k - 1)` SUBST_ALL_TAC THENL[ASM_ARITH_TAC; ALL_TAC] THEN
ASM_SIMP_TAC[SEQITERATE_OUTERGA_RREC] THEN
REWRITE_TAC[OUTERGA_RMUL; OUTERGA_LMUL] THEN
AP_TERM_TAC THEN BINOP_TAC THENL
[AP_THM_TAC THEN AP_TERM_TAC; ALL_TAC] THEN
MATCH_MP_TAC SEQITERATE_OUTERGA_NUMSEG_EQ THEN ASM_ARITH_TAC);;
let SEQITERATE_OPERATION_OUTERGA = prove
(`!a:num->real^(P, Q, R)trip_fin_sum c i j m n.
m <= i /\ i <= n /\
m <= j /\ j <= n /\ ~(i = j)
==> seqiterate (outer) (m..n) (\k. if k = i then (multivec o a) i + c % (multivec o a) j else (multivec o a) k) =
seqiterate (outer) (m..n) (multivec o a)`,
SIMP_TAC[SEQITERATE_ADD_OUTERGA; SEQITERATE_MUL_OUTERGA] THEN REPEAT STRIP_TAC THEN
GEN_REWRITE_TAC(RAND_CONV o ONCE_DEPTH_CONV)[GSYM VECTOR_ADD_RID] THEN
BINOP_TAC THENL
[MATCH_MP_TAC SEQITERATE_OUTERGA_NUMSEG_EQ THEN MESON_TAC[]; ALL_TAC] THEN
MATCH_MP_TAC (prove(`x = vec 0:real^N ==> c % x = vec 0:real^N`, SIMP_TAC[VECTOR_MUL_RZERO])) THEN
REWRITE_TAC[GSYM COND_RAND; GSYM o_DEF; GSYM o_ASSOC] THEN
MATCH_MP_TAC SEQITERATE_IDENTICAL_OUTERGA THEN
MAP_EVERY EXISTS_TAC [`i:num`; `j:num`] THEN ASM_REWRITE_TAC[o_THM]);;
let SEQITERATE_SPAN_OUTERGA = prove
(`!a:num->real^(P, Q, R)trip_fin_sum i m n x.
m <= i /\ i <= n /\
x IN span {a j| m <= j /\ j <= n /\ ~(j = i)}
==> seqiterate (outer) (m..n) (\k. if k = i then (multivec o a) i + multivec x else (multivec o a) k) =
seqiterate (outer) (m..n) (multivec o a)`,
GEN_TAC THEN GEN_TAC THEN GEN_TAC THEN GEN_TAC THEN
REWRITE_TAC[IMP_CONJ; RIGHT_FORALL_IMP_THM] THEN REPEAT DISCH_TAC THEN
MATCH_MP_TAC SPAN_INDUCT_ALT THEN CONJ_TAC THENL
[MATCH_MP_TAC SEQITERATE_OUTERGA_NUMSEG_EQ THEN
MESON_TAC[o_THM; MULTIVECT_0; VECTOR_ADD_RID];
ALL_TAC] THEN
REPEAT GEN_TAC THEN REWRITE_TAC[IN_ELIM_THM] THEN
DISCH_THEN(CONJUNCTS_THEN2 (X_CHOOSE_TAC `j:num`) (SUBST_ALL_TAC o SYM)) THEN
REWRITE_TAC[o_THM; MULTIVECT_ADD; MULTIVECT_MUL] THEN
ONCE_REWRITE_TAC[VECTOR_ARITH
`a + c % x + y:real^N = (a + y) + c % x`] THEN
ASM_SIMP_TAC[SEQITERATE_ADD_OUTERGA; SEQITERATE_MUL_OUTERGA; VECTOR_EQ_ADDR] THEN
MATCH_MP_TAC (prove(`x = vec 0:real^N ==> c % x = vec 0:real^N`, SIMP_TAC[VECTOR_MUL_RZERO])) THEN
REWRITE_TAC[GSYM COND_RAND; GSYM o_DEF; GSYM o_ASSOC] THEN
MATCH_MP_TAC SEQITERATE_IDENTICAL_OUTERGA THEN
MAP_EVERY EXISTS_TAC [`i:num`; `j:num`] THEN ASM_REWRITE_TAC[o_THM]);;
let SEQITERATE_DEPENDENT_OUTERGA = prove
(`!a:num->real^(P,Q,R)trip_fin_sum m n.
dependent {a i | i IN m..n} ==>
seqiterate (outer) (m..n) (multivec o a) = vec 0`,
REPEAT GEN_TAC THEN
REWRITE_TAC[dependent; IN_ELIM_THM; LEFT_AND_EXISTS_THM; IN_NUMSEG] THEN
REWRITE_TAC[LEFT_IMP_EXISTS_THM] THEN GEN_TAC THEN X_GEN_TAC `i:num` THEN
STRIP_TAC THEN FIRST_X_ASSUM SUBST_ALL_TAC THEN
ASM_CASES_TAC
`?i j. m <= i /\ i <= n /\
m <= j /\ j <= n /\ ~(i = j) /\
(a:num->real^(P,Q,R)trip_fin_sum) i = a j`
THENL [ASM_MESON_TAC[SEQITERATE_IDENTICAL_OUTERGA]; ALL_TAC] THEN
MP_TAC
(SPECL[`a:num->real^(P,Q,R)trip_fin_sum`; `i:num`;
`m:num`; `n:num`; `--((a:num->real^(P,Q,R)trip_fin_sum) i)`]
SEQITERATE_SPAN_OUTERGA) THEN
ANTS_TAC THENL
[ASM_REWRITE_TAC[] THEN MATCH_MP_TAC SPAN_NEG THEN
FIRST_X_ASSUM(MP_TAC o GEN_REWRITE_RULE I [IN]) THEN
MATCH_MP_TAC(TAUT `a = b ==> a ==> b`) THEN
REWRITE_TAC[IN] THEN AP_THM_TAC THEN AP_TERM_TAC THEN
REWRITE_TAC[EXTENSION; IN_DELETE; IN_ELIM_THM] THEN ASM_MESON_TAC[];
DISCH_THEN(SUBST1_TAC o SYM) THEN MATCH_MP_TAC SEQITERATE_ZERO_OUTERGA THEN
EXISTS_TAC `i:num` THEN
ASM_REWRITE_TAC[o_THM; GSYM MULTIVECT_ADD; VECTOR_ADD_RINV; MULTIVECT_0]]);;
let SEQITERATE_OUTERGA_VSUM = prove
(`!m n a:num->real^(P, Q, R)trip_fin_sum.
seqiterate (outer) (m..n) (multivec o a) =
vsum {s | s SUBSET 1..pdimindex(:P) + pdimindex(:Q) + pdimindex(:R)}
(\s.
if CARD s = (n + 1) - m
then (seqiterate (outer) (m..n) (multivec o a))$$s % mbasis s
else vec 0)`,
REPEAT STRIP_TAC THEN
ASM_CASES_TAC `n < m:num` THEN POP_ASSUM MP_TAC THENL
[SIMP_TAC[ARITH_RULE `n < (m:num) ==> (n + 1) - m = 0`] THEN
REWRITE_TAC[GSYM NUMSEG_EMPTY] THEN
DISCH_THEN SUBST1_TAC THEN
REWRITE_TAC[SEQITERATE_CLAUSES; NEUTRAL_OUTERGA] THEN
GEN_REWRITE_TAC(LAND_CONV o ONCE_DEPTH_CONV)[GSYM MVBASIS_EXPANSION] THEN
MATCH_MP_TAC VSUM_EQ THEN SIMP_TAC[IN_ELIM_THM; MVBASIS_COMPONENT] THEN
MESON_TAC[FINITE_NUMSEG; FINITE_SUBSET; CARD_EQ_0; VECTOR_MUL_LZERO]; ALL_TAC] THEN
REWRITE_TAC[NOT_LT] THEN MAP_EVERY SPEC_TAC[(`n:num`, `n:num`); (`m:num`, `m:num`)] THEN
MATCH_MP_TAC LE_INDUCT THEN CONJ_TAC THENL
[REWRITE_TAC[NUMSEG_SING; SEQITERATE_CLAUSES; o_THM; ADD_SUB2] THEN
GEN_TAC THEN GEN_REWRITE_TAC(LAND_CONV o ONCE_DEPTH_CONV)[GSYM MVBASIS_EXPANSION] THEN
MATCH_MP_TAC VSUM_EQ THEN REWRITE_TAC[IN_ELIM_THM] THEN REPEAT STRIP_TAC THEN
COND_CASES_TAC THEN ASM_REWRITE_TAC[multivect] THEN
MATCH_MP_TAC (prove(`c = &0 ==> c % x = vec 0:real^N`, SIMP_TAC[VECTOR_MUL_LZERO])) THEN
ASM_SIMP_TAC[GEOMALG_VSUM_COMPONENT] THEN MATCH_MP_TAC SUM_EQ_0 THEN
REWRITE_TAC[SET_RULE `x IN s <=> {x} SUBSET s`] THEN REPEAT STRIP_TAC THEN
ASM_SIMP_TAC[GEOMALG_MUL_COMPONENT; MVBASIS_COMPONENT] THEN
ASM_MESON_TAC[CARD_SING; REAL_MUL_RZERO]; ALL_TAC] THEN
REPEAT STRIP_TAC THEN GEN_REWRITE_TAC(LAND_CONV o ONCE_DEPTH_CONV)[GSYM MVBASIS_EXPANSION] THEN
MATCH_MP_TAC VSUM_EQ THEN X_GEN_TAC `s:num->bool` THEN REWRITE_TAC[IN_ELIM_THM] THEN
COND_CASES_TAC THEN ASM_SIMP_TAC[ARITH_RULE `m <= n ==> m <= SUC n`; SEQITERATE_OUTERGA_RREC] THEN
DISCH_TAC THEN MATCH_MP_TAC (prove(`c = &0 ==> c % x = vec 0:real^N`, SIMP_TAC[VECTOR_MUL_LZERO])) THEN
FIRST_X_ASSUM SUBST1_TAC THEN REWRITE_TAC[o_THM; multivect] THEN
SIMP_TAC[FINITE_POWERSET; FINITE_NUMSEG; BILINEAR_OUTERGA; BILINEAR_VSUM] THEN
REWRITE_TAC[COND_RAND] THEN ONCE_REWRITE_TAC[COND_RATOR] THEN
REWRITE_TAC[OUTERGA_RMUL; OUTERGA_LMUL; OUTERGA_LZERO] THEN
ASM_SIMP_TAC[GEOMALG_VSUM_COMPONENT] THEN MATCH_MP_TAC SUM_EQ_0 THEN
REWRITE_TAC[FORALL_PAIR_THM; IN_CROSS; IN_ELIM_THM; SET_RULE `x IN s <=> {x} SUBSET s`] THEN
REPEAT STRIP_TAC THEN COND_CASES_TAC THEN ASM_SIMP_TAC[GEOMALG_VEC_COMPONENT; OUTER_MVBASIS] THEN
COND_CASES_TAC THEN
ASM_SIMP_TAC[GEOMALG_MUL_COMPONENT; MVBASIS_COMPONENT; GEOMALG_VEC_COMPONENT; REAL_MUL_RZERO] THEN
ASM_MESON_TAC[FINITE_NUMSEG; FINITE_SING; FINITE_SUBSET; CARD_SING; CARD_UNION;
ARITH_RULE `m <= n ==> (SUC n + 1) - m = ((n + 1) - m) + 1`; REAL_MUL_RZERO]);;
let SEQITERATE_OUTERGA_EQ_0 = prove
(`!m n a:num->real^(P, Q, R)trip_fin_sum.
seqiterate (outer) (m..n) (multivec o a) = vec 0
<=> !s. s SUBSET 1..pdimindex (:P) + pdimindex (:Q) + pdimindex (:R)
/\ CARD s = (n + 1) - m
==> (seqiterate (outer) (m..n) (multivec o a))$$s = &0`,
REPEAT GEN_TAC THEN
EQ_TAC THENL[SIMP_TAC[GEOMALG_EQ; GEOMALG_VEC_COMPONENT]; ALL_TAC] THEN
DISCH_TAC THEN ONCE_REWRITE_TAC[SEQITERATE_OUTERGA_VSUM] THEN
MATCH_MP_TAC VSUM_EQ_0 THEN REWRITE_TAC[IN_ELIM_THM] THEN
REPEAT STRIP_TAC THEN ASM_MESON_TAC[VECTOR_MUL_LZERO]);;
(* ------------------------------------------------------------------------- *)
(* Reversion operation. *)
(* ------------------------------------------------------------------------- *)
make_overloadable "reversion" `:real^N->real^N`;;
overload_interface ("reversion",`reversionga:real^(P,Q,R)geomalg->real^(P,Q,R)geomalg`);;
let reversionga = new_definition
`(reversion:real^(P,Q,R)geomalg->real^(P,Q,R)geomalg) x =
lambdas s. --(&1) pow ((CARD(s) * (CARD(s) - 1)) DIV 2) * x$$s`;;
let REVERSION_MVBASIS = prove
(`!s. reversion (mbasis s) = --(&1) pow ((CARD(s) * (CARD(s) - 1)) DIV 2) % mbasis s`,
REWRITE_TAC[reversionga] THEN SIMP_TAC[GEOMALG_BETA; GEOMALG_EQ] THEN
REPEAT STRIP_TAC THEN ASM_SIMP_TAC[GEOMALG_MUL_COMPONENT; MVBASIS_COMPONENT] THEN
COND_CASES_TAC THEN ASM_REWRITE_TAC[REAL_MUL_RZERO]);;
let REVERSIONGA_LINEAR = prove
(`(!x y. reversion (x + y) = reversion x + reversion y) /\
(!c x. reversion (c % x) = c % (reversion x))`,
REWRITE_TAC[reversionga] THEN SIMP_TAC[GEOMALG_BETA; GEOMALG_EQ] THEN
SIMP_TAC[GEOMALG_ADD_COMPONENT; GEOMALG_MUL_COMPONENT; GEOMALG_BETA] THEN
REAL_ARITH_TAC);;
let REVERSION_CONV = SIMP_CONV[REVERSIONGA_LINEAR; REVERSION_MVBASIS; CARD_CLAUSES; IN_INSERT; FINITE_EMPTY; FINITE_INSERT; NOT_IN_EMPTY] THENC NUM_REDUCE_CONV
THENC REAL_RAT_REDUCE_CONV;;
REVERSION_CONV `reversion (mbasis{1} + mbasis{1,2})`;;
let REVERSION_VECTOR = prove
(`!x:real^(P, Q, R)trip_fin_sum. multivec x = reversion (multivec x)`,
REWRITE_TAC[reversionga; multivect] THEN
SIMP_TAC[GEOMALG_EQ; GEOMALG_BETA; GSYM GEOMALG_MUL_COMPONENT] THEN
REWRITE_TAC[GSYM VSUM_LMUL] THEN REPEAT STRIP_TAC THEN
ASM_SIMP_TAC[GEOMALG_VSUM_COMPONENT] THEN
MATCH_MP_TAC SUM_EQ THEN REPEAT STRIP_TAC THEN
REWRITE_TAC[VECTOR_MUL_ASSOC] THEN
ASM_SIMP_TAC[GEOMALG_MUL_COMPONENT; MVBASIS_COMPONENT] THEN
COND_CASES_TAC THENL
[FIRST_ASSUM SUBST1_TAC THEN
SIMP_TAC[CARD_CLAUSES; IN_INSERT; FINITE_EMPTY; FINITE_INSERT; NOT_IN_EMPTY] THEN
CONV_TAC (NUM_REDUCE_CONV THENC REAL_RAT_REDUCE_CONV); ALL_TAC] THEN
REAL_ARITH_TAC);;
let REVERSION_VECTOR_OUTER = prove
(`!x y:real^(P, Q, R)trip_fin_sum.
reversion( multivec x outer multivec y) = multivec y outer multivec x`,
REPEAT GEN_TAC THEN
GEN_REWRITE_TAC(RAND_CONV o ONCE_DEPTH_CONV)[VECTOR_OUTERGA_SKEWSYM] THEN
REWRITE_TAC[reversionga; multivect] THEN
SIMP_TAC[FINITE_NUMSEG; BILINEAR_OUTERGA; BILINEAR_VSUM] THEN
REWRITE_TAC[CROSS; OUTERGA_LMUL; OUTERGA_RMUL] THEN
SIMP_TAC[GEOMALG_EQ; GEOMALG_BETA; GSYM GEOMALG_MUL_COMPONENT] THEN
REWRITE_TAC[VECTOR_NEG_MINUS1; GSYM VSUM_LMUL] THEN REPEAT STRIP_TAC THEN
ASM_SIMP_TAC[GEOMALG_VSUM_COMPONENT] THEN
MATCH_MP_TAC SUM_EQ THEN
REWRITE_TAC[FORALL_PAIR_THM; IN_ELIM_PAIR_THM] THEN
REPEAT STRIP_TAC THEN
REWRITE_TAC[VECTOR_MUL_ASSOC] THEN
REWRITE_TAC[OUTER_MVBASIS_SING] THEN
COND_CASES_TAC THENL
[COND_CASES_TAC THENL
[ASM_SIMP_TAC[GEOMALG_MUL_COMPONENT; MVBASIS_COMPONENT] THEN
COND_CASES_TAC THENL
[ASM_SIMP_TAC[CARD_CLAUSES; IN_INSERT; FINITE_EMPTY; FINITE_INSERT; NOT_IN_EMPTY] THEN
CONV_TAC NUM_REDUCE_CONV THEN
REAL_ARITH_TAC;
REAL_ARITH_TAC];
REWRITE_TAC[VECTOR_NEG_MINUS1; VECTOR_MUL_ASSOC] THEN
ASM_SIMP_TAC[GEOMALG_MUL_COMPONENT; MVBASIS_COMPONENT] THEN
COND_CASES_TAC THENL
[ASM_SIMP_TAC[CARD_CLAUSES; IN_INSERT; FINITE_EMPTY; FINITE_INSERT; NOT_IN_EMPTY] THEN
CONV_TAC NUM_REDUCE_CONV THEN
REAL_ARITH_TAC;
REAL_ARITH_TAC]];
REWRITE_TAC[VECTOR_MUL_RZERO]]);;
let REVERSION_MBASIS = prove
(`!s. reversion (mbasis s):real^(P, Q, R)geomalg =
--(&1) pow ((CARD(s) * (CARD(s) - 1)) DIV 2) % mbasis s`,
GEN_TAC THEN REWRITE_TAC[reversionga] THEN
SIMP_TAC[GEOMALG_EQ; GEOMALG_BETA] THEN
REPEAT STRIP_TAC THEN
ASM_SIMP_TAC[GEOMALG_MUL_COMPONENT; MVBASIS_COMPONENT] THEN
COND_CASES_TAC THEN ASM_REWRITE_TAC[REAL_MUL_RZERO]);;
let EVEN_POW_EQ = prove
(`!m n.(EVEN(n) <=> EVEN(m)) ==>
--(&1) pow n = --(&1) pow m`,
REWRITE_TAC[GSYM EVEN_ADD; EVEN_EXISTS] THEN
ONCE_REWRITE_TAC
[SIMP_RULE
[REAL_POW_NZ; REAL_ARITH `~(--(&1) = &0)`]
(SPEC `--(&1) pow m` (REAL_FIELD `!z:real. ~(z = &0) ==> (x = y <=> x * z = y * z)`))] THEN
REWRITE_TAC[GSYM REAL_POW_ADD] THEN
REPEAT STRIP_TAC THEN
ASM_REWRITE_TAC[GSYM MULT_2] THEN ONCE_REWRITE_TAC[GSYM REAL_POW_POW] THEN
REWRITE_TAC[REAL_ARITH `-- &1 pow 2 = &1`; REAL_POW_ONE]);;
let REVERSION_OUTERGA = prove
(`!x y:real^(P, Q, R)geomalg.
reversion( x outer y) = reversion y outer reversion x`,
REWRITE_TAC[GSYM FUN_EQ_THM] THEN MATCH_MP_TAC BILINEAR_EQ_MVBASIS THEN
REWRITE_TAC[bilinear; linear; OUTERGA_RADD; OUTERGA_LADD; OUTERGA_LMUL; OUTERGA_RMUL; REVERSIONGA_LINEAR; REVERSION_MBASIS] THEN
REWRITE_TAC[reversionga; OUTER_MVBASIS] THEN
SIMP_TAC[GEOMALG_EQ; GEOMALG_BETA; GSYM GEOMALG_MUL_COMPONENT] THEN
REPEAT STRIP_TAC THEN COND_CASES_TAC THEN ASM_REWRITE_TAC[INTER_COMM; VECTOR_MUL_ASSOC; VECTOR_MUL_RZERO] THEN
ASM_SIMP_TAC[GEOMALG_MUL_COMPONENT; MVBASIS_COMPONENT] THEN
COND_CASES_TAC THEN
ASM_REWRITE_TAC[UNION_COMM; REAL_MUL_RZERO; REAL_MUL_RID; GSYM REAL_POW_ADD] THEN
MATCH_MP_TAC EVEN_POW_EQ THEN REWRITE_TAC[GSYM EVEN_ADD; GSYM ADD_ASSOC] THEN
ONCE_REWRITE_TAC[EVEN_ADD] THEN AP_TERM_TAC THEN
ONCE_REWRITE_TAC[GSYM (REWRITE_RULE[ARITH] (SPECL [`m:num`; `n:num`; `2`] EQ_MULT_RCANCEL))] THEN
REWRITE_TAC[RIGHT_ADD_DISTRIB] THEN
SUBGOAL_THEN `!m. EVEN m==> (m DIV 2) * 2 = m` ASSUME_TAC THENL
[REWRITE_TAC[EVEN_MOD] THEN REPEAT STRIP_TAC THEN
GEN_REWRITE_TAC (LAND_CONV o ONCE_DEPTH_CONV) [GSYM ADD_0] THEN
FIRST_ASSUM (SUBST1_TAC o SYM) THEN
MESON_TAC[DIVISION; ARITH_RULE `~(2 = 0)`]; ALL_TAC] THEN
SUBGOAL_THEN `!n. EVEN (n * (n - 1))` ASSUME_TAC THENL
[MESON_TAC[EVEN_MULT; EVEN_SUB; LE_LT; EVEN; ONE]; ALL_TAC] THEN
ASM_SIMP_TAC[] THEN
MP_TAC(ISPECL[`s:num->bool`; `t:num->bool`] CARD_UNION) THEN
ANTS_TAC THENL [ASM_MESON_TAC[FINITE_NUMSEG; FINITE_SUBSET]; ALL_TAC] THEN
DISCH_THEN SUBST1_TAC THEN REWRITE_TAC[LEFT_ADD_DISTRIB; RIGHT_ADD_DISTRIB; LEFT_SUB_DISTRIB; RIGHT_SUB_DISTRIB] THEN
MATCH_MP_TAC
(ARITH_RULE
`c <= a /\ f <= e /\ (b:num) + d = g + h ==>
(a + b) - c + (d + e) - f =
g + a - c + e - f + h`) THEN
REWRITE_TAC[MULT_CLAUSES; LE_SQUARE_REFL] THEN
REWRITE_TAC[MULT_AC; GSYM MULT_2; GSYM RIGHT_ADD_DISTRIB] THEN
REWRITE_TAC[MULT_ASSOC] THEN
AP_THM_TAC THEN AP_TERM_TAC THEN
MP_TAC (ISPECL [`s:num->bool`; `t:num->bool`] CARD_PRODUCT) THEN
ANTS_TAC THENL[ASM_MESON_TAC[FINITE_NUMSEG; FINITE_SUBSET]; ALL_TAC] THEN
DISCH_THEN (SUBST1_TAC o SYM) THEN
CONV_TAC SYM_CONV THEN
SUBGOAL_THEN
`CARD {i,j| i IN (t:num->bool) /\ j IN (s:num->bool) /\ i > j} =
CARD {i,j | i IN s /\ j IN t /\ i < j}` SUBST1_TAC THENL
[REWRITE_TAC[prove(`!s t:num->bool.
{x,y | x IN t /\ y IN s /\ x > y} =
IMAGE swappair {x,y | x IN s /\ y IN t /\ x < y}`,
REWRITE_TAC[EXTENSION; IN_IMAGE; FORALL_PAIR_THM;
EXISTS_PAIR_THM; IN_ELIM_PAIR_THM; swappair] THEN
MESON_TAC[PAIR_EQ; GT])] THEN
MATCH_MP_TAC CARD_IMAGE_INJ THEN
CONJ_TAC THENL
[REWRITE_TAC[swappair; FORALL_PAIR_THM] THEN
MESON_TAC[PAIR_EQ]; ALL_TAC] THEN
MATCH_MP_TAC FINITE_SUBSET THEN
EXISTS_TAC `{i,j | i IN (s:num->bool) /\ j IN (t:num->bool)}` THEN
CONJ_TAC THENL
[MATCH_MP_TAC FINITE_PRODUCT THEN
ASM_MESON_TAC[FINITE_NUMSEG; FINITE_SUBSET]; ALL_TAC] THEN
SIMP_TAC[SUBSET; FORALL_PAIR_THM; IN_ELIM_PAIR_THM]; ALL_TAC] THEN
MATCH_MP_TAC CARD_UNION_EQ THEN
CONJ_TAC THENL
[MATCH_MP_TAC FINITE_PRODUCT THEN
ASM_MESON_TAC[FINITE_NUMSEG; FINITE_SUBSET]; ALL_TAC] THEN
REWRITE_TAC[EXTENSION; IN_INTER; IN_UNION; NOT_IN_EMPTY; FORALL_PAIR_THM; IN_ELIM_PAIR_THM] THEN
ASM SET_TAC[GT; LT_ANTISYM; LT_CASES]);;
let REVERSION_SEQITERATE_OUTERGA = prove
(`!a:num->real^(P, Q, R)trip_fin_sum k.
reversion(seqiterate (outer) (1..k) (multivec o a)) =
seqiterate (outer) (1..k) (multivec o a o (\i. SUC k -i))`,
GEN_TAC THEN INDUCT_TAC THENL
[REWRITE_TAC[REWRITE_RULE[ARITH_RULE `0 < 1`](GSYM (SPECL [`1:num`; `0:num`]NUMSEG_EMPTY))] THEN
REWRITE_TAC[SEQITERATE_CLAUSES; o_THM; NEUTRAL_OUTERGA] THEN
CONV_TAC REVERSION_CONV THEN
REWRITE_TAC[VECTOR_MUL_LID]; ALL_TAC] THEN
GEN_REWRITE_TAC(RAND_CONV o ONCE_DEPTH_CONV)[ADD1] THEN
SIMP_TAC[ARITH_RULE `1 <= SUC k`; SEQITERATE_OUTERGA_RREC] THEN
SIMP_TAC[ARITH_RULE `1 <= k + 1`; SEQITERATE_OUTERGA_LREC] THEN
SIMP_TAC[REVERSION_OUTERGA; o_THM; GSYM REVERSION_VECTOR] THEN
FIRST_X_ASSUM SUBST1_TAC THEN
REWRITE_TAC[ADD_SUB] THEN
AP_TERM_TAC THEN REWRITE_TAC[NUMSEG_OFFSET_IMAGE; SEQITERATE_NUMSEG_IMAGE] THEN
REWRITE_TAC[GSYM o_ASSOC] THEN AP_TERM_TAC THEN AP_TERM_TAC THEN
AP_TERM_TAC THEN REWRITE_TAC[o_DEF; FUN_EQ_THM] THEN ARITH_TAC);;
(* ------------------------------------------------------------------------- *)
(* Conjugation operation. *)
(* ------------------------------------------------------------------------- *)
let conjugation = new_definition
`(conjugation:real^(P,Q,R)geomalg->real^(P,Q,R)geomalg) x =
lambdas s. --(&1) pow ((CARD(s) * (CARD(s) - 1)) DIV 2 +
CARD(s INTER (pdimindex(:P)+1..pdimindex(:P)+pdimindex(:Q)))) * x$$s`;;
let CONJUGATION_MVBASIS = prove
(`!s. conjugation (mbasis s:real^(P,Q,R)geomalg) = --(&1) pow ((CARD(s) * (CARD(s) - 1)) DIV 2 +
CARD(s INTER (pdimindex(:P)+1..pdimindex(:P)+pdimindex(:Q)))) % mbasis s`,
REWRITE_TAC[conjugation] THEN SIMP_TAC[GEOMALG_BETA; GEOMALG_EQ] THEN
REPEAT STRIP_TAC THEN ASM_SIMP_TAC[GEOMALG_MUL_COMPONENT; MVBASIS_COMPONENT] THEN
COND_CASES_TAC THEN ASM_REWRITE_TAC[REAL_MUL_RZERO]);;
let CONJUGATION_LINEAR = prove
(`(!x y. conjugation (x + y) = conjugation x + conjugation y) /\
(!c x. conjugation (c % x) = c % (conjugation x))`,
REWRITE_TAC[conjugation] THEN SIMP_TAC[GEOMALG_BETA; GEOMALG_EQ] THEN
SIMP_TAC[GEOMALG_ADD_COMPONENT; GEOMALG_MUL_COMPONENT; GEOMALG_BETA] THEN
REAL_ARITH_TAC);;
(* ------------------------------------------------------------------------- *)
(* Blades. *)
(* ------------------------------------------------------------------------- *)
parse_as_infix("blade",(8,"left"));;
let blade = new_definition
`k blade (A:real^(P,Q,R)geomalg) <=>
(?a. independent {a i | i IN 1..k} /\ {a i | i IN 1..k} HAS_SIZE k /\
A = seqiterate (outer) (1..k) (multivec o a))`;;
let is_blade = new_definition
`is_blade (A:real^(P,Q,R)geomalg) <=> ?k. k blade A`;;
let pseudoscalar = new_definition
`pseudoscalar:real^(P,Q,R)geomalg = mbasis (1..pdimindex(:P)+pdimindex(:Q)+pdimindex(:R))`;;
(* ------------------------------------------------------------------------- *)
(* Versors. *)
(* ------------------------------------------------------------------------- *)
let is_versor = new_definition
`is_versor (A:real^(P,Q,R)geomalg) <=>
?k a:num->real^(P, Q, R)trip_fin_sum.
(!i. i IN 1..k ==> ~(is_null(multivec (a i)))) /\
(A = seqiterate( * ) (1..k) (multivec o a))`;;
let MVINVERTIBLE_VERSOR = prove
(`!x:real^(P,Q,R)geomalg. is_versor x ==> mvinvertible x`,
REWRITE_TAC[is_versor] THEN REPEAT STRIP_TAC THEN FIRST_X_ASSUM SUBST1_TAC THEN
FIRST_X_ASSUM MP_TAC THEN SPEC_TAC (`k:num`,`k:num`) THEN
INDUCT_TAC THENL
[REWRITE_TAC[REWRITE_RULE[ARITH_RULE `0 < 1`](GSYM (SPECL [`1:num`; `0:num`]NUMSEG_EMPTY)); NOT_IN_EMPTY] THEN
REWRITE_TAC[SEQITERATE_CLAUSES; o_THM; NEUTRAL_GEOMGA; MVINVERTIBLE_LEFT_INVERSE] THEN MESON_TAC[GEOM_MVBASIS_RID]; ALL_TAC] THEN
DISCH_TAC THEN
SIMP_TAC[ARITH_RULE `1 <= SUC k:num`; SEQITERATE_GEOMGA_RREC] THEN
REWRITE_TAC[o_THM] THEN MATCH_MP_TAC MVINVERTIBLE_GEOM THEN
CONJ_TAC THENL
[FIRST_ASSUM MATCH_MP_TAC THEN STRIP_TAC THEN STRIP_TAC THEN FIRST_ASSUM MATCH_MP_TAC THEN POP_ASSUM MP_TAC THEN
REWRITE_TAC[IN_NUMSEG] THEN ARITH_TAC; ALL_TAC] THEN
REWRITE_TAC[GSYM MVINVERTIBLE_VECTOR_EQ] THEN
FIRST_ASSUM MATCH_MP_TAC THEN ASM_REWRITE_TAC[IN_NUMSEG] THEN ARITH_TAC);;
(* ------------------------------------------------------------------------- *)
(* Geometric relations. *)
(* ------------------------------------------------------------------------- *)
let dual = new_definition
`(dual:real^(P,Q,'0)geomalg->real^(P,Q,'0)geomalg) x =
vsum {s | s SUBSET 1..pdimindex(:P) + pdimindex(:Q)}
(\s.x$$s % mbasis s inner (mvinverse pseudoscalar))`;;
let meet = new_definition
`meet A B = (dual A) inner B`;;
let project = new_definition
`project B A = (A inner B) * (mvinverse B)`;;
let reject = new_definition
`reject B A = (A outer B) * (mvinverse B)`;;
let transform = new_definition
`transform v x = v * x * mvinverse v`;;
let SUPERPOSE_TRANSFORM = prove
(`!x a b. is_versor a /\ is_versor b ==>
a *(b * x * mvinverse b) * mvinverse a =
(a * b) * x * mvinverse (a *b)`,
REPEAT STRIP_TAC THEN
REWRITE_TAC[GSYM GEOMGA_ASSOC] THEN
ONCE_REWRITE_TAC[GEOMGA_ASSOC] THEN
ONCE_REWRITE_TAC[GEOMGA_ASSOC] THEN
AP_TERM_TAC THEN
MATCH_MP_TAC MVINVERSE_GEOM THEN
ASM_SIMP_TAC[MVINVERTIBLE_VERSOR]);;
(* ------------------------------------------------------------------------- *)
(* Cross_product. *)
(* ------------------------------------------------------------------------- *)
parse_as_infix("cross_product",(20,"right"));;
let cross_product = new_definition
`(u:real^('3,'0,'0)trip_fin_sum) cross_product v = dual ((multivec u) outer (multivec v))`;;