Datasets:
Tasks:
Text Generation
Modalities:
Text
Sub-tasks:
language-modeling
Languages:
English
Size:
100K - 1M
License:
(* ------------------------------------------------------------------ *) | |
(* | |
Topological Spaces, Metric Spaces, | |
Connectedness, Totally bounded spaces, compactness, | |
Hausdorff property, completeness, properties of Euclidean space, | |
Author: Thomas Hales 2004 | |
*) | |
(* ------------------------------------------------------------------ *) | |
(* prioritize_real (or num) *) | |
(* ------------------------------------------------------------------ *) | |
(* Logical Preliminaries *) | |
(* ------------------------------------------------------------------ *) | |
let Q_ELIM_THM = prove_by_refinement( | |
`!P Q R . (?(u:B). (?(x:A). (u = P x) /\ (Q x)) /\ (R u)) <=> | |
(?x. (Q x) /\ R( P x))`, | |
(* {{{ proof *) | |
[ | |
DISCH_ALL_TAC; | |
MESON_TAC[]; | |
]);; | |
(* }}} *) | |
let Q_ELIM_THM' = prove_by_refinement( | |
`!P Q R. (!(t:B). (?(x:A). P x /\ (t = Q x)) ==> R t) <=> | |
(!x. P x ==> R (Q x))`, | |
(* {{{ proof *) | |
[ | |
DISCH_ALL_TAC; | |
MESON_TAC[]; | |
]);; | |
(* }}} *) | |
let Q_ELIM_THM'' = prove_by_refinement( | |
`!P Q R. (!(t:B). (?(x:A). (t = Q x) /\ P x ) ==> R t) <=> | |
(!x. P x ==> R (Q x))`, | |
(* {{{ proof *) | |
[ | |
DISCH_ALL_TAC; | |
MESON_TAC[]; | |
]);; | |
(* }}} *) | |
(* ------------------------------------------------------------------ *) | |
(* Set Preliminaries *) | |
(* ------------------------------------------------------------------ *) | |
let DIFF_SUBSET = prove_by_refinement( | |
`!X A (B:A->bool). A SUBSET (X DIFF B) <=> | |
(A SUBSET X) /\ (A INTER B = EMPTY)`, | |
(* {{{ proof *) | |
[ | |
DISCH_ALL_TAC; | |
REWRITE_TAC[SUBSET;DIFF;INTER;IN]; | |
EQ_TAC; | |
REWRITE_TAC[IN_ELIM_THM']; | |
DISCH_TAC; | |
CONJ_TAC; | |
ASM_MESON_TAC[]; | |
MATCH_MP_TAC EQ_EXT; | |
GEN_TAC; | |
REWRITE_TAC[IN_ELIM_THM';EMPTY]; | |
ASM_MESON_TAC[]; | |
DISCH_ALL_TAC; | |
GEN_TAC; | |
DISCH_ALL_TAC; | |
REWRITE_TAC[IN_ELIM_THM']; | |
CONJ_TAC; | |
ASM_MESON_TAC[]; | |
USE 1 (fun t-> AP_THM t `x:A`); | |
USE 1 (REWRITE_RULE[IN_ELIM_THM';EMPTY]); | |
ASM_MESON_TAC[]; | |
]);; | |
(* }}} *) | |
let SUBSET_INTERS = prove_by_refinement( | |
`!X (A:A->bool). A SUBSET (INTERS X) <=> (!x. X x ==> (A SUBSET x))`, | |
(* {{{ proof *) | |
[ | |
REP_GEN_TAC; | |
REWRITE_TAC[SUBSET;INTERS]; | |
REWRITE_TAC [IN_ELIM_THM']; | |
MESON_TAC[IN]; | |
]);; | |
(* }}} *) | |
let EQ_EMPTY = prove_by_refinement( | |
`!P. ({(x:A) | P x} = {}) <=> (!x. ~P x)`, | |
(* {{{ proof *) | |
[ | |
DISCH_ALL_TAC; | |
EQ_TAC; | |
DISCH_TAC; | |
(USE 0 (fun t-> AP_THM t `x:A`)); | |
USE 0 (REWRITE_RULE[IN_ELIM_THM';EMPTY]); | |
USE 0 (GEN_ALL); | |
ASM_REWRITE_TAC[]; | |
DISCH_TAC; | |
MATCH_MP_TAC EQ_EXT; | |
GEN_TAC; | |
REWRITE_TAC[IN_ELIM_THM';EMPTY]; | |
ASM_MESON_TAC[]; | |
]);; | |
(* }}} *) | |
let DIFF_INTER = prove_by_refinement( | |
`!A B (C:A->bool). ((A DIFF B) INTER C = EMPTY) <=> | |
((A INTER C) SUBSET B)`, | |
(* {{{ proof *) | |
[ | |
REWRITE_TAC[DIFF;INTER;SUBSET;IN_ELIM_THM']; | |
REWRITE_TAC[IN;EQ_EMPTY]; | |
MESON_TAC[]; | |
]);; | |
(* }}} *) | |
let SUB_IMP_INTER = prove_by_refinement( | |
`!A B (C:A->bool). ((A SUBSET B) ==> (A INTER C) SUBSET B) /\ | |
((A SUBSET B) ==> (C INTER A) SUBSET B)`, | |
(* {{{ proof *) | |
[ | |
DISCH_ALL_TAC; | |
SUBCONJ_TAC; | |
REWRITE_TAC[INTER;SUBSET;IN;IN_ELIM_THM']; | |
MESON_TAC[]; | |
MESON_TAC[INTER_COMM]; | |
]);; | |
(* }}} *) | |
let SUBSET_UNIONS_INSERT = prove_by_refinement( | |
`!(A:A->bool) B C. A SUBSET (UNIONS (B INSERT C)) <=> | |
(A DIFF B) SUBSET (UNIONS C)`, | |
(* {{{ proof *) | |
[ | |
DISCH_ALL_TAC; | |
SET_TAC[UNIONS;SUBSET;INSERT]; | |
]);; | |
(* }}} *) | |
let UNIONS_DELETE2 = prove_by_refinement( | |
`!(A:A->bool) B C. (A SUBSET (UNIONS B)) /\ (A INTER C = EMPTY) ==> | |
(A SUBSET (UNIONS (B DELETE (C))))`, | |
(* {{{ proof *) | |
[ | |
DISCH_ALL_TAC; | |
ASM SET_TAC[SUBSET;UNIONS;INTER;EMPTY;DELETE]; | |
]);; | |
(* }}} *) | |
(* this generalizes to arbitrary cardinalities *) | |
let finite_subset = prove_by_refinement( | |
`!A (f:A->B) B. (B SUBSET (IMAGE f A)) /\ (FINITE B) ==> | |
(?C. (C SUBSET A) /\ (FINITE C) /\ (B = IMAGE f C))`, | |
(* {{{ proof *) | |
[ | |
DISCH_ALL_TAC; | |
USE 0 (REWRITE_RULE[SUBSET;IN_IMAGE]); | |
USE 0 (CONV_RULE NAME_CONFLICT_CONV); | |
USE 0 (CONV_RULE (quant_left_CONV "x'")); | |
USE 0 (CONV_RULE (quant_left_CONV "x'")); | |
CHO 0; | |
TYPE_THEN `IMAGE x' B` EXISTS_TAC ; | |
SUBCONJ_TAC; | |
REWRITE_TAC[SUBSET;IN_IMAGE]; | |
NAME_CONFLICT_TAC; | |
GEN_TAC; | |
ASM_MESON_TAC[]; | |
DISCH_ALL_TAC; | |
CONJ_TAC; | |
ASM_MESON_TAC[ FINITE_IMAGE]; | |
MATCH_MP_TAC SUBSET_ANTISYM; | |
CONJ_TAC; | |
REWRITE_TAC[SUBSET;IN_IMAGE]; | |
GEN_TAC; | |
TYPE_THEN `x` (USE 0 o SPEC); | |
ASM_MESON_TAC[]; | |
REWRITE_TAC[SUBSET;IN_IMAGE]; | |
NAME_CONFLICT_TAC; | |
GEN_TAC; | |
DISCH_THEN CHOOSE_TAC; | |
ASM_REWRITE_TAC[]; | |
AND 3; | |
CHO 3; | |
ASM_MESON_TAC[]; | |
]);; | |
(* }}} *) | |
let inters_singleton = prove_by_refinement( | |
`!(A:A->bool). INTERS {A} = A`, | |
(* {{{ proof *) | |
[ | |
REWRITE_TAC[INSERT;INTERS]; | |
REWRITE_TAC[IN_ELIM_THM';NOT_IN_EMPTY]; | |
GEN_TAC; | |
MATCH_MP_TAC EQ_EXT; | |
GEN_TAC; | |
REWRITE_TAC[IN_ELIM_THM']; | |
ASM_MESON_TAC[IN]; | |
]);; | |
(* }}} *) | |
let delete_empty = prove_by_refinement( | |
`!(A:A->bool) x. (A DELETE x = EMPTY) <=> (~(A = EMPTY) ==> (A = {x}))`, | |
(* {{{ proof *) | |
[ | |
REWRITE_TAC[DELETE]; | |
DISCH_ALL_TAC; | |
EQ_TAC; | |
DISCH_ALL_TAC; | |
USE 1 (fun t-> AP_THM t `u:A`); | |
USE 1 (REWRITE_RULE[IN_ELIM_THM';EMPTY]); | |
REWRITE_TAC[EMPTY;INSERT;IN]; | |
USE 0 (REWRITE_RULE[EMPTY_EXISTS]); | |
USE 1 (GEN `u:A`); | |
MATCH_MP_TAC EQ_EXT; | |
GEN_TAC; | |
REWRITE_TAC[IN_ELIM_THM']; | |
ASM_MESON_TAC[IN]; | |
DISCH_ALL_TAC; | |
MATCH_MP_TAC EQ_EXT; | |
GEN_TAC; | |
REWRITE_TAC[IN_ELIM_THM';EMPTY]; | |
USE 0 (REWRITE_RULE[EMPTY_EXISTS]); | |
USE 0 (REWRITE_RULE[EMPTY;INSERT;IN]); | |
REWRITE_TAC[IN]; | |
USE 0 (CONV_RULE (quant_left_CONV "u")); | |
USE 0 (SPEC `x':A`); | |
MATCH_MP_TAC (TAUT `(a ==> b) ==> ~(a /\ ~b)`); | |
DISCH_ALL_TAC; | |
REWR 0; | |
UND 1; | |
ASM_REWRITE_TAC[]; | |
REWRITE_TAC[IN_ELIM_THM']; | |
]);; | |
(* }}} *) | |
let inters_subset = prove_by_refinement( | |
`!A (B:(A->bool)->bool). A SUBSET B ==> INTERS B SUBSET INTERS A`, | |
(* {{{ proof *) | |
[ | |
DISCH_ALL_TAC; | |
REWRITE_TAC[INTERS;SUBSET;IN_ELIM_THM']; | |
ASM_MESON_TAC[SUBSET;IN]; | |
]);; | |
(* }}} *) | |
let delete_inters = prove_by_refinement( | |
`!V (u:A->bool). V u ==> (INTERS V = (INTERS (V DELETE u)) INTER u)`, | |
(* {{{ proof *) | |
[ | |
DISCH_ALL_TAC; | |
MATCH_MP_TAC SUBSET_ANTISYM; | |
CONJ_TAC; | |
REWRITE_TAC[SUBSET_INTER]; | |
CONJ_TAC; | |
MATCH_MP_TAC inters_subset; | |
REWRITE_TAC [DELETE_SUBSET]; | |
USE 0 (ONCE_REWRITE_RULE[GSYM IN]); | |
USE 0 (MATCH_MP INTERS_SUBSET); | |
ASM_REWRITE_TAC[]; | |
TYPE_THEN `INTERS (V DELETE u) INTER u SUBSET u` SUBGOAL_TAC; | |
REWRITE_TAC[INTER_SUBSET]; | |
REWRITE_TAC[SUBSET_INTERS]; | |
DISCH_ALL_TAC; | |
DISCH_ALL_TAC; | |
TYPE_THEN `x = u` ASM_CASES_TAC; | |
ASM_MESON_TAC[]; | |
TYPE_THEN `INTERS (V DELETE u) INTER u SUBSET INTERS (V DELETE u) ` SUBGOAL_TAC; | |
REWRITE_TAC[INTER_SUBSET]; | |
TYPE_THEN `INTERS (V DELETE u) SUBSET x` SUBGOAL_TAC; | |
MATCH_MP_TAC INTERS_SUBSET; | |
ASM_REWRITE_TAC [IN;DELETE;IN_ELIM_THM']; | |
ASM_MESON_TAC[SUBSET_TRANS]; | |
]);; | |
(* }}} *) | |
let EQ_EMPTY = prove_by_refinement( | |
`!(A:A->bool) . (A = EMPTY) <=> (!x. ~(A x))`, | |
(* {{{ proof *) | |
[ | |
ASM_MESON_TAC[EMPTY_EXISTS;IN]; | |
]);; | |
(* }}} *) | |
let UNIONS_EQ_EMPTY = prove_by_refinement( | |
`!(U:(A->bool)->bool). (UNIONS U = {}) <=> | |
((U = EMPTY) \/ (U = {EMPTY}))`, | |
(* {{{ proof *) | |
[ | |
DISCH_ALL_TAC; | |
REWRITE_TAC[EQ_EMPTY;UNIONS;IN_ELIM_THM';INSERT;EMPTY]; | |
REWRITE_TAC [IN]; | |
EQ_TAC; | |
DISCH_ALL_TAC; | |
TYPE_THEN `!x. ~U x` ASM_CASES_TAC ; | |
ASM_REWRITE_TAC[]; | |
ASM_REWRITE_TAC[]; | |
MATCH_MP_TAC EQ_EXT; | |
GEN_TAC; | |
REWRITE_TAC[IN_ELIM_THM']; | |
NAME_CONFLICT_TAC; | |
USE 1 (CONV_RULE (quant_left_CONV "x")); | |
CHO 1; | |
USE 0 (CONV_RULE (quant_left_CONV "u")); | |
USE 0 (CONV_RULE (quant_left_CONV "u")); | |
EQ_TAC; | |
DISCH_TAC; | |
TYPE_THEN `x` (USE 0 o SPEC); | |
ASM_MESON_TAC[]; | |
DISCH_TAC; | |
COPY 0; | |
TYPE_THEN `x` (USE 0 o SPEC); | |
TYPE_THEN `x'` (USE 3 o SPEC); | |
PROOF_BY_CONTR_TAC; | |
TYPE_THEN `x' = {}` SUBGOAL_TAC; | |
PROOF_BY_CONTR_TAC; | |
USE 5 (REWRITE_RULE[EMPTY_EXISTS]); | |
CHO 5; | |
USE 5 (REWRITE_RULE[IN]); | |
ASM_MESON_TAC[]; | |
USE 2 (CONV_RULE (quant_right_CONV "x'")); | |
ASM_MESON_TAC[IN;EMPTY_EXISTS]; | |
DISCH_THEN DISJ_CASES_TAC; | |
ASM_MESON_TAC[]; | |
ASM_REWRITE_TAC[IN_ELIM_THM']; | |
ASM_MESON_TAC[]; | |
]);; | |
(* }}} *) | |
let INTERS_EQ_EMPTY = prove_by_refinement( | |
`!((A:(A->bool)->bool)). ((INTERS A) = EMPTY) <=> | |
(!x . ?a. (A a) /\ ~(a x))`, | |
(* {{{ proof *) | |
[ | |
REWRITE_TAC[INTERS;EQ_EMPTY;IN_ELIM_THM']; | |
REWRITE_TAC[IN]; | |
MESON_TAC[]; | |
]);; | |
(* }}} *) | |
let CARD_SING_CONV = prove_by_refinement( | |
`!X:A->bool. (X HAS_SIZE 1) ==> (SING X)`, | |
(* {{{ proof *) | |
[ | |
REWRITE_TAC[HAS_SIZE ;SING ]; | |
DISCH_ALL_TAC; | |
TYPE_THEN `CHOICE X` EXISTS_TAC; | |
TYPE_THEN `~(X = {})` SUBGOAL_TAC; | |
ASM_MESON_TAC[CARD_CLAUSES;ARITH_RULE`~(0=1)`]; | |
DISCH_ALL_TAC; | |
TYPE_THEN `SUC (CARD (X DELETE (CHOICE X)))=1` SUBGOAL_TAC ; | |
ASM_SIMP_TAC[CARD_DELETE_CHOICE]; | |
REWRITE_TAC[ARITH_RULE`(SUC a = 1) <=> (a=0)`]; | |
ASSUME_TAC HAS_SIZE_0; | |
USE 3 (REWRITE_RULE [HAS_SIZE ]); | |
ASSUME_TAC FINITE_DELETE_IMP; | |
ASM_MESON_TAC[delete_empty]; | |
]);; | |
(* }}} *) | |
let countable_prod = prove_by_refinement( | |
`!(A:A->bool) (B:B->bool). (COUNTABLE A) /\ (COUNTABLE B) ==> | |
(COUNTABLE {(a,b) | (A a) /\ (B b) })`, | |
(* {{{ proof *) | |
[ | |
DISCH_ALL_TAC; | |
IMATCH_MP_TAC (INST_TYPE [`:num#num`,`:A`] COUNTABLE_IMAGE); | |
USE 0 (REWRITE_RULE [COUNTABLE;GE_C;IN_UNIV]); | |
USE 1 (REWRITE_RULE [COUNTABLE;GE_C;IN_UNIV]); | |
CHO 0; | |
CHO 1; | |
TYPE_THEN `{(m:num,n:num) | T}` EXISTS_TAC; | |
REWRITE_TAC[NUM2_COUNTABLE;SUBSET;IN_IMAGE]; | |
REWRITE_TAC[IN_ELIM_THM]; | |
TYPE_THEN `(\ (u,v) . (f u,f' v))` EXISTS_TAC; | |
DISCH_ALL_TAC; | |
CHO 2; | |
CHO 2; | |
AND 2; | |
TYPE_THEN `a` (USE 0 o SPEC); | |
TYPE_THEN `b` (USE 1 o SPEC); | |
IN_OUT_TAC; | |
REWR 2; | |
REWR 3; | |
CHO 3; | |
CHO 2; | |
TYPE_THEN `(x',x'')` EXISTS_TAC; | |
(CONV_TAC (TOP_DEPTH_CONV GEN_BETA_CONV)); | |
ASM_MESON_TAC[]; | |
]);; | |
(* }}} *) | |
let IMAGE_I = prove_by_refinement( | |
`!(A:A->bool). IMAGE I A = A`, | |
(* {{{ proof *) | |
[ | |
REWRITE_TAC[IMAGE;IN;I_DEF]; | |
GEN_TAC; | |
MATCH_MP_TAC EQ_EXT THEN GEN_TAC ; | |
REWRITE_TAC[IN_ELIM_THM']; | |
ASM_MESON_TAC[]; | |
]);; | |
(* }}} *) | |
let EMPTY_NOT_EXISTS = prove_by_refinement( | |
`!X. (X = {}) <=> (~(?(u:A). X u))`, | |
(* {{{ proof *) | |
[ | |
MESON_TAC [IN;EMPTY_EXISTS]; | |
]);; | |
(* }}} *) | |
let DIFF_SURJ = prove_by_refinement( | |
`!(f : A->B) X Y. (BIJ f X Y) ==> | |
(! t. (t SUBSET X) ==> ((IMAGE f (X DIFF t)) = (Y DIFF (IMAGE f t))))`, | |
(* {{{ proof *) | |
[ | |
REWRITE_TAC[BIJ;INJ;SURJ;IN ]; | |
DISCH_ALL_TAC; | |
DISCH_ALL_TAC; | |
REWRITE_TAC[IMAGE;IN]; | |
IMATCH_MP_TAC EQ_EXT ; | |
REWRITE_TAC[IN_ELIM_THM']; | |
NAME_CONFLICT_TAC; | |
X_GEN_TAC `y:B`; | |
REWRITE_TAC[REWRITE_RULE[IN] IN_DIFF]; | |
REWRITE_TAC[IN_ELIM_THM']; | |
ASM_MESON_TAC[SUBSET;IN ]; | |
]);; | |
(* }}} *) | |
let union_subset = prove_by_refinement( | |
`!Z1 Z2 A. ((Z1 UNION Z2) SUBSET (A:A->bool)) <=> | |
(Z1 SUBSET A) /\ (Z2 SUBSET A)`, | |
(* {{{ proof *) | |
[ | |
DISCH_ALL_TAC; | |
REWRITE_TAC[UNION;SUBSET;IN;IN_ELIM_THM']; | |
ASM_MESON_TAC[]; | |
]);; | |
(* }}} *) | |
let preimage_disjoint = prove_by_refinement( | |
`!(f:A->B) A B X. (A INTER B = EMPTY) ==> | |
(preimage X f A INTER (preimage X f B) = EMPTY )`, | |
(* {{{ proof *) | |
[ | |
DISCH_ALL_TAC; | |
REWRITE_TAC[preimage]; | |
REWRITE_TAC[EQ_EMPTY]; | |
DISCH_ALL_TAC; | |
USE 1( REWRITE_RULE[INTER;IN;IN_ELIM_THM']); | |
USE 0 (REWRITE_RULE[EQ_EMPTY;INTER;IN;IN_ELIM_THM']); | |
ASM_MESON_TAC[]; | |
]);; | |
(* }}} *) | |
let preimage_union = prove_by_refinement( | |
`!(f:A->B) A B X Z. | |
(Z SUBSET ((preimage X f A) UNION (preimage X f B))) <=> | |
(Z SUBSET X) /\ (IMAGE f Z SUBSET (A UNION B))`, | |
(* {{{ proof *) | |
[ | |
DISCH_ALL_TAC; | |
REWRITE_TAC[preimage;IMAGE;UNION;SUBSET;IN;IN_ELIM_THM' ]; | |
MESON_TAC[]; | |
]);; | |
(* }}} *) | |
let subset_preimage = prove_by_refinement( | |
`!(f:A->B) A X Z. (Z SUBSET (preimage X f A)) <=> (Z SUBSET X) /\ | |
(IMAGE f Z SUBSET A)`, | |
(* {{{ proof *) | |
[ | |
REWRITE_TAC[SUBSET;preimage;IMAGE;IN;IN_ELIM_THM']; | |
MESON_TAC[]; | |
]);; | |
(* }}} *) | |
let preimage_unions = prove_by_refinement( | |
`!dom (f:A->B) C. preimage dom f (UNIONS C) = | |
(UNIONS (IMAGE (preimage dom f) C))`, | |
(* {{{ proof *) | |
[ | |
REWRITE_TAC[preimage;IN_UNIONS ]; | |
REWRITE_TAC[UNIONS;IN_IMAGE ]; | |
REWRITE_TAC[preimage;IN]; | |
DISCH_ALL_TAC; | |
IMATCH_MP_TAC EQ_EXT ; | |
DISCH_ALL_TAC; | |
REWRITE_TAC[IN_ELIM_THM']; | |
REWRITE_TAC[Q_ELIM_THM;IN_ELIM_THM' ]; | |
MESON_TAC[]; | |
]);; | |
(* }}} *) | |
let preimage_subset = prove_by_refinement( | |
`!(f:A->B) X A B. (A SUBSET B) ==> | |
(preimage X f A SUBSET (preimage X f B))`, | |
(* {{{ proof *) | |
[ | |
REWRITE_TAC[SUBSET;in_preimage]; | |
REWRITE_TAC[IN]; | |
MESON_TAC[]; | |
]);; | |
(* }}} *) | |
(* to fix two varying descriptions of ((INTER) Y): *) | |
let INTER_THM = prove_by_refinement( | |
`!(X:A->bool). ((\B. B INTER X) = ((INTER) X)) /\ | |
((\B. X INTER B) = ((INTER) X))`, | |
(* {{{ proof *) | |
[ | |
REWRITE_TAC[INTER_COMM]; | |
GEN_TAC; | |
MATCH_MP_TAC EQ_EXT THEN BETA_TAC; | |
REWRITE_TAC[INTER_COMM]; | |
]);; | |
(* }}} *) | |
(* ------------------------------------------------------------------ *) | |
(* Real Preliminaries *) | |
(* ------------------------------------------------------------------ *) | |
let REAL_SUM_SQUARE_POS = prove_by_refinement( | |
`!m n x . &.0 <=. sum(m,n) (\i. (x i)*.(x i))`, | |
(* {{{ proof *) | |
[ | |
DISCH_ALL_TAC; | |
MATCH_MP_TAC SUM_POS_GEN; | |
DISCH_ALL_TAC; | |
BETA_TAC; | |
REWRITE_TAC[REAL_LE_SQUARE]; | |
]);; | |
(* }}} *) | |
(* twopow , DUPLICATE OF TWOPOW_MK_POS *) | |
let twopow_pos = prove_by_refinement( | |
`!n. (&.0 <. twopow(n))`, | |
(* {{{ proof *) | |
[ | |
GEN_TAC; | |
DISJ_CASES_TAC (SPEC `n:int` INT_IMAGE); | |
CHO 0; | |
ASM_REWRITE_TAC[TWOPOW_POS]; | |
REDUCE_TAC; | |
ARITH_TAC; | |
CHO 0; | |
ASM_REWRITE_TAC[TWOPOW_NEG]; | |
REDUCE_TAC; | |
ARITH_TAC; | |
]);; | |
(* }}} *) | |
let twopow_double = prove_by_refinement( | |
`!n. &.2 * (twopow (--: (&: (n+1)))) = twopow (--: (&:n))`, | |
(* {{{ proof *) | |
[ | |
DISCH_ALL_TAC; | |
REWRITE_TAC[TWOPOW_NEG;REAL_POW_ADD;POW_1;REAL_INV_MUL ]; | |
REWRITE_TAC [REAL_ARITH `a*b*cc = (a*cc)*b`]; | |
REWRITE_TAC [REAL_RINV_2 ]; | |
REAL_ARITH_TAC ; | |
]);; | |
(* }}} *) | |
let min_finite = prove_by_refinement( | |
`!X. (FINITE X) /\ (~(X = EMPTY )) ==> | |
(?delta. (X delta) /\ (!x. (X x) ==> (delta <=. x)))`, | |
(* {{{ proof *) | |
[ | |
TYPE_THEN `(!X k. FINITE X /\ (~(X = EMPTY )) /\ (X HAS_SIZE k) ==> (?delta. X delta /\ (!x. X x ==> delta <= x))) ==>(!X. FINITE X /\ (~(X = EMPTY )) ==> (?delta. X delta /\ (!x. X x ==> delta <= x)))` SUBGOAL_TAC ; | |
DISCH_TAC; | |
DISCH_ALL_TAC; | |
TYPE_THEN `X` (USE 0 o SPEC); | |
TYPE_THEN `CARD X` (USE 0 o SPEC); | |
UND 0; | |
DISCH_THEN IMATCH_MP_TAC ; | |
ASM_REWRITE_TAC[HAS_SIZE ]; | |
DISCH_THEN IMATCH_MP_TAC ; | |
CONV_TAC (quant_left_CONV "k"); | |
INDUCT_TAC; | |
REWRITE_TAC[HAS_SIZE_0]; | |
DISCH_ALL_TAC; | |
ASM_REWRITE_TAC[EMPTY]; | |
ASM_MESON_TAC[]; | |
DISCH_ALL_TAC; | |
USE 3(REWRITE_RULE[HAS_SIZE]); | |
TYPE_THEN `X DELETE (CHOICE X)` (USE 0 o SPEC); | |
ASM_CASES_TAC `k=0`; | |
REWR 3; | |
USE 3 (REWRITE_RULE [ARITH_RULE `SUC 0=1`]); | |
TYPE_THEN `SING X` SUBGOAL_TAC ; | |
IMATCH_MP_TAC CARD_SING_CONV; | |
ASM_MESON_TAC [HAS_SIZE]; | |
REWRITE_TAC[SING]; | |
DISCH_TAC ; | |
CHO 5; | |
TYPE_THEN `x` EXISTS_TAC ; | |
ASM_REWRITE_TAC[REWRITE_RULE[IN] IN_SING ]; | |
REAL_ARITH_TAC; | |
TYPE_THEN `FINITE (X DELETE CHOICE X) /\ ~(X DELETE CHOICE X = {}) /\ (X DELETE CHOICE X HAS_SIZE k ) ` SUBGOAL_TAC; | |
REWRITE_TAC[FINITE_DELETE;HAS_SIZE ]; | |
ASM_REWRITE_TAC[]; | |
REWR 3; | |
IMATCH_MP_TAC (TAUT `(a /\ b) ==> (b /\ a)`); | |
SUBCONJ_TAC; | |
IMATCH_MP_TAC (ARITH_RULE `(SUC x = SUC y) ==> (x = y)`); | |
COPY 3; | |
UND 3; | |
DISCH_THEN (fun t-> REWRITE_TAC[GSYM t]); | |
IMATCH_MP_TAC CARD_DELETE_CHOICE; | |
ASM_REWRITE_TAC[]; | |
IMATCH_MP_TAC (TAUT `(b ==> ~a ) ==> (a ==> ~b)`); | |
DISCH_THEN (fun t-> ASM_REWRITE_TAC[t;CARD_CLAUSES]); | |
DISCH_TAC; | |
REWR 0; | |
CHO 0; | |
ALL_TAC; (* "ccx" *) | |
TYPE_THEN `if (delta < (CHOICE X)) then delta else (CHOICE X)` EXISTS_TAC; | |
(* REWRITE_TAC[min_real]; *) | |
COND_CASES_TAC ; | |
CONJ_TAC; | |
UND 0; | |
REWRITE_TAC[DELETE;IN ;IN_ELIM_THM' ]; | |
MESON_TAC[]; | |
GEN_TAC; | |
UND 0; | |
REWRITE_TAC[DELETE;IN ;IN_ELIM_THM' ]; | |
DISCH_ALL_TAC; | |
TYPE_THEN `x = CHOICE X` ASM_CASES_TAC ; | |
ASM_REWRITE_TAC[]; | |
UND 6; | |
REAL_ARITH_TAC; | |
ASM_MESON_TAC[]; | |
SUBCONJ_TAC; | |
IMATCH_MP_TAC (REWRITE_RULE[IN ] CHOICE_DEF); | |
ASM_REWRITE_TAC[]; | |
DISCH_TAC; | |
DISCH_ALL_TAC; | |
TYPE_THEN `x = CHOICE X` ASM_CASES_TAC ; | |
ASM_REWRITE_TAC[]; | |
REAL_ARITH_TAC; | |
UND 0; | |
REWRITE_TAC[DELETE;IN ;IN_ELIM_THM' ]; | |
DISCH_ALL_TAC; | |
TYPE_THEN `x` (USE 11 o SPEC); | |
REWR 11; | |
UND 11; | |
UND 6; | |
REAL_ARITH_TAC; | |
]);; | |
(* }}} *) | |
let min_finite_delta = prove_by_refinement( | |
`!c X. (FINITE X) /\ ( !x. (X x) ==> (c <. x) ) ==> | |
(?delta. (c <. delta) /\ (!x. (X x) ==> (delta <=. x)))`, | |
(* {{{ proof *) | |
[ | |
DISCH_ALL_TAC; | |
TYPE_THEN `~(X = EMPTY)` ASM_CASES_TAC; | |
JOIN 0 2; | |
USE 0 (MATCH_MP min_finite); | |
CHO 0; | |
TYPE_THEN `delta` EXISTS_TAC; | |
ASM_REWRITE_TAC[]; | |
ASM_MESON_TAC[]; | |
REWR 2; | |
ASM_REWRITE_TAC[EMPTY]; | |
TYPE_THEN `c +. (&.1)` EXISTS_TAC; | |
REAL_ARITH_TAC; | |
]);; | |
(* }}} *) | |
let union_closed_interval = prove_by_refinement( | |
`!a b c. (a <=. b) /\ (b <=. c) ==> | |
({x | a <= x /\ x < b} UNION {x | b <= x /\ x <= c} = | |
{ x | a <= x /\ x <= c})`, | |
(* {{{ proof *) | |
[ | |
DISCH_ALL_TAC; | |
REWRITE_TAC[UNION;IN;IN_ELIM_THM']; | |
IMATCH_MP_TAC EQ_EXT ; | |
REWRITE_TAC[IN_ELIM_THM']; | |
UND 0; | |
UND 1; | |
REAL_ARITH_TAC; | |
]);; | |
(* }}} *) | |
let real_half_LT = prove_by_refinement( | |
`!x y z. ((x < z/(&.2)) /\ (y < z/(&.2)) ==> (x + y < z))`, | |
(* {{{ proof *) | |
[ | |
DISCH_ALL_TAC; | |
(GEN_REWRITE_TAC RAND_CONV) [GSYM REAL_HALF_DOUBLE]; | |
UND 0; | |
UND 1; | |
REAL_ARITH_TAC; | |
]);; | |
(* }}} *) | |
let real_half_LE = prove_by_refinement( | |
`!x y z. ((x < z/(&.2)) /\ (y <= z/(&.2)) ==> (x + y < z))`, | |
(* {{{ proof *) | |
[ | |
DISCH_ALL_TAC; | |
(GEN_REWRITE_TAC RAND_CONV) [GSYM REAL_HALF_DOUBLE]; | |
UND 0; | |
UND 1; | |
REAL_ARITH_TAC; | |
]);; | |
(* }}} *) | |
let real_half_EL = prove_by_refinement( | |
`!x y z. ((x <= z/(&.2)) /\ (y < z/(&.2)) ==> (x + y < z))`, | |
(* {{{ proof *) | |
[ | |
DISCH_ALL_TAC; | |
(GEN_REWRITE_TAC RAND_CONV) [GSYM REAL_HALF_DOUBLE]; | |
UND 0; | |
UND 1; | |
REAL_ARITH_TAC; | |
]);; | |
(* }}} *) | |
let real_half_LLE = prove_by_refinement( | |
`!x y z. ((x <= z/(&.2)) /\ (y <= z/(&.2)) ==> (x + y <= z))`, | |
(* {{{ proof *) | |
[ | |
DISCH_ALL_TAC; | |
(GEN_REWRITE_TAC RAND_CONV) [GSYM REAL_HALF_DOUBLE]; | |
UND 0; | |
UND 1; | |
REAL_ARITH_TAC; | |
]);; | |
(* }}} *) | |
let interval_finite = prove_by_refinement( | |
`!N. FINITE {x | ?j. (abs x = &.j) /\ (j <=| N)}`, | |
(* {{{ proof *) | |
[ | |
GEN_TAC; | |
ABBREV_TAC `inter = {n | n <=| N}`; | |
SUBGOAL_TAC `FINITE {y | ?x. (x IN inter /\ (y = (&. x)))}`; | |
MATCH_MP_TAC FINITE_IMAGE_EXPAND; | |
EXPAND_TAC "inter"; | |
REWRITE_TAC[FINITE_NUMSEG_LE]; | |
SUBGOAL_TAC `FINITE {y | ?x. (x IN inter /\ (y = --.(&. x)))}`; | |
MATCH_MP_TAC FINITE_IMAGE_EXPAND; | |
EXPAND_TAC "inter"; | |
REWRITE_TAC[FINITE_NUMSEG_LE]; | |
DISCH_ALL_TAC; | |
JOIN 1 2; | |
USE 1 (REWRITE_RULE[GSYM FINITE_UNION]); | |
UND 1; | |
SUBGOAL_TAC `!a b. ((a:real->bool) = b) ==> (FINITE a ==> FINITE b)`; | |
REP_GEN_TAC; | |
DISCH_THEN (fun t-> REWRITE_TAC[t]); | |
DISCH_THEN (fun t-> MATCH_MP_TAC t); | |
MATCH_MP_TAC EQ_EXT; | |
X_GEN_TAC `c:real`; | |
REWRITE_TAC[IN_ELIM_THM';UNION]; | |
EXPAND_TAC "inter"; | |
REWRITE_TAC[IN_ELIM_THM']; | |
REWRITE_TAC[real_abs]; | |
EQ_TAC; | |
MATCH_MP_TAC (TAUT `(a==>b) /\ (c==>b) ==> (a \/ c ==> b)`); | |
CONJ_TAC; | |
DISCH_THEN CHOOSE_TAC; | |
AND 1; | |
ASM_REWRITE_TAC[]; | |
EXISTS_TAC `x:num`; | |
ASM_REWRITE_TAC [REAL_LE;LE_0]; | |
DISCH_THEN CHOOSE_TAC; | |
AND 1; | |
EXISTS_TAC `x:num`; | |
ASM_REWRITE_TAC[REAL_NEG_NEG]; | |
COND_CASES_TAC; | |
UND 3; | |
REDUCE_TAC; | |
ARITH_TAC; | |
REDUCE_TAC; | |
DISCH_THEN CHOOSE_TAC; | |
AND 1; | |
UND 2; | |
COND_CASES_TAC; | |
ASM_MESON_TAC[]; | |
DISCH_TAC; | |
DISJ2_TAC; | |
EXISTS_TAC `j:num`; | |
ASM_REWRITE_TAC[]; | |
UND 3; | |
REAL_ARITH_TAC; | |
]);; | |
(* }}} *) | |
(* ------------------------------------------------------------------ *) | |
(* Euclidean Space *) | |
(* ------------------------------------------------------------------ *) | |
let euclid_add_closure = prove_by_refinement( | |
`!f g n. (euclid n f) /\ (euclid n g) ==> (euclid n (f + g))`, | |
(* {{{ *) | |
[ | |
REWRITE_TAC[euclid;euclid_plus]; | |
ASM_MESON_TAC[REAL_ARITH `&0 +. (&.0) = (&.0)`]; | |
]);; | |
(* }}} *) | |
let euclid_scale_closure = prove_by_refinement( | |
`!n t f. (euclid n f) ==> (euclid n ((t:real) *# f))`, | |
(* {{{ *) | |
[ | |
REWRITE_TAC[euclid;euclid_scale]; | |
MESON_TAC[REAL_ARITH `t *.(&.0) = (&.0)`]; | |
]);; | |
(* }}} *) | |
let euclid_neg_closure = prove_by_refinement( | |
`!f n. (euclid n f) ==> (euclid n (-- f))`, | |
(* {{{ *) | |
[ | |
REWRITE_TAC[euclid;euclid_neg]; | |
DISCH_ALL_TAC; | |
ASM_REWRITE_TAC[REAL_ARITH `(--x = &.0) <=> (x = &.0)`]; | |
]);; | |
(* }}} *) | |
let euclid_sub_closure = prove_by_refinement( | |
`!f g n. (euclid n f ) /\ (euclid n g) ==> (euclid n (f - g))`, | |
(* {{{ *) | |
[ | |
REWRITE_TAC[euclid;euclid_minus]; | |
ASM_MESON_TAC[REAL_ARITH `&.0 -. (&.0) = (&.0)`]; | |
]);; | |
(* }}} *) | |
let neg_dim = prove_by_refinement( | |
`!f n. (euclid n f) = (euclid n (--f))`, | |
(* {{{ *) | |
[ | |
REPEAT GEN_TAC; | |
EQ_TAC; | |
REWRITE_TAC[euclid_neg_closure]; | |
REWRITE_TAC[euclid;euclid_neg]; | |
DISCH_ALL_TAC; | |
ONCE_REWRITE_TAC[REAL_ARITH `(x = &.0) <=> (--x = &.0)`]; | |
ASM_REWRITE_TAC[]; | |
]);; | |
(* }}} *) | |
let euclid_updim = prove_by_refinement ( | |
`!f m n. (m <=| n) /\ (euclid m f) ==> (euclid n f)`, | |
(* {{{ *) | |
[ | |
REWRITE_TAC[euclid]; | |
MESON_TAC[LE_TRANS]; | |
]);; | |
(* }}} *) | |
let euclidean_add_closure = prove_by_refinement( | |
`!f g. (euclidean f) /\ (euclidean g) ==> (euclidean (f+g))`, | |
(* {{{ *) | |
[ | |
REWRITE_TAC[euclidean]; | |
DISCH_ALL_TAC; | |
UNDISCH_FIND_THEN `euclid` CHOOSE_TAC; | |
UNDISCH_FIND_THEN `(?)` CHOOSE_TAC; | |
EXISTS_TAC `n+|n'`; | |
ASSUME_TAC (ARITH_RULE `n <=| n+n'`); | |
ASSUME_TAC (ARITH_RULE `n' <=| n+n'`); | |
ASM_MESON_TAC[euclid_add_closure;euclid_updim]; | |
]);; | |
(* }}} *) | |
let euclidean_sub_closure = prove_by_refinement( | |
`!f g. (euclidean f) /\ (euclidean g) ==> (euclidean (f-g))`, | |
(* {{{ *) | |
[ | |
REWRITE_TAC[euclidean]; | |
DISCH_ALL_TAC; | |
UNDISCH_FIND_THEN `euclid` CHOOSE_TAC; | |
UNDISCH_FIND_THEN `(?)` CHOOSE_TAC; | |
EXISTS_TAC `n+|n'`; | |
ASSUME_TAC (ARITH_RULE `n <=| n+n'`); | |
ASSUME_TAC (ARITH_RULE `n' <=| n+n'`); | |
ASM_MESON_TAC[euclid_sub_closure;euclid_updim]; | |
]);; | |
(* }}} *) | |
let euclidean_scale_closure = prove_by_refinement( | |
`!s f. (euclidean f) ==> (euclidean (s *# f))`, | |
(* {{{ *) | |
[ | |
REWRITE_TAC[euclidean]; | |
REPEAT GEN_TAC; | |
DISCH_THEN CHOOSE_TAC; | |
EXISTS_TAC `n:num`; | |
ASM_MESON_TAC[euclid_scale_closure]; | |
]);; | |
(* }}} *) | |
let euclidean_neg_closure = prove_by_refinement( | |
`!f. (euclidean f) ==> (euclidean (-- f))`, | |
(* {{{ *) | |
[ | |
REWRITE_TAC[euclidean]; | |
GEN_TAC; | |
DISCH_THEN CHOOSE_TAC; | |
EXISTS_TAC `n:num`; | |
ASM_MESON_TAC[euclid_neg_closure]; | |
]);; | |
(* }}} *) | |
let euclid_add_comm = prove_by_refinement( | |
`!(f:num->real) g. (f + g = g + f)`, | |
(* {{{ *) | |
[ | |
REWRITE_TAC[euclid_plus;REAL_ARITH `a+.b = b+.a`] | |
]);; | |
(* }}} *) | |
let euclid_add_assoc = prove_by_refinement( | |
`!(f:num->real) g h. (f + g)+h = f + g + h`, | |
(* {{{ *) | |
[ | |
REWRITE_TAC[euclid_plus;REAL_ARITH `(a+.b)+.c = a+b+c`]; | |
]);; | |
(* }}} *) | |
let euclid_lzero = prove_by_refinement( | |
`!f. euclid0 + f = f`, | |
(* {{{ *) | |
[ | |
REWRITE_TAC[euclid_plus;euclid0;REAL_ARITH `&.0+a=a`]; | |
ACCEPT_TAC (INST_TYPE [(`:num`,`:A`);(`:real`,`:B`)] ETA_AX); | |
]);; | |
(* }}} *) | |
let euclid_rzero = prove_by_refinement( | |
`!f. f + euclid0 = f`, | |
(* {{{ *) | |
[ | |
REWRITE_TAC[euclid_plus;euclid0;REAL_ARITH `a+(&.0)=a`]; | |
ACCEPT_TAC (INST_TYPE [(`:num`,`:A`);(`:real`,`:B`)] ETA_AX); | |
]);; | |
(* }}} *) | |
let euclid_ldistrib = prove_by_refinement( | |
`!f g r. r *# (f + g) = (r *# f) + (r *# g)`, | |
(* {{{ *) | |
[ | |
REWRITE_TAC[euclid_plus;euclid_scale;REAL_ARITH `a*(b+.c)=a*b+a*c`]; | |
]);; | |
(* }}} *) | |
let euclid_rdistrib = prove_by_refinement( | |
`!f r s. (r+s)*# f = (r *# f) + (s *# f)`, | |
(* {{{ *) | |
[ | |
REWRITE_TAC[euclid_plus;euclid_scale;REAL_ARITH `(a+b)*c= a*c+b*c`]; | |
]);; | |
(* }}} *) | |
let euclid_scale_act = prove_by_refinement( | |
`!r s f. r *# (s *# f) = (r *s) *# f`, | |
(* {{{ *) | |
[ | |
REWRITE_TAC[euclid_scale;REAL_ARITH `(a*b)*c = a*(b*c)`]; | |
]);; | |
(* }}} *) | |
let euclid_scale_one = prove_by_refinement( | |
`!f. (&.1) *# f = f`, | |
(* {{{ proof *) | |
[ | |
REWRITE_TAC[euclid_scale]; | |
REDUCE_TAC; | |
MESON_TAC[ETA_AX]; | |
]);; | |
(* }}} *) | |
let euclid_neg_sum = prove_by_refinement( | |
`!x y . euclid_minus (--x) (--y) = -- (euclid_minus x y)`, | |
(* {{{ proof *) | |
[ | |
REWRITE_TAC[euclid_neg;euclid_minus]; | |
DISCH_ALL_TAC; | |
IMATCH_MP_TAC EQ_EXT; | |
BETA_TAC; | |
REAL_ARITH_TAC; | |
]);; | |
(* }}} *) | |
let trivial_lin_combo = prove_by_refinement( | |
`!x t. ((t *# x) + (&.1 - t) *# x = x)`, | |
(* {{{ proof *) | |
[ | |
DISCH_ALL_TAC; | |
REWRITE_TAC[euclid_plus;euclid_scale;]; | |
IMATCH_MP_TAC EQ_EXT THEN BETA_TAC; | |
REAL_ARITH_TAC ; | |
]);; | |
(* }}} *) | |
(* DOT PRODUCT *) | |
let dot_euclid = prove_by_refinement( | |
`!p f g. (euclid p f) /\ (euclid p g) ==> | |
(dot f g = sum (0,p) (\i. (f i)* (g i)))`, | |
(* {{{ *) | |
[ | |
REWRITE_TAC[dot]; | |
LET_TAC; | |
REPEAT GEN_TAC; | |
ABBREV_TAC `(P:num->bool) = \m. (euclid m f) /\ (euclid m g)`; | |
DISCH_ALL_TAC; | |
SUBGOAL_TAC `(P:num->bool) (p:num)`; | |
EXPAND_TAC "P"; | |
ASM_REWRITE_TAC[]; | |
DISCH_TAC; | |
SUBGOAL_TAC `min_num P <=| p`; | |
ASM_MESON_TAC[min_least]; | |
DISCH_TAC; | |
SUBGOAL_TAC | |
`euclid (min_num (P:num->bool)) f /\ (euclid (min_num (P:num->bool)) g)`; | |
ASM_MESON_TAC[min_least]; | |
DISCH_ALL_TAC; | |
ABBREV_TAC `q = min_num P`; | |
MP_TAC (SPECL [`q:num`;`p:num`] LE_EXISTS); | |
ASM_REWRITE_TAC[]; | |
DISCH_THEN CHOOSE_TAC; | |
ASM_REWRITE_TAC[GSYM SUM_TWO]; | |
MATCH_MP_TAC (REAL_ARITH `(u = (&.0)) ==> (x = x + u)`); | |
SUBGOAL_THEN `!n. n>=| q ==> ((\i. f i *. g i) n = (&.0))` (fun th -> MATCH_MP_TAC (MATCH_MP SUM_ZERO th)); | |
GEN_TAC THEN BETA_TAC; | |
DISCH_TAC; | |
SUBGOAL_THEN `(f:num->real) n = (&.0)` (fun th -> REWRITE_TAC[th;REAL_ARITH `(&.0)*.a =(&.0)`]); | |
UNDISCH_TAC `euclid q f`; | |
UNDISCH_TAC `n >=| q`; | |
MESON_TAC[euclid;ARITH_RULE `(a<=|b) <=> (b >=| a)`]; | |
ACCEPT_TAC (ARITH_RULE `q >=| q`); | |
]);; | |
(* }}} *) | |
let dot_updim = prove_by_refinement ( | |
`!f g m n. (m <=|n) /\ (euclid m f) /\ (euclid m g) ==> | |
(dot f g = sum (0,n) (\i. (f i)* (g i)))`, | |
(* {{{ *) | |
[ | |
REPEAT GEN_TAC; | |
DISCH_ALL_TAC; | |
SUBGOAL_TAC `(euclid n f) /\ (euclid n g)`; | |
ASM_MESON_TAC[euclid_updim]; | |
MATCH_ACCEPT_TAC dot_euclid] | |
);; | |
(* }}} *) | |
let dot_nonneg = prove_by_refinement( | |
`!f. (&.0 <= (dot f f))`, | |
(* {{{ *) | |
[ | |
REWRITE_TAC[dot]; | |
LET_TAC; | |
GEN_TAC; | |
SUBGOAL_TAC `(!n. (&.0 <=. (\(i:num). f i *. f i) n))`; | |
BETA_TAC; | |
REWRITE_TAC[REAL_LE_SQUARE]; | |
ASSUME_TAC(SPEC `\i. (f:num->real) i *. f i` SUM_POS); | |
ASM_MESON_TAC[]]);; | |
(* }}} *) | |
let dot_comm = prove_by_refinement( | |
`!f g. (dot f g = dot g f)`, | |
(* {{{ *) | |
[ | |
REWRITE_TAC[dot]; | |
REWRITE_TAC[REAL_ARITH `a*.b = b*.a`;TAUT `a/\b <=> b/\a`] | |
]);; | |
(* }}} *) | |
let dot_neg = prove_by_refinement( | |
`!f g. (dot (--f) g) = --. (dot f g)`, | |
(* {{{ *) | |
[ | |
REWRITE_TAC[dot]; | |
LET_TAC; | |
REWRITE_TAC [GSYM neg_dim]; | |
ONCE_REWRITE_TAC[GSYM SUM_NEG]; | |
REWRITE_TAC[euclid_neg]; | |
REPEAT GEN_TAC; | |
AP_TERM_TAC; | |
MATCH_MP_TAC EQ_EXT; | |
BETA_TAC; | |
GEN_TAC; | |
REWRITE_TAC[REAL_ARITH `(--x) * y = --. (x *y)`]; | |
]);; | |
(* }}} *) | |
let dot_neg2 = prove_by_refinement( | |
`!f g. (dot f (--g)) = --. (dot f g)`, | |
(* {{{ *) | |
[ | |
ONCE_REWRITE_TAC[dot_comm]; | |
REWRITE_TAC[dot_neg]; | |
]);; | |
(* }}} *) | |
let dot_scale = prove_by_refinement( | |
`!n f g s. (euclid n f) /\ (euclid n g) ==> | |
(dot (s *# f) g = s *. (dot f g))`, | |
(* {{{ *) | |
[ | |
REWRITE_TAC[euclid_scale]; | |
REPEAT GEN_TAC; | |
DISCH_THEN (fun th -> ASSUME_TAC th THEN ASSUME_TAC (MATCH_MP dot_euclid th)); | |
SUBGOAL_THEN (`euclid n (\ (i:num). (s *. f i) ) /\ (euclid n g)`) ASSUME_TAC; | |
ASM_REWRITE_TAC[]; | |
ASSUME_TAC(REWRITE_RULE[euclid_scale](SPECL [`n:num`;`s:real`;`f:num->real`] euclid_scale_closure)); | |
ASM_MESON_TAC[]; | |
IMP_RES_THEN ASSUME_TAC dot_euclid; | |
ASM_REWRITE_TAC[]; | |
REWRITE_TAC[GSYM SUM_CMUL]; | |
AP_TERM_TAC; | |
MATCH_MP_TAC EQ_EXT; | |
GEN_TAC; | |
BETA_TAC; | |
REWRITE_TAC[REAL_ARITH `a*.(b*.c) = (a*b)*c`]; | |
]);; | |
(* }}} *) | |
let dot_scale_euclidean = prove_by_refinement( | |
`!f g s. (euclidean f) /\ (euclidean g) ==> | |
(dot (s *# f) g = s *. (dot f g))`, | |
(* {{{ *) | |
[ | |
REWRITE_TAC[euclidean]; | |
DISCH_ALL_TAC; | |
REPEAT (UNDISCH_FIND_THEN `euclid` (CHOOSE_THEN MP_TAC)); | |
DISCH_ALL_TAC; | |
ASSUME_TAC (ARITH_RULE `(n' <=| n+n')`); | |
ASSUME_TAC (ARITH_RULE `(n <=| n+n')`); | |
SUBGOAL_TAC `euclid (n+|n') f /\ euclid (n+n') g`; | |
ASM_MESON_TAC[euclid_updim]; | |
MESON_TAC[dot_scale]; | |
]);; | |
(* }}} *) | |
let dot_scale2 = prove_by_refinement( | |
`!n f g s. (euclid n f) /\ (euclid n g) ==> | |
(dot f (s *# g) = s *. (dot f g))`, | |
(* {{{ *) | |
[ | |
ONCE_REWRITE_TAC[dot_comm]; | |
MESON_TAC[dot_scale] | |
]);; | |
(* }}} *) | |
let dot_scale2_euclidean = prove_by_refinement( | |
`!f g s. (euclidean f) /\ (euclidean g) ==> | |
(dot f (s *# g) = s *. (dot f g))`, | |
(* {{{ *) | |
[ | |
ONCE_REWRITE_TAC[dot_comm]; | |
MESON_TAC[dot_scale_euclidean]; | |
]);; | |
(* }}} *) | |
let dot_linear = prove_by_refinement( | |
`!n f g h. (euclid n f) /\ (euclid n g) /\ (euclid n h) ==> | |
((dot (f + g) h ) = (dot f h) +. (dot g h))`, | |
(* {{{ *) | |
[ | |
DISCH_ALL_TAC; | |
SUBGOAL_TAC `euclid n (f+g)`; | |
ASM_MESON_TAC[euclid_add_closure]; | |
DISCH_TAC; | |
MP_TAC (SPECL [`n:num`;`f:num->real`;`h:num->real`] dot_euclid); | |
MP_TAC (SPECL [`n:num`;`g:num->real`;`h:num->real`] dot_euclid); | |
MP_TAC (SPECL [`n:num`;`(f+g):num->real`;`h:num->real`] dot_euclid); ASM_REWRITE_TAC[]; | |
DISCH_ALL_TAC; | |
ASM_REWRITE_TAC[]; | |
REWRITE_TAC[GSYM SUM_ADD]; | |
AP_TERM_TAC; | |
MATCH_MP_TAC EQ_EXT THEN GEN_TAC THEN BETA_TAC; | |
REWRITE_TAC[euclid_plus]; | |
REWRITE_TAC[REAL_ARITH `(a+.b)*.c = a*c + b*c`]; | |
]);; | |
(* }}} *) | |
let dot_minus_linear = prove_by_refinement( | |
`!n f g h. (euclid n f) /\ (euclid n g) /\ (euclid n h) ==> | |
((dot (f - g) h ) = (dot f h) -. (dot g h))`, | |
(* {{{ *) | |
[ | |
DISCH_ALL_TAC; | |
SUBGOAL_TAC `euclid n (f-g)`; | |
ASM_MESON_TAC[euclid_sub_closure]; | |
DISCH_TAC; | |
MP_TAC (SPECL [`n:num`;`f:num->real`;`h:num->real`] dot_euclid); | |
MP_TAC (SPECL [`n:num`;`g:num->real`;`h:num->real`] dot_euclid); | |
MP_TAC (SPECL [`n:num`;`(f-g):num->real`;`h:num->real`] dot_euclid); | |
ASM_REWRITE_TAC[]; | |
DISCH_ALL_TAC; | |
ASM_REWRITE_TAC[]; | |
REWRITE_TAC[GSYM SUM_SUB]; | |
AP_TERM_TAC; | |
MATCH_MP_TAC EQ_EXT THEN GEN_TAC THEN BETA_TAC; | |
REWRITE_TAC[euclid_minus]; | |
REWRITE_TAC[REAL_ARITH `(a-.b)*.c = a*c - b*c`]; | |
]);; | |
(* }}} *) | |
let dot_linear_euclidean = prove_by_refinement( | |
`!f g h. (euclidean f) /\ (euclidean g) /\ (euclidean h) ==> | |
((dot (f + g) h ) = (dot f h) +. (dot g h))`, | |
(* {{{ *) | |
[ | |
REWRITE_TAC[euclidean]; | |
DISCH_ALL_TAC; | |
REPEAT (UNDISCH_FIND_THEN `euclid` (CHOOSE_THEN MP_TAC)); | |
DISCH_ALL_TAC; | |
SUBGOAL_TAC `(euclid (n+n'+n'') f)`; | |
ASM_MESON_TAC[ARITH_RULE `n <=| n+n'+n''`;euclid_updim]; | |
SUBGOAL_TAC `(euclid (n+n'+n'') g)`; | |
ASM_MESON_TAC[ARITH_RULE `n' <=| n+n'+n''`;euclid_updim]; | |
SUBGOAL_TAC `(euclid (n+n'+n'') h)`; | |
ASM_MESON_TAC[ARITH_RULE `n'' <=| n+n'+n''`;euclid_updim]; | |
MESON_TAC[dot_linear]]);; | |
(* }}} *) | |
let dot_minus_linear_euclidean = prove_by_refinement( | |
`!f g h. (euclidean f) /\ (euclidean g) /\ (euclidean h) ==> | |
((dot (f - g) h ) = (dot f h) -. (dot g h))`, | |
(* {{{ *) | |
[ | |
REWRITE_TAC[euclidean]; | |
DISCH_ALL_TAC; | |
REPEAT (UNDISCH_FIND_THEN `euclid` (CHOOSE_THEN MP_TAC)); | |
DISCH_ALL_TAC; | |
SUBGOAL_TAC `(euclid (n+n'+n'') f)`; | |
ASM_MESON_TAC[ARITH_RULE `n <=| n+n'+n''`;euclid_updim]; | |
SUBGOAL_TAC `(euclid (n+n'+n'') g)`; | |
ASM_MESON_TAC[ARITH_RULE `n' <=| n+n'+n''`;euclid_updim]; | |
SUBGOAL_TAC `(euclid (n+n'+n'') h)`; | |
ASM_MESON_TAC[ARITH_RULE `n'' <=| n+n'+n''`;euclid_updim]; | |
MESON_TAC[dot_minus_linear]; | |
]);; | |
(* }}} *) | |
let dot_linear2 = prove_by_refinement( | |
`!n f g h. (euclid n f) /\ (euclid n g) /\ (euclid n h) ==> | |
((dot h (f + g)) = (dot h f) +. (dot h g))`, | |
(* {{{ *) | |
[ | |
REPEAT GEN_TAC; | |
ONCE_REWRITE_TAC[dot_comm]; | |
MESON_TAC[dot_linear] | |
]);; | |
(* }}} *) | |
let dot_linear2_euclidean = prove_by_refinement( | |
`!f g h. (euclidean f) /\ (euclidean g) /\ (euclidean h) ==> | |
((dot h (f + g)) = (dot h f) +. (dot h g))`, | |
(* {{{ *) | |
[ | |
REPEAT GEN_TAC; | |
ONCE_REWRITE_TAC[dot_comm]; | |
MESON_TAC[dot_linear_euclidean] | |
]);; | |
(* }}} *) | |
let dot_minus_linear2 = prove_by_refinement( | |
`!n f g h. (euclid n f) /\ (euclid n g) /\ (euclid n h) ==> | |
((dot h (f - g)) = (dot h f) -. (dot h g))`, | |
(* {{{ *) | |
[ | |
REPEAT GEN_TAC; | |
ONCE_REWRITE_TAC[dot_comm]; | |
MESON_TAC[dot_minus_linear] | |
]);; | |
(* }}} *) | |
let dot_minus_linear2_euclidean = prove_by_refinement( | |
`!f g h. (euclidean f) /\ (euclidean g) /\ (euclidean h) ==> | |
((dot h (f - g)) = (dot h f) -. (dot h g))`, | |
(* {{{ *) | |
[ | |
REPEAT GEN_TAC; | |
ONCE_REWRITE_TAC[dot_comm]; | |
MESON_TAC[dot_minus_linear_euclidean] | |
]);; | |
(* }}} *) | |
let dot_rzero = prove_by_refinement( | |
`!f. (dot f euclid0) = &.0`, | |
(* {{{ *) | |
[ | |
REWRITE_TAC[dot;euclid0]; | |
LET_TAC; | |
GEN_TAC; | |
SUBGOAL_THEN `(\ (i:num). (f i *. (&.0))) = (\ (r:num). (&.0))` (fun t -> REWRITE_TAC[t]); | |
REWRITE_TAC[REAL_ARITH `a*.(&.0) = (&.0)`]; | |
MESON_TAC[SUM_0]; | |
]);; | |
(* }}} *) | |
let dot_lzero = prove_by_refinement( | |
`!f. (dot euclid0 f ) = &.0`, | |
(* {{{ *) | |
[ | |
ONCE_REWRITE_TAC[dot_comm]; | |
REWRITE_TAC[dot_rzero]; | |
]);; | |
(* }}} *) | |
let dot_zero = prove_by_refinement( | |
`!f n. (euclid n f) /\ (dot f f = (&.0)) ==> (f = euclid0)`, | |
(* {{{ *) | |
[ | |
DISCH_ALL_TAC; | |
UNDISCH_TAC `dot f f = (&.0)`; | |
MP_TAC (SPECL [`n:num`;`f:num->real`;`f:num->real`] dot_euclid); | |
ASM_REWRITE_TAC[]; | |
DISCH_THEN (fun th -> REWRITE_TAC[th]); | |
REWRITE_TAC[euclid0]; | |
DISCH_TAC; | |
MATCH_MP_TAC EQ_EXT; | |
GEN_TAC THEN BETA_TAC; | |
DISJ_CASES_TAC (ARITH_RULE `x <| n \/ (n <=| x)`); | |
CLEAN_ASSUME_TAC (ARITH_RULE `(x <|n) ==> (SUC x <=| n)`); | |
CLEAN_THEN (SPECL [`SUC x`;`n:num`] LE_EXISTS) CHOOSE_TAC; | |
UNDISCH_TAC `sum(0,n) (\ (i:num). f i *. f i) = (&.0)`; | |
ASM_REWRITE_TAC[]; | |
REWRITE_TAC[GSYM SUM_TWO;sum;ARITH_RULE `0+| x = x`]; | |
SUBGOAL_TAC `!a b. (&.0 <=. sum(a,b) (\ (i:num). f i *. f i))`; | |
REPEAT GEN_TAC; | |
MP_TAC (SPEC `\ (i:num). f i *. f i` SUM_POS); | |
BETA_TAC; | |
REWRITE_TAC[REAL_LE_SQUARE]; | |
MESON_TAC[]; | |
DISCH_ALL_TAC; | |
IMP_RES_THEN MP_TAC (REAL_ARITH `(a+.b = &.0) ==> ((&.0 <=. b) ==> (a <=. (&.0)))`); | |
ASM_REWRITE_TAC[]; | |
DISCH_TAC; | |
IMP_RES_THEN MP_TAC (REAL_ARITH `(a+b <=. &.0) ==> ((&.0 <=. a) ==> (b <=. (&.0)))`); | |
ASM_REWRITE_TAC[]; | |
ABBREV_TAC `a = (f:num->real) x`; | |
MESON_TAC[REAL_LE_SQUARE;REAL_ARITH `a <=. (&.0) /\ (&.0 <=. a) ==> (a = (&.0))`;REAL_ENTIRE]; | |
UNDISCH_TAC `euclid n f`; | |
REWRITE_TAC[euclid]; | |
ASM_MESON_TAC[]; | |
]);; | |
(* }}} *) | |
let dot_zero_euclidean = prove_by_refinement( | |
`!f. (euclidean f) /\ (dot f f = (&.0)) ==> (f = euclid0)`, | |
(* {{{ *) | |
[ | |
REWRITE_TAC[euclidean]; | |
DISCH_ALL_TAC; | |
UNDISCH_FIND_THEN `euclid` CHOOSE_TAC; | |
ASM_MESON_TAC[dot_zero]; | |
]);; | |
(* }}} *) | |
(* norm *) | |
let norm_nonneg = prove_by_refinement( | |
`!f. (&.0 <=. norm f)`, | |
(* {{{ *) | |
[ | |
REWRITE_TAC[norm]; | |
ONCE_REWRITE_TAC[GSYM SQRT_0]; | |
GEN_TAC; | |
MATCH_MP_TAC SQRT_MONO_LE; | |
REWRITE_TAC[dot_nonneg]; | |
]);; | |
(* }}} *) | |
let norm_neg = prove_by_refinement( | |
`!f. norm (--f) = norm f`, | |
(* {{{ *) | |
[ | |
REWRITE_TAC[norm;dot_neg;dot_neg2]; | |
REWRITE_TAC[REAL_ARITH `--(--. x) = x`]; | |
]);; | |
(* }}} *) | |
let cauchy_schwartz = prove_by_refinement( | |
`!f g. (euclidean f) /\ (euclidean g) ==> | |
((abs(dot f g)) <=. (norm f)*. (norm g))`, | |
(* {{{ *) | |
[ | |
DISCH_ALL_TAC; | |
DISJ_CASES_TAC (TAUT `(f = euclid0 ) \/ ~(f = euclid0)`); | |
ASM_REWRITE_TAC[dot_lzero;norm;SQRT_0;REAL_ARITH`&.0 *. x = (&.0)`]; | |
REWRITE_TAC[ABS_0;REAL_ARITH `x <=. x`]; | |
SUBGOAL_THEN `!a b. (dot (a *# f + b *# g) (a *# f + b *# g)) = a*a*(dot f f) + (&.2)*a*b*(dot f g) + b*b*(dot g g)` ASSUME_TAC; | |
REPEAT GEN_TAC; | |
ASM_SIMP_TAC[euclidean_scale_closure;euclidean_add_closure;dot_linear_euclidean;dot_linear2_euclidean;dot_scale_euclidean;dot_scale2_euclidean]; | |
REWRITE_TAC[REAL_MUL_AC;REAL_ADD_AC;REAL_ADD_LDISTRIB]; | |
MATCH_MP_TAC (REAL_ARITH`(b+. c=e) ==> (a+b+c+d = a+ e+d)`); | |
REWRITE_TAC[GSYM REAL_LDISTRIB]; | |
REPEAT AP_TERM_TAC; | |
MATCH_MP_TAC (REAL_ARITH `(a=b)==> (a+.b = a*(&.2))`); | |
REWRITE_TAC[dot_comm]; | |
FIRST_ASSUM (fun th -> ASSUME_TAC (SPECL[` --. (dot f g)`;`dot f f`] th)); | |
CLEAN_THEN (SPEC `(--.(dot f g)) *# f + (dot f f)*# g` dot_nonneg) ASSUME_TAC; | |
REWRITE_TAC[norm]; | |
ASSUME_TAC(SPEC `f:num->real` dot_nonneg); | |
ASSUME_TAC(SPEC `g:num->real` dot_nonneg); | |
ASM_SIMP_TAC[GSYM SQRT_MUL]; | |
REWRITE_TAC[GSYM POW_2_SQRT_ABS;POW_2]; | |
MATCH_MP_TAC SQRT_MONO_LE; | |
REWRITE_TAC[REAL_LE_SQUARE]; | |
SUBGOAL_TAC `&.0 <. dot f f`; | |
MATCH_MP_TAC (REAL_ARITH `~(x = &.0) /\ (&.0 <=. x) ==> (&.0 <. x)`); | |
ASM_REWRITE_TAC[]; | |
ASM_MESON_TAC[dot_zero_euclidean]; | |
REPEAT (UNDISCH_FIND_TAC `(<=.)` ); | |
ABBREV_TAC `a = dot f f`; | |
ABBREV_TAC `b = dot f g`; | |
ABBREV_TAC `c = dot g g`; | |
POP_ASSUM_LIST (fun t -> ALL_TAC); | |
REWRITE_TAC[REAL_ARITH `(&.2 *. x = x + x)`;REAL_ADD_AC]; | |
REWRITE_TAC[REAL_ARITH `(a *. ((--. b)*.c) = --. (a *. (b*.c)))/\ (--. ((--. a) *. b) = a *.b )`]; | |
REWRITE_TAC[REAL_ARITH `(--. b) *. a*. b + b*.b*.a = (&.0)`]; | |
REWRITE_TAC[REAL_ARITH `x +. (&.0) = x`]; | |
REWRITE_TAC[REAL_ARITH `(&.0 <=. (a*.a*.c +. (--.b)*.a*.b)) <=> (a*b*b <=. a*a*c)`]; | |
DISCH_ALL_TAC; | |
MATCH_MP_TAC (SPEC `a:real` REAL_LE_LCANCEL_IMP); | |
ASM_REWRITE_TAC[]; | |
]);; | |
(* }}} *) | |
let norm_dot = prove_by_refinement( | |
`!h. norm(h) * norm(h) = (dot h h)`, | |
(* {{{ *) | |
[ | |
REWRITE_TAC[norm]; | |
ONCE_REWRITE_TAC[GSYM POW_2]; | |
REWRITE_TAC[SQRT_POW2;dot_nonneg]; | |
]);; | |
(* }}} *) | |
let norm_triangle = prove_by_refinement( | |
`!f g. (euclidean f) /\ (euclidean g) ==> | |
(norm (f+g) <=. norm(f) + norm(g))`, | |
(* {{{ *) | |
[ | |
DISCH_ALL_TAC; | |
MATCH_MP_TAC square_le; | |
REWRITE_TAC[norm_nonneg]; | |
CONJ_TAC; | |
MATCH_MP_TAC (REAL_ARITH `(&.0 <=. x) /\ (&.0 <=. y) ==> (&.0 <= x+y)`); | |
REWRITE_TAC[norm_nonneg]; | |
REWRITE_TAC[REAL_ADD_LDISTRIB;REAL_ADD_RDISTRIB;REAL_ADD_AC]; | |
REWRITE_TAC[norm_dot]; | |
ASM_SIMP_TAC[euclidean_add_closure;dot_linear_euclidean;dot_linear2_euclidean]; | |
REWRITE_TAC[REAL_MUL_AC]; | |
REWRITE_TAC[REAL_ADD_AC]; | |
MATCH_MP_TAC (REAL_ARITH `(b<=.c)==>((a+.b) <=. (a+c))`); | |
MATCH_MP_TAC (REAL_ARITH `(a=b)/\ (a<=. e) ==>((a+b+c) <= (c+e+e))`); | |
CONJ_TAC; | |
REWRITE_TAC[dot_comm]; | |
ASM_MESON_TAC[cauchy_schwartz;REAL_LE_TRANS;REAL_ARITH `x <=. ||. x`]; | |
]);; | |
(* }}} *) | |
(* ------------------------------------------------------------------ *) | |
(* Metric Space *) | |
(* ------------------------------------------------------------------ *) | |
let metric_space_zero = prove_by_refinement( | |
`!(X:A->bool) d a. (metric_space(X,d) /\ (X a) ==> (d a a = (&.0)))`, | |
(* {{{ *) | |
[MESON_TAC[metric_space] | |
]);; | |
(* }}} *) | |
let metric_space_symm = prove_by_refinement( | |
`!(X:A->bool) d a b. (metric_space(X,d) /\ (X a) /\ (X b) ==> | |
(d a b = d b a))`, | |
(* {{{ *) | |
[ | |
MESON_TAC[metric_space]; | |
]);; | |
(* }}} *) | |
let metric_space_triangle = prove_by_refinement( | |
`!(X:A->bool) d a b c. (metric_space(X,d) /\ (X a) /\ (X b) /\ (X c) | |
==> (d a c <=. d a b +. d b c))`, | |
(* {{{ *) | |
[ | |
MESON_TAC[metric_space]; | |
]);; | |
(* }}} *) | |
let metric_subspace = prove_by_refinement( | |
`!X Y d. (Y SUBSET (X:A->bool)) /\ (metric_space (X,d)) ==> | |
(metric_space (Y,d))`, | |
(* {{{ *) | |
[ | |
REWRITE_TAC[SUBSET;metric_space;IN]; | |
DISCH_ALL_TAC; | |
DISCH_ALL_TAC; | |
UNDISCH_FIND_THEN `( /\ )` (fun t -> MP_TAC (SPECL[`x:A`;`y:A`;`z:A`] t)); | |
ASM_SIMP_TAC[]; | |
]);; | |
(* }}} *) | |
let metric_euclidean = prove_by_refinement( | |
`metric_space (euclidean,d_euclid)`, | |
(* {{{ *) | |
[ | |
REWRITE_TAC[metric_space;d_euclid]; | |
DISCH_ALL_TAC; | |
CONJ_TAC; | |
REWRITE_TAC[norm_nonneg]; | |
CONJ_TAC; | |
EQ_TAC; | |
REWRITE_TAC[norm]; | |
ONCE_REWRITE_TAC[REAL_ARITH `(&.0 = x) <=> (x = (&.0))`]; | |
ASM_SIMP_TAC[dot_nonneg;SQRT_EQ_0]; | |
DISCH_TAC; | |
SUBGOAL_TAC `x - y = euclid0`; | |
ASM_MESON_TAC[dot_zero_euclidean;euclidean_sub_closure]; | |
REWRITE_TAC[euclid_minus;euclid0]; | |
DISCH_TAC THEN (MATCH_MP_TAC EQ_EXT); | |
X_GEN_TAC `n:num`; | |
FIRST_ASSUM (fun t -> ASSUME_TAC (BETA_RULE (AP_THM t `n:num`))); | |
ASM_MESON_TAC [REAL_ARITH `(a = b) <=> (a-.b = (&.0))`]; | |
DISCH_THEN (fun t->REWRITE_TAC[t]); | |
SUBGOAL_THEN `(y:num->real) - y = euclid0` (fun t-> REWRITE_TAC[t]); | |
REWRITE_TAC[euclid0;euclid_minus]; | |
MATCH_MP_TAC EQ_EXT; | |
GEN_TAC THEN BETA_TAC; | |
REAL_ARITH_TAC; | |
REWRITE_TAC[norm;dot_lzero;SQRT_0]; | |
CONJ_TAC; | |
SUBGOAL_THEN `x - y = (euclid_neg (y-x))` ASSUME_TAC; | |
REWRITE_TAC[euclid_neg;euclid_minus]; | |
MATCH_MP_TAC EQ_EXT THEN GEN_TAC THEN BETA_TAC; | |
REAL_ARITH_TAC; | |
ASM_MESON_TAC[norm_neg]; | |
SUBGOAL_THEN `(x-z) = euclid_plus(x - y) (y-z)` (fun t -> REWRITE_TAC[t]); | |
REWRITE_TAC[euclid_plus;euclid_minus]; | |
MATCH_MP_TAC EQ_EXT THEN GEN_TAC THEN BETA_TAC THEN REAL_ARITH_TAC; | |
ASM_SIMP_TAC[norm_triangle;euclidean_sub_closure;euclidean_sub_closure]; | |
]);; | |
(* }}} *) | |
let metric_euclid = prove_by_refinement( | |
`!n. metric_space (euclid n,d_euclid)`, | |
(* {{{ *) | |
[ | |
GEN_TAC; | |
MATCH_MP_TAC (ISPEC `euclidean` metric_subspace); | |
REWRITE_TAC[metric_euclidean;SUBSET;IN]; | |
MESON_TAC[euclidean]; | |
]);; | |
(* }}} *) | |
let euclid1_abs = prove_by_refinement( | |
`!x y. (euclid 1 x) /\ (euclid 1 y) ==> | |
((d_euclid x y) = (abs ((x 0) -. (y 0))))`, | |
(* {{{ proof *) | |
[ | |
REWRITE_TAC[d_euclid;norm]; | |
DISCH_ALL_TAC; | |
SUBGOAL_TAC `euclid 1 (x - y)`; | |
ASM_MESON_TAC[euclid_sub_closure]; | |
DISCH_TAC; | |
ASSUME_TAC (prove(`1 <= 1`,ARITH_TAC)); | |
MP_TAC (SPECL[`(x-y):num->real`;`(x-y):num->real`;`1`;`1`] dot_updim); | |
ASM_REWRITE_TAC[]; | |
DISCH_THEN (fun t-> REWRITE_TAC[t]); | |
REWRITE_TAC[prove(`1 = SUC 0`,ARITH_TAC)]; | |
REWRITE_TAC[sum]; | |
REWRITE_TAC[REAL_ARITH `&.0 + x = x`]; | |
REWRITE_TAC[ARITH_RULE `0 +| 0 = 0`]; | |
REWRITE_TAC[euclid_minus]; | |
ASM_MESON_TAC[REAL_POW_2;POW_2_SQRT_ABS]; | |
]);; | |
(* }}} *) | |
let coord_dirac = prove_by_refinement( | |
`!i t. coord i (t *# dirac_delta i ) = t`, | |
(* {{{ proof *) | |
[ | |
REWRITE_TAC[coord;dirac_delta;euclid_scale]; | |
ARITH_TAC; | |
]);; | |
(* }}} *) | |
let dirac_0 = prove_by_refinement( | |
`!x. (x *# dirac_delta 0) 0 = x`, | |
(* {{{ proof *) | |
[ | |
GEN_TAC; | |
REWRITE_TAC[dirac_delta;euclid_scale;]; | |
REDUCE_TAC; | |
]);; | |
(* }}} *) | |
let euclid1_dirac = prove_by_refinement( | |
`!x. euclid 1 x <=> (x = (x 0) *# (dirac_delta 0))`, | |
(* {{{ proof *) | |
[ | |
DISCH_ALL_TAC; | |
REWRITE_TAC[euclid; euclid_scale;dirac_delta ]; | |
EQ_TAC; | |
DISCH_ALL_TAC; | |
IMATCH_MP_TAC EQ_EXT; | |
X_GEN_TAC `n:num`; | |
BETA_TAC; | |
COND_CASES_TAC; | |
REDUCE_TAC; | |
ASM_REWRITE_TAC[]; | |
REDUCE_TAC; | |
ASM_SIMP_TAC[ARITH_RULE `(~(0=m))==>(1<=| m)`]; | |
DISCH_ALL_TAC; | |
DISCH_ALL_TAC; | |
USE 1 (MATCH_MP (ARITH_RULE `1<= m ==> (~(0=m))`)); | |
ASM ONCE_REWRITE_TAC[]; | |
ASM_REWRITE_TAC[]; | |
REDUCE_TAC ; | |
]);; | |
(* }}} *) | |
(* projection onto the ith coordinate, as a euclidean vector *) | |
let proj = euclid_def | |
`proj i x = (\j. (if (j=0) then (x (i:num)) else (&.0)))`;; | |
let proj_euclid1 = prove_by_refinement( | |
`!i x. euclid 1 (proj i x)`, | |
(* {{{ proof *) | |
[ | |
REWRITE_TAC[proj;euclid]; | |
REPEAT GEN_TAC; | |
COND_CASES_TAC; | |
ASM_REWRITE_TAC[]; | |
ARITH_TAC; | |
ARITH_TAC; | |
]);; | |
(* }}} *) | |
let d_euclid_n = prove_by_refinement( | |
`!n x y. ((euclid n x) /\ (euclid n y)) ==> ((d_euclid x y) = | |
sqrt(sum (0,n) (\i. (x i - y i) * (x i - y i))))`, | |
(* {{{ proof *) | |
[ | |
REPEAT GEN_TAC; | |
REWRITE_TAC[d_euclid;norm]; | |
DISCH_ALL_TAC; | |
ASSUME_TAC (ARITH_RULE `n <=| n`); | |
SUBGOAL_TAC `euclid n (x - y)`; | |
ASM_SIMP_TAC[euclid_sub_closure]; | |
DISCH_TAC; | |
CLEAN_ASSUME_TAC (SPECL[`(x-y):num->real`;`(x-y):num->real`;`n:num`;`n:num`]dot_updim); | |
ASM_REWRITE_TAC[euclid_minus]; | |
]);; | |
(* }}} *) | |
let norm_n = prove_by_refinement( | |
`!n x. ((euclid n x) ) ==> ((norm x) = | |
sqrt(sum (0,n) (\i. (x i ) * (x i ))))`, | |
(* {{{ proof *) | |
[ | |
REPEAT GEN_TAC; | |
TYPEL_THEN [`x`;`x`;`n`;`n`] (fun t-> SIMP_TAC [norm;ISPECL t dot_updim;ARITH_RULE `n <=| n`;]); | |
]);; | |
(* }}} *) | |
let proj_d_euclid = prove_by_refinement( | |
`!i x y. d_euclid (proj i x) (proj i y) = abs (x i -. y i)`, | |
(* {{{ proof *) | |
[ | |
REPEAT GEN_TAC; | |
SIMP_TAC[SPEC `1` d_euclid_n;proj_euclid1]; | |
REWRITE_TAC[ARITH_RULE `1 = SUC 0`;sum]; | |
NUM_REDUCE_TAC; | |
REWRITE_TAC[proj]; | |
REWRITE_TAC[REAL_ARITH `&.0 + x = x`]; | |
MESON_TAC[POW_2_SQRT_ABS;REAL_POW_2]; | |
]);; | |
(* }}} *) | |
let d_euclid_pos = prove_by_refinement( | |
`!x y n. (euclid n x) /\ (euclid n y) ==> (&.0 <=. d_euclid x y)`, | |
(* {{{ proof *) | |
[ | |
DISCH_ALL_TAC; | |
MP_TAC metric_euclid; | |
REWRITE_TAC[metric_space;euclidean]; | |
ASM_MESON_TAC[]; | |
]);; | |
(* }}} *) | |
let proj_contraction = prove_by_refinement( | |
`!n x y i. (euclid n x) /\ (euclid n y) ==> | |
abs (x i - (y i)) <=. d_euclid x y`, | |
(* {{{ proof *) | |
[ | |
DISCH_ALL_TAC; | |
MATCH_MP_TAC REAL_POW_2_LE; | |
REWRITE_TAC[REAL_ABS_POS]; | |
CONJ_TAC; | |
ASM_MESON_TAC[d_euclid_pos]; | |
ASM_SIMP_TAC[SPEC `n:num` d_euclid_n]; | |
REWRITE_TAC[REAL_POW2_ABS]; | |
SUBGOAL_TAC `euclid n (x - y)`; (* why does MESON fail here??? *) | |
MATCH_MP_TAC euclid_sub_closure; | |
ASM_MESON_TAC[]; | |
DISCH_TAC; | |
SUBGOAL_TAC `&.0 <=. sum (0,n) (\i. (x i - y i)*. (x i - y i))`; | |
MATCH_MP_TAC SUM_POS_GEN; | |
DISCH_ALL_TAC THEN BETA_TAC; | |
REWRITE_TAC[REAL_LE_SQUARE]; | |
SIMP_TAC[SQRT_POW_2]; | |
DISCH_TAC; | |
ASM_CASES_TAC `n <=| i`; | |
MATCH_MP_TAC (REAL_ARITH `(x = (&.0)) /\ (&.0 <=. y) ==> (x <=. y)`); | |
ASM_REWRITE_TAC[]; | |
REWRITE_TAC[REAL_PROP_ZERO_POW]; | |
NUM_REDUCE_TAC; | |
ASM_MESON_TAC[euclid;euclid_minus]; | |
MP_TAC (ARITH_RULE `~(n <=| i) ==> (i < n) /\ (n = (SUC i) + (n-i-1))`); | |
ASM_REWRITE_TAC[] THEN DISCH_ALL_TAC; | |
ASM ONCE_REWRITE_TAC[]; | |
REWRITE_TAC[GSYM SUM_TWO]; | |
MATCH_MP_TAC (REAL_ARITH `(a <=. b) /\ (&.0 <=. c) ==> (a <=. (b +c))`); | |
CONJ_TAC; | |
REWRITE_TAC[sum_DEF]; | |
REWRITE_TAC[ARITH_RULE `0 +| i = i`]; | |
MATCH_MP_TAC (REAL_ARITH `(a = c) /\ (&.0 <=. b) ==> (a <=. b+c)`); | |
REWRITE_TAC[REAL_POW_2]; | |
MP_TAC (SPECL [`0:num`;`i:num`;`(x:num->real)- y`] REAL_SUM_SQUARE_POS); | |
BETA_TAC; | |
REWRITE_TAC[euclid_minus]; | |
MP_TAC (SPECL [`SUC i`;`(n:num)-i-1`;`(x:num->real)- y`] REAL_SUM_SQUARE_POS); | |
BETA_TAC; | |
REWRITE_TAC[euclid_minus]; | |
]);; | |
(* }}} *) | |
let euclid_dirac = prove_by_refinement( | |
`!x. (euclid 1 (x *# (dirac_delta 0)))`, | |
(* {{{ proof *) | |
[ | |
REWRITE_TAC[euclid;dirac_delta ;euclid_scale]; | |
DISCH_ALL_TAC; | |
USE 0 (MATCH_MP (ARITH_RULE `1 <=| m ==> (~(0=m))`)); | |
ASM_REWRITE_TAC[]; | |
REDUCE_TAC; | |
]);; | |
(* }}} *) | |
let d_euclid_pow2 = prove_by_refinement( | |
`!n x y. (euclid n x) /\ (euclid n y) ==> | |
((d_euclid x y) pow 2 = sum (0,n) (\i. (x i - y i) * (x i - y i)))`, | |
(* {{{ proof *) | |
[ | |
DISCH_ALL_TAC; | |
ASM_SIMP_TAC[d_euclid_n]; | |
REWRITE_TAC[SQRT_POW2]; | |
MATCH_MP_TAC SUM_POS_GEN; | |
BETA_TAC; | |
REDUCE_TAC; | |
]);; | |
(* }}} *) | |
let D_EUCLID_BOUND = prove_by_refinement( | |
`!n x y eps. ((euclid n x) /\ (euclid n y) /\ | |
(!i. (abs (x i -. y i) <=. eps))) ==> | |
( d_euclid x y <=. sqrt(&.n)*. eps )`, | |
(* {{{ proof *) | |
[ | |
DISCH_ALL_TAC; | |
SQUARE_TAC; | |
SUBCONJ_TAC; | |
JOIN 0 1; | |
USE 0 (MATCH_MP d_euclid_pos); | |
ASM_REWRITE_TAC[]; | |
DISCH_TAC; | |
WITH 2 (SPEC `0`); | |
USE 4 (MATCH_MP (REAL_ARITH `abs (x) <=. eps ==> &.0 <=. eps`)); | |
SUBCONJ_TAC; | |
ALL_TAC; | |
REWRITE_TAC[REAL_MUL_NN]; | |
DISJ1_TAC; | |
CONJ_TAC; | |
MATCH_MP_TAC SQRT_POS_LE ; | |
REDUCE_TAC; | |
ASM_REWRITE_TAC[]; | |
DISCH_TAC; | |
ASM_SIMP_TAC[d_euclid_pow2]; | |
SUBGOAL_TAC `!i. ((x:num->real) i -. y i) *. (x i -. y i) <=. eps* eps`; | |
GEN_TAC; | |
ALL_TAC; | |
USE 2 (SPEC `i:num`); | |
ABBREV_TAC `t = x i - (y:num->real) i`; | |
UND 2; | |
REWRITE_TAC[ABS_SQUARE_LE]; | |
REWRITE_TAC[REAL_POW_MUL]; | |
ASSUME_TAC (REWRITE_RULE[] ((REDUCE_CONV `&.0 <= &.n`))); | |
USE 6 (REWRITE_RULE[GSYM SQRT_POW2]); | |
ASM_REWRITE_TAC[]; | |
DISCH_TAC; | |
ALL_TAC; | |
MATCH_MP_TAC SUM_BOUND; | |
GEN_TAC; | |
DISCH_TAC; | |
BETA_TAC; | |
REWRITE_TAC[POW_2]; | |
ASM_MESON_TAC[]; | |
]);; | |
(* }}} *) | |
let metric_translate = prove_by_refinement( | |
`!n x y z . (euclid n x) /\ (euclid n y) /\ (euclid n z) ==> | |
(d_euclid (x + z) (y + z) = d_euclid x y)`, | |
(* {{{ proof *) | |
[ | |
REWRITE_TAC[d_euclid;norm]; | |
DISCH_ALL_TAC; | |
TYPE_THEN `euclid n (euclid_minus x y)` SUBGOAL_TAC; | |
ASM_SIMP_TAC[euclid_sub_closure]; | |
DISCH_TAC; | |
TYPE_THEN `euclid n (euclid_minus (euclid_plus x z) (euclid_plus y z))` SUBGOAL_TAC; | |
ASM_SIMP_TAC[euclid_sub_closure; euclid_add_closure]; | |
DISCH_ALL_TAC; | |
ASM_SIMP_TAC[SPEC `n:num` dot_euclid]; | |
TYPE_THEN `(x + z) - (y + z) = ((x:num->real) - y)` SUBGOAL_TAC; | |
IMATCH_MP_TAC EQ_EXT; | |
X_GEN_TAC `i:num`; | |
REWRITE_TAC[euclid_minus;euclid_plus]; | |
REAL_ARITH_TAC; | |
DISCH_THEN (fun t-> REWRITE_TAC[t]); | |
]);; | |
(* }}} *) | |
let metric_translate_LEFT = prove_by_refinement( | |
`!n x y z . (euclid n x) /\ (euclid n y) /\ (euclid n z) ==> | |
(d_euclid (z + x ) (z + y) = d_euclid x y)`, | |
(* {{{ proof *) | |
[ | |
REWRITE_TAC[d_euclid;norm]; | |
DISCH_ALL_TAC; | |
TYPE_THEN `euclid n (euclid_minus x y)` SUBGOAL_TAC; | |
ASM_SIMP_TAC[euclid_sub_closure]; | |
DISCH_TAC; | |
TYPE_THEN `euclid n (euclid_minus (euclid_plus z x) (euclid_plus z y))` SUBGOAL_TAC; | |
ASM_SIMP_TAC[euclid_sub_closure; euclid_add_closure]; | |
DISCH_ALL_TAC; | |
ASM_SIMP_TAC[SPEC `n:num` dot_euclid]; | |
TYPE_THEN `(z + x) - (z + y) = ((x:num->real) - y)` SUBGOAL_TAC; | |
IMATCH_MP_TAC EQ_EXT; | |
X_GEN_TAC `i:num`; | |
REWRITE_TAC[euclid_minus;euclid_plus]; | |
REAL_ARITH_TAC; | |
DISCH_THEN (fun t-> REWRITE_TAC[t]); | |
]);; | |
(* }}} *) | |
let norm_scale = prove_by_refinement( | |
`!t t' x . (euclidean x) ==> | |
(d_euclid (t *# x) (t' *# x) = | |
||. (t - t') * norm(x))`, | |
(* {{{ proof *) | |
[ | |
REWRITE_TAC[euclidean]; | |
LEFT_TAC "n"; | |
DISCH_ALL_TAC; | |
ASM_SIMP_TAC[d_euclid_n;norm_n;euclid_scale_closure;euclid_scale;GSYM REAL_SUB_RDISTRIB;REAL_MUL_AC;]; | |
REWRITE_TAC[GSYM REAL_POW_2 ]; | |
REWRITE_TAC[REAL_ARITH `a * a * b = b * (a * a)`;SUM_CMUL;]; | |
ASM_SIMP_TAC[SQRT_MUL;REAL_SUM_SQUARE_POS;REAL_LE_SQUARE_POW;POW_2_SQRT_ABS ]; | |
REWRITE_TAC[REAL_POW_2]; | |
]);; | |
(* }}} *) | |
let norm_scale_vec = prove_by_refinement( | |
`!n t x x' . (euclid n x) /\ (euclid n x') ==> | |
(d_euclid (t *# x) (t *# x') = ||. t * d_euclid x x')`, | |
(* {{{ proof *) | |
[ | |
DISCH_ALL_TAC; | |
ASM_SIMP_TAC[d_euclid_n;norm_n;euclid_scale_closure;euclid_scale;GSYM REAL_SUB_LDISTRIB;REAL_MUL_AC;]; | |
REWRITE_TAC[REAL_ARITH `t*t*b = (t*t)*b`]; | |
REWRITE_TAC[GSYM REAL_POW_2 ;SUM_CMUL ]; | |
GEN_REWRITE_TAC (LAND_CONV o RAND_CONV o RAND_CONV o ONCE_DEPTH_CONV) [REAL_POW_2]; | |
ASM_SIMP_TAC[SQRT_MUL;REAL_SUM_SQUARE_POS;REAL_LE_SQUARE_POW;POW_2_SQRT_ABS ]; | |
REWRITE_TAC[REAL_POW_2]; | |
]);; | |
(* }}} *) | |
(* ------------------------------------------------------------------ *) | |
(* Topological Spaces *) | |
(* ------------------------------------------------------------------ *) | |
(* Definitions *) | |
(* underscore is necessary to avoid Harrison's global "topology" *) | |
(* carrier of topology is UNIONS U *) | |
let topology = euclid_def `topology_ (U:(A->bool)->bool) <=> | |
(!A B V. (U EMPTY) /\ | |
((U A) /\ (U B) ==> (U (A INTER B))) /\ | |
((V SUBSET U) ==> (U (UNIONS V))))`;; | |
let open_DEF = euclid_def `open_ (U:(A->bool)->bool) A = (U A)`;; | |
let closed = euclid_def `closed_ (U:(A->bool)->bool) B <=> | |
(B SUBSET (UNIONS U)) /\ | |
(open_ U ((UNIONS U) DIFF B))`;; | |
let closure = euclid_def `closure (U:(A->bool)->bool) A = | |
INTERS { B | (closed_ U B) /\ (A SUBSET B) }`;; | |
let induced_top = euclid_def `induced_top U (A:A->bool) = | |
IMAGE ( \B. (B INTER A)) U`;; | |
let open_ball = euclid_def | |
`open_ball(X,d) (x:A) r = { y | (X x) /\ (X y) /\ (d x y <. r) }`;; | |
let closed_ball =euclid_def | |
`closed_ball (X,d) (x:A) r = { y | (X x) /\ (X y) /\ (d x y <=. r) }`;; | |
let open_balls = euclid_def | |
`open_balls (X,d) = { B | ?(x:A) r. B = open_ball (X,d) x r}`;; | |
let top_of_metric = euclid_def | |
`top_of_metric ((X:A->bool),d) = | |
{ A | ?F. (F SUBSET (open_balls (X,d)))/\ | |
(A = UNIONS F) }`;; | |
(* basic properties *) | |
let open_EMPTY = prove_by_refinement( | |
`!(U:(A->bool)->bool). (topology_ U ==> open_ U EMPTY)`, | |
(* {{{ proof *) | |
[ | |
REWRITE_TAC[topology;open_DEF]; | |
MESON_TAC[]; | |
]);; | |
(* }}} *) | |
let open_closed = prove_by_refinement( | |
`!U A. (topology_ (U:(A->bool)->bool)) /\ (open_ U A) ==> | |
(closed_ U ((UNIONS U) DIFF A))`, | |
(* {{{ proof *) | |
[ | |
REWRITE_TAC[closed;open_DEF]; | |
DISCH_ALL_TAC; | |
SUBGOAL_THEN `(A:A->bool) SUBSET (UNIONS U)` ASSUME_TAC; | |
ASM_MESON_TAC[sub_union]; | |
ASM_SIMP_TAC[DIFF_DIFF2]; | |
REWRITE_TAC[SUBSET_DIFF]; | |
]);; | |
(* }}} *) | |
let closed_UNIV = prove_by_refinement( | |
`!(U:(A->bool)->bool). (topology_ U ==> closed_ U (UNIONS U))`, | |
(* {{{ proof *) | |
[ | |
DISCH_ALL_TAC; | |
ASM_SIMP_TAC[open_closed]; | |
REWRITE_TAC[closed;open_DEF]; | |
TYPE_THEN `a = UNIONS U` ABBREV_TAC; | |
USE 0 (REWRITE_RULE[topology]); | |
CONJ_TAC; | |
MESON_TAC[SUBSET]; | |
USE 0 (CONV_RULE (quant_right_CONV "V")); | |
USE 0 (CONV_RULE (quant_right_CONV "B")); | |
USE 0 (CONV_RULE (quant_right_CONV "A")); | |
AND 0; | |
UND 2; | |
MESON_TAC[DIFF_EQ_EMPTY]; | |
]);; | |
(* }}} *) | |
let top_univ = prove_by_refinement( | |
`!(U:(A->bool)->bool). (topology_ U) ==> (U (UNIONS U))`, | |
(* {{{ proof *) | |
[ | |
REWRITE_TAC[topology]; | |
DISCH_ALL_TAC; | |
ASM_MESON_TAC[SUBSET_REFL]; | |
]);; | |
(* }}} *) | |
let empty_closed = prove_by_refinement( | |
`!(U:(A->bool)->bool). | |
(topology_ U) ==> closed_ U EMPTY`, | |
(* {{{ proof *) | |
[ | |
DISCH_ALL_TAC; | |
REWRITE_TAC[closed;EMPTY_SUBSET;DIFF_EMPTY;open_DEF]; | |
ASM_MESON_TAC[top_univ]; | |
]);; | |
(* }}} *) | |
let closed_open = prove_by_refinement( | |
`!(U:(A->bool)->bool) A. (closed_ U A) ==> | |
(open_ U ((UNIONS U) DIFF A))`, | |
(* {{{ proof *) | |
[ | |
MESON_TAC[closed]; | |
]);; | |
(* }}} *) | |
let closed_inter = prove_by_refinement ( | |
`!U V. (topology_ (U:(A->bool)->bool)) /\ (!a. (V a) ==> (closed_ U a)) | |
/\ ~(V = EMPTY) | |
==> (closed_ U (INTERS V))`, | |
(* {{{ proof *) | |
[ | |
REWRITE_TAC[closed]; | |
DISCH_ALL_TAC; | |
CONJ_TAC; | |
MATCH_MP_TAC INTERS_SUBSET2; | |
USE 2 (REWRITE_RULE[ EMPTY_EXISTS]); | |
USE 2 (REWRITE_RULE[IN]); | |
CHO 2; | |
EXISTS_TAC `u:A->bool`; | |
ASM_MESON_TAC[ ]; | |
ABBREV_TAC `VCOMP = IMAGE ((DIFF) (UNIONS (U:(A->bool)->bool))) V`; | |
UNDISCH_FIND_THEN `VCOMP` (fun t -> ASSUME_TAC (GSYM t)); | |
SUBGOAL_THEN `(VCOMP:(A->bool)->bool) SUBSET U` ASSUME_TAC; | |
ASM_REWRITE_TAC[SUBSET;IN_ELIM_THM;IMAGE]; | |
REWRITE_TAC[IN]; | |
GEN_TAC; | |
ASM_MESON_TAC[open_DEF]; | |
SUBGOAL_THEN `open_ U (UNIONS (VCOMP:(A->bool)->bool))` ASSUME_TAC; | |
ASM_MESON_TAC[topology;open_DEF]; | |
SUBGOAL_THEN ` (UNIONS U DIFF INTERS V)= (UNIONS (VCOMP:(A->bool)->bool))` (fun t-> (REWRITE_TAC[t])); | |
ASM_REWRITE_TAC[UNIONS_INTERS]; | |
UNDISCH_FIND_TAC `(open_)`; | |
REWRITE_TAC[]; | |
]);; | |
(* }}} *) | |
let open_nbd = prove_by_refinement( | |
`!U (A:A->bool). (topology_ U) ==> | |
((U A) = (!x. ?B. (A x ) ==> ((B SUBSET A) /\ (B x) /\ (U B))))`, | |
(* {{{ proof *) | |
[ | |
DISCH_ALL_TAC; | |
EQ_TAC; | |
DISCH_ALL_TAC; | |
GEN_TAC; | |
EXISTS_TAC `A:A->bool`; | |
ASM_MESON_TAC[SUBSET]; | |
CONV_TAC (quant_left_CONV "B"); | |
DISCH_THEN CHOOSE_TAC; | |
USE 1 (CONV_RULE NAME_CONFLICT_CONV); | |
TYPE_THEN `UNIONS (IMAGE B A) = A` SUBGOAL_TAC; | |
MATCH_MP_TAC SUBSET_ANTISYM; | |
CONJ_TAC; | |
MATCH_MP_TAC UNIONS_SUBSET; | |
REWRITE_TAC[IN_IMAGE]; | |
ASM_MESON_TAC[IN]; | |
REWRITE_TAC[SUBSET;IN_UNIONS;IN_IMAGE]; | |
DISCH_ALL_TAC; | |
NAME_CONFLICT_TAC; | |
CONV_TAC (quant_left_CONV "x'"); | |
CONV_TAC (quant_left_CONV "x'"); | |
EXISTS_TAC `x:A`; | |
TYPE_THEN `B x` EXISTS_TAC ; | |
ASM_REWRITE_TAC[]; | |
ASM_MESON_TAC[IN]; | |
(* on 1*) | |
TYPE_THEN `(IMAGE B A) SUBSET U` SUBGOAL_TAC; | |
REWRITE_TAC[SUBSET;IN_IMAGE;]; | |
REWRITE_TAC[IN]; | |
NAME_CONFLICT_TAC; | |
GEN_TAC; | |
DISCH_THEN CHOOSE_TAC; | |
ASM_REWRITE_TAC[]; | |
ASM_MESON_TAC[]; | |
TYPE_THEN `W = IMAGE B A` ABBREV_TAC; | |
KILL 2; | |
ASM_MESON_TAC[topology]; | |
]);; | |
(* }}} *) | |
let open_inters = prove_by_refinement( | |
`!U (V:(A->bool)->bool). (topology_ U) /\ (V SUBSET U) /\ | |
(FINITE V) /\ ~(V = EMPTY) ==> | |
(U (INTERS V))`, | |
(* {{{ proof *) | |
[ | |
REP_GEN_TAC; | |
DISCH_ALL_TAC; | |
TYPE_THEN `(?n. V HAS_SIZE n)` SUBGOAL_TAC; | |
REWRITE_TAC[HAS_SIZE]; | |
ASM_MESON_TAC[]; | |
DISCH_ALL_TAC; | |
UND 0; | |
UND 1; | |
UND 2; | |
UND 3; | |
UND 4; | |
CONV_TAC (quant_left_CONV "n"); | |
TYPE_THEN `V` SPEC2_TAC ; | |
TYPE_THEN `U` SPEC2_TAC ; | |
CONV_TAC (quant_left_CONV "n"); | |
CONV_TAC (quant_left_CONV "n"); | |
INDUCT_TAC; | |
DISCH_ALL_TAC; | |
ASM_MESON_TAC[HAS_SIZE_0]; | |
DISCH_ALL_TAC; | |
TYPE_THEN `U` (USE 0 o SPEC); | |
USE 5 (REWRITE_RULE[HAS_SIZE_SUC;EMPTY_EXISTS]); | |
AND 5; | |
CHO 6; | |
TYPE_THEN `u` (USE 5 o SPEC); | |
REWR 5; | |
TYPE_THEN `V DELETE u` (USE 0 o SPEC); | |
REWR 0; | |
TYPE_THEN `V={u}` ASM_CASES_TAC; | |
ASM_REWRITE_TAC[inters_singleton]; | |
UND 6; | |
UND 2; | |
REWRITE_TAC [SUBSET;IN]; | |
MESON_TAC[]; | |
ALL_TAC; (* oi1 *) | |
USE 0 (REWRITE_RULE[delete_empty]); | |
REWR 0; | |
USE 0 (REWRITE_RULE[FINITE_DELETE]); | |
REWR 0; | |
TYPE_THEN `V DELETE u SUBSET U ` SUBGOAL_TAC; | |
ASM_MESON_TAC[DELETE_SUBSET;SUBSET_TRANS]; | |
DISCH_ALL_TAC; | |
REWR 0; | |
ALL_TAC; (* oi2 *) | |
COPY 6; | |
USE 9 (REWRITE_RULE[IN]); | |
USE 9 (MATCH_MP delete_inters); | |
ASM_REWRITE_TAC[]; | |
USE 1 (REWRITE_RULE[topology]); | |
TYPEL_THEN [`(INTERS (V DELETE u))`;`u`;`U`] (USE 1 o ISPECL); | |
AND 1; | |
AND 1; | |
UND 11; | |
DISCH_THEN MATCH_MP_TAC ; | |
ASM_REWRITE_TAC[]; | |
UND 6; | |
UND 2; | |
REWRITE_TAC [SUBSET;IN]; | |
ASM_MESON_TAC[]; | |
]);; | |
(* }}} *) | |
let top_unions = prove_by_refinement( | |
`!(U:(A->bool)->bool) V. topology_ U /\ (V SUBSET U) ==> U (UNIONS V)`, | |
(* {{{ proof *) | |
[ | |
MESON_TAC[topology]; | |
]);; | |
(* }}} *) | |
let top_inter = prove_by_refinement( | |
`!(U:(A->bool)-> bool) A B. topology_ U /\ (U A) /\ (U B) ==> (U (A INTER B))`, | |
(* {{{ proof *) | |
[ | |
MESON_TAC[topology]; | |
]);; | |
(* }}} *) | |
(* open and closed balls in metric spaces *) | |
let open_ball_nonempty = prove_by_refinement( | |
`!(X:A->bool) d a r. (metric_space (X,d)) /\ (&.0 <. r) /\ (X a) ==> | |
(a IN (open_ball(X,d) a r))`, | |
(* {{{ proof *) | |
[ | |
REWRITE_TAC[metric_space;IN_ELIM_THM;open_ball]; | |
DISCH_ALL_TAC; | |
UNDISCH_FIND_THEN `( /\ )` (ASSUME_TAC o (SPECL [`a:A`;`a:A`;`a:A`])); | |
ASM_MESON_TAC[]; | |
]);; | |
(* }}} *) | |
let open_ball_subset = prove_by_refinement( | |
`!(X:A->bool) d a r. (open_ball (X,d) a r SUBSET X)`, | |
(* {{{ proof *) | |
[ | |
REWRITE_TAC[SUBSET;open_ball;IN_ELIM_THM]; | |
MESON_TAC[IN]; | |
]);; | |
(* }}} *) | |
let open_ball_subspace = prove_by_refinement( | |
`!(X:A->bool) Y d a r. (Y SUBSET X) ==> | |
(open_ball(Y,d) a r SUBSET open_ball(X,d) a r)`, | |
(* {{{ proof *) | |
[ | |
REWRITE_TAC[SUBSET;open_ball;IN_ELIM_THM]; | |
MESON_TAC[IN]; | |
]);; | |
(* }}} *) | |
let open_ball_empty = prove_by_refinement( | |
`!(X:A->bool) d a r. ~(a IN X) ==> (EMPTY = open_ball (X,d) a r)`, | |
(* {{{ proof *) | |
[ | |
DISCH_ALL_TAC; | |
REWRITE_TAC[open_ball]; | |
MATCH_MP_TAC EQ_EXT; | |
REWRITE_TAC[IN_ELIM_THM;EMPTY]; | |
ASM_MESON_TAC[IN]; | |
]);; | |
(* }}} *) | |
(*** Old proof modified by JRH to avoid GSPEC | |
let open_ball_intersect = prove_by_refinement( | |
`!(X:A->bool) Y d a r. (Y SUBSET X) /\ (a IN Y) ==> | |
(open_ball(Y,d) a r = (open_ball(X,d) a r INTER Y))`, | |
(* {{{ proof *) | |
[ | |
REWRITE_TAC[SUBSET;IN;INTER;open_ball]; | |
REWRITE_TAC[GSPEC_THM]; | |
REWRITE_TAC[IN_ELIM_THM]; | |
REWRITE_TAC[GSPEC]; | |
DISCH_ALL_TAC; | |
MATCH_MP_TAC EQ_EXT; | |
GEN_TAC; | |
BETA_TAC; | |
ASM_MESON_TAC[]; | |
]);; | |
(* }}} *) | |
***) | |
let open_ball_intersect = prove_by_refinement( | |
`!(X:A->bool) Y d a r. (Y SUBSET X) /\ (a IN Y) ==> | |
(open_ball(Y,d) a r = (open_ball(X,d) a r INTER Y))`, | |
(* {{{ proof *) | |
[ | |
REWRITE_TAC[SUBSET;IN;INTER;open_ball]; | |
REWRITE_TAC[EXTENSION; IN_ELIM_THM]; | |
MESON_TAC[] | |
]);; | |
(* }}} *) | |
let open_ball_center = prove_by_refinement( | |
`!(X:A->bool) d a b r. (metric_space (X,d)) /\ | |
(a IN (open_ball (X,d) b r)) ==> | |
(?r'. (&.0 <. r') /\ | |
((open_ball(X,d) a r') SUBSET (open_ball(X,d) b r)))`, | |
(* {{{ proof *) | |
[ | |
REWRITE_TAC[metric_space;open_ball]; | |
DISCH_ALL_TAC; | |
EXISTS_TAC `r -. (d (a:A) (b:A))`; | |
REWRITE_TAC[SUBSET;IN_ELIM_THM]; | |
UNDISCH_FIND_TAC `(IN)`; | |
REWRITE_TAC[IN_ELIM_THM]; | |
DISCH_ALL_TAC; | |
CONJ_TAC; | |
REWRITE_TAC[REAL_ARITH `(&.0 < r -. s)= (s <. r)`]; | |
ASM_MESON_TAC[]; | |
GEN_TAC; | |
ASM_REWRITE_TAC[]; | |
REWRITE_TAC[REAL_ARITH `(u <. v-.w) <=> (w +. u <. v)`]; | |
DISCH_ALL_TAC; | |
ASM_REWRITE_TAC[]; | |
UNDISCH_FIND_TAC `(!)`; | |
DISCH_THEN (fun t-> (MP_TAC (SPECL [`b:A`;`a:A`;`x:A`] t))); | |
ASM_REWRITE_TAC[]; | |
ASM_MESON_TAC[REAL_LET_TRANS;REAL_LTE_TRANS]; | |
]);; | |
(* }}} *) | |
let open_ball_nonempty_center = prove_by_refinement( | |
`!(X:A->bool) d a r. (metric_space(X,d)) ==> | |
((a IN (open_ball(X,d) a r)) = | |
~(open_ball(X,d) a r = EMPTY))`, | |
(* {{{ proof *) | |
[ | |
REWRITE_TAC[metric_space]; | |
DISCH_ALL_TAC; | |
REWRITE_TAC[open_ball]; | |
REWRITE_TAC[REWRITE_CONV[IN_ELIM_THM] `(a:A) IN { y | X a /\ X y /\ (d a y <. r)}`]; | |
REWRITE_TAC[EXTENSION]; | |
REWRITE_TAC[IN_ELIM_THM;NOT_IN_EMPTY;NOT_FORALL_THM]; | |
EQ_TAC; | |
MESON_TAC[]; | |
DISCH_THEN CHOOSE_TAC; | |
ASM_REWRITE_TAC[]; | |
FIRST_ASSUM (fun t -> MP_TAC (SPECL [`a:A`;`x:A`;`a:A`] t)); | |
UNDISCH_FIND_THEN `(+.)` (fun t -> MP_TAC (SPECL [`a:A`;`a:A`;`a:A`] t)); | |
ASM_MESON_TAC[REAL_LET_TRANS;REAL_LTE_TRANS]; | |
]);; | |
(* }}} *) | |
(*** Old proof modified by JRH to remove apparent misnamed quantifier | |
let open_ball_neg_radius = prove_by_refinement( | |
`!(X:A->bool) d a r. metric_space(X,d) /\ (r <. (&.0)) ==> | |
(EMPTY = open_ball(X,d) a r)`, | |
(* {{{ proof *) | |
[ | |
REWRITE_TAC[open_ball;metric_space]; | |
DISCH_ALL_TAC; | |
MATCH_MP_TAC EQ_EXT; | |
GEN_TAC; | |
REWRITE_TAC[EMPTY;IN_ELIM_THM]; | |
FIRST_ASSUM (fun t -> MP_TAC (SPECL [`a:A`;`x:A`;`a:A`] t)); | |
ASSUME_TAC (REAL_ARITH `!u r. ~((dd <. r) /\ (r <. (&.0)) /\ (&.0 <=. dd))`); | |
ASM_MESON_TAC[]; | |
]);; | |
(* }}} *) | |
***) | |
let open_ball_neg_radius = prove_by_refinement( | |
`!(X:A->bool) d a r. metric_space(X,d) /\ (r <. (&.0)) ==> | |
(EMPTY = open_ball(X,d) a r)`, | |
(* {{{ proof *) | |
[ | |
REWRITE_TAC[open_ball;metric_space]; | |
DISCH_ALL_TAC; | |
MATCH_MP_TAC EQ_EXT; | |
GEN_TAC; | |
REWRITE_TAC[EMPTY;IN_ELIM_THM]; | |
FIRST_ASSUM (fun t -> MP_TAC (SPECL [`a:A`;`x:A`;`a:A`] t)); | |
ASSUME_TAC (REAL_ARITH `!d r. ~((d <. r) /\ (r <. (&.0)) /\ (&.0 <=. d))`); | |
ASM_MESON_TAC[]; | |
]);; | |
(* }}} *) | |
let open_ball_nest = prove_by_refinement( | |
`!(X:A->bool) d a r r'. (r <. r') ==> | |
((open_ball (X,d) a r) SUBSET (open_ball(X,d) a r'))`, | |
(* {{{ proof *) | |
[ | |
REWRITE_TAC[SUBSET;open_ball;IN_ELIM_THM]; | |
MESON_TAC[REAL_ARITH `(r<. r') /\ (a <. r) ==> (a <. r')`]; | |
]);; | |
(* }}} *) | |
(* intersection of open balls contains an open ball *) | |
let open_ball_inter = prove_by_refinement( | |
`!(X:A->bool) d a b c r r'. (metric_space (X,d)) /\ (X a) /\ (X b) /\ | |
(c IN (open_ball(X,d) a r INTER (open_ball(X,d) b r'))) ==> | |
(?r''. (&.0 <. r'') /\ (open_ball(X,d) c r'') SUBSET | |
(open_ball(X,d) a r INTER (open_ball(X,d) b r')))`, | |
(* {{{ proof *) | |
[ | |
DISCH_ALL_TAC; | |
UNDISCH_FIND_THEN `(INTER)` (fun t-> MP_TAC (REWRITE_RULE[IN_INTER] t) THEN DISCH_ALL_TAC); | |
SUBGOAL_TAC `(X:A->bool) (c:A)`; | |
ASM_MESON_TAC[SUBSET;open_ball_subset;IN]; | |
DISCH_TAC; | |
MP_TAC (SPECL[`X:A->bool`;`d:A->A->real`;`c:A`;`b:A`;`r':real`] open_ball_center) THEN (ASM_REWRITE_TAC[]) THEN (DISCH_THEN CHOOSE_TAC); | |
MP_TAC (SPECL[`X:A->bool`;`d:A->A->real`;`c:A`;`a:A`;`r:real`] open_ball_center) THEN (ASM_REWRITE_TAC[]) THEN (DISCH_THEN CHOOSE_TAC); | |
REWRITE_TAC[SUBSET_INTER]; | |
EXISTS_TAC `(if (r'' <. r''') then (r'') else (r'''))`; | |
COND_CASES_TAC; | |
ASM_MESON_TAC[open_ball_nest;SUBSET_TRANS]; | |
IMP_RES_THEN DISJ_CASES_TAC (REAL_ARITH `(~(r'' <. r''')) ==> ((r''' <. r'') \/ (r'''=r''))`); | |
ASM_MESON_TAC[open_ball_nest;SUBSET_TRANS]; | |
ASM_MESON_TAC[]; | |
]);; | |
(* }}} *) | |
let BALL_DIST = prove_by_refinement( | |
`!X d x y (z:A) r. metric_space(X,d) /\ open_ball(X,d) z r x /\ | |
open_ball(X,d) z r y ==> d x y <. (&.2 * r)`, | |
(* {{{ proof *) | |
[ | |
REWRITE_TAC[metric_space;open_ball;IN_ELIM_THM']; | |
DISCH_ALL_TAC; | |
USE 0 (SPECL [`x:A`;`z:A`;`y:A`]); | |
REWR 0; | |
UND 0 THEN DISCH_ALL_TAC; | |
UND 9; | |
UND 6; | |
ASM_REWRITE_TAC[]; | |
UND 3; | |
REAL_ARITH_TAC; | |
]);; | |
(* }}} *) | |
let BALL_DIST_CLOSED = prove_by_refinement( | |
`!X d x y (z:A) r. metric_space(X,d) /\ closed_ball(X,d) z r x /\ | |
closed_ball(X,d) z r y ==> d x y <=. (&.2 * r)`, | |
(* {{{ proof *) | |
[ | |
REWRITE_TAC[metric_space;closed_ball;IN_ELIM_THM']; | |
DISCH_ALL_TAC; | |
USE 0 (SPECL [`x:A`;`z:A`;`y:A`]); | |
REWR 0; | |
UND 0 THEN DISCH_ALL_TAC; | |
UND 9; | |
UND 6; | |
ASM_REWRITE_TAC[]; | |
UND 3; | |
REAL_ARITH_TAC; | |
]);; | |
(* }}} *) | |
let open_ball_sub_closed = prove_by_refinement( | |
`!X d (x:A) r. | |
(open_ball(X,d) x r SUBSET (closed_ball(X,d) x r))`, | |
(* {{{ proof *) | |
[ | |
DISCH_ALL_TAC; | |
REWRITE_TAC[SUBSET;IN;open_ball;closed_ball;IN_ELIM_THM']; | |
DISCH_ALL_TAC; | |
ASM_REWRITE_TAC[]; | |
UND 2; | |
REAL_ARITH_TAC; | |
]);; | |
(* }}} *) | |
let ball_symm = prove_by_refinement( | |
`!X d (x:A) y r. metric_space(X,d) /\ (X x) /\ (X y) ==> | |
(open_ball(X,d) x r y = open_ball(X,d) y r x)`, | |
(* {{{ proof *) | |
[ | |
DISCH_ALL_TAC; | |
REWRITE_TAC [open_ball;IN_ELIM_THM']; | |
ASM_REWRITE_TAC[]; | |
ASM_MESON_TAC [metric_space_symm]; | |
]);; | |
(* }}} *) | |
let ball_subset_ball = prove_by_refinement( | |
`!X d (x:A) z r. metric_space(X,d) /\ | |
(open_ball(X,d) x r z ) ==> | |
(open_ball(X,d) z r SUBSET (open_ball(X,d) x (&.2 * r)))`, | |
(* {{{ proof *) | |
[ | |
DISCH_ALL_TAC; | |
REWRITE_TAC[SUBSET;IN]; | |
DISCH_ALL_TAC; | |
REWRITE_TAC[open_ball;IN_ELIM_THM']; | |
TYPE_THEN `X z /\ X x' /\ X x` SUBGOAL_TAC ; | |
UND 2; | |
UND 1; | |
REWRITE_TAC[open_ball;IN_ELIM_THM']; | |
MESON_TAC[]; | |
DISCH_ALL_TAC; | |
TYPE_THEN `open_ball(X,d) z r x` SUBGOAL_TAC; | |
ASM_MESON_TAC[ball_symm]; | |
ASM_MESON_TAC[BALL_DIST]; | |
]);; | |
(* }}} *) | |
(* top_of_metric *) | |
let top_of_metric_unions = prove_by_refinement( | |
`!(X:A->bool) d. (metric_space (X,d)) ==> | |
(X = UNIONS (top_of_metric (X,d)))`, | |
(* {{{ proof *) | |
[ | |
REPEAT GEN_TAC; | |
DISCH_TAC; | |
MATCH_MP_TAC SUBSET_ANTISYM THEN CONJ_TAC; | |
REWRITE_TAC[SUBSET]; | |
REWRITE_TAC[IN_UNIONS;top_of_metric]; | |
DISCH_ALL_TAC; | |
EXISTS_TAC `open_ball(X,d) (x:A) (&.1)`; | |
UNDISCH_TAC `(x:A) IN X` THEN (REWRITE_TAC[IN_ELIM_THM]); | |
DISCH_ALL_TAC; | |
CONJ_TAC; | |
EXISTS_TAC `{(open_ball(X,d) (x:A) (&.1))}`; | |
REWRITE_TAC[GSYM UNIONS_1;INSERT_SUBSET;EMPTY_SUBSET]; | |
REWRITE_TAC[open_balls;IN_ELIM_THM]; | |
MESON_TAC[]; | |
REWRITE_TAC[IN_ELIM_THM;open_ball]; | |
UNDISCH_FIND_TAC `(IN)`; | |
ASM_REWRITE_TAC[IN]; | |
DISCH_TAC; | |
ASM_REWRITE_TAC[]; | |
UNDISCH_FIND_TAC `metric_space`; | |
REWRITE_TAC[metric_space]; | |
DISCH_THEN (fun t -> MP_TAC (ISPECL [`x:A`;`x:A`;`x:A`] t)); | |
ASM_MESON_TAC[REAL_ARITH `(&.0) <. (&.1)`]; | |
MATCH_MP_TAC UNIONS_SUBSET; | |
GEN_TAC; | |
REWRITE_TAC[top_of_metric;IN_ELIM_THM]; | |
DISCH_THEN CHOOSE_TAC; | |
ASM_REWRITE_TAC[]; | |
MATCH_MP_TAC UNIONS_SUBSET; | |
X_GEN_TAC `B:A->bool`; | |
DISCH_TAC; | |
SUBGOAL_TAC `(B:A->bool) IN open_balls (X,d)`; | |
ASM SET_TAC[]; | |
REWRITE_TAC[open_balls;IN_ELIM_THM]; | |
DISCH_THEN (CHOOSE_THEN MP_TAC); | |
DISCH_THEN (CHOOSE_THEN ASSUME_TAC); | |
ASM_REWRITE_TAC[]; | |
REWRITE_TAC[open_ball;SUBSET;IN_ELIM_THM]; | |
MESON_TAC[IN]; | |
]);; | |
(* }}} *) | |
let top_of_metric_empty = prove_by_refinement( | |
`!(X:A->bool) d. | |
( (top_of_metric (X,d)) EMPTY)`, | |
(* {{{ proof *) | |
[ | |
REWRITE_TAC[top_of_metric]; | |
REPEAT GEN_TAC; | |
REWRITE_TAC[IN_ELIM_THM]; | |
EXISTS_TAC `EMPTY:(A->bool)->bool`; | |
REWRITE_TAC[UNIONS_0;EMPTY_SUBSET]; | |
]);; | |
(* }}} *) | |
let top_of_metric_open = prove_by_refinement( | |
`!(X:A->bool) d F. | |
(F SUBSET (open_balls (X,d))) ==> | |
((UNIONS F) IN (top_of_metric(X,d)))`, | |
(* {{{ proof *) | |
[ | |
REWRITE_TAC[top_of_metric;IN_ELIM_THM]; | |
MESON_TAC[]; | |
]);; | |
(* }}} *) | |
let top_of_metric_open_balls = prove_by_refinement( | |
`!(X:A->bool) d. | |
(open_balls (X,d)) SUBSET (top_of_metric(X,d))`, | |
(* {{{ proof *) | |
[ | |
REWRITE_TAC[SUBSET]; | |
REWRITE_TAC[top_of_metric;IN_ELIM_THM]; | |
DISCH_ALL_TAC; | |
EXISTS_TAC `{(x:A->bool)}`; | |
ASM SET_TAC[]; | |
]);; | |
(* }}} *) | |
let open_ball_open = prove_by_refinement( | |
`! (X:A->bool) d x r. (metric_space(X,d)) ==> | |
(top_of_metric (X,d) (open_ball (X,d) x r)) `, | |
(* {{{ proof *) | |
[ | |
DISCH_ALL_TAC; | |
TYPEL_THEN [`X`;`d`] (fun t-> ASSUME_TAC ( ISPECL t top_of_metric_open_balls)); | |
USE 1 (REWRITE_RULE[open_balls;SUBSET;IN_ELIM_THM']); | |
ASM_MESON_TAC[IN]; | |
]);; | |
(* }}} *) | |
(* a set is open then every point contains a ball *) | |
let top_of_metric_nbd = prove_by_refinement( | |
`!(X:A->bool) d A. (metric_space (X,d)) ==> | |
((top_of_metric (X,d) A) <=> ((A SUBSET X) /\ | |
(!a. (a IN A) ==> | |
(?r. (&.0 <. r) /\ (open_ball(X,d) a r SUBSET A)))))`, | |
(* {{{ proof *) | |
[ | |
(DISCH_ALL_TAC); | |
EQ_TAC; | |
REWRITE_TAC[top_of_metric;IN_ELIM_THM]; | |
DISCH_THEN (CHOOSE_THEN MP_TAC); | |
DISCH_ALL_TAC; | |
CONJ_TAC; | |
IMP_RES_THEN ASSUME_TAC top_of_metric_unions; | |
ASM_REWRITE_TAC[]; | |
IMP_RES_THEN ASSUME_TAC top_of_metric_open; | |
ASM ONCE_REWRITE_TAC[]; | |
MATCH_MP_TAC UNIONS_UNIONS; | |
ASM_MESON_TAC[SUBSET_TRANS;top_of_metric_open_balls]; | |
DISCH_ALL_TAC THEN (ASM_REWRITE_TAC[]); | |
REWRITE_TAC[IN_UNIONS;UNIONS_SUBSET]; | |
UNDISCH_FIND_TAC `(IN)`; | |
ASM_REWRITE_TAC[]; | |
REWRITE_TAC[IN_UNIONS]; | |
DISCH_THEN (CHOOSE_THEN ASSUME_TAC); | |
SUBGOAL_TAC `(t IN open_balls (X:A->bool,d))`; | |
ASM_MESON_TAC[SUBSET]; | |
REWRITE_TAC[open_balls;IN_ELIM_THM]; | |
REPEAT (DISCH_THEN (CHOOSE_THEN MP_TAC)); | |
DISCH_TAC; | |
MP_TAC (SPECL[`(X:A->bool)`; `d:A->A->real`;`a:A`;`x:A`;`r:real`] open_ball_center); | |
ASM_REWRITE_TAC[]; | |
SUBGOAL_TAC `(a:A) IN open_ball(X,d) x r`; | |
ASM_MESON_TAC[]; | |
DISCH_TAC THEN (ASM_REWRITE_TAC[]); | |
DISCH_THEN CHOOSE_TAC; | |
EXISTS_TAC `r':real`; | |
ASM_REWRITE_TAC[]; | |
(* to here *) | |
SUBGOAL_TAC `!s. ((s:A->bool) IN F') ==> (s SUBSET (UNIONS F'))`; | |
SET_TAC[]; | |
ASM_MESON_TAC[SUBSET_TRANS] ; (*second direction: *) | |
DISCH_THEN (fun t -> ASSUME_TAC (CONJUNCT1 t) THEN MP_TAC (CONJUNCT2 t)); | |
DISCH_THEN (fun t -> MP_TAC (REWRITE_RULE[RIGHT_IMP_EXISTS_THM] t)); | |
REWRITE_TAC[SKOLEM_THM]; | |
DISCH_THEN CHOOSE_TAC; | |
REWRITE_TAC[top_of_metric;IN_ELIM_THM]; | |
EXISTS_TAC `IMAGE (\b. (open_ball(X,d) b (r b))) (A:A->bool)`; | |
CONJ_TAC; | |
REWRITE_TAC[IMAGE;SUBSET]; | |
REWRITE_TAC[IN_ELIM_THM;open_balls]; | |
MESON_TAC[IN]; | |
REWRITE_TAC[IMAGE]; | |
GEN_REWRITE_TAC I [EXTENSION]; | |
X_GEN_TAC `a:A`; | |
REWRITE_TAC[IN_UNIONS]; | |
REWRITE_TAC[IN_ELIM_THM]; | |
EQ_TAC; | |
DISCH_TAC; | |
EXISTS_TAC `open_ball (X,d) (a:A) (r a)`; | |
CONJ_TAC; | |
EXISTS_TAC `a:A`; | |
ASM_REWRITE_TAC[]; | |
REWRITE_TAC[IN;open_ball]; | |
REWRITE_TAC[IN_ELIM_THM]; | |
ASM_MESON_TAC[metric_space_zero;IN;SUBSET]; (* last: *) | |
DISCH_THEN (CHOOSE_THEN MP_TAC); | |
DISCH_ALL_TAC; | |
UNDISCH_FIND_TAC `(?)` ; | |
DISCH_THEN (CHOOSE_THEN MP_TAC); | |
DISCH_ALL_TAC; | |
UNDISCH_FIND_TAC `(!)`; | |
DISCH_THEN (fun t -> MP_TAC(SPEC `x:A` t)); | |
ASM_REWRITE_TAC[]; | |
DISCH_ALL_TAC; | |
ASM_MESON_TAC[SUBSET;IN]; | |
]);; | |
(* }}} *) | |
let top_of_metric_inter = prove_by_refinement( | |
`!(X:A->bool) d. (metric_space (X,d)) ==> | |
(!A B. (top_of_metric (X,d) A) /\ (top_of_metric (X,d) B) ==> | |
(top_of_metric (X,d) (A INTER B)))`, | |
(* {{{ proof *) | |
[ | |
DISCH_ALL_TAC; | |
DISCH_ALL_TAC; | |
IMP_RES_THEN ASSUME_TAC (SPECL [`X:A->bool`;`d:A->A->real`] top_of_metric_nbd); | |
UNDISCH_TAC `(top_of_metric (X,d) (B:A->bool))`; | |
UNDISCH_TAC `(top_of_metric (X,d) (A:A->bool))`; | |
ASM_REWRITE_TAC[]; | |
DISCH_ALL_TAC; | |
DISCH_ALL_TAC; | |
CONJ_TAC; | |
ASM SET_TAC[]; | |
DISCH_ALL_TAC; | |
UNDISCH_FIND_THEN `(INTER)` (fun t-> (MP_TAC (REWRITE_RULE[IN_INTER]t)) THEN DISCH_ALL_TAC ); | |
UNDISCH_FIND_THEN `(IN)` (fun t-> ANTE_RES_THEN MP_TAC t); | |
UNDISCH_FIND_THEN `(IN)` (fun t-> ANTE_RES_THEN MP_TAC t); | |
DISCH_THEN CHOOSE_TAC; | |
DISCH_THEN CHOOSE_TAC; | |
EXISTS_TAC `if (r<. r') then r else r'`; | |
COND_CASES_TAC; | |
ASM_REWRITE_TAC[SUBSET_INTER]; | |
ASM_MESON_TAC[open_ball_nest;SUBSET_TRANS]; | |
MP_TAC (ARITH_RULE `~(r<.r') ==> ((r'<. r) \/ (r'=r))`) THEN (ASM_REWRITE_TAC[]); | |
DISCH_THEN DISJ_CASES_TAC; | |
ASM_REWRITE_TAC[SUBSET_INTER]; | |
ASM_MESON_TAC[open_ball_nest;SUBSET_TRANS]; | |
ASM_MESON_TAC[SUBSET_INTER]; | |
]);; | |
(* }}} *) | |
let top_of_metric_union = prove_by_refinement( | |
`!(X:A->bool) d. (metric_space(X,d)) ==> | |
(!V. (V SUBSET top_of_metric(X,d)) ==> | |
(top_of_metric(X,d) (UNIONS V)))`, | |
(* {{{ proof *) | |
[ | |
DISCH_ALL_TAC; | |
MP_TAC (SPECL[`X:A->bool`;`d:A->A->real`] top_of_metric_nbd); | |
ASM_REWRITE_TAC[]; | |
DISCH_THEN (fun t-> REWRITE_TAC[t]); | |
DISCH_ALL_TAC; | |
CONJ_TAC; | |
ASM_MESON_TAC[UNIONS_UNIONS;top_of_metric_unions]; | |
GEN_TAC; | |
REWRITE_TAC[IN_UNIONS]; | |
DISCH_THEN (CHOOSE_THEN MP_TAC); | |
DISCH_ALL_TAC; | |
SUBGOAL_TAC `(top_of_metric (X,d)) (t:A->bool)`; | |
ASM_MESON_TAC[IN;SUBSET]; | |
MP_TAC (SPECL[`X:A->bool`;`d:A->A->real`] top_of_metric_nbd); | |
ASM_REWRITE_TAC[]; | |
DISCH_TAC; | |
ASM_REWRITE_TAC[]; | |
DISCH_ALL_TAC; | |
UNDISCH_FIND_THEN `(!)` (fun t -> MP_TAC (SPEC `a:A` t)); | |
ASM_REWRITE_TAC[]; | |
DISCH_THEN CHOOSE_TAC; | |
EXISTS_TAC `r:real`; | |
ASM_REWRITE_TAC[]; | |
ASM SET_TAC[UNIONS]; | |
]);; | |
(* }}} *) | |
let top_of_metric_top = prove_by_refinement( | |
`!(X:A->bool) d. ( (metric_space (X,d))) ==> | |
(topology_ (top_of_metric (X,d)))`, | |
(* {{{ proof *) | |
[ | |
DISCH_ALL_TAC; | |
REWRITE_TAC[topology]; | |
REPEAT GEN_TAC; | |
ASM_SIMP_TAC[top_of_metric_empty;top_of_metric_inter;top_of_metric_union]; | |
]);; | |
(* }}} *) | |
let closed_ball_closed = prove_by_refinement( | |
`!X d (x:A) r. (metric_space (X,d)) ==> | |
(closed_ (top_of_metric(X,d)) (closed_ball(X,d) x r))`, | |
(* {{{ proof *) | |
[ | |
DISCH_ALL_TAC; | |
TYPE_THEN `X x` ASM_CASES_TAC ; | |
REWRITE_TAC[closed]; | |
ASM_SIMP_TAC [GSYM top_of_metric_unions]; | |
SUBCONJ_TAC; | |
REWRITE_TAC[closed_ball;SUBSET;IN;IN_ELIM_THM']; | |
MESON_TAC[]; | |
DISCH_ALL_TAC; | |
REWRITE_TAC[open_DEF]; | |
COPY 0; | |
USE 0 (MATCH_MP top_of_metric_top); | |
ONCE_ASM_SIMP_TAC[open_nbd]; | |
GEN_TAC; | |
TYPE_THEN `open_ball(X,d) x' (d x x' -. r)` EXISTS_TAC; | |
TYPE_THEN `R = (d x x' -. r)` ABBREV_TAC; | |
DISCH_ALL_TAC; | |
TYPE_THEN `X x'` SUBGOAL_TAC; | |
USE 5 (REWRITE_RULE[INR IN_DIFF]); | |
ASM_REWRITE_TAC[]; | |
DISCH_ALL_TAC; | |
SUBCONJ_TAC; | |
REWRITE_TAC[DIFF_SUBSET;open_ball_subset;INTER;EQ_EMPTY;IN_ELIM_THM']; | |
X_GEN_TAC `y:A`; | |
REWRITE_TAC[IN]; | |
ASM_REWRITE_TAC[open_ball;closed_ball]; | |
REWRITE_TAC[IN_ELIM_THM';GSYM CONJ_ASSOC]; | |
PROOF_BY_CONTR_TAC; | |
USE 7 (REWRITE_RULE[]); | |
AND 7; | |
REWR 7; | |
COPY 3; | |
USE 3 (REWRITE_RULE[metric_space]); | |
TYPEL_THEN [`x`;`y`;`x'`] (USE 3 o SPECL); | |
REWR 3; | |
ALL_TAC; (* "bb"; *) | |
TYPE_THEN `d x' y = d y x'` SUBGOAL_TAC; | |
TYPEL_THEN [`X`;`d`] (fun t-> MATCH_MP_TAC (SPECL t metric_space_symm)); | |
ASM_REWRITE_TAC[]; | |
DISCH_TAC; | |
UND 7; | |
UND 10; | |
AND 3; | |
AND 3; | |
AND 3; | |
UND 3; | |
EXPAND_TAC "R"; | |
ALL_TAC; (* "cb" *) | |
REAL_ARITH_TAC; | |
ALL_TAC; (* "cbc" *) | |
DISCH_TAC; | |
ASM_SIMP_TAC [open_ball_open]; | |
MATCH_MP_TAC (INR open_ball_nonempty); | |
ASM_REWRITE_TAC[]; | |
EXPAND_TAC "R"; | |
PROOF_BY_CONTR_TAC; | |
USE 8 (MATCH_MP (REAL_ARITH `~(&.0 < d x x' - r) ==> (d x x' <=. r)`)); | |
USE 5 (REWRITE_RULE[INR IN_DIFF;closed_ball;IN_ELIM_THM']); | |
ASM_MESON_TAC[]; | |
TYPE_THEN `(closed_ball (X,d) x r) = EMPTY` SUBGOAL_TAC; | |
(**** Old step changed by JRH for modified set comprehensions | |
ASM_REWRITE_TAC[closed_ball;EMPTY;GSPEC]; | |
***) | |
ASM_REWRITE_TAC[closed_ball;IN_ELIM_THM; EXTENSION; NOT_IN_EMPTY]; | |
DISCH_THEN (REWRT_TAC); | |
ALL_TAC; (* "cbc1" *) | |
ASM_MESON_TAC[empty_closed;top_of_metric_top]; | |
]);; | |
(* }}} *) | |
let open_ball_nbd = prove_by_refinement( | |
`!X d C x. ?e. (metric_space((X:A->bool),d)) /\ (C x) /\ | |
(top_of_metric (X,d) C) ==> | |
((&.0 < e) /\ (open_ball (X,d) x e SUBSET C))`, | |
(* {{{ proof *) | |
[ | |
DISCH_ALL_TAC; | |
RIGHT_TAC "e"; | |
DISCH_ALL_TAC; | |
USE 2 (REWRITE_RULE[top_of_metric;open_balls;IN_ELIM_THM';SUBSET;IN ]); | |
CHO 2; | |
AND 2; | |
ASM_REWRITE_TAC[]; | |
REWR 1; | |
USE 1 (REWRITE_RULE[UNIONS;IN;IN_ELIM_THM' ]); | |
CHO 1; | |
TYPE_THEN `u` (USE 3 o SPEC); | |
REWR 3; | |
CHO 3; | |
CHO 3; | |
REWR 1; | |
TYPEL_THEN [`X`;`d`;`x`;`x'`;`r`] (fun t-> (ASSUME_TAC (ISPECL t open_ball_center))); | |
USE 4 (REWRITE_RULE[IN ]); | |
REWR 4; | |
CHO 4; | |
TYPE_THEN `r'` EXISTS_TAC; | |
ASM_REWRITE_TAC[]; | |
REWRITE_TAC[SUBSET;UNIONS;IN;IN_ELIM_THM']; | |
DISCH_ALL_TAC; | |
AND 4; | |
USE 4 (REWRITE_RULE[SUBSET;IN;IN_ELIM_THM']); | |
ASM_MESON_TAC[]; | |
]);; | |
(* }}} *) | |
(* closure *) | |
let closure_closed = prove_by_refinement( | |
`!U (A:A->bool). (topology_ U) /\ (A SUBSET (UNIONS U)) ==> | |
(closed_ U (closure U A))`, | |
(* {{{ proof *) | |
[ | |
DISCH_ALL_TAC; | |
REWRITE_TAC[closure]; | |
MATCH_MP_TAC closed_inter; | |
REWRITE_TAC[IN_ELIM_THM]; | |
ASM_REWRITE_TAC[]; | |
CONJ_TAC; | |
MESON_TAC[]; | |
REWRITE_TAC[EMPTY_EXISTS]; | |
TYPE_THEN `UNIONS U` EXISTS_TAC; | |
ASM_REWRITE_TAC[IN_ELIM_THM']; | |
ASM_SIMP_TAC[closed_UNIV]; | |
]);; | |
(* }}} *) | |
let subset_closure = prove_by_refinement( | |
`!U (A:A->bool). (topology_ U) ==> (A SUBSET (closure U A))`, | |
(* {{{ proof *) | |
[ | |
DISCH_ALL_TAC; | |
REWRITE_TAC[closure;SUBSET;IN_INTERS;IN_ELIM_THM]; | |
X_GEN_TAC `a:A`; | |
MESON_TAC[IN]; | |
]);; | |
(* }}} *) | |
let closure_subset = prove_by_refinement( | |
`!U (A:A->bool) B. (topology_ U) /\ (closed_ U B) /\ (A SUBSET B) | |
==> (closure U A SUBSET B)`, | |
(* {{{ proof *) | |
[ | |
REWRITE_TAC[closure]; | |
DISCH_ALL_TAC; | |
MATCH_MP_TAC INTERS_SUBSET; | |
ASM_REWRITE_TAC[IN_ELIM_THM]; | |
]);; | |
(* }}} *) | |
let closure_self = prove_by_refinement( | |
`!U (A:A->bool). (topology_ U) /\ (closed_ U A) ==> | |
(closure U A = A)`, | |
(* {{{ proof *) | |
[ | |
DISCH_ALL_TAC; | |
MATCH_MP_TAC SUBSET_ANTISYM; | |
ASM_SIMP_TAC[subset_closure]; | |
ASM_SIMP_TAC[closure_subset;SUBSET_REFL]; | |
]);; | |
(* }}} *) | |
let closure_close = prove_by_refinement( | |
`!U Z (A:A->bool). (topology_ U) /\ (Z SUBSET (UNIONS U)) ==> | |
((A = closure U Z) = ((Z SUBSET A) /\ (closed_ U A) /\ | |
(!B. (closed_ U B) /\ ((Z SUBSET B)) ==> | |
(A SUBSET B))))`, | |
(* {{{ proof *) | |
[ | |
DISCH_ALL_TAC; | |
EQ_TAC; | |
DISCH_THEN (REWRT_TAC); | |
ASM_SIMP_TAC[subset_closure;closure_closed;closure_subset]; | |
DISCH_ALL_TAC; | |
REWRITE_TAC [closure]; | |
MATCH_MP_TAC (SUBSET_ANTISYM); | |
CONJ_TAC; | |
REWRITE_TAC[SUBSET_INTERS]; | |
REWRITE_TAC[IN_ELIM_THM']; | |
ASM_MESON_TAC[]; | |
MATCH_MP_TAC INTERS_SUBSET; | |
REWRITE_TAC[IN_ELIM_THM']; | |
ASM_REWRITE_TAC[]; | |
]);; | |
(* }}} *) | |
let closure_open = prove_by_refinement( | |
`!U Z (A:A->bool). (topology_ U) /\ (Z SUBSET (UNIONS U)) ==> | |
((A = closure U Z) = ((Z SUBSET A) /\ (closed_ U A) /\ | |
(!B. (open_ U B) /\ ((B INTER Z) = EMPTY) ==> | |
((B INTER A) = EMPTY))))`, | |
(* {{{ proof *) | |
[ | |
REP_GEN_TAC; | |
DISCH_TAC; | |
ASM_SIMP_TAC[closure_close]; | |
MATCH_MP_TAC (TAUT `( A ==> (B <=> C)) ==> (A /\ B <=> A /\ C)`); | |
DISCH_TAC; | |
MATCH_MP_TAC (TAUT `( A ==> (B <=> C)) ==> (A /\ B <=> A /\ C)`); | |
DISCH_TAC; | |
EQ_TAC; | |
DISCH_TAC; | |
USE 2 (REWRITE_RULE[closed]); | |
ASM_REWRITE_TAC[]; | |
GEN_TAC; | |
USE 3 (SPEC `(UNIONS U) DIFF (B:A->bool)`); | |
DISCH_ALL_TAC; | |
UND 3; | |
ASM_SIMP_TAC[open_closed]; | |
ASM_REWRITE_TAC[DIFF_SUBSET]; | |
DISCH_TAC; | |
UND 5; | |
UND 3; | |
REWRITE_TAC[INTER_COMM]; | |
ALL_TAC; (* co1 *) | |
DISCH_ALL_TAC; | |
DISCH_ALL_TAC; | |
USE 3 (SPEC `(UNIONS U) DIFF (B:A->bool)`); | |
UND 3; | |
ASM_SIMP_TAC[closed_open]; | |
REWRITE_TAC[DIFF_INTER]; | |
ASM_SIMP_TAC[SUB_IMP_INTER]; | |
TYPE_THEN `A SUBSET (UNIONS U INTER A)` SUBGOAL_TAC; | |
USE 2 (REWRITE_RULE[closed]); | |
AND 2; | |
UND 3; | |
ALL_TAC; (* co2 *) | |
SET_TAC[SUBSET;INTER]; | |
MESON_TAC [SUBSET_TRANS]; | |
]);; | |
(* }}} *) | |
(* induced topology *) | |
let image_top = prove_by_refinement( | |
`!(U:(A->bool)->bool) (f:(A->bool)->(B->bool)). | |
((topology_ U) /\ (EMPTY = f EMPTY) /\ | |
(!a b. (a IN U) /\ (b IN U) ==> | |
(((f a) INTER (f b)) = f (a INTER b))) /\ | |
(!V. (V SUBSET U) ==> (UNIONS (IMAGE f V) =f (UNIONS V) ))) | |
==> (topology_ (IMAGE f U))`, | |
(* {{{ proof *) | |
[ | |
REWRITE_TAC[topology]; | |
DISCH_ALL_TAC; | |
DISCH_ALL_TAC; | |
CONJ_TAC; | |
REWRITE_TAC[IMAGE;IN]; | |
REWRITE_TAC[IN_ELIM_THM]; | |
ASM_MESON_TAC[]; | |
CONJ_TAC; | |
REWRITE_TAC[IMAGE;IN]; | |
REWRITE_TAC[IN_ELIM_THM]; | |
DISCH_ALL_TAC; | |
REPEAT (UNDISCH_FIND_THEN `(?)` CHOOSE_TAC); | |
ASM_REWRITE_TAC[]; | |
EXISTS_TAC `(x:A->bool) INTER x'`; | |
ASM_SIMP_TAC[IN]; | |
DISCH_THEN (fun t-> MP_TAC (MATCH_MP SUBSET_PREIMAGE t)); | |
DISCH_THEN CHOOSE_TAC; | |
ASM_REWRITE_TAC[]; | |
ASM_SIMP_TAC[]; | |
REWRITE_TAC[IMAGE;IN_ELIM_THM]; | |
EXISTS_TAC `UNIONS (Z:(A->bool)->bool)`; | |
ASM_SIMP_TAC[IN]; | |
]);; | |
(* }}} *) | |
let induced_top_support = prove_by_refinement( | |
`!U (C:A->bool). (UNIONS (induced_top U C) = ((UNIONS U) INTER C))`, | |
(* {{{ proof *) | |
[ | |
REWRITE_TAC[UNIONS_INTER]; | |
DISCH_ALL_TAC; | |
AP_TERM_TAC; | |
REWRITE_TAC[induced_top]; | |
AP_THM_TAC; | |
AP_TERM_TAC; | |
MATCH_MP_TAC EQ_EXT THEN BETA_TAC; | |
SET_TAC[]; | |
]);; | |
(* }}} *) | |
let induced_top_top = prove_by_refinement( | |
`!U (C:A->bool). (topology_ U) ==> (topology_ (induced_top U C))`, | |
(* {{{ proof *) | |
[ | |
REPEAT GEN_TAC; | |
DISCH_TAC; | |
REWRITE_TAC[induced_top]; | |
MATCH_MP_TAC image_top; | |
ASM_REWRITE_TAC[]; | |
CONJ_TAC; | |
SET_TAC[]; | |
CONJ_TAC; | |
SET_TAC[]; | |
REWRITE_TAC[UNIONS_INTER]; | |
DISCH_ALL_TAC; | |
AP_TERM_TAC; | |
AP_THM_TAC; | |
AP_TERM_TAC; | |
MATCH_MP_TAC EQ_EXT THEN BETA_TAC; | |
SET_TAC[]; | |
]);; | |
(* }}} *) | |
let induced_top_open = prove_by_refinement( | |
`!U (C:A->bool) A. (topology_ U) ==> (induced_top U C A = | |
(?B. (U B) /\ ((B INTER C) = A)))`, | |
(* {{{ proof *) | |
[ | |
DISCH_ALL_TAC; | |
REWRITE_TAC[induced_top;IMAGE]; | |
REWRITE_TAC[IN_ELIM_THM]; | |
MESON_TAC[IN]; | |
]);; | |
(* }}} *) | |
let induced_trans = prove_by_refinement( | |
`! U (A:A->bool) B. (topology_ U) /\ U A /\ (induced_top U A B) ==> | |
(U B)`, | |
(* {{{ proof *) | |
[ | |
REWRITE_TAC[induced_top;IMAGE;IN ;IN_ELIM_THM' ]; | |
DISCH_ALL_TAC; | |
CHO 2; | |
ASM_MESON_TAC[top_inter]; | |
]);; | |
(* }}} *) | |
let induced_top_unions = prove_by_refinement( | |
`!(U:(A->bool)->bool). (topology_ U) ==> | |
((induced_top U (UNIONS U)) = U)`, | |
(* {{{ proof *) | |
[ | |
DISCH_ALL_TAC; | |
IMATCH_MP_TAC EQ_EXT; | |
GEN_TAC; | |
ASM_SIMP_TAC[induced_top_open]; | |
EQ_TAC; | |
DISCH_ALL_TAC; | |
CHO 1; | |
USE 0 (REWRITE_RULE[topology]); | |
TYPE_THEN `B SUBSET (UNIONS U)` SUBGOAL_TAC; | |
ASM_MESON_TAC[sub_union ]; | |
REWRITE_TAC[SUBSET_INTER_ABSORPTION]; | |
DISCH_TAC ; | |
ASM_MESON_TAC[]; | |
DISCH_TAC ; | |
TYPE_THEN `x` EXISTS_TAC; | |
ASM_REWRITE_TAC[]; | |
TYPE_THEN `x SUBSET (UNIONS U)` SUBGOAL_TAC; | |
ASM_MESON_TAC[sub_union ]; | |
REWRITE_TAC[SUBSET_INTER_ABSORPTION]; | |
]);; | |
(* }}} *) | |
(* induced metric *) | |
let gen = euclid_def `gen (X:(A->bool)->bool) | |
= {A | ?Y. (Y SUBSET X) /\ (A = UNIONS Y)}`;; | |
let top_of_metric_gen = prove_by_refinement( | |
`!(X:(A)->bool) d. gen (open_balls(X,d))= (top_of_metric(X,d))`, | |
(* {{{ proof *) | |
[ | |
REWRITE_TAC[gen;top_of_metric]; | |
]);; | |
(* }}} *) | |
let gen_subset = prove_by_refinement( | |
`!U (V:(A->bool)->bool). (U SUBSET V) /\ | |
(!A. (A IN V) ==> (?Y. (Y SUBSET U) /\ (A = UNIONS Y))) | |
==> (gen U = (gen V))`, | |
(* {{{ proof *) | |
[ | |
DISCH_ALL_TAC; | |
REWRITE_TAC[EXTENSION]; | |
GEN_TAC THEN EQ_TAC; | |
REWRITE_TAC[IN_ELIM_THM;gen]; | |
DISCH_THEN CHOOSE_TAC; | |
ASM_MESON_TAC[SUBSET_TRANS]; | |
REWRITE_TAC[IN_ELIM_THM;gen]; | |
DISCH_THEN CHOOSE_TAC; | |
UNDISCH_FIND_THEN `(?)` (fun t-> MP_TAC(REWRITE_RULE[RIGHT_IMP_EXISTS_THM;SKOLEM_THM]t)); | |
DISCH_THEN CHOOSE_TAC; | |
EXISTS_TAC `UNIONS (IMAGE (Y':(A->bool)->((A->bool)->bool)) (Y:(A->bool)->bool))`; | |
CONJ_TAC; | |
MATCH_MP_TAC UNIONS_SUBSET; | |
REWRITE_TAC[IN_IMAGE]; | |
GEN_TAC; | |
DISCH_THEN CHOOSE_TAC; | |
ASM_MESON_TAC[IN;SUBSET]; | |
ASM_REWRITE_TAC[]; | |
REWRITE_TAC[UNIONS_IMAGE_UNIONS]; | |
AP_TERM_TAC; | |
REWRITE_TAC[GSYM IMAGE_o]; | |
REWRITE_TAC[EXTENSION]; | |
X_GEN_TAC `A:(A->bool)`; | |
REWRITE_TAC[IN_IMAGE;o_THM]; | |
ASM_MESON_TAC[SUBSET;IN]; | |
]);; | |
(* }}} *) | |
let gen_subspace = prove_by_refinement( | |
`!(X:A->bool) Y d. (Y SUBSET X) /\ (metric_space(X,d)) ==> | |
(induced_top (top_of_metric(X,d)) Y = | |
gen (induced_top (open_balls(X,d)) Y))`, | |
(* {{{ proof *) | |
[ | |
DISCH_ALL_TAC; | |
REWRITE_TAC[induced_top]; | |
REWRITE_TAC[EXTENSION]; | |
X_GEN_TAC `B:A->bool`; | |
REWRITE_TAC[IN_IMAGE]; | |
EQ_TAC; | |
DISCH_THEN (X_CHOOSE_TAC `C:A->bool`); | |
FIRST_ASSUM MP_TAC; | |
REWRITE_TAC[top_of_metric]; | |
REWRITE_TAC[IN_ELIM_THM]; | |
DISCH_ALL_TAC; | |
UNDISCH_FIND_TAC `(?)`; | |
DISCH_THEN (CHOOSE_TAC); | |
UNDISCH_FIND_TAC `(INTER)`; | |
ASM_REWRITE_TAC[UNIONS_INTER]; | |
REWRITE_TAC[gen;IN_ELIM_THM]; | |
EXISTS_TAC `IMAGE ((INTER) Y) (F':(A->bool)->bool)`; | |
CONJ_TAC; | |
REWRITE_TAC[INTER_THM]; | |
MATCH_MP_TAC IMAGE_SUBSET; | |
ASM_REWRITE_TAC[]; | |
REFL_TAC; | |
REWRITE_TAC[gen;IN_ELIM_THM]; | |
DISCH_THEN (CHOOSE_THEN MP_TAC); | |
DISCH_ALL_TAC; | |
IMP_RES_THEN MP_TAC SUBSET_PREIMAGE; | |
DISCH_THEN CHOOSE_TAC; | |
EXISTS_TAC `UNIONS (Z:(A->bool)->bool)`; | |
CONJ_TAC; | |
REWRITE_TAC[UNIONS_INTER]; | |
UNDISCH_FIND_THEN `(UNIONS)` (fun t -> REWRITE_TAC[t]); | |
AP_TERM_TAC; | |
UNDISCH_FIND_TAC `(SUBSET)`; | |
REWRITE_TAC[INTER_THM]; | |
ASM_MESON_TAC[]; | |
REWRITE_TAC[top_of_metric;IN_ELIM_THM]; | |
ASM_MESON_TAC[]; | |
]);; | |
(* }}} *) | |
let gen_induced = prove_by_refinement( | |
`!(X:A->bool) Y d. (Y SUBSET X) /\ (metric_space (X,d)) ==> | |
(gen (open_balls(Y,d)) = gen (induced_top (open_balls(X,d)) Y))`, | |
(* {{{ proof *) | |
[ | |
DISCH_ALL_TAC; | |
MATCH_MP_TAC gen_subset; | |
CONJ_TAC; | |
REWRITE_TAC[induced_top;SUBSET;open_balls]; | |
REWRITE_TAC [IN_IMAGE]; | |
X_GEN_TAC `A:(A->bool)`; | |
REWRITE_TAC[IN_ELIM_THM]; | |
REPEAT (DISCH_THEN (CHOOSE_THEN MP_TAC)); | |
DISCH_TAC; | |
ASM_REWRITE_TAC[]; | |
ASM_CASES_TAC `(Y:A->bool) (x:A)`; | |
CONV_TAC (relabel_bound_conv); | |
EXISTS_TAC `open_ball (X,d) (x:A) r`; | |
CONJ_TAC; | |
MATCH_MP_TAC open_ball_intersect; | |
ASM_MESON_TAC[IN]; | |
MESON_TAC[]; | |
EXISTS_TAC `open_ball (X,d) (x:A) (--. (&.1))`; | |
CONJ_TAC; | |
ASM_MESON_TAC[IN;INTER_EMPTY;open_ball_empty;open_ball_neg_radius;REAL_ARITH `(--.(&.1) <. (&.0))`]; | |
MESON_TAC[]; (* end of first half *) | |
REWRITE_TAC[induced_top;IN_IMAGE]; | |
GEN_TAC; | |
DISCH_THEN (CHOOSE_THEN MP_TAC); | |
NAME_CONFLICT_TAC; | |
REWRITE_TAC[IN;open_balls]; | |
REWRITE_TAC[IN_ELIM_THM']; | |
NAME_CONFLICT_TAC; | |
DISCH_ALL_TAC; | |
ASM_REWRITE_TAC[]; | |
FIRST_ASSUM (CHOOSE_THEN ASSUME_TAC); | |
FIRST_ASSUM (CHOOSE_THEN ASSUME_TAC); | |
SUBGOAL_TAC `!(a:A). (a IN x INTER Y) ==> (?r. ((&.0) <. r) /\ open_ball(Y,d) a r SUBSET (x INTER Y))`; | |
DISCH_ALL_TAC; | |
TYPEL_THEN [`X`;`d`;`a`;`x'`;`r'`] (fun t -> (CLEAN_ASSUME_TAC (ISPECL t open_ball_center))); | |
SUBGOAL_TAC `(a:A) IN open_ball(X,d) x' r'`; | |
ASM_MESON_TAC[IN_INTER]; | |
DISCH_THEN (fun t -> ANTE_RES_THEN (MP_TAC) t); | |
DISCH_THEN (CHOOSE_TAC); | |
EXISTS_TAC `r'':real`; | |
ASM_REWRITE_TAC[SUBSET_INTER;open_ball_subset]; | |
ASM_MESON_TAC[open_ball_subspace;SUBSET_TRANS]; | |
DISCH_THEN (fun t -> MP_TAC (REWRITE_RULE[RIGHT_IMP_EXISTS_THM;SKOLEM_THM] t)); | |
DISCH_THEN CHOOSE_TAC; | |
EXISTS_TAC `IMAGE (\t. open_ball(Y,d) t (r t) ) ((x:A->bool) INTER Y)`; | |
REWRITE_TAC[SUBSET_INTER]; | |
CONJ_TAC; | |
REWRITE_TAC[SUBSET;IN_ELIM_THM']; | |
REWRITE_TAC[IN_IMAGE]; | |
GEN_TAC; | |
MESON_TAC[]; | |
MATCH_MP_TAC SUBSET_ANTISYM; | |
CONJ_TAC; | |
REWRITE_TAC[SUBSET]; | |
GEN_TAC; | |
REWRITE_TAC[IN_UNIONS]; | |
DISCH_TAC; | |
EXISTS_TAC `open_ball (Y,d) (x'':A) (r x'')`; | |
REWRITE_TAC[IN_IMAGE]; | |
CONJ_TAC; | |
NAME_CONFLICT_TAC; | |
EXISTS_TAC `x'':A`; | |
ASM_REWRITE_TAC[]; | |
MATCH_MP_TAC open_ball_nonempty; | |
ASM_SIMP_TAC[metric_subspace]; | |
ASM_MESON_TAC[IN_INTER;IN;metric_subspace]; | |
MATCH_MP_TAC UNIONS_SUBSET; | |
GEN_TAC; | |
REWRITE_TAC[IN_IMAGE]; | |
DISCH_THEN CHOOSE_TAC; | |
ASM_MESON_TAC[]; | |
]);; | |
(* }}} *) | |
let top_of_metric_induced = prove_by_refinement( | |
`!(X:A->bool) Y d. (Y SUBSET X) /\ (metric_space(X,d)) ==> | |
(induced_top (top_of_metric(X,d)) Y = (top_of_metric(Y,d)))`, | |
(* {{{ proof *) | |
[ | |
SIMP_TAC[gen_subspace]; | |
REPEAT GEN_TAC; | |
REWRITE_TAC[GSYM top_of_metric_gen]; | |
MESON_TAC[gen_induced]; | |
]);; | |
(* }}} *) | |
(* ------------------------------------------------------------------ *) | |
(* Continuity *) | |
(* ------------------------------------------------------------------ *) | |
let continuous = euclid_def `continuous (f:A->B) U V <=> !v. | |
(v IN V) ==> (preimage (UNIONS U) f v) IN U`;; | |
let metric_continuous_pt = euclid_def | |
`metric_continuous_pt (f:A->B) (X,dX) ((Y:B->bool),dY) x = | |
!epsilon. ?delta. (((&.0) < epsilon) ==> ((&.0) <. delta) /\ | |
(!y. ((x IN X) /\ (y IN X) /\ (dX x y) <. delta) ==> | |
(dY (f x) (f y) <. epsilon)))`;; | |
let metric_continuous = euclid_def | |
`metric_continuous (f:A->B) (X,dX) (Y,dY) <=> !x. | |
metric_continuous_pt f (X,dX) (Y,dY) x`;; | |
let metric_continuous_pt_domain = prove_by_refinement(`!f X dX Y dY x . | |
~(x IN X) ==> (metric_continuous_pt (f:A->B) (X,dX) (Y,dY) x)`, | |
(* {{{ proof *) | |
[ | |
REWRITE_TAC[metric_continuous_pt]; | |
MESON_TAC[]; | |
]);; | |
(* }}} *) | |
let metric_continuous_continuous = prove_by_refinement( | |
`!f X Y dX dY. (IMAGE f X SUBSET Y) /\ (metric_space(X,dX)) /\ (metric_space(Y,dY)) | |
==> | |
(continuous (f:A->B) (top_of_metric(X,dX)) (top_of_metric(Y,dY)) | |
<=> (metric_continuous f (X,dX) (Y,dY)))`, | |
(* {{{ proof *) | |
[ | |
DISCH_ALL_TAC; | |
EQ_TAC; | |
REWRITE_TAC[continuous;metric_continuous]; | |
DISCH_TAC; | |
GEN_TAC; | |
ASM_CASES_TAC `(x:A) IN X` THENL[ALL_TAC;ASM_SIMP_TAC[metric_continuous_pt_domain]]; | |
REWRITE_TAC[metric_continuous_pt]; | |
GEN_TAC; | |
SUBGOAL_TAC `(open_ball (Y,dY) ((f:A->B) x) epsilon) IN (top_of_metric(Y,dY))`; | |
MATCH_MP_TAC (prove_by_refinement(`!(x:A) B. (?A. (x IN A /\ A SUBSET B)) ==> (x IN B)`,[SET_TAC[]])); | |
EXISTS_TAC `open_balls((Y:B->bool),dY)`; | |
REWRITE_TAC[top_of_metric_open_balls]; | |
REWRITE_TAC[open_balls;IN_ELIM_THM']; | |
MESON_TAC[]; | |
DISCH_THEN (ANTE_RES_THEN ASSUME_TAC); | |
REWRITE_TAC[GSYM RIGHT_IMP_EXISTS_THM]; | |
DISCH_TAC; | |
SUBGOAL_TAC `(x:A) IN preimage (UNIONS (top_of_metric (X,dX))) f (open_ball (Y,dY) ((f:A->B) x) epsilon)`; | |
REWRITE_TAC[in_preimage]; | |
SUBGOAL_TAC `(Y:B->bool) ((f:A->B) x )`; | |
UNDISCH_FIND_TAC `IMAGE`; | |
UNDISCH_TAC `(x:A) IN X`; | |
REWRITE_TAC[SUBSET;IMAGE]; | |
REWRITE_TAC[IN_ELIM_THM']; | |
NAME_CONFLICT_TAC; | |
REWRITE_TAC[IN]; | |
MESON_TAC[]; | |
ASM_MESON_TAC[top_of_metric_unions;open_ball_nonempty]; | |
ABBREV_TAC `B = preimage (UNIONS (top_of_metric (X,dX))) (f:A->B) (open_ball (Y,dY) (f x) epsilon)`; | |
DISCH_TAC; | |
SUBGOAL_TAC `?r. (&.0 <. r) /\ (open_ball(X,dX) (x:A) r SUBSET B)`; | |
ASSUME_TAC top_of_metric_nbd; | |
ASM_MESON_TAC[IN]; | |
DISCH_THEN CHOOSE_TAC; | |
EXISTS_TAC `r:real`; | |
ASM_REWRITE_TAC[]; | |
GEN_TAC; | |
DISCH_ALL_TAC; | |
SUBGOAL_TAC `y:A IN B`; | |
MATCH_MP_TAC (prove_by_refinement(`!(x:A) B. (?A. (x IN A /\ A SUBSET B)) ==> (x IN B)`,[SET_TAC[]])); | |
EXISTS_TAC `open_ball(X,dX) (x:A) r`; | |
ASM_REWRITE_TAC[]; | |
REWRITE_TAC[open_ball;IN_ELIM_THM']; | |
ASM_MESON_TAC[IN]; | |
UNDISCH_FIND_TAC `preimage`; | |
DISCH_THEN (fun t-> REWRITE_TAC[GSYM t]); | |
REWRITE_TAC[in_preimage]; | |
REWRITE_TAC[open_ball;IN_ELIM_THM']; | |
MESON_TAC[]; (* first half done *) | |
REWRITE_TAC[metric_continuous]; | |
DISCH_TAC; | |
REWRITE_TAC[continuous]; | |
GEN_TAC; | |
DISCH_TAC; | |
REWRITE_TAC[IN]; | |
ASM_SIMP_TAC[top_of_metric_nbd]; | |
ASM_SIMP_TAC[GSYM top_of_metric_unions]; | |
CONJ_TAC; | |
REWRITE_TAC[SUBSET;in_preimage]; | |
MESON_TAC[]; | |
GEN_TAC; | |
DISCH_THEN (fun t -> ASSUME_TAC t THEN (MP_TAC (REWRITE_RULE[in_preimage] t))); | |
DISCH_ALL_TAC; | |
SUBGOAL_TAC `?eps. (&.0 <. eps) /\ (open_ball(Y,dY) ((f:A->B) a) eps SUBSET v)`; | |
UNDISCH_FIND_TAC `v IN top_of_metric (Y,dY)`; | |
REWRITE_TAC[IN]; | |
ASM_SIMP_TAC[top_of_metric_nbd]; | |
DISCH_THEN CHOOSE_TAC; | |
FIRST_ASSUM (fun t -> MP_TAC (SPEC `a:A` t)); | |
REWRITE_TAC[metric_continuous_pt]; | |
DISCH_THEN (fun t-> MP_TAC (SPEC `eps:real` t)); | |
DISCH_THEN (CHOOSE_THEN MP_TAC); | |
ASM_REWRITE_TAC[]; | |
DISCH_ALL_TAC; | |
EXISTS_TAC `delta:real`; | |
ASM_REWRITE_TAC[SUBSET]; | |
REWRITE_TAC[in_preimage;open_ball]; | |
REWRITE_TAC[IN_ELIM_THM']; | |
X_GEN_TAC `y:A`; | |
DISCH_ALL_TAC; | |
CONJ_TAC THENL [(ASM_REWRITE_TAC[IN]);ALL_TAC]; | |
FIRST_ASSUM (fun t -> (MP_TAC (SPEC `y:A` t))); | |
ASM_REWRITE_TAC[IN]; | |
UNDISCH_FIND_TAC `open_ball`; | |
REWRITE_TAC[open_ball]; | |
DISCH_THEN (fun t -> (MP_TAC (CONJUNCT2 t))); | |
REWRITE_TAC[SUBSET]; | |
DISCH_THEN (fun t-> (MP_TAC (SPEC `(f:A->B) y` t))); | |
ASM_REWRITE_TAC[IN_ELIM_THM']; | |
SUBGOAL_TAC `!x. (X x) ==> (Y ((f:A->B) x))`; | |
UNDISCH_FIND_TAC `IMAGE`; | |
REWRITE_TAC[SUBSET;IN_IMAGE]; | |
NAME_CONFLICT_TAC; | |
ASM_MESON_TAC[IN]; | |
ASM_MESON_TAC[IN]; | |
]);; | |
(* }}} *) | |
let continuous_induced = prove_by_refinement( | |
`!(f:A->B) U V A. (topology_ V) /\ (continuous f U V) /\ (V A) ==> | |
(continuous f U (induced_top V A)) `, | |
(* {{{ proof *) | |
[ | |
REWRITE_TAC[continuous;induced_top;IN_IMAGE;Q_ELIM_THM'' ]; | |
ASM_MESON_TAC[top_inter;IN ]; | |
]);; | |
(* }}} *) | |
let metric_cont = prove_by_refinement( | |
`!U X d f. (metric_space(X,d)) /\ (topology_ U) ==> | |
((continuous (f:A->B) U (top_of_metric(X,d))) = | |
(!(x:B) r. U (preimage (UNIONS U) f (open_ball (X,d) x r))))`, | |
(* {{{ proof *) | |
[ | |
DISCH_ALL_TAC; | |
EQ_TAC; | |
DISCH_ALL_TAC; | |
DISCH_ALL_TAC; | |
USE 2 (REWRITE_RULE[continuous;IN]); | |
UND 2 THEN (DISCH_THEN MATCH_MP_TAC ); | |
ASM_MESON_TAC [open_ball_open]; | |
REWRITE_TAC[continuous;IN]; | |
DISCH_ALL_TAC; | |
REWRITE_TAC[top_of_metric;IN_ELIM_THM' ]; | |
DISCH_ALL_TAC; | |
CHO 3; | |
AND 3; | |
ASM_REWRITE_TAC[]; | |
REWRITE_TAC[preimage_unions]; | |
IMATCH_MP_TAC top_unions ; | |
ASM_REWRITE_TAC[IMAGE;SUBSET;IN;IN_ELIM_THM' ]; | |
NAME_CONFLICT_TAC; | |
REWRITE_TAC[Q_ELIM_THM']; | |
USE 4 (REWRITE_RULE[SUBSET;IN]); | |
DISCH_ALL_TAC; | |
TYPE_THEN `x'` (USE 4 o SPEC); | |
REWR 4; | |
USE 4 (REWRITE_RULE[open_balls;IN_ELIM_THM' ]); | |
CHO 4; | |
CHO 4; | |
ASM_MESON_TAC[]; | |
]);; | |
(* }}} *) | |
let continuous_sum = prove_by_refinement( | |
`!U (f:A->(num->real)) g n. (topology_ U) /\ | |
(continuous f U (top_of_metric(euclid n,d_euclid))) /\ | |
(continuous g U (top_of_metric(euclid n,d_euclid))) /\ | |
(IMAGE f (UNIONS U) SUBSET (euclid n)) /\ | |
(IMAGE g (UNIONS U) SUBSET (euclid n)) ==> | |
(continuous (\t. (f t + g t)) U (top_of_metric(euclid n,d_euclid)))`, | |
(* {{{ proof *) | |
[ | |
ASSUME_TAC metric_euclid; | |
DISCH_ALL_TAC; | |
ASM_SIMP_TAC[metric_cont]; | |
DISCH_ALL_TAC; | |
ONCE_ASM_SIMP_TAC[open_nbd]; | |
X_GEN_TAC `t:A`; | |
RIGHT_TAC "B"; | |
DISCH_ALL_TAC; | |
USE 6 (REWRITE_RULE[REWRITE_RULE[IN] in_preimage]); | |
USE 2 (REWRITE_RULE[continuous]); | |
USE 3 (REWRITE_RULE[continuous]); | |
AND 6; | |
TYPE_THEN `n` (USE 0 o SPEC); | |
COPY 0; | |
JOIN 8 6; | |
USE 6 (MATCH_MP (REWRITE_RULE[IN] open_ball_center)); | |
CHO 6; | |
AND 6; | |
TYPE_THEN `open_ball(euclid n,d_euclid) (f t) (r'/(&.2))` (USE 2 o SPEC); | |
TYPE_THEN `open_ball(euclid n,d_euclid) (g t) (r'/(&.2))` (USE 3 o SPEC); | |
UND 3; | |
UND 2; | |
REWRITE_TAC[IN]; | |
ASM_SIMP_TAC[open_ball_open]; | |
DISCH_ALL_TAC; | |
TYPE_THEN `B = (preimage (UNIONS U) f (open_ball (euclid n,d_euclid) (f t) (r' / &2))) INTER (preimage (UNIONS U) g (open_ball (euclid n,d_euclid) (g t) (r' / &2)))` ABBREV_TAC ; | |
TYPE_THEN `B` EXISTS_TAC; | |
CONJ_TAC; | |
(* cs1 *) | |
USE 6 (MATCH_MP preimage_subset ); | |
TYPEL_THEN [`(\t. euclid_plus (f t) (g t))`;`UNIONS U`] (USE 6 o ISPECL); | |
UND 6; | |
IMATCH_MP_TAC (prove_by_refinement(`!D B C. ((B:A->bool) SUBSET D) ==> ((D SUBSET C) ==> (B SUBSET C))`,[MESON_TAC [SUBSET_TRANS]])); | |
REWRITE_TAC[subset_preimage]; | |
CONJ_TAC; | |
REWRITE_TAC[SUBSET;IN;IN_ELIM_THM']; | |
EXPAND_TAC "B"; | |
REWRITE_TAC[INTER;in_preimage;IN ;IN_ELIM_THM' ]; | |
ASM_MESON_TAC[]; | |
REWRITE_TAC[IMAGE;SUBSET;IN;IN_ELIM_THM']; | |
REWRITE_TAC[Q_ELIM_THM']; | |
EXPAND_TAC "B"; | |
REWRITE_TAC[INTER;in_preimage;IN ;IN_ELIM_THM' ]; | |
REWRITE_TAC[open_ball;IN_ELIM_THM' ]; | |
DISCH_ALL_TAC; | |
ASM_SIMP_TAC[euclid_add_closure]; | |
TYPE_THEN `d_euclid (f t + (g t)) (f x' + g x') <=. (d_euclid (f t + (g t)) (f x' + g t)) + (d_euclid (f x' + g t) (f x' + g x'))` SUBGOAL_TAC; | |
TYPEL_THEN [`euclid n`;`d_euclid`] (fun t-> ASSUME_TAC (ISPECL t metric_space_triangle)); | |
REWR 17; | |
UND 17 THEN DISCH_THEN IMATCH_MP_TAC ; | |
ASM_SIMP_TAC[euclid_add_closure]; | |
IMATCH_MP_TAC (REAL_ARITH `b + C < d ==> (a <= b + C ==> (a < d))`); | |
(* cs2 *) | |
IMATCH_MP_TAC real_half_LT; | |
CONJ_TAC; | |
ASM_MESON_TAC [euclid_add_closure;SPEC `n:num` metric_translate]; | |
ASM_MESON_TAC[euclid_add_closure;metric_translate_LEFT]; | |
CONJ_TAC; | |
EXPAND_TAC "B"; | |
REWRITE_TAC[INTER;in_preimage ;IN_ELIM_THM]; | |
ASM_REWRITE_TAC[IN]; | |
UND 4; | |
UND 5; | |
REWRITE_TAC[SUBSET;IN;IN_IMAGE ;IN_ELIM_THM']; | |
NAME_CONFLICT_TAC; | |
REWRITE_TAC[Q_ELIM_THM'']; | |
USE 8 (ONCE_REWRITE_RULE [GSYM REAL_LT_HALF1]); | |
ASM_MESON_TAC[REWRITE_RULE[IN] open_ball_nonempty]; | |
EXPAND_TAC "B"; | |
IMATCH_MP_TAC top_inter; | |
ASM_REWRITE_TAC[]; | |
]);; | |
(* }}} *) | |
(* ------------------------------------------------------------------ *) | |
(* Cauchy sequences and completeness *) | |
(* ------------------------------------------------------------------ *) | |
let sequence = euclid_def | |
`sequence X (f:num->A) <=> (IMAGE f UNIV) SUBSET X`;; | |
let converge = euclid_def | |
`converge (X,d) (f:num -> A) <=> (?x. (x IN (X:A->bool)) /\ | |
(!eps. ?n. (&.0 <. eps) ==> | |
(!i. (n <=| i) ==> (d x (f i) <. eps))))`;; | |
let cauchy_seq = euclid_def | |
`cauchy_seq (X,d) (f:num->A) <=> (sequence X f) /\ | |
(!eps. ?n. !i j. (&.0 <. eps) /\ | |
(n <= i) /\ (n <= j) ==> (d (f i) (f j) <. eps))`;; | |
let complete = euclid_def | |
`complete (X,d) <=> !(f:num->A). cauchy_seq (X,d) f ==> | |
converge (X,d) f`;; | |
let converge_cauchy = prove_by_refinement( | |
`!X d f. metric_space(X,d) /\ (sequence X f) /\ (converge((X:A->bool),d) f) | |
==> cauchy_seq(X,d) f`, | |
(* {{{ proof *) | |
[ | |
REWRITE_TAC[converge;metric_space]; | |
DISCH_ALL_TAC; | |
REWRITE_TAC[cauchy_seq]; | |
ASM_REWRITE_TAC[]; | |
FIRST_ASSUM CHOOSE_TAC; | |
GEN_TAC; | |
UNDISCH_FIND_TAC `(IN)`; | |
DISCH_ALL_TAC; | |
FIRST_ASSUM (fun t-> MP_TAC (SPEC `eps/(&.2)` t)); | |
DISCH_THEN CHOOSE_TAC; | |
EXISTS_TAC `n:num`; | |
REPEAT GEN_TAC; | |
DISCH_ALL_TAC; | |
SUBGOAL_TAC ` (&.0 <. (eps/(&.2)))`; | |
MATCH_MP_TAC REAL_LT_DIV; | |
ASM_REWRITE_TAC[]; | |
REAL_ARITH_TAC; | |
DISCH_THEN (ANTE_RES_THEN ASSUME_TAC); | |
UNDISCH_TAC `n <=| i`; | |
DISCH_THEN (ANTE_RES_THEN ASSUME_TAC); | |
UNDISCH_TAC `n <=| j`; | |
DISCH_THEN (ANTE_RES_THEN ASSUME_TAC); | |
FIRST_ASSUM (fun t-> MP_TAC (SPECL [`(f:num->A) i`;`x:A`;`(f:num->A) j`] t)); | |
UNDISCH_FIND_TAC `sequence`; | |
REWRITE_TAC[sequence;SUBSET;IN_IMAGE;IN_UNIV]; | |
NAME_CONFLICT_TAC; | |
REWRITE_TAC[IN]; | |
DISCH_TAC; | |
SUBGOAL_TAC `X ((f:num->A) i) /\ X x /\ X (f j)`; | |
ASM_MESON_TAC[IN]; | |
DISCH_THEN (fun t->REWRITE_TAC[t]); | |
DISCH_ALL_TAC; | |
ASM_MESON_TAC[REAL_LET_TRANS;REAL_LT_ADD2;REAL_HALF_DOUBLE]; | |
]);; | |
(* }}} *) | |
(* relate the metric space version to the real numbers version *) | |
let cauchy_seq_cauchy = prove_by_refinement( | |
`!f. (cauchy_seq(euclid 1,d_euclid) f) ==> (cauchy (\x. (f x 0)))`, | |
(* {{{ proof *) | |
[ | |
GEN_TAC; | |
REWRITE_TAC[cauchy_seq;cauchy;sequence;SUBSET;IN_IMAGE;IN_UNIV]; | |
REWRITE_TAC[IN]; | |
NAME_CONFLICT_TAC; | |
DISCH_ALL_TAC; | |
GEN_TAC; | |
DISCH_TAC; | |
FIRST_ASSUM (fun t -> MP_TAC (SPEC `e':real` t)); | |
DISCH_THEN CHOOSE_TAC; | |
EXISTS_TAC `n':num`; | |
REPEAT GEN_TAC; | |
REWRITE_TAC[ARITH_RULE `a >=| b <=> b <=| a`]; | |
SUBGOAL_TAC `euclid 1 (f (m':num)) /\ euclid 1 (f (n'':num))`; | |
ASM_MESON_TAC[]; | |
ASM_MESON_TAC[euclid1_abs]; | |
]);; | |
(* }}} *) | |
(* a variant of SEQ_CAUCHY *) | |
let complete_real = prove_by_refinement( | |
`complete (euclid 1,d_euclid)`, | |
(* {{{ proof *) | |
[ | |
REWRITE_TAC[complete;converge]; | |
GEN_TAC; | |
DISCH_THEN (fun t-> ASSUME_TAC t THEN MP_TAC t); | |
DISCH_THEN (fun t -> MP_TAC (MATCH_MP cauchy_seq_cauchy t)); | |
REWRITE_TAC[SEQ_CAUCHY;SEQ_LIM;tends_num_real;SEQ_TENDS]; | |
ABBREV_TAC `z = lim (\x. f x 0)`; | |
REWRITE_TAC[MR1_DEF]; | |
DISCH_TAC; | |
ABBREV_TAC `c = \j. (if (j=0) then (z:real) else (&.0))`; | |
EXISTS_TAC `(c:num->real)`; | |
SUBGOAL_TAC `c IN (euclid 1)`; | |
REWRITE_TAC[IN;euclid]; | |
EXPAND_TAC "c"; | |
GEN_TAC; | |
COND_CASES_TAC; | |
ASM_REWRITE_TAC[]; | |
ARITH_TAC; | |
ARITH_TAC; | |
DISCH_TAC; | |
ASM_REWRITE_TAC[]; | |
GEN_TAC; | |
REWRITE_TAC[GSYM RIGHT_IMP_EXISTS_THM]; | |
DISCH_TAC; | |
FIRST_ASSUM (fun t-> (MP_TAC (SPEC `eps:real` t))); | |
FIRST_ASSUM (fun t-> REWRITE_TAC[t]); | |
DISCH_THEN CHOOSE_TAC; | |
EXISTS_TAC `N:num`; | |
GEN_TAC; | |
SUBGOAL_TAC `euclid 1 (f (i:num))`; | |
UNDISCH_FIND_TAC `cauchy_seq`; | |
REWRITE_TAC[cauchy_seq;sequence;SUBSET;IN_IMAGE;IN_UNIV]; | |
DISCH_THEN (fun t-> MP_TAC (CONJUNCT1 t)); | |
REWRITE_TAC[IN]; | |
MESON_TAC[]; | |
UNDISCH_FIND_TAC `(IN)`; | |
REWRITE_TAC[IN]; | |
SIMP_TAC[euclid1_abs]; | |
DISCH_ALL_TAC; | |
EXPAND_TAC "c"; | |
COND_CASES_TAC; | |
ASM_MESON_TAC[ARITH_RULE `n >=| N <=> N <= n`]; | |
ASM_MESON_TAC[]; | |
]);; | |
(* }}} *) | |
let sequence_in = prove_by_refinement( | |
`!X (f:num->A) i. sequence X f ==> X (f i)`, | |
(* {{{ proof *) | |
[ | |
REPEAT GEN_TAC; | |
REWRITE_TAC[sequence;SUBSET;IN_IMAGE;IN_UNIV]; | |
REWRITE_TAC[IN]; | |
MESON_TAC[]; | |
]);; | |
(* }}} *) | |
let proj_cauchy = prove_by_refinement( | |
`!i f n. cauchy_seq (euclid n,d_euclid) f ==> | |
(cauchy_seq (euclid 1,d_euclid) ((proj i) o f))`, | |
(* {{{ proof *) | |
[ | |
REWRITE_TAC[cauchy_seq]; | |
DISCH_ALL_TAC; | |
SUBGOAL_TAC `sequence (euclid 1) (proj (i:num) o f)`; | |
REWRITE_TAC[sequence;SUBSET;IN_IMAGE;o_DEF;IN_UNIV]; | |
NAME_CONFLICT_TAC; | |
MESON_TAC[IN;proj_euclid1]; | |
DISCH_TAC; | |
ASM_REWRITE_TAC[]; | |
GEN_TAC; | |
FIRST_ASSUM (fun t -> CHOOSE_TAC (SPEC `eps:real` t)); | |
EXISTS_TAC `n':num`; | |
DISCH_ALL_TAC; | |
FIRST_ASSUM (fun t-> MP_TAC(SPECL [`i':num`;`j:num`] t)); | |
UNDISCH_FIND_THEN `d_euclid` (fun t-> ALL_TAC); | |
ASM_REWRITE_TAC[]; | |
MATCH_MP_TAC (REAL_ARITH `a <=. b ==> (b <. eps ==> a <. eps)`); | |
REWRITE_TAC[o_DEF;proj_d_euclid]; | |
MATCH_MP_TAC proj_contraction; | |
EXISTS_TAC `n:num`; | |
ASM_MESON_TAC[sequence_in]; | |
]);; | |
(* }}} *) | |
let complete_euclid = prove_by_refinement( | |
`!n. complete (euclid n,d_euclid)`, | |
(* {{{ proof *) | |
[ | |
REWRITE_TAC[complete;IN]; | |
REPEAT GEN_TAC; | |
DISCH_ALL_TAC; | |
IMP_RES_THEN MP_TAC proj_cauchy; | |
DISCH_TAC; | |
SUBGOAL_TAC `!i. converge (euclid 1,d_euclid) (proj i o f)`; | |
GEN_TAC; | |
ASM_MESON_TAC[complete;complete_real]; | |
REWRITE_TAC[converge;IN]; | |
DISCH_THEN (fun t-> MP_TAC (ONCE_REWRITE_RULE[SKOLEM_THM] t)); | |
DISCH_THEN (X_CHOOSE_TAC `L:num->(num->real)`); | |
EXISTS_TAC `(\j. ((L:num->num->real) j 0))`; | |
SUBCONJ_TAC; | |
REWRITE_TAC[euclid]; | |
GEN_TAC; | |
FIRST_ASSUM (fun t->(MP_TAC (SPEC `m:num` t))); | |
DISCH_ALL_TAC; | |
FIRST_ASSUM (fun t-> (MP_TAC (SPEC `abs((L:num->num->real) m 0)` t))); | |
DISCH_THEN CHOOSE_TAC; | |
PROOF_BY_CONTR_TAC; | |
ASSUME_TAC (REAL_ARITH `!x. ~(x=(&.0)) ==> (&.0 <. abs(x))`); | |
UNDISCH_FIND_TAC `d_euclid`; | |
ASM_SIMP_TAC[]; | |
REWRITE_TAC[GSYM EXISTS_NOT_THM]; | |
EXISTS_TAC `(n:num)+n'`; | |
REWRITE_TAC[o_DEF]; | |
REWRITE_TAC[ARITH_RULE `n' <=| n+| n'`]; | |
MATCH_MP_TAC(REAL_ARITH `(x = y) ==> ~(x<y)`); | |
ALL_TAC; (* #buffer "CE1"; *) | |
SUBGOAL_TAC `euclid 1 (proj m (f (n +| n')))`; | |
REWRITE_TAC[proj_euclid1]; | |
ASM_SIMP_TAC[euclid1_abs]; | |
DISCH_TAC; | |
MATCH_MP_TAC (REAL_ARITH `(&.0 = x) ==> (abs(u - x) = abs(u))`); | |
REWRITE_TAC[proj]; | |
SUBGOAL_TAC `euclid n (f (n+| n'))`; | |
ASM_MESON_TAC[cauchy_seq;sequence_in]; | |
REWRITE_TAC[euclid]; | |
DISCH_THEN (fun t-> ASM_SIMP_TAC[t]); | |
ALL_TAC; (* #buffer "CE2"; *) | |
DISCH_TAC; | |
GEN_TAC; | |
CONV_TAC (quant_right_CONV "n"); | |
DISCH_TAC; | |
USE 2 (CONV_RULE (quant_left_CONV "eps")); | |
USE 2 (CONV_RULE (quant_left_CONV "eps")); | |
USE 2 (SPEC `eps/(&.1 +. &. n)`); | |
USE 2 (CONV_RULE (quant_left_CONV "n'")); | |
USE 2 (CONV_RULE (quant_left_CONV "n'")); | |
CHO 2; | |
SUBGOAL_TAC `&.0 <. eps/ (&.1 +. &.n)`; | |
MATCH_MP_TAC REAL_LT_DIV; | |
ASM_REWRITE_TAC[REAL_OF_NUM_ADD;REAL_OF_NUM_LT]; | |
ARITH_TAC; | |
DISCH_THEN (fun t-> (USE 2 (REWRITE_RULE[t]))); | |
SUBGOAL_TAC `!i j. euclid 1 ((proj i o f) (j:num))`; | |
ASM_MESON_TAC[cauchy_seq;sequence_in]; | |
DISCH_TAC; | |
SUBGOAL_TAC `!i. euclid n (f (i:num))`; | |
GEN_TAC; | |
ASM_MESON_TAC[cauchy_seq;sequence_in]; | |
DISCH_TAC; | |
ASM_SIMP_TAC[d_euclid_n]; | |
SUBGOAL_TAC `!(j:num). ?c. !i. (c <=| i) ==> ||. (L j 0 -. f i j) <. eps/(&.1 + &. n)`; | |
CONV_TAC (quant_left_CONV "c"); | |
EXISTS_TAC `n':num->num`; | |
REPEAT GEN_TAC; | |
USE 2 ((SPEC `j:num`)); | |
UND 2; | |
DISCH_ALL_TAC; | |
USE 8 (SPEC `i:num`); | |
UND 8; | |
ASM_REWRITE_TAC[]; | |
ASM_SIMP_TAC[euclid1_abs]; | |
REWRITE_TAC[proj;o_DEF]; | |
CONV_TAC (quant_left_CONV "c"); | |
DISCH_THEN CHOOSE_TAC; | |
ABBREV_TAC `t = (\u. (if (u <| n) then (c u) else (0)))`; | |
SUBGOAL_TAC `?M. (!j. (t:num->num) j <=| M)`; | |
MATCH_MP_TAC max_num_sequence; | |
EXISTS_TAC `n:num`; | |
GEN_TAC; | |
EXPAND_TAC "t"; | |
COND_CASES_TAC; | |
ASM_MESON_TAC[ARITH_RULE `m <| n ==> ~(n <= m)`]; | |
REWRITE_TAC[]; | |
DISCH_THEN CHOOSE_TAC; | |
EXISTS_TAC `M:num`; | |
GEN_TAC; | |
ALL_TAC; (* #set "CE3"; *) | |
DISCH_TAC; | |
MATCH_MP_TAC REAL_POW_2_LT; | |
CONJ_TAC; | |
MATCH_MP_TAC SQRT_POS_LE; | |
REWRITE_TAC[REAL_SUM_SQUARE_POS]; | |
CONJ_TAC; | |
UND 4; | |
REAL_ARITH_TAC; | |
SIMP_TAC[REAL_SUM_SQUARE_POS;SQRT_POW_2]; | |
SUBGOAL_TAC `sum (0,n) (\i'. (L i' 0 - f (i:num) i') * (L i' 0 - f i i')) <=. sum (0,n) (\i'. (eps/(&.1 + &.n)) * (eps/(&.1 + &.n)))`; | |
MATCH_MP_TAC SUM_LE; | |
BETA_TAC; | |
GEN_TAC; | |
DISCH_ALL_TAC; | |
SUBGOAL_TAC `c (r:num) = (t:num->num) r`; | |
EXPAND_TAC "t"; | |
COND_CASES_TAC; | |
REFL_TAC; | |
ASM_MESON_TAC[ARITH_RULE `n +| 0 = n`]; | |
DISCH_TAC; | |
SUBGOAL_TAC `(abs (L r 0 - f (i:num) (r:num)) < eps/(&.1 + &.n))`; | |
USE 7 (SPECL [`r:num`;`i:num`]); | |
UND 7; | |
DISCH_THEN MATCH_MP_TAC; | |
ASM_REWRITE_TAC[]; | |
USE 9 (SPEC `r:num`); | |
JOIN 7 10; | |
UND 7; | |
REWRITE_TAC[LE_TRANS]; | |
ALL_TAC; (* "CE4" *) | |
ABBREV_TAC `b = eps/(&1 + &n)`; | |
ABBREV_TAC `a = (L r 0 - (f:num->num->real) i r)`; | |
REWRITE_TAC[GSYM REAL_POW_2]; | |
REWRITE_TAC[GSYM REAL_LE_SQUARE_ABS]; | |
REAL_ARITH_TAC; | |
MATCH_MP_TAC (REAL_ARITH `(b <. c) ==> ((a <=. b) ==> (a <. c))`); | |
REWRITE_TAC[SUM_CONST]; | |
REWRITE_TAC[REAL_MUL_AC;real_div]; | |
SUBGOAL_TAC `eps pow 2 = eps*eps*(&. 1)`; | |
REWRITE_TAC[REAL_POW_2]; | |
REAL_ARITH_TAC; | |
DISCH_THEN (fun t->REWRITE_TAC[t]); | |
MATCH_MP_TAC REAL_PROP_LT_LMUL; | |
ASM_REWRITE_TAC[]; | |
MATCH_MP_TAC REAL_PROP_LT_LMUL; | |
ASM_REWRITE_TAC[]; | |
SUBGOAL_TAC `&.0 <. &.1 + &.n `; | |
REWRITE_TAC[REAL_OF_NUM_ADD;REAL_OF_NUM_LT]; | |
ARITH_TAC; | |
ALL_TAC; (* "CE5" *) | |
SIMP_TAC[REAL_INV_LT]; | |
DISCH_TAC; | |
REWRITE_TAC[REAL_OF_NUM_ADD;REAL_OF_NUM_LT;REAL_OF_NUM_MUL]; | |
REWRITE_TAC[ARITH_RULE `(1+n)*(1+n)*1 = 1+n+n+n*n`]; | |
MATCH_MP_TAC (ARITH_RULE `(0<=a)/\(0<=b) /\(0<1) ==> (a <| 1 + a + a + b)`); | |
CONJ_TAC; | |
ARITH_TAC; | |
CONJ_TAC; | |
ONCE_REWRITE_TAC [ARITH_RULE `0 = n *| 0`]; | |
REWRITE_TAC[LE_MULT_LCANCEL]; | |
ARITH_TAC; | |
ARITH_TAC; | |
]);; | |
(* }}} *) | |
let subset_sequence = prove_by_refinement( | |
`!(X:A->bool) S f. S SUBSET X /\ sequence S f ==> | |
sequence X f`, | |
(* {{{ proof *) | |
[ | |
REWRITE_TAC[sequence]; | |
SET_TAC[]; | |
]);; | |
(* }}} *) | |
let subset_cauchy = prove_by_refinement( | |
`!(X:A->bool) S d f. S SUBSET X /\ cauchy_seq(S,d) f ==> | |
cauchy_seq(X,d) f`, | |
(* {{{ proof *) | |
[ | |
REPEAT GEN_TAC; | |
REWRITE_TAC[cauchy_seq]; | |
DISCH_ALL_TAC; | |
ASM_MESON_TAC[subset_sequence]; | |
]);; | |
(* }}} *) | |
let complete_closed = prove_by_refinement( | |
`!n S. (closed_ (top_of_metric (euclid n,d_euclid)) S) /\ | |
(S SUBSET (euclid n)) ==> | |
(complete (S,d_euclid))`, | |
(* {{{ proof *) | |
[ | |
REWRITE_TAC[complete]; | |
REPEAT GEN_TAC; | |
DISCH_ALL_TAC; | |
GEN_TAC; | |
DISCH_TAC; | |
USE 0 (MATCH_MP closed_open); | |
UND 0; | |
SIMP_TAC[GSYM top_of_metric_unions;metric_euclid]; | |
DISCH_TAC; | |
SUBGOAL_TAC `cauchy_seq(euclid n,d_euclid) f`; | |
ASM_MESON_TAC[subset_cauchy]; | |
DISCH_TAC; | |
SUBGOAL_TAC `converge(euclid n,d_euclid) f`; | |
ASM_MESON_TAC[complete_euclid;complete]; | |
REWRITE_TAC[converge]; | |
DISCH_THEN CHOOSE_TAC; | |
EXISTS_TAC `(x:num->real)`; | |
ASM_REWRITE_TAC[]; | |
PROOF_BY_CONTR_TAC; | |
SUBGOAL_TAC `~(x IN S) ==> (x IN (euclid n DIFF S))`; | |
ASM SET_TAC[]; | |
DISCH_TAC; | |
H_MATCH_MP (HYP "6") (HYP "5"); | |
USE 0 (REWRITE_RULE[open_DEF]); | |
USE 0 (REWRITE_RULE[(MATCH_MP (CONV_RULE (quant_right_CONV "A") top_of_metric_nbd) (SPEC `n:num` metric_euclid))]); | |
USE 0 (CONV_RULE (quant_left_CONV "a")); | |
USE 0 (SPEC `x:num->real`); | |
UND 0; | |
ASM_REWRITE_TAC[SUBSET_DIFF]; | |
ALL_TAC; (* #CC1; *) | |
PROOF_BY_CONTR_TAC; | |
USE 0 (REWRITE_RULE[]); | |
CHO 0; | |
USE 0 (REWRITE_RULE[SUBSET;IN_ELIM_THM';open_ball]); | |
AND 0; | |
AND 4; | |
USE 4 (SPEC `r:real`); | |
CHO 4; | |
H_MATCH_MP (HYP "4") (HYP "8"); | |
USE 10 (SPEC `n':num`); | |
USE 10 (REWRITE_RULE[ARITH_RULE `n <=| n`]); | |
USE 0 (SPEC `(f:num->num->real) n'`); | |
UND 0; | |
USE 9 (REWRITE_RULE[IN]); | |
ASM_REWRITE_TAC[]; | |
SUBGOAL_TAC `(S:(num->real)->bool) ((f:num->num->real) n')`; | |
ASM_MESON_TAC[cauchy_seq;sequence_in]; | |
UND 1; | |
ABBREV_TAC `X = euclid n`; | |
ABBREV_TAC `a = (f:num->num->real) n'`; | |
REWRITE_TAC[IN_DIFF]; | |
REWRITE_TAC[IN;SUBSET]; | |
ASM_MESON_TAC[]; | |
]);; | |
(* }}} *) | |
(* ------------------------------------------------------------------ *) | |
(* Totally bounded metric spaces *) | |
(* ------------------------------------------------------------------ *) | |
let totally_bounded = euclid_def `totally_bounded ((X:A->bool),d) = | |
(!eps. ?B. (&.0 <. eps) ==> | |
(FINITE B) /\ | |
(!b. (B b) ==> ?x. b = open_ball(X,d) x eps) /\ | |
(X = UNIONS B))`;; | |
let totally_bounded_subset = prove_by_refinement( | |
`!(X:A->bool) d S. (metric_space (X,d)) /\ (totally_bounded(X,d)) | |
/\ (S SUBSET X) ==> | |
(totally_bounded (S,d)) `, | |
(* {{{ proof *) | |
[ | |
REPEAT GEN_TAC; | |
REWRITE_TAC[totally_bounded]; | |
DISCH_ALL_TAC; | |
GEN_TAC; | |
USE 1 (SPEC `eps/(&.2)`); | |
CHO 1; | |
CONV_TAC (quant_right_CONV "B"); | |
DISCH_TAC; | |
SUBGOAL_TAC `&.0 <. eps ==> &.0 <. eps/(&.2)`; | |
DISCH_THEN (fun t-> MP_TAC (ONCE_REWRITE_RULE[GSYM REAL_HALF_DOUBLE] t)); | |
REWRITE_TAC[REAL_DIV_LZERO]; | |
REAL_ARITH_TAC; | |
ASM_REWRITE_TAC[]; | |
DISCH_TAC; | |
(UND 1) THEN (ASM_REWRITE_TAC[]) THEN DISCH_ALL_TAC; | |
SUBGOAL_TAC `!b. ?s. (?t. (t IN (b:A->bool) INTER S)) ==> (s IN b INTER S)`; | |
GEN_TAC; | |
CONV_TAC (quant_left_CONV "t"); | |
MESON_TAC[IN]; | |
CONV_TAC (quant_left_CONV "s"); | |
DISCH_THEN CHOOSE_TAC; | |
ALL_TAC; (* #set "TB1"; *) | |
EXISTS_TAC `IMAGE (\c. (open_ball ((S:A->bool),d) ((s) c) eps)) (B:(A->bool)->bool)`; | |
CONJ_TAC; | |
MATCH_MP_TAC FINITE_IMAGE; | |
ASM_REWRITE_TAC[]; | |
CONJ_TAC; | |
GEN_TAC; | |
REWRITE_TAC[IMAGE;IN_ELIM_THM']; | |
NAME_CONFLICT_TAC; | |
DISCH_THEN (X_CHOOSE_TAC `c:A->bool`); | |
ASM_MESON_TAC[]; | |
MATCH_MP_TAC EQ_EXT; | |
X_GEN_TAC `u:A`; | |
EQ_TAC; | |
DISCH_TAC; | |
SUBGOAL_TAC `(X:A->bool) (u:A)`; | |
ASM_MESON_TAC[SUBSET;IN]; | |
ASM_REWRITE_TAC[]; | |
REWRITE_TAC[REWRITE_RULE[IN] IN_UNIONS]; | |
DISCH_THEN (X_CHOOSE_TAC `b':A->bool`); | |
USE 7 (SPEC `b':A->bool`); | |
REWRITE_TAC[IMAGE]; | |
REWRITE_TAC[IN_ELIM_THM']; | |
CONV_TAC (quant_left_CONV "x"); | |
CONV_TAC (quant_left_CONV "x"); | |
EXISTS_TAC `b':A->bool`; | |
EXISTS_TAC `open_ball((S:A->bool),d) (s (b':A->bool)) eps`; | |
ASM_REWRITE_TAC[IN]; | |
REWRITE_TAC[open_ball]; | |
REWRITE_TAC[IN_ELIM_THM']; | |
ALL_TAC; (* #set "TB2"; *) | |
SUBGOAL_TAC `(u:A) IN (b' INTER S)`; | |
REWRITE_TAC[IN_INTER]; | |
ASM_MESON_TAC[IN]; | |
UND 7; | |
CONV_TAC (quant_left_CONV "t"); | |
CONV_TAC (quant_left_CONV "t"); | |
EXISTS_TAC `u:A`; | |
DISCH_TAC; | |
DISCH_TAC; | |
SUBGOAL_TAC `(S:A->bool) ((s:(A->bool)->A) b')`; | |
UND 7; | |
ASM_REWRITE_TAC[]; | |
REWRITE_TAC[IN_INTER]; | |
MESON_TAC[IN]; | |
DISCH_TAC; | |
ASM_REWRITE_TAC[]; | |
SUBGOAL_TAC `(b':A->bool) ((s:(A->bool)->A) b')`; | |
UND 11; | |
UND 7; | |
REWRITE_TAC[IN_INTER]; | |
ASM_MESON_TAC[IN]; | |
ALL_TAC; (* #set "TB3"; *) | |
DISCH_TAC; | |
AND 9; | |
USE 5 (SPEC `b':A->bool`); | |
H_MATCH_MP (HYP "5") (HYP "13"); | |
CHO 14; | |
ABBREV_TAC `v = (s:(A->bool)->A) b'`; | |
COPY 9; | |
UND 9; | |
UND 12; | |
ASM_REWRITE_TAC[]; | |
REWRITE_TAC[open_ball;IN_ELIM_THM']; | |
DISCH_ALL_TAC; | |
SUBGOAL_TAC `(X x) /\ ((X:A->bool) u) /\ (X v)`; | |
ASM_REWRITE_TAC[]; | |
ASM_MESON_TAC[SUBSET;IN]; | |
DISCH_ALL_TAC; | |
USE 0 (REWRITE_RULE[metric_space]); | |
COPY 16; | |
KILL 1; | |
KILL 7; | |
KILL 11; | |
UND 21; | |
KILL 6; | |
UND 14; | |
DISCH_THEN (fun t-> ASSUME_TAC t THEN (REWRITE_TAC[t])); | |
REWRITE_TAC[open_ball;IN_ELIM_THM']; | |
DISCH_ALL_TAC; | |
USE 0 (SPECL [`v:A`;`x:A`;`u:A`]); | |
UND 0; | |
ASM_REWRITE_TAC[]; | |
DISCH_ALL_TAC; | |
USE 22 (MATCH_MP (REAL_ARITH `(a <=. b + c) ==> !e. (b + c <. e ==> (a <. e))`)); | |
USE 22 (SPEC `eps:real`); | |
UND 22 THEN (DISCH_THEN (MATCH_MP_TAC)); | |
ASM_REWRITE_TAC[]; | |
UND 11; | |
UND 17; | |
MP_TAC (SPEC `eps:real` REAL_HALF_DOUBLE); | |
REAL_ARITH_TAC; | |
REWRITE_TAC[IMAGE;IN_ELIM_THM']; | |
REWRITE_TAC[UNIONS;IN_ELIM_THM']; | |
CONV_TAC (quant_left_CONV "x"); | |
CONV_TAC (quant_left_CONV "x"); | |
NAME_CONFLICT_TAC; | |
CONV_TAC (quant_left_CONV "x'"); | |
X_GEN_TAC `c:A->bool`; | |
CONV_TAC (quant_left_CONV "u'"); | |
GEN_TAC; | |
DISCH_ALL_TAC; | |
UND 10; | |
ASM_REWRITE_TAC[]; | |
REWRITE_TAC[open_ball;IN_ELIM_THM']; | |
MESON_TAC[]; | |
]);; | |
(* }}} *) | |
let integer_cube_finite = prove_by_refinement( | |
`!n N. FINITE { f | (euclid n f) /\ | |
(!i. (?j. (abs(f i) = &.j) /\ (j <=| N)))}`, | |
(* {{{ proof *) | |
[ | |
REP_GEN_TAC; | |
ABBREV_TAC `fs = FUN {m | m <| n} {x | ?j. (abs x = &.j) /\ (j <=| N)}`; | |
ABBREV_TAC `gs = { f | (euclid n f) /\ (!i. (?j. (abs(f i) = &.j) /\ (j <=| N)))}`; | |
SUBGOAL_TAC `FINITE (fs:(num->real)->bool)`; | |
EXPAND_TAC "fs"; | |
MP_TAC(prove(`!(a:num->bool) (b:real->bool). FINITE a /\ FINITE b ==> (FINITE (FUN a b))`,MESON_TAC[HAS_SIZE;FUN_SIZE])); | |
DISCH_THEN MATCH_MP_TAC; | |
REWRITE_TAC[interval_finite;FINITE_NUMSEG_LT]; | |
DISCH_TAC; | |
ABBREV_TAC `G = (\ u. (\ j. if (n <=| j) then (&.0) else (u j)))`; | |
SUBGOAL_TAC `FINITE { y | ?x. x IN fs /\ (y:(num->real) = G (x:num->real))}`; | |
MATCH_MP_TAC FINITE_IMAGE_EXPAND; | |
ASM_REWRITE_TAC[]; | |
SUBGOAL_TAC `!a b. ((a:(num->real)->bool) = b) ==> (FINITE a ==> FINITE b)`; | |
REP_GEN_TAC; | |
DISCH_THEN (fun t-> REWRITE_TAC[t]); | |
DISCH_THEN (fun t-> MATCH_MP_TAC t); | |
MATCH_MP_TAC EQ_EXT; | |
GEN_TAC; | |
EXPAND_TAC "gs"; | |
REWRITE_TAC[IN_ELIM_THM']; | |
EXPAND_TAC "fs"; | |
REWRITE_TAC[FUN;IN_ELIM_THM']; | |
NAME_CONFLICT_TAC; | |
EQ_TAC; | |
DISCH_THEN (CHOOSE_TAC ); | |
SUBGOAL_TAC `euclid n x`; | |
REWRITE_TAC[euclid]; | |
GEN_TAC; | |
AND 4; | |
UND 4; | |
EXPAND_TAC "G"; | |
DISCH_THEN (fun t->REWRITE_TAC[t]); | |
DISCH_THEN (fun t->REWRITE_TAC[t]); | |
DISCH_TAC THEN (ASM_REWRITE_TAC[]); | |
GEN_TAC; | |
AND 4; | |
EXPAND_TAC "G"; | |
COND_CASES_TAC; | |
REDUCE_TAC; | |
EXISTS_TAC `0`; | |
REDUCE_TAC; | |
AND 6; | |
USE 8 (SPEC `i':num`); | |
ASM_MESON_TAC[ARITH_RULE `~(n <=| i') ==> (i' <| n)`]; | |
DISCH_ALL_TAC; | |
EXISTS_TAC `\p. (if (p <| n) then ((x:num->real) p) else (CHOICE UNIV))`; | |
CONJ_TAC; | |
REWRITE_TAC[SUPP;SUBSET;IN_ELIM_THM']; | |
NAME_CONFLICT_TAC; | |
CONJ_TAC; | |
GEN_TAC; | |
DISCH_THEN (fun t->REWRITE_TAC[t]); | |
UND 5; | |
MESON_TAC[]; | |
GEN_TAC; | |
COND_CASES_TAC; | |
REWRITE_TAC[]; | |
REWRITE_TAC[]; | |
MATCH_MP_TAC EQ_EXT; | |
X_GEN_TAC `q:num`; | |
EXPAND_TAC "G"; | |
COND_CASES_TAC; | |
ASM_MESON_TAC[euclid]; | |
USE 6 (MATCH_MP (ARITH_RULE `~(n <=| q) ==> (q <| n)`)); | |
ASM_REWRITE_TAC[]; | |
]);; | |
(* }}} *) | |
let FINITE_scaled_lattice = prove_by_refinement( | |
`!n N s. (&.0 <. s) ==> FINITE {x | euclid n x /\ (!i. (?j. abs(x i) = s*(&.j)) /\ (abs(x i) <=. (&.N) ) ) }`, | |
(* {{{ proof *) | |
[ | |
DISCH_ALL_TAC; | |
ABBREV_TAC `map = ( *# ) s`; | |
ASSUME_TAC REAL_ARCH_SIMPLE; | |
USE 2 (SPEC `inv(s)*(&.N)`); | |
UND 2 THEN (DISCH_THEN (X_CHOOSE_TAC `M:num`)); | |
ASSUME_TAC integer_cube_finite; | |
USE 3 (SPECL [`n:num`;`M:num`]); | |
USE 3 (MATCH_MP (ISPEC `map:(num->real)->(num->real)` FINITE_IMAGE_EXPAND)); | |
UND 3; | |
MATCH_MP_TAC (prove_by_refinement (`!a b. ((b:A->bool) SUBSET a) ==> (FINITE a ==> FINITE b)`,[MESON_TAC[FINITE_SUBSET]])); | |
REWRITE_TAC[SUBSET]; | |
X_GEN_TAC `c:num->real`; | |
REWRITE_TAC[IN_ELIM_THM']; | |
EXPAND_TAC "map"; | |
DISCH_ALL_TAC; | |
EXISTS_TAC `inv(s) *# c`; | |
REWRITE_TAC[euclid_scale_act]; | |
ASM_SIMP_TAC[euclid_scale_closure]; | |
WITH 0 (MATCH_MP (REAL_ARITH `&.0 < s ==> ~(s = &.0)`)); | |
ASM_SIMP_TAC[REAL_MUL_RINV]; | |
CONJ_TAC; | |
GEN_TAC; | |
USE 4 (SPEC `i:num`); | |
AND 4; | |
CHO 6; | |
REWRITE_TAC[euclid_scale;REAL_ABS_MUL;REAL_ABS_INV]; | |
SUBGOAL_TAC `abs s = s`; | |
UND 0; | |
REAL_ARITH_TAC; | |
DISCH_THEN (fun t-> REWRITE_TAC[t]); | |
EXISTS_TAC `j:num`; | |
ALL_TAC; (* save_goal "C" *) | |
SUBCONJ_TAC; | |
ASM_REWRITE_TAC[]; | |
UND 5; | |
REWRITE_TAC[GSYM (CONJUNCT1 (CONJUNCT2 (REAL_MUL_AC)))]; | |
SIMP_TAC[REAL_MUL_LINV]; | |
REAL_ARITH_TAC; | |
DISCH_TAC; | |
REWRITE_TAC[GSYM REAL_OF_NUM_LE]; | |
USE 7 (GSYM); | |
UND 7 THEN DISCH_THEN (fun t-> REWRITE_TAC[t]); | |
USE 0 (MATCH_MP REAL_LT_INV); | |
ABBREV_TAC `s' = inv(s)`; | |
USE 0 (MATCH_MP (REAL_ARITH `&.0 < s' ==> &.0 <=. s'`)); | |
JOIN 0 4; | |
USE 0 (MATCH_MP REAL_LE_LMUL); | |
JOIN 0 2; | |
UND 0; | |
REAL_ARITH_TAC; | |
REWRITE_TAC[euclid_scale_one]; | |
]);; | |
(* }}} *) | |
let totally_bounded_cube = prove_by_refinement( | |
`!n N. totally_bounded | |
({x | euclid n x /\ (!i. abs(x i) <=. (&.N))},d_euclid)`, | |
(* {{{ proof *) | |
[ | |
REP_GEN_TAC; | |
REWRITE_TAC[totally_bounded]; | |
GEN_TAC; | |
CONV_TAC (quant_right_CONV "B"); | |
DISCH_TAC; | |
ABBREV_TAC `cent = {x | euclid n x /\ (!i. (?j. abs(x i) = (eps/(&.n+. &.1))*(&.j)) /\ (abs(x i) <=. (&.N) ) ) }`; | |
SUBGOAL_TAC `&.0 <. (&.n +. &.1)`; | |
REDUCE_TAC; | |
ARITH_TAC; | |
DISCH_TAC; | |
ABBREV_TAC `s = eps/(&.n +. &.1)`; | |
SUBGOAL_TAC `&.0 < s`; | |
EXPAND_TAC "s"; | |
ASM_SIMP_TAC[REAL_LT_DIV]; | |
DISCH_TAC; | |
SUBGOAL_TAC `FINITE (cent:(num->real)->bool)`; | |
EXPAND_TAC "cent"; | |
ASM_SIMP_TAC[FINITE_scaled_lattice]; | |
DISCH_TAC; | |
ABBREV_TAC `cube = {x | euclid n x /\ (!i. abs(x i) <=. (&.N))}`; | |
EXISTS_TAC `IMAGE (\c. open_ball(cube,d_euclid) c eps) cent`; | |
SUBCONJ_TAC; | |
ASM_MESON_TAC[FINITE_IMAGE]; | |
DISCH_TAC; | |
SUBCONJ_TAC; | |
GEN_TAC; | |
REWRITE_TAC[IMAGE;IN_ELIM_THM']; | |
ASM_MESON_TAC[]; | |
DISCH_TAC; | |
ALL_TAC; (* # TB1; *) | |
SUBGOAL_TAC `cent SUBSET (cube:(num->real)->bool)`; | |
REWRITE_TAC[SUBSET]; | |
EXPAND_TAC "cent"; | |
EXPAND_TAC "cube"; | |
REWRITE_TAC[IN_ELIM_THM']; | |
MESON_TAC[]; | |
DISCH_TAC; | |
MATCH_MP_TAC EQ_EXT; | |
GEN_TAC; | |
EQ_TAC; | |
DISCH_TAC; | |
REWRITE_TAC[UNIONS;IN_IMAGE;IN_ELIM_THM']; | |
ASSUME_TAC REAL_ARCH_LEAST; | |
USE 11 (SPEC `s:real`); | |
UND 11 THEN (ASM_REWRITE_TAC[]) THEN DISCH_TAC; | |
USE 11 (CONV_RULE (quant_left_CONV "n")); | |
USE 11 (CONV_RULE (quant_left_CONV "n")); | |
UND 11 THEN (DISCH_THEN (X_CHOOSE_TAC `cs:real->num`)); | |
NAME_CONFLICT_TAC; | |
CONV_TAC (quant_left_CONV "x'"); | |
CONV_TAC (quant_left_CONV "x'"); | |
ABBREV_TAC `cx = \ (i:num) . if (&.0 <=. (x i)) then &(cs (x i))* s else --. (&.(cs (--. (x i))) * s )`; | |
EXISTS_TAC `cx:num->real`; | |
EXISTS_TAC `open_ball(cube,d_euclid) cx eps`; | |
ASM_REWRITE_TAC[]; | |
ALL_TAC; (* # TB2; *) | |
SUBGOAL_TAC `euclid n x`; | |
UND 10; | |
EXPAND_TAC "cube"; | |
REWRITE_TAC[IN_ELIM_THM']; | |
MESON_TAC[]; | |
DISCH_TAC; | |
SUBGOAL_TAC `cx IN (euclid n)`; | |
REWRITE_TAC[IN;euclid;]; | |
DISCH_ALL_TAC; | |
EXPAND_TAC "cx"; | |
UND 13; | |
REWRITE_TAC[euclid]; | |
DISCH_THEN (fun t-> MP_TAC(SPEC `m:num` t)); | |
ASM_REWRITE_TAC[]; | |
DISCH_THEN (fun t-> REWRITE_TAC[t]); | |
REDUCE_TAC; | |
USE 11 (SPEC `&.0`); | |
UND 11; | |
REDUCE_TAC; | |
ABBREV_TAC `(a:num) = (cs (&.0))`; | |
SUBGOAL_TAC `&.0 <=. &.a *s`; | |
REWRITE_TAC[REAL_MUL_NN]; | |
DISJ1_TAC; | |
REDUCE_TAC; | |
UND 4; | |
REAL_ARITH_TAC; | |
ABBREV_TAC `q = (&.a)*. s`; | |
REAL_ARITH_TAC; | |
DISCH_TAC; | |
ALL_TAC; (* # TB3; *) | |
SUBCONJ_TAC; | |
EXPAND_TAC "cent"; | |
REWRITE_TAC[IN_ELIM_THM']; | |
USE 14 (REWRITE_RULE[IN]); | |
ASM_REWRITE_TAC[]; | |
GEN_TAC; | |
EXPAND_TAC "cx"; | |
BETA_TAC; | |
COND_CASES_TAC; | |
SUBCONJ_TAC; | |
EXISTS_TAC `((cs:real->num) (x (i:num)))`; | |
REWRITE_TAC[REAL_ABS_MUL]; | |
REDUCE_TAC; | |
REWRITE_TAC[REAL_MUL_AC]; | |
AP_THM_TAC; | |
AP_TERM_TAC; | |
UND 4; | |
REAL_ARITH_TAC; | |
DISCH_TAC; | |
ALL_TAC; (* # TB4; *) | |
SUBGOAL_TAC `(&.0 <=. &.(cs ((x:num->real) i)) * s)`; | |
REWRITE_TAC[REAL_MUL_NN]; | |
DISJ1_TAC; | |
REDUCE_TAC; | |
UND 4 THEN REAL_ARITH_TAC; | |
DISCH_THEN (fun t-> MP_TAC (REWRITE_RULE[GSYM REAL_ABS_REFL] t)); | |
DISCH_THEN (fun t-> REWRITE_TAC [t]); | |
USE 11 (SPEC `(x:num->real) i`); | |
UND 11; | |
ASM_REWRITE_TAC []; | |
UND 10; | |
EXPAND_TAC "cube"; | |
REWRITE_TAC [IN_ELIM_THM']; | |
DISCH_THEN (fun t -> ASSUME_TAC (CONJUNCT2 t)); | |
USE 10 (SPEC `i:num`); | |
UND 10; | |
ASSUME_TAC(prove(`&.0 <= x ==> (abs x = x)`,MESON_TAC[REAL_ABS_REFL])); | |
ASM_SIMP_TAC[]; | |
MESON_TAC[REAL_LE_TRANS]; | |
ALL_TAC ; (* #TB5; *) | |
REWRITE_TAC[REAL_ABS_NEG]; | |
SUBCONJ_TAC; | |
EXISTS_TAC `((cs:real->num) (--. (x (i:num))))`; | |
REWRITE_TAC [REAL_ABS_MUL]; | |
REDUCE_TAC; | |
ASSUME_TAC(prove(`&.0 <= x ==> (abs x = x)`,MESON_TAC[REAL_ABS_REFL])); | |
ASSUME_TAC(REAL_ARITH `&.0 < x ==> &. 0 <=. x`); | |
ASM_SIMP_TAC[]; | |
REWRITE_TAC [REAL_MUL_AC]; | |
DISCH_TAC; | |
USE 11 (SPEC `--. (x (i:num))`); | |
UND 11; | |
ASSUME_TAC (REAL_ARITH `!x. ~(&.0 <= x) ==> (&.0 <= --. x)`); | |
ASM_SIMP_TAC[]; | |
UND 10; | |
EXPAND_TAC "cube"; | |
REWRITE_TAC[IN_ELIM_THM']; | |
DISCH_THEN (fun t -> ASSUME_TAC (CONJUNCT2 t)); | |
USE 10 (SPEC `i:num`); | |
UND 10; | |
MP_TAC(prove(`!v. (-- v <=. abs(v))`,REAL_ARITH_TAC)); | |
REWRITE_TAC [REAL_ABS_MUL]; | |
REDUCE_TAC; | |
ASSUME_TAC(prove(`&.0 <= x ==> (abs x = x)`,MESON_TAC[REAL_ABS_REFL])); | |
ASSUME_TAC(REAL_ARITH `&.0 < x ==> &. 0 <=. x`); | |
ASM_SIMP_TAC[]; | |
MESON_TAC[REAL_LE_TRANS]; | |
ALL_TAC; (* #TB6; *) | |
DISCH_TAC; | |
REWRITE_TAC[open_ball;IN_ELIM_THM']; | |
ASM_REWRITE_TAC[]; | |
CONJ_TAC; | |
UND 15; | |
UND 9; | |
REWRITE_TAC[SUBSET;IN]; | |
MESON_TAC[]; | |
SUBGOAL_TAC `d_euclid cx x <= sqrt(&.n)*s`; | |
MATCH_MP_TAC D_EUCLID_BOUND; | |
USE 14 (REWRITE_RULE[IN]); | |
ASM_REWRITE_TAC[]; | |
GEN_TAC; | |
EXPAND_TAC "cx"; | |
BETA_TAC; | |
ASSUME_TAC (REAL_ARITH `!x a b. a <=. x /\ x <. b ==> abs(a - x) <= b -a`); | |
SUBGOAL_TAC `!x. &.0 <=. x ==> abs(&.(cs x)*.s -. x) <=. s`; | |
DISCH_ALL_TAC; | |
USE 11 (SPEC `x':real`); | |
H_MATCH_MP (HYP "11") (HYP "17"); | |
H_MATCH_MP (HYP "16") (HYP "18"); | |
USE 19 (REWRITE_RULE [GSYM REAL_SUB_RDISTRIB]); | |
ALL_TAC; (* # TB7; *) | |
USE 19 (CONV_RULE REDUCE_CONV); | |
ASM_REWRITE_TAC []; | |
DISCH_TAC; | |
COND_CASES_TAC; | |
ASM_MESON_TAC[]; | |
REWRITE_TAC[REAL_ARITH `--x - y = --(x+.y)`;REAL_ABS_NEG]; | |
REWRITE_TAC[REAL_ARITH `x+. y = (x -. (--. y))`]; | |
ASM_MESON_TAC[REAL_ARITH `!u. ~(&.0 <=. u) ==> (&.0 <=. (--. u))`]; | |
ALL_TAC; (* # TB8; *) | |
MATCH_MP_TAC(REAL_ARITH `b < c ==> ((a<=b) ==> (a < c))`); | |
EXPAND_TAC "s"; | |
REWRITE_TAC[real_div;REAL_MUL_AC]; | |
MATCH_MP_TAC(REAL_ARITH`(t < e *(&.1)) ==> (t <. e)`); | |
MATCH_MP_TAC (REAL_LT_LMUL); | |
ASM_REWRITE_TAC[]; | |
ASSUME_TAC REAL_PROP_LT_LCANCEL ; | |
USE 16 (SPEC `&.n +. &.1`); | |
UND 16; | |
DISCH_THEN (MATCH_MP_TAC); | |
REDUCE_TAC; | |
SUBGOAL_TAC `~(&.(n+1) = &.0)`; | |
REDUCE_TAC; | |
ARITH_TAC; | |
REWRITE_TAC[REAL_ARITH`a*b*c = (a*b)*c`]; | |
ALL_TAC; (* # TB8; *) | |
SIMP_TAC[REAL_MUL_RINV]; | |
REDUCE_TAC; | |
DISCH_TAC; | |
CONJ_TAC; | |
ARITH_TAC; | |
SQUARE_TAC; | |
SUBCONJ_TAC; | |
MATCH_MP_TAC SQRT_POS_LE; | |
REDUCE_TAC; | |
DISCH_TAC; | |
SUBCONJ_TAC; | |
REDUCE_TAC; | |
DISCH_TAC; | |
SUBGOAL_TAC `&.0 <=. &.n`; | |
REDUCE_TAC; | |
SIMP_TAC[prove(`!x. (&.0 <=. x) ==> (sqrt(x) pow 2 = x)`,MESON_TAC[SQRT_POW2])]; | |
DISCH_TAC; | |
REWRITE_TAC[REAL_POW_2]; | |
REDUCE_TAC; | |
REWRITE_TAC[LEFT_ADD_DISTRIB;RIGHT_ADD_DISTRIB]; | |
REDUCE_TAC; | |
ABBREV_TAC `m = n*|n +| n`; | |
ARITH_TAC; | |
ALL_TAC; (* # TB9; *) | |
REWRITE_TAC[UNIONS;IN_IMAGE;IN_ELIM_THM']; | |
DISCH_THEN CHOOSE_TAC; | |
AND 10; | |
CHO 11; | |
AND 11; | |
UND 10; | |
ASM_REWRITE_TAC[]; | |
MP_TAC (ISPEC `cube:(num->real)->bool` open_ball_subset); | |
REWRITE_TAC[SUBSET]; | |
REWRITE_TAC[IN]; | |
MESON_TAC[]; | |
]);; | |
(* }}} *) | |
let center_FINITE = prove_by_refinement( | |
`!X d . metric_space ((X:A->bool),d) /\ (totally_bounded (X,d)) | |
==> (!eps. (&.0 < eps) ==> (?C. (C SUBSET X) /\ (FINITE C) /\ (X = UNIONS (IMAGE (\x. open_ball(X,d) x eps) C))))`, | |
(* {{{ proof *) | |
[ | |
REWRITE_TAC[totally_bounded]; | |
DISCH_ALL_TAC; | |
DISCH_ALL_TAC; | |
USE 1 (SPEC `eps:real`); | |
CHO 1; | |
REWR 1; | |
AND 1; | |
AND 1; | |
USE 4 (CONV_RULE ((quant_left_CONV "x"))); | |
USE 4 (CONV_RULE ((quant_left_CONV "x"))); | |
CHO 4; | |
ABBREV_TAC `C'={z | (X (z:A)) /\ (?b. (B (b:A->bool)) /\ (z = x b))}`; | |
EXISTS_TAC `C':A->bool`; | |
SUBCONJ_TAC; | |
EXPAND_TAC"C'"; | |
REWRITE_TAC[SUBSET;IN_ELIM_THM']; | |
REWRITE_TAC[IN]; | |
MESON_TAC[]; | |
DISCH_TAC; | |
CONJ_TAC; | |
SUBGOAL_TAC `C' SUBSET (IMAGE (x:(A->bool)->A) B)`; | |
EXPAND_TAC"C'"; | |
REWRITE_TAC[SUBSET;IN_IMAGE;IN_ELIM_THM']; | |
NAME_CONFLICT_TAC; | |
MESON_TAC[IN]; | |
DISCH_TAC; | |
SUBGOAL_TAC `FINITE (IMAGE (x:(A->bool)->A) B)`; | |
ASM_MESON_TAC[FINITE_IMAGE]; | |
ASM_MESON_TAC[FINITE_SUBSET]; | |
ALL_TAC; (* #g1; *) | |
(ASM (GEN_REWRITE_TAC LAND_CONV)) []; | |
( (GEN_REWRITE_TAC LAND_CONV)) [UNIONS_DELETE]; | |
AP_TERM_TAC; | |
MATCH_MP_TAC EQ_EXT; | |
GEN_TAC; | |
REWRITE_TAC[DELETE;IN_ELIM_THM';IMAGE]; | |
EXPAND_TAC "C'"; | |
REWRITE_TAC[IN_ELIM_THM']; | |
NAME_CONFLICT_TAC; | |
EQ_TAC; | |
DISCH_ALL_TAC; | |
USE 4 (SPEC `x':A->bool`); | |
CONV_TAC (quant_left_CONV "b'"); | |
CONV_TAC (quant_left_CONV "b'"); | |
CONV_TAC (quant_left_CONV "b'"); | |
EXISTS_TAC `x':(A->bool)`; | |
EXISTS_TAC `(x:(A->bool)->A) x'`; | |
REWRITE_TAC[]; | |
USE 7 (REWRITE_RULE[IN]); | |
H_MATCH_MP (HYP "4") (HYP"7"); | |
ALL_TAC; (* #g2 *) | |
ABBREV_TAC `a = (x:(A->bool)->A) x'`; | |
KILL 1; | |
ASM_REWRITE_TAC[]; | |
UND 8; | |
ASM_REWRITE_TAC[]; | |
MESON_TAC[open_ball_empty;IN]; | |
ALL_TAC; (* #g3 *) | |
DISCH_THEN CHOOSE_TAC; | |
UND 7; | |
DISCH_ALL_TAC; | |
CHO 8; | |
AND 8; | |
CONJ_TAC; | |
KILL 1; | |
ASM_REWRITE_TAC[]; | |
KILL 9; | |
USE 4 (SPEC `b':A->bool`); | |
REWR 1; | |
ASM_MESON_TAC[IN]; | |
KILL 1; | |
ASM_REWRITE_TAC[]; | |
UND 7; | |
ASM_REWRITE_TAC[]; | |
ABBREV_TAC `a = (x:(A->bool)->A) b'`; | |
DISCH_TAC; | |
JOIN 2 7; | |
JOIN 0 2; | |
USE 0 (MATCH_MP open_ball_nonempty); | |
UND 0; | |
ABBREV_TAC `E= open_ball(X,d) (a:A) eps `; | |
MESON_TAC[IN;EMPTY]; | |
]);; | |
(* }}} *) | |
let open_ball_dist = prove_by_refinement( | |
`!X d x y r. (open_ball(X,d) x r y) ==> (d (x:A) y <. r)`, | |
(* {{{ proof *) | |
[ | |
REWRITE_TAC[open_ball;IN_ELIM_THM']; | |
DISCH_ALL_TAC; | |
ASM_REWRITE_TAC[]; | |
]);; | |
(* }}} *) | |
let totally_bounded_bounded = prove_by_refinement( | |
`!(X:A->bool) d. metric_space(X,d) /\ totally_bounded (X,d) ==> | |
(?a r. X SUBSET (open_ball(X,d) a r))`, | |
(* {{{ proof *) | |
[ | |
DISCH_ALL_TAC; | |
COPY 0; | |
JOIN 0 1; | |
USE 0 (MATCH_MP center_FINITE); | |
USE 0 (SPEC `&.1`); | |
USE 0 (CONV_RULE REDUCE_CONV); | |
CHO 0; | |
EXISTS_TAC `CHOICE (X:A->bool)`; | |
ASM_CASES_TAC `(X:A->bool) = EMPTY`; | |
ASM_REWRITE_TAC[EMPTY_SUBSET]; | |
USE 1 (MATCH_MP CHOICE_DEF); | |
UND 0 THEN DISCH_ALL_TAC; | |
ABBREV_TAC `(dset:real->bool) = IMAGE (\c. (d (CHOICE (X:A->bool)) (c:A))) C`; | |
SUBGOAL_TAC `FINITE (dset:real->bool)`; | |
EXPAND_TAC"dset"; | |
MATCH_MP_TAC FINITE_IMAGE; | |
ASM_REWRITE_TAC[]; | |
DISCH_TAC; | |
USE 6 (MATCH_MP real_FINITE); | |
CHO 6; | |
EXISTS_TAC `a +. &.1`; | |
REWRITE_TAC[SUBSET]; | |
GEN_TAC; | |
REWRITE_TAC[open_ball;IN_ELIM_THM']; | |
UND 1; | |
REWRITE_TAC[IN]; | |
DISCH_ALL_TAC; | |
UND 4; | |
ASM_REWRITE_TAC[]; | |
DISCH_TAC; | |
(* ASM (GEN_REWRITE_TAC LAND_CONV) []; *) | |
USE 4(REWRITE_RULE[UNIONS;IN_IMAGE;IN_ELIM_THM']); | |
USE 4(fun t -> AP_THM t `x:A`); | |
UND 1; | |
DISCH_THEN (fun t-> ((MP_TAC t) THEN (ASM_REWRITE_TAC[])) THEN ASSUME_TAC t); | |
DISCH_TAC; | |
USE 8 (REWRITE_RULE[IN_ELIM_THM']); | |
CHO 8; | |
AND 8; | |
USE 9 (CONV_RULE NAME_CONFLICT_CONV); | |
CHO 9; | |
ALL_TAC; (* # "tbb"; *) | |
REWR 8; | |
USE 8(REWRITE_RULE[IN]); | |
USE 8 (MATCH_MP open_ball_dist); | |
AND 9; | |
SUBGOAL_TAC `d (CHOICE (X:A->bool)) (x':A) IN (dset:real->bool)`; | |
EXPAND_TAC"dset"; | |
REWRITE_TAC[IN_IMAGE]; | |
ASM_MESON_TAC[]; | |
DISCH_TAC; | |
H_MATCH_MP (HYP"6") (HYP"11"); | |
USE 2 (REWRITE_RULE[metric_space]); | |
USE 2 (SPECL[`(CHOICE (X:A->bool))`;`(x':A)`;`x:A`]); | |
KILL 4; | |
REWR 2; | |
SUBGOAL_TAC `(X:A->bool) x'`; | |
UND 9; | |
UND 0; | |
SET_TAC[IN;SUBSET]; | |
DISCH_TAC; | |
REWR 2; | |
UND 2 THEN DISCH_ALL_TAC; | |
UND 8; | |
UND 12; | |
UND 15; | |
ARITH_TAC; | |
]);; | |
(* }}} *) | |
let subsequence_rec = prove_by_refinement( | |
`!(X:A->bool) d f C s n r. | |
metric_space(X,d) /\ (totally_bounded(X,d)) /\ (sequence X f) /\ | |
(C SUBSET X) /\ (&.0 < r) /\ | |
(~FINITE{j| C (f j)} /\ C(f s) /\ (!x y. (C x /\ C y) ==> | |
d x y <. r*twopow(--: (&:n)))) ==> | |
(? C' s'. ((C' SUBSET C) /\ (s < s') /\ | |
(~FINITE{j| C' (f j)} /\ C'(f s') /\ (!x y. (C' x /\ C' y) ==> | |
d x y <. r*twopow(--: (&:(SUC n)))))))`, | |
(* {{{ proof *) | |
[ | |
DISCH_ALL_TAC; | |
USE 1 (REWRITE_RULE[totally_bounded]); | |
USE 1 (SPEC `r*twopow(--: (&:(n+| 2)))`); | |
CHO 1; | |
ASSUME_TAC twopow_pos; | |
USE 8 (SPEC `--: (&: (n+| 2))`); | |
ALL_TAC; (* ## need a few lines here to match Z8 with Z1. *) | |
COPY 4; | |
JOIN 9 8; | |
USE 8 (MATCH_MP REAL_LT_MUL); | |
REWR 1; | |
UND 1 THEN DISCH_ALL_TAC; | |
ALL_TAC ; (* "sr1" OK TO HERE *) | |
ASSUME_TAC (ISPECL [`UNIV:num->bool`;`f:num->A`;`B:(A->bool)->bool`;`C:A->bool`] INFINITE_PIGEONHOLE); | |
UND 11; | |
ASM_SIMP_TAC[UNIV]; | |
H_REWRITE_RULE[HYP "10"] (HYP "3"); | |
ASM_REWRITE_TAC []; | |
DISCH_THEN CHOOSE_TAC; | |
EXISTS_TAC `C INTER (b:A->bool)`; | |
CONV_TAC (quant_right_CONV "s'"); | |
SUBCONJ_TAC; | |
REWRITE_TAC[INTER_SUBSET]; | |
DISCH_TAC; | |
AND 12; | |
ASM_REWRITE_TAC[]; | |
SUBGOAL_TAC `~(FINITE ({i | (C INTER b) ((f:num->A) i)} INTER {i | s <| i}))`; | |
PROOF_BY_CONTR_TAC; | |
(USE 15) (REWRITE_RULE[]); | |
USE 15 (MATCH_MP num_above_finite); | |
UND 12; | |
ASM_REWRITE_TAC[]; | |
DISCH_TAC; | |
ABBREV_TAC `J = ({i | (C INTER b) ((f:num->A) i)} INTER {i | s <| i})`; | |
EXISTS_TAC `CHOICE (J:num->bool)`; (* ok to here *) | |
SUBGOAL_TAC `J (CHOICE (J:num->bool))`; | |
MATCH_MP_TAC (REWRITE_RULE [IN] CHOICE_DEF); | |
PROOF_BY_CONTR_TAC; | |
USE 17 (REWRITE_RULE[]); | |
H_REWRITE_RULE[(HYP "17")] (HYP "15"); | |
UND 18; | |
REWRITE_TAC[FINITE_RULES]; | |
ALL_TAC; (* "sr2" *) | |
ABBREV_TAC `s' = (CHOICE (J:num->bool))`; | |
EXPAND_TAC "J"; | |
REWRITE_TAC[INTER;IN_ELIM_THM']; | |
DISCH_ALL_TAC; | |
ASM_REWRITE_TAC[]; | |
DISCH_ALL_TAC; | |
KILL 5 THEN (KILL 2) THEN (KILL 1) THEN (KILL 13) THEN (KILL 12); | |
SUBGOAL_TAC `(X x) /\ (X (y:A))`; | |
UND 21 THEN UND 23 THEN UND 3; | |
MESON_TAC[SUBSET;IN]; | |
USE 9 (SPEC `b:A->bool`); | |
H_REWRITE_RULE[HYP "14"] (HYP "1"); | |
CHO 2; | |
ALL_TAC; (* #"gg1" *) | |
JOIN 22 24; | |
JOIN 0 5; | |
H_REWRITE_RULE[(HYP "2")] (HYP "0"); | |
USE 5 (REWRITE_RULE[IN]); | |
USE 5 (MATCH_MP BALL_DIST); | |
DISCH_ALL_TAC; | |
UND 5; | |
MATCH_MP_TAC (REAL_ARITH `(b = c) ==> ((a<. b) ==> (a<c))`); | |
ALL_TAC; (* insert here *) | |
REWRITE_TAC[REAL_MUL_ASSOC]; | |
REWRITE_TAC[REAL_ARITH `&.2 *.r = r*. (&.2)`]; | |
REWRITE_TAC[GSYM REAL_MUL_ASSOC]; | |
REWRITE_TAC[REAL_EQ_LMUL]; | |
USE 4 (MATCH_MP (REAL_ARITH `&.0 <. r ==> ~(r = &.0)`)); | |
ASM_REWRITE_TAC[]; | |
REWRITE_TAC[TWOPOW_NEG]; | |
REWRITE_TAC[ARITH_RULE `(n+|2) = 1 + (SUC n)`]; | |
REWRITE_TAC[REAL_POW_ADD;REAL_INV_MUL]; | |
REWRITE_TAC [REAL_MUL_ASSOC]; | |
REWRITE_TAC[REAL_INV2;REAL_POW_1]; | |
REDUCE_TAC; | |
]);; | |
(* }}} *) | |
let sequence_subseq = prove_by_refinement( | |
`!(X:A->bool) f (ss:num->num). (sequence X f) ==> | |
(sequence X (f o ss))`, | |
(* {{{ proof *) | |
[ | |
REWRITE_TAC[sequence;IMAGE;IN_UNIV;SUBSET;IN_ELIM_THM';o_DEF]; | |
REWRITE_TAC[IN]; | |
MESON_TAC[]; | |
]);; | |
(* }}} *) | |
let cauchy_subseq = prove_by_refinement( | |
`!(X:A->bool) d f. ((metric_space(X,d))/\(totally_bounded(X,d)) /\ | |
(sequence X f)) ==> | |
(?ss. (subseq ss) /\ (cauchy_seq(X,d) (f o ss)))`, | |
(* {{{ proof *) | |
[ | |
DISCH_ALL_TAC; | |
COPY 0 THEN COPY 1; | |
JOIN 4 3; | |
USE 3 (MATCH_MP totally_bounded_bounded); | |
CHO 3; | |
CHO 3; | |
ALL_TAC; (* {{{ xxx *) | |
ALL_TAC; (* make r pos *) | |
ASSUME_TAC (REAL_ARITH `r <. (&.1 + abs(r))`); | |
ASSUME_TAC (REAL_ARITH `&.0 <. (&.1 + abs(r))`); | |
ABBREV_TAC (`r' = &.1 +. abs(r)`); | |
SUBGOAL_TAC `open_ball(X,d) a r SUBSET open_ball(X,d) (a:A) r'`; | |
ASM_SIMP_TAC[open_ball_nest]; | |
DISCH_TAC; | |
JOIN 3 7; | |
USE 3 (MATCH_MP SUBSET_TRANS); | |
KILL 6; | |
KILL 4; | |
ALL_TAC; (* "cs1" *) | |
SUBGOAL_TAC `( !(x:A) y. (X x) /\ (X y) ==> (d x y <. &.2 *. r'))`; | |
DISCH_ALL_TAC; | |
USE 3 (REWRITE_RULE[SUBSET;IN]); | |
COPY 3; | |
USE 7 (SPEC `x:A`); | |
USE 3 (SPEC `y:A`); | |
H_MATCH_MP (HYP "3") (HYP "6"); | |
H_MATCH_MP (HYP "7") (HYP "4"); | |
JOIN 9 8; | |
JOIN 0 8; | |
USE 0 (MATCH_MP BALL_DIST); | |
ASM_REWRITE_TAC[]; | |
DISCH_TAC; | |
ABBREV_TAC `cond = (\ ((C:A->bool),(s:num)) n. ~FINITE{j| C (f j)} /\ (C(f s)) /\ (!x y. (C x /\ C y) ==> d x y <. (&.2*.r')*. twopow(--: (&:n))))`; | |
ABBREV_TAC `R = (&.2)*r'`; | |
ALL_TAC ; (* 0 case of recursio *) | |
ALL_TAC; (* cs2 *) | |
SUBGOAL_TAC ` (X SUBSET X) /\ (cond ((X:A->bool),0) 0)`; | |
REWRITE_TAC[SUBSET_REFL]; | |
EXPAND_TAC "cond"; | |
CONV_TAC (TOP_DEPTH_CONV GEN_BETA_CONV); | |
USE 2 (REWRITE_RULE[sequence;SUBSET;IN_IMAGE;IN_UNIV]); | |
USE 2 (REWRITE_RULE[IN]); | |
USE 2 (CONV_RULE (NAME_CONFLICT_CONV)); | |
SUBGOAL_TAC `!x. X((f:num->A) x)`; | |
ASM_MESON_TAC[]; | |
REDUCE_TAC; | |
REWRITE_TAC[TWOPOW_0] THEN REDUCE_TAC; | |
ASM_REWRITE_TAC[]; | |
DISCH_TAC; | |
SUBGOAL_TAC `{ j | (X:A->bool) (f j) } = (UNIV:num->bool)`; | |
MATCH_MP_TAC EQ_EXT; | |
REWRITE_TAC[IN_ELIM_THM;UNIV]; | |
ASM_REWRITE_TAC[]; | |
DISCH_THEN REWRT_TAC; | |
ASM_REWRITE_TAC[]; | |
REWRITE_TAC[num_infinite]; | |
ALL_TAC; (* #save_goal "cs3" *) | |
SUBGOAL_TAC `&.0 <. R`; | |
EXPAND_TAC "R"; | |
UND 5; | |
REAL_ARITH_TAC; | |
DISCH_ALL_TAC; | |
SUBGOAL_TAC `!cs n. ?cs' . (FST cs SUBSET X) /\ (cond cs n)==>( (FST cs' SUBSET (FST cs)) /\(SND cs <| ((SND:((A->bool)#num)->num) cs') /\ (cond cs' (SUC n))) )`; | |
DISCH_ALL_TAC; | |
CONV_TAC (quant_right_CONV "cs'"); | |
DISCH_TAC; | |
AND 11; | |
H_REWRITE_RULE[GSYM o (HYP "6")] (HYP "11"); | |
USE 13 (CONV_RULE (SUBS_CONV[GSYM(ISPEC `cs:(A->bool)#num` PAIR)])); | |
USE 13 (CONV_RULE (TOP_DEPTH_CONV GEN_BETA_CONV)); | |
JOIN 10 13; | |
JOIN 12 10; | |
JOIN 2 10; | |
JOIN 1 2; | |
JOIN 0 1; | |
USE 0 (MATCH_MP subsequence_rec); | |
CHO 0; | |
CHO 0; | |
EXISTS_TAC `(C':A->bool,s':num)`; | |
ASM_REWRITE_TAC[FST;SND]; | |
EXPAND_TAC "cond"; | |
(CONV_TAC (TOP_DEPTH_CONV GEN_BETA_CONV)); | |
ASM_REWRITE_TAC[]; | |
DISCH_TAC; | |
ALL_TAC; (* "cs4" *) | |
USE 11 (REWRITE_RULE[SKOLEM_THM]); | |
CHO 11; | |
ASSUME_TAC (ISPECL[`((X:A->bool),0)`;`cs':(((A->bool)#num)->(num->(A->bool)#num))`] num_RECURSION); | |
CHO 12; | |
EXISTS_TAC `\i. (SND ((fn : num->(A->bool)#num) i))`; | |
USE 11 (CONV_RULE (quant_left_CONV "n")); | |
USE 11 (SPEC `n:num`); | |
USE 11 (SPEC `(fn:num->(A->bool)#num) n`); | |
AND 12; | |
H_REWRITE_RULE[GSYM o (HYP "12")] (HYP "11"); | |
USE 14 (GEN_ALL); | |
ABBREV_TAC `sn = (\i. SND ((fn:num->(A->bool)#num) i))`; | |
ABBREV_TAC `Cn = (\i. FST ((fn:num->(A->bool)#num) i))`; | |
SUBGOAL_TAC `((sn:num->num) 0 = 0) /\ (Cn 0 = (X:A->bool))`; | |
EXPAND_TAC "sn"; | |
EXPAND_TAC "Cn"; | |
UND 13; | |
MESON_TAC[FST;SND]; | |
DISCH_TAC; | |
KILL 13; | |
KILL 11; | |
SUBGOAL_TAC `!(n:num). ((fn n):(A->bool)#num) = (Cn n,sn n)`; | |
EXPAND_TAC "sn"; | |
EXPAND_TAC "Cn"; | |
REWRITE_TAC[PAIR]; | |
DISCH_TAC; | |
H_REWRITE_RULE[(HYP "11")] (HYP"14"); | |
KILL 12; | |
KILL 14; | |
KILL 11; | |
KILL 16; | |
KILL 15; | |
ALL_TAC; (* }}} *) | |
ALL_TAC; (* KILL 10; cs4m *) | |
KILL 8; | |
KILL 7; | |
KILL 3; | |
KILL 5; | |
ALL_TAC; (* cs5 *) | |
TYPE_THEN `!n. (Cn n SUBSET X) /\ (cond (Cn n,sn n) n)` SUBGOAL_TAC; | |
INDUCT_TAC; | |
ASM_REWRITE_TAC[]; | |
SET_TAC[SUBSET]; | |
USE 13 (SPEC `n:num`); | |
REWR 5; | |
ASM_REWRITE_TAC[]; | |
ASM_MESON_TAC[SUBSET_TRANS]; | |
DISCH_TAC; | |
REWR 13; | |
SUBCONJ_TAC; | |
ASM_REWRITE_TAC[SUBSEQ_SUC]; | |
DISCH_TAC; | |
ASM_REWRITE_TAC[cauchy_seq]; | |
ASM_SIMP_TAC[sequence_subseq]; | |
GEN_TAC; | |
TYPE_THEN `!i j. (i <=| j) ==> (Cn j SUBSET (Cn i))` SUBGOAL_TAC; | |
MATCH_MP_TAC SUBSET_SUC2; | |
ASM_REWRITE_TAC[]; | |
DISCH_TAC; | |
ALL_TAC; (* cs6 *) | |
SUBGOAL_TAC `!R e. ?n. (&.0 <. R)/\ (&.0 <. e) ==> R*(twopow(--: (&:n))) <. e`; | |
DISCH_ALL_TAC; | |
REWRITE_TAC[TWOPOW_NEG]; (* cs6b *) | |
ASSUME_TAC (prove(`!n. &.0 < &.2 pow n`,REDUCE_TAC THEN ARITH_TAC)); | |
ONCE_REWRITE_TAC[REAL_MUL_AC]; | |
ASM_SIMP_TAC[REAL_INV_LT]; | |
ASM_SIMP_TAC[GSYM REAL_LT_LDIV_EQ]; | |
CONV_TAC (quant_right_CONV "n"); | |
DISCH_ALL_TAC; | |
ASSUME_TAC (SPEC `R'/e` REAL_ARCH_SIMPLE); | |
CHO 14; | |
EXISTS_TAC `n:num`; | |
UND 14; | |
MESON_TAC[POW_2_LT;REAL_LET_TRANS]; | |
DISCH_TAC; | |
USE 11 (SPECL [`R:real`;`eps:real`]); | |
CHO 11; | |
EXISTS_TAC `n:num`; | |
DISCH_ALL_TAC; | |
REWR 11; | |
ALL_TAC; (* cs7 *) | |
COPY 3; | |
USE 3 (SPEC `n:num`); | |
AND 3; | |
UND 3; | |
EXPAND_TAC "cond"; | |
(CONV_TAC (TOP_DEPTH_CONV GEN_BETA_CONV)); | |
DISCH_ALL_TAC; | |
COPY 15; | |
USE 15 (SPEC `i:num`); | |
AND 15; | |
UND 15; | |
EXPAND_TAC "cond"; | |
(CONV_TAC (TOP_DEPTH_CONV GEN_BETA_CONV)); | |
DISCH_ALL_TAC; | |
COPY 20; | |
USE 20 (SPEC `j:num`); | |
AND 20; | |
UND 20; | |
EXPAND_TAC "cond"; | |
(CONV_TAC (TOP_DEPTH_CONV GEN_BETA_CONV)); | |
DISCH_ALL_TAC; | |
ABBREV_TAC `e2 = R * twopow (--: (&:n))`; | |
REWRITE_TAC[o_DEF]; | |
TYPEL_THEN [`f (sn i)`;`f (sn j)`] (fun t-> (USE 19 (SPECL t))); | |
KILL 27; | |
KILL 23; | |
KILL 25; | |
KILL 21; | |
KILL 16; | |
KILL 9; | |
KILL 6; | |
KILL 28; | |
COPY 8; | |
USE 8 (SPECL [`n:num`;`i:num`]); | |
USE 6 (SPECL [`n:num`;`j:num`]); | |
UND 11; | |
MATCH_MP_TAC (REAL_ARITH `(c < a) ==> ((a < b) ==> (c < b))`); | |
UND 19; | |
DISCH_THEN (MATCH_MP_TAC); | |
UND 6; | |
UND 8; | |
ASM_REWRITE_TAC[]; | |
UND 22; | |
UND 26; | |
MESON_TAC[IN;SUBSET]; | |
]);; | |
(* }}} *) | |
let convergent_subseq = prove_by_refinement( | |
`!(X:A->bool) d f. metric_space(X,d) /\ (totally_bounded(X,d)) /\ | |
(complete (X,d)) /\ (sequence X f) ==> | |
((?(ss:num->num). (subseq ss) /\ (converge (X,d) (f o ss))))`, | |
(* {{{ proof *) | |
[ | |
DISCH_ALL_TAC; | |
TYPE_THEN `?ss. (subseq ss) /\ (cauchy_seq(X,d) (f o ss))` SUBGOAL_TAC; | |
ASM_MESON_TAC[cauchy_subseq]; | |
DISCH_ALL_TAC; | |
CHO 4; | |
EXISTS_TAC `ss:num->num`; | |
USE 2 (REWRITE_RULE[complete]); | |
ASM_REWRITE_TAC[]; | |
ASM_MESON_TAC[]; | |
]);; | |
(* }}} *) | |
let dense = euclid_def `!U Z. dense U Z <=> | |
(closure U (Z:A->bool) = UNIONS U)`;; | |
let hausdorff = euclid_def `hausdorff U <=> (!x y. | |
(UNIONS U (x:A) /\ UNIONS U y /\ ~(x = y)) ==> | |
(?A B. (U A) /\ (U B) /\ (A x) /\ (B y) /\ (A INTER B = EMPTY)))`;; | |
let dense_subset = prove_by_refinement( | |
`!U Z. (topology_ U) /\ (dense U (Z:A->bool)) ==> | |
(Z SUBSET (UNIONS U))`, | |
(* {{{ proof *) | |
[ | |
REWRITE_TAC[dense]; | |
MESON_TAC[subset_closure]; | |
]);; | |
(* }}} *) | |
let dense_open = prove_by_refinement( | |
`!U Z. (topology_ U) /\ (Z SUBSET (UNIONS U)) ==> | |
(dense U (Z:A->bool) <=> | |
(!A. (open_ U A) /\ ( (A INTER Z) = EMPTY) ==> (A = EMPTY)))`, | |
(* {{{ proof *) | |
[ | |
DISCH_ALL_TAC; | |
EQ_TAC; | |
DISCH_TAC; | |
DISCH_ALL_TAC; | |
COPY 3; | |
COPY 0; | |
JOIN 0 3; | |
USE 0 (MATCH_MP (open_closed)); | |
TYPE_THEN `Z SUBSET (UNIONS U DIFF A)` SUBGOAL_TAC; | |
ALL_TAC ; (* do1 *) | |
REWRITE_TAC[DIFF_SUBSET]; | |
ONCE_REWRITE_TAC[INTER_COMM]; | |
ASM_REWRITE_TAC[]; | |
DISCH_TAC; | |
JOIN 0 3; | |
JOIN 6 0; | |
USE 0 (MATCH_MP closure_subset); | |
USE 0 (REWRITE_RULE[DIFF_SUBSET]); | |
AND 0; | |
USE 2 (REWRITE_RULE[dense]); | |
H_REWRITE_RULE [(HYP "2")] (HYP "0"); | |
(USE 5 (REWRITE_RULE[open_DEF])); | |
USE 5 (MATCH_MP sub_union); | |
USE 5 (REWRITE_RULE[ SUBSET_INTER_ABSORPTION]); | |
USE 5 (ONCE_REWRITE_RULE[INTER_COMM]); | |
ASM_MESON_TAC[]; | |
REWRITE_TAC[dense]; | |
DISCH_TAC ; | |
MATCH_MP_TAC EQ_SYM; | |
UND 0; | |
UND 1; | |
SIMP_TAC [closure_open]; | |
DISCH_TAC ; | |
SIMP_TAC[closed_UNIV]; | |
DISCH_TAC ; | |
DISCH_ALL_TAC; | |
DISCH_ALL_TAC; | |
USE 2 (SPEC `B:A->bool`); | |
REWR 2; | |
ASM_REWRITE_TAC[]; | |
REWRITE_TAC[INTER_EMPTY]; | |
]);; | |
(* }}} *) | |
let countable_dense = prove_by_refinement( | |
`!(X:A->bool) d. (metric_space(X,d)) /\ (totally_bounded(X,d)) ==> | |
?Z. (COUNTABLE Z) /\ (dense (top_of_metric(X,d)) Z)`, | |
(* {{{ proof *) | |
[ | |
DISCH_ALL_TAC; | |
TYPE_THEN `!r. ?z. (COUNTABLE z) /\ (z SUBSET X) /\ (X = UNIONS (IMAGE (\x. open_ball(X,d) x (twopow(--: (&:r)))) z))` SUBGOAL_TAC; | |
GEN_TAC; | |
COPY 0; | |
COPY 1; | |
JOIN 2 3; | |
USE 2 (MATCH_MP center_FINITE); | |
USE 2 (SPEC `twopow (--: (&:r))`); | |
H_MATCH_MP (HYP "2") (THM (SPEC `(--: (&:r))` twopow_pos)); | |
X_CHO 3 `z:A->bool`; | |
EXISTS_TAC `z:A->bool`; | |
ASM_REWRITE_TAC[]; | |
ASM_SIMP_TAC[FINITE_COUNTABLE]; | |
ASM_MESON_TAC[]; | |
CONV_TAC (quant_left_CONV "z"); | |
DISCH_THEN CHOOSE_TAC; | |
TYPE_THEN `UNIONS (IMAGE z (UNIV:num->bool))` EXISTS_TAC; | |
CONJ_TAC; | |
MATCH_MP_TAC COUNTABLE_UNIONS; | |
CONJ_TAC; | |
MATCH_MP_TAC (ISPEC `UNIV:num->bool` COUNTABLE_IMAGE); | |
REWRITE_TAC[NUM_COUNTABLE]; | |
TYPE_THEN `z` EXISTS_TAC ; | |
SET_TAC[]; | |
GEN_TAC; | |
REWRITE_TAC[IN_IMAGE;IN_UNIV]; | |
ASM_MESON_TAC[ ]; | |
TYPE_THEN `U = top_of_metric (X,d)` ABBREV_TAC; | |
TYPE_THEN `Z = UNIONS (IMAGE z UNIV)` ABBREV_TAC; | |
TYPE_THEN `topology_ U /\ (Z SUBSET (UNIONS U))` SUBGOAL_TAC; | |
EXPAND_TAC "U"; | |
KILL 3; | |
ASM_SIMP_TAC[top_of_metric_top;GSYM top_of_metric_unions]; | |
EXPAND_TAC "Z"; | |
MATCH_MP_TAC UNIONS_SUBSET; | |
REWRITE_TAC[IN_IMAGE;IN_UNIV]; | |
ASM_MESON_TAC[]; | |
SIMP_TAC[dense_open]; | |
DISCH_ALL_TAC; | |
GEN_TAC; | |
REWRITE_TAC[open_DEF]; | |
MATCH_MP_TAC (TAUT `( a /\ ~b ==> ~c) ==> (a /\ c ==> b)`); | |
EXPAND_TAC "U"; | |
ASM_SIMP_TAC [top_of_metric_nbd]; | |
REWRITE_TAC[GSYM MEMBER_NOT_EMPTY]; | |
DISCH_ALL_TAC; | |
CHO 9; | |
TYPE_THEN `x` (fun t-> (USE 8 (SPEC t))); | |
REWR 8; | |
X_CHO 8 `eps:real`; | |
ALL_TAC; (*"cd5"*) | |
SUBGOAL_TAC `?r. twopow(--: (&:r)) < eps`; | |
ASSUME_TAC (SPECL [`&.1`;`eps:real`] twopow_eps); | |
USE 10 (CONV_RULE REDUCE_CONV); | |
ASM_MESON_TAC[]; | |
DISCH_THEN CHOOSE_TAC; | |
USE 2 (SPEC `r:num`); | |
AND 2; | |
AND 2; | |
TYPE_THEN `x IN X` SUBGOAL_TAC; | |
ASM SET_TAC[IN;SUBSET]; | |
ASM ONCE_REWRITE_TAC[]; | |
REWRITE_TAC[UNIONS;IN_ELIM_THM';IN_IMAGE]; | |
DISCH_THEN CHOOSE_TAC; | |
AND 13; | |
X_CHO 14 `z0:A`; | |
REWR 13; | |
AND 14; | |
EXISTS_TAC `z0:A`; | |
REWRITE_TAC[IN_INTER]; | |
USE 13 (REWRITE_RULE[IN]); | |
USE 13 (MATCH_MP open_ball_dist); | |
CONJ_TAC; | |
USE 8 (REWRITE_RULE [open_ball;SUBSET]); | |
AND 8; | |
USE 8 (SPEC `z0:A`); | |
USE 8 (REWRITE_RULE [IN_ELIM_THM']); | |
UND 8; | |
DISCH_THEN (MATCH_MP_TAC ); | |
ALL_TAC; (* "cd6" *) | |
SUBCONJ_TAC; | |
ASM SET_TAC[IN;SUBSET]; | |
DISCH_TAC; | |
SUBCONJ_TAC; | |
ASM SET_TAC[IN;SUBSET]; | |
DISCH_TAC; | |
UND 13; | |
UND 10; | |
USE 0 (REWRITE_RULE[metric_space]); | |
TYPEL_THEN [`z0`;`x`;`z0`] (fun t-> USE 0 (SPECL t)); | |
REWR 0; | |
UND 0; | |
REAL_ARITH_TAC; | |
EXPAND_TAC "Z"; | |
REWRITE_TAC[IN_UNIONS;IN_IMAGE;IN_UNIV]; | |
UND 14; | |
MESON_TAC[]; | |
]);; | |
(* }}} *) | |
let metric_hausdorff = prove_by_refinement( | |
`! (X:A->bool) d. (metric_space(X,d))==> | |
(hausdorff (top_of_metric(X,d)))`, | |
(* {{{ proof *) | |
[ | |
DISCH_ALL_TAC; | |
REWRITE_TAC[hausdorff;]; | |
ASM_SIMP_TAC [GSYM top_of_metric_unions]; | |
DISCH_ALL_TAC; | |
COPY 0; | |
USE 4 (REWRITE_RULE[metric_space]); | |
TYPEL_THEN [`x`;`y`;`x`] (USE 4 o SPECL); | |
REWR 4; | |
TYPE_THEN `r = d x y` ABBREV_TAC; | |
SUBGOAL_TAC `&.0 <. r`; | |
UND 4; | |
ARITH_TAC; | |
DISCH_TAC; | |
TYPE_THEN `open_ball(X,d) x (r/(&.2))` EXISTS_TAC; | |
TYPE_THEN `open_ball(X,d) y (r/(&.2))` EXISTS_TAC; | |
ALL_TAC; (* mh1 *) | |
KILL 4; | |
ASM_SIMP_TAC[open_ball_open]; | |
COPY 6; | |
USE 4 (ONCE_REWRITE_RULE[GSYM REAL_LT_HALF1]); | |
ASM_SIMP_TAC[REWRITE_RULE[IN] open_ball_nonempty]; | |
PROOF_BY_CONTR_TAC; | |
USE 7 (REWRITE_RULE[EMPTY_EXISTS]); | |
CHO 7; | |
USE 7 (REWRITE_RULE[IN_INTER]); | |
USE 7 (REWRITE_RULE[IN]); | |
ALL_TAC; (* mh2 *) | |
AND 7; | |
COPY 7; | |
COPY 8; | |
USE 7 (MATCH_MP open_ball_dist); | |
USE 8 (MATCH_MP open_ball_dist); | |
USE 0 (REWRITE_RULE[metric_space]); | |
COPY 0; | |
TYPEL_THEN [`x`;`u`;`y`] (fun t-> (USE 0 (ISPECL t))); | |
TYPEL_THEN [`y`;`u`;`y`] (fun t-> (USE 11 (ISPECL t))); | |
UND 11; | |
UND 0; | |
ASM_REWRITE_TAC[]; | |
TYPE_THEN `X u` SUBGOAL_TAC; | |
ASM_MESON_TAC[ open_ball_subset;IN;SUBSET]; | |
DISCH_THEN (REWRT_TAC); | |
DISCH_ALL_TAC; | |
UND 14; | |
UND 0; | |
DISCH_THEN (fun t-> REWRITE_TAC[GSYM t]); | |
JOIN 7 8; | |
USE 0 (MATCH_MP (REAL_ARITH `(a <. c) /\ (b < c) ==> b+a < c + c`)); | |
USE 0 (CONV_RULE REDUCE_CONV); | |
ASM_MESON_TAC[real_lt]; | |
]);; | |
(* }}} *) | |
(* compactness *) | |
let compact = euclid_def `compact U (K:A->bool) <=> | |
(K SUBSET UNIONS U) /\ (!V. (K SUBSET UNIONS V ) /\ (V SUBSET U) ==> | |
(?W. (W SUBSET V) /\ (FINITE W) /\ (K SUBSET UNIONS W )))`;; | |
let closed_compact = prove_by_refinement( | |
`!U K (S:A->bool). ((topology_ U) /\ (compact U K) /\ | |
(closed_ U S) /\ (S SUBSET K)) ==> (compact U S)`, | |
(* {{{ proof *) | |
[ | |
REWRITE_TAC[compact]; | |
DISCH_ALL_TAC; | |
DISCH_ALL_TAC; | |
SUBCONJ_TAC; | |
ASM_MESON_TAC[ SUBSET_TRANS]; | |
DISCH_ALL_TAC; | |
DISCH_ALL_TAC; | |
TYPE_THEN `A = UNIONS U DIFF S` ABBREV_TAC; | |
TYPE_THEN `open_ U A` SUBGOAL_TAC ; | |
ASM_MESON_TAC[ closed_open]; | |
TYPE_THEN `V' = (A INSERT V)` ABBREV_TAC; | |
DISCH_ALL_TAC; | |
TYPE_THEN `V'` (USE 2 o SPEC); | |
ALL_TAC; (* cc1 *) | |
TYPE_THEN `K SUBSET UNIONS V'` SUBGOAL_TAC; | |
EXPAND_TAC "V'"; | |
EXPAND_TAC "A"; | |
UND 6; | |
UND 4; | |
UND 1; | |
TYPE_THEN `X = UNIONS U ` ABBREV_TAC; | |
ALL_TAC; (* cc2 *) | |
REWRITE_TAC[SUBSET_UNIONS_INSERT]; | |
SET_TAC[SUBSET;UNIONS;DIFF]; | |
DISCH_ALL_TAC; | |
TYPE_THEN `V' SUBSET U` SUBGOAL_TAC; | |
EXPAND_TAC "V'"; | |
EXPAND_TAC "A"; | |
REWRITE_TAC[INSERT_SUBSET]; | |
ASM_REWRITE_TAC[]; | |
ASM_MESON_TAC[IN;open_DEF]; | |
DISCH_ALL_TAC; | |
REWR 2; | |
CHO 2; | |
TYPE_THEN `W DELETE A` EXISTS_TAC; | |
CONJ_TAC; | |
AND 2; | |
UND 13; | |
EXPAND_TAC "V'"; | |
SET_TAC[SUBSET;INSERT;DELETE]; | |
ASM_REWRITE_TAC[FINITE_DELETE]; | |
AND 2; | |
AND 2; | |
UND 2; | |
UND 4; | |
UND 1; | |
EXPAND_TAC "A"; | |
TYPE_THEN `X = UNIONS U ` ABBREV_TAC; | |
ALL_TAC; (* cc3 *) | |
DISCH_ALL_TAC; | |
MATCH_MP_TAC UNIONS_DELETE2; | |
CONJ_TAC; | |
ASM_MESON_TAC[SUBSET_TRANS]; | |
SET_TAC[INTER;DIFF]; | |
]);; | |
(* }}} *) | |
let compact_closed = prove_by_refinement( | |
`!U (K:A->bool). (topology_ U) /\ (hausdorff U) /\ (compact U K) ==> | |
(closed_ U K)`, | |
(* {{{ proof *) | |
[ | |
REWRITE_TAC[hausdorff;compact;closed]; | |
DISCH_ALL_TAC; | |
ASM_REWRITE_TAC[open_DEF]; | |
ONCE_ASM_SIMP_TAC[open_nbd]; | |
TYPE_THEN `C = UNIONS U DIFF K` ABBREV_TAC; | |
GEN_TAC; | |
CONV_TAC (quant_right_CONV "B"); | |
DISCH_ALL_TAC; | |
(* cc1 *) | |
TYPE_THEN `!y. (K y) ==> (?A B. (U A /\ U B /\ A x /\ B y /\ (A INTER B = {})))` SUBGOAL_TAC; | |
DISCH_ALL_TAC; | |
UND 1; | |
DISCH_THEN MATCH_MP_TAC; | |
CONJ_TAC; | |
UND 5; | |
EXPAND_TAC "C"; | |
REWRITE_TAC[DIFF;IN_ELIM_THM']; | |
REWRITE_TAC [IN]; | |
MESON_TAC[]; | |
CONJ_TAC; | |
UND 6; | |
UND 2; | |
REWRITE_TAC[SUBSET;IN]; | |
MESON_TAC[]; | |
PROOF_BY_CONTR_TAC; | |
REWR 1; | |
REWR 5; | |
UND 5; | |
UND 6; | |
EXPAND_TAC "C"; | |
REWRITE_TAC[DIFF;IN_ELIM_THM']; | |
MESON_TAC[IN]; | |
(* cc2 *) | |
DISCH_ALL_TAC; | |
USE 6 (CONV_RULE (quant_left_CONV "B")); | |
USE 6 (CONV_RULE (quant_left_CONV "B")); | |
USE 6 (CONV_RULE (quant_left_CONV "B")); | |
CHO 6; | |
TYPE_THEN `IMAGE B K` (USE 3 o SPEC); | |
TYPE_THEN `K SUBSET UNIONS (IMAGE B K) /\ IMAGE B K SUBSET U` SUBGOAL_TAC; | |
CONJ_TAC; | |
REWRITE_TAC[SUBSET;UNIONS;IN_IMAGE;IN_ELIM_THM']; | |
X_GEN_TAC `y:A`; | |
REWRITE_TAC[IN]; | |
ASM_MESON_TAC[]; | |
REWRITE_TAC[SUBSET;IN_IMAGE]; | |
NAME_CONFLICT_TAC; | |
CONV_TAC (quant_left_CONV "x'"); | |
CONV_TAC (quant_left_CONV "x'"); | |
ASM_MESON_TAC[IN]; | |
DISCH_TAC; | |
REWR 3; | |
CHO 3; | |
(* cc3 *) | |
AND 3; | |
AND 3; | |
JOIN 8 9; | |
USE 8 (MATCH_MP finite_subset); | |
X_CHO 8 `kc:A->bool`; | |
USE 6 (CONV_RULE (quant_left_CONV "A")); | |
USE 6 (CONV_RULE (quant_left_CONV "A")); | |
CHO 6; | |
(* cc4 *) | |
TYPE_THEN `K = EMPTY` ASM_CASES_TAC; | |
REWR 4; | |
USE 4 (REWRITE_RULE[DIFF_EMPTY]); | |
EXISTS_TAC `C:A->bool`; | |
ASM_REWRITE_TAC[SUBSET_REFL]; | |
EXPAND_TAC "C"; | |
USE 0 (REWRITE_RULE[topology]); | |
UND 0; | |
MESON_TAC[topology;IN;SUBSET_REFL]; | |
TYPE_THEN `~(kc = EMPTY)` SUBGOAL_TAC; | |
PROOF_BY_CONTR_TAC; | |
USE 10 (REWRITE_RULE[]); | |
REWR 8; | |
USE 8 (REWRITE_RULE[IMAGE_CLAUSES]); | |
REWR 3; | |
USE 3 (REWRITE_RULE[UNIONS_0;SUBSET_EMPTY]); | |
ASM_MESON_TAC[ ]; | |
REWRITE_TAC[EMPTY_EXISTS]; | |
DISCH_THEN CHOOSE_TAC; | |
ALL_TAC; (* cc5 *) | |
TYPE_THEN `INTERS (IMAGE A kc)` EXISTS_TAC; | |
TYPE_THEN `INTERS (IMAGE A kc) INTER (UNIONS (IMAGE B kc)) = EMPTY` SUBGOAL_TAC; | |
REWRITE_TAC[INTER;UNIONS]; | |
MATCH_MP_TAC EQ_EXT; | |
GEN_TAC; | |
REWRITE_TAC[IN_ELIM_THM';EMPTY]; | |
MATCH_MP_TAC (TAUT `(a ==> ~b )==> ~(a /\ b)`); | |
REWRITE_TAC[IN_INTERS;IN_IMAGE]; | |
DISCH_ALL_TAC; | |
CHO 11; | |
AND 11; | |
CHO 13; | |
IN_ELIM 13; | |
REWR 11; | |
USE 12 (CONV_RULE (quant_left_CONV "x")); | |
USE 12 (CONV_RULE (quant_left_CONV "x")); | |
TYPE_THEN `x''` (USE 12 o SPEC); | |
TYPE_THEN `A x''` (USE 12 o SPEC); | |
IN_ELIM 12; | |
REWR 12; | |
TYPE_THEN `x''` (USE 6 o SPEC); | |
TYPE_THEN `K x''` SUBGOAL_TAC; | |
UND 13; | |
AND 8; | |
UND 13; | |
MESON_TAC[SUBSET;IN]; | |
DISCH_TAC; | |
REWR 6; | |
USE 6 (REWRITE_RULE [INTER]); | |
(AND 6); | |
(AND 6); | |
(AND 6); | |
(AND 6); | |
USE 6 (fun t-> AP_THM t `x':A`); | |
USE 6 (REWRITE_RULE[IN_ELIM_THM';EMPTY]); | |
ASM_MESON_TAC[IN]; | |
DISCH_TAC; | |
ALL_TAC; (* cc6 *) | |
SUBCONJ_TAC; | |
EXPAND_TAC "C"; | |
REWRITE_TAC[DIFF_SUBSET]; | |
CONJ_TAC; | |
MATCH_MP_TAC INTERS_SUBSET2; | |
TYPE_THEN `A u` EXISTS_TAC ; | |
REWRITE_TAC[IMAGE;IN_ELIM_THM']; | |
CONJ_TAC; | |
TYPE_THEN `u` EXISTS_TAC; | |
ASM_REWRITE_TAC[]; | |
MATCH_MP_TAC sub_union; | |
TYPE_THEN `u` (USE 6 o SPEC); | |
AND 8; | |
USE 12 (REWRITE_RULE[SUBSET;IN]); | |
ASM_MESON_TAC[IN]; | |
UND 3; | |
ASM_REWRITE_TAC[]; | |
UND 11; | |
TYPE_THEN `a' = INTERS (IMAGE A kc)` ABBREV_TAC; | |
TYPE_THEN `b' = UNIONS (IMAGE B kc)` ABBREV_TAC; | |
SET_TAC[INTER;SUBSET;EMPTY]; | |
DISCH_TAC; | |
ALL_TAC; (* cc7 *) | |
CONJ_TAC; | |
REWRITE_TAC[INTERS;IN_IMAGE;IN_ELIM_THM']; | |
GEN_TAC; | |
DISCH_THEN CHOOSE_TAC; | |
TYPE_THEN `x'` (USE 6 o SPEC); | |
ASM_REWRITE_TAC[]; | |
USE 8 (REWRITE_RULE[SUBSET;IN]); | |
ASM_MESON_TAC[IN]; | |
MATCH_MP_TAC open_inters; | |
ASM_REWRITE_TAC[]; | |
CONJ_TAC; | |
REWRITE_TAC[SUBSET;IN_IMAGE;]; | |
NAME_CONFLICT_TAC; | |
GEN_TAC; | |
DISCH_THEN CHOOSE_TAC; | |
USE 6 (SPEC `x':A`); | |
USE 8 (REWRITE_RULE[SUBSET;IN]); | |
ASM_MESON_TAC[IN]; | |
CONJ_TAC; | |
ASM_MESON_TAC[FINITE_IMAGE]; | |
REWRITE_TAC[EMPTY_EXISTS]; | |
TYPE_THEN `A u` EXISTS_TAC; | |
REWRITE_TAC[IN_IMAGE]; | |
ASM_MESON_TAC[]; | |
]);; | |
(* }}} *) | |
let compact_totally_bounded = prove_by_refinement( | |
`!(X:A->bool) d.( metric_space(X,d)) /\ (compact (top_of_metric(X,d)) X) | |
==> (totally_bounded (X,d))`, | |
(* {{{ proof *) | |
[ | |
REWRITE_TAC[totally_bounded;compact]; | |
DISCH_ALL_TAC; | |
DISCH_ALL_TAC; | |
CONV_TAC (quant_right_CONV "B"); | |
DISCH_TAC; | |
TYPE_THEN `IMAGE (\x. open_ball(X,d) x eps) X` (USE 2 o SPEC); | |
TYPE_THEN `X SUBSET UNIONS (IMAGE (\x. open_ball (X,d) x eps) X)` SUBGOAL_TAC; | |
(REWRITE_TAC[SUBSET;IN_UNIONS;IN_IMAGE]); | |
GEN_TAC; | |
NAME_CONFLICT_TAC; | |
REWRITE_TAC[IN]; | |
DISCH_TAC; | |
CONV_TAC (quant_left_CONV "x'"); | |
CONV_TAC (quant_left_CONV "x'"); | |
TYPE_THEN `x` EXISTS_TAC; | |
TYPE_THEN `open_ball (X,d) x eps` EXISTS_TAC; | |
ASM_REWRITE_TAC[]; | |
ASM_MESON_TAC[open_ball_nonempty;IN]; | |
DISCH_TAC; | |
REWR 2; | |
ALL_TAC; (* ctb1 *) | |
TYPE_THEN `IMAGE (\x. open_ball (X,d) x eps) X SUBSET top_of_metric (X,d)` SUBGOAL_TAC; | |
TYPE_THEN `IMAGE (\x. open_ball (X,d) x eps) X SUBSET open_balls(X,d)` SUBGOAL_TAC; | |
REWRITE_TAC[SUBSET;IN_IMAGE;open_balls;IN_ELIM_THM']; | |
MESON_TAC[IN]; | |
MESON_TAC[SUBSET_TRANS;top_of_metric_open_balls]; | |
DISCH_TAC; | |
REWR 2; | |
CHO 2; | |
TYPE_THEN `W` EXISTS_TAC; | |
ASM_REWRITE_TAC[]; | |
CONJ_TAC; | |
DISCH_ALL_TAC; | |
AND 2; | |
USE 7 (REWRITE_RULE [SUBSET;IN_IMAGE]); | |
ASM_MESON_TAC[IN]; | |
MATCH_MP_TAC SUBSET_ANTISYM; | |
ASM_REWRITE_TAC[]; | |
TYPE_THEN `W SUBSET top_of_metric (X,d)` SUBGOAL_TAC; | |
ASM_MESON_TAC[SUBSET_TRANS]; | |
DISCH_ALL_TAC; | |
USE 6 (MATCH_MP UNIONS_UNIONS); | |
ASM_MESON_TAC[top_of_metric_unions]; | |
]);; | |
(* }}} *) | |
(* | |
If W is empty then INTERS W = UNIV, rather than EMPTY. | |
Thus, extra arguments must be provided for this case. *) | |
let finite_inters = prove_by_refinement( | |
`!U V . (topology_ U) /\ (compact U (UNIONS U)) /\ (INTERS V = EMPTY) /\ | |
(!(u:A->bool). (V u) ==> (closed_ U u)) | |
==> (?W. (W SUBSET V) /\ (FINITE W) /\ (INTERS W = EMPTY))`, | |
(* {{{ proof *) | |
[ | |
REWRITE_TAC[compact;SUBSET_REFL]; | |
DISCH_ALL_TAC; | |
(* {{{ proof *) | |
TYPE_THEN `IMAGE (\r. ((UNIONS U) DIFF r)) V` (USE 1 o SPEC); | |
TYPE_THEN `IMAGE (\r. UNIONS U DIFF r) V SUBSET U` SUBGOAL_TAC; | |
REWRITE_TAC[IMAGE;SUBSET;IN_ELIM_THM']; | |
GEN_TAC; | |
DISCH_THEN CHOOSE_TAC; | |
ASM_REWRITE_TAC[]; | |
ASM_SIMP_TAC[top_univ;IN;SUBSET_DIFF]; | |
IN_ELIM 4; | |
TYPE_THEN `x'` (USE 3 o SPEC); | |
REWR 3; | |
USE 3 (REWRITE_RULE[closed;open_DEF]); | |
ASM_REWRITE_TAC[]; | |
DISCH_TAC; | |
REWR 1; | |
ALL_TAC; (* fi1 *) | |
TYPE_THEN `UNIONS U SUBSET UNIONS (IMAGE (\r. UNIONS U DIFF r) V)` SUBGOAL_TAC; | |
REWRITE_TAC[SUBSET;IN_UNIONS;IN_IMAGE]; | |
GEN_TAC; | |
DISCH_THEN CHOOSE_TAC; | |
NAME_CONFLICT_TAC; | |
USE 2 (REWRITE_RULE[INTERS_EQ_EMPTY]); | |
TYPE_THEN `x` (USE 2 o SPEC); | |
CHO 2; | |
CONV_TAC (quant_left_CONV "x'"); | |
CONV_TAC (quant_left_CONV "x'"); | |
TYPE_THEN `a` EXISTS_TAC; | |
TYPE_THEN `UNIONS U DIFF a` EXISTS_TAC ; | |
ASM_REWRITE_TAC[IN]; | |
REWRITE_TAC[DIFF;IN_ELIM_THM';IN_UNIONS]; | |
ASM_MESON_TAC[IN]; | |
DISCH_TAC; | |
REWR 1; | |
CHO 1; | |
AND 1; | |
AND 1; | |
JOIN 7 6; | |
(*** Modified by JRH for changed theorem name | |
USE 6 (MATCH_MP FINITE_SUBSET_IMAGE); | |
****) | |
USE 6 (MATCH_MP FINITE_SUBSET_IMAGE_IMP); | |
CHO 6; | |
ALL_TAC; (* fi2*) | |
TYPE_THEN `s'={}` ASM_CASES_TAC ; | |
REWR 6; | |
USE 6 (REWRITE_RULE[IMAGE_CLAUSES;SUBSET_EMPTY]); | |
REWR 1; | |
USE 1 (REWRITE_RULE[UNIONS_0;SUBSET_EMPTY]); | |
USE 1 (REWRITE_RULE [UNIONS_EQ_EMPTY]); | |
UND 1; | |
DISCH_THEN DISJ_CASES_TAC; | |
REWR 4; | |
USE 4 (REWRITE_RULE[SUBSET_EMPTY;IMAGE;EQ_EMPTY;IN_ELIM_THM']); | |
TYPE_THEN `V = {}` SUBGOAL_TAC; | |
PROOF_BY_CONTR_TAC; | |
USE 8 (REWRITE_RULE[EMPTY_EXISTS]); | |
CHO 8; | |
USE 4 (CONV_RULE (quant_left_CONV "x'")); | |
USE 4 (CONV_RULE (quant_left_CONV "x'")); | |
TYPE_THEN `u` (USE 4 o SPEC); | |
TYPE_THEN `UNIONS {} DIFF u` (USE 4 o SPEC); | |
ASM_MESON_TAC[]; | |
USE 2 (REWRITE_RULE[INTERS_EQ_EMPTY]); | |
REWRITE_TAC[EQ_EMPTY]; | |
ASM_MESON_TAC[]; | |
ALL_TAC; (* fi3*) | |
TYPE_THEN `V` EXISTS_TAC; | |
ASM_REWRITE_TAC[SUBSET_REFL]; | |
USE 3 (REWRITE_RULE[closed;open_DEF]); | |
REWR 3; | |
USE 3 (REWRITE_RULE[REWRITE_RULE[IN] IN_SING]); | |
TYPE_THEN `!u. V u ==> (u = EMPTY)` SUBGOAL_TAC; | |
DISCH_ALL_TAC; | |
TYPE_THEN `u` (USE 3 o SPEC); | |
REWR 3; | |
AND 3; | |
ASM_MESON_TAC[ SUBSET_EMPTY;UNIONS_EQ_EMPTY]; | |
DISCH_TAC; | |
TYPE_THEN `V SUBSET {EMPTY}` SUBGOAL_TAC; | |
REWRITE_TAC[INSERT_DEF]; | |
REWRITE_TAC[IN_ELIM_THM']; | |
REWRITE_TAC[IN;EMPTY;SUBSET]; | |
ASM_MESON_TAC[IN;EMPTY]; | |
(* }}} *) | |
MESON_TAC[FINITE_SING;FINITE_SUBSET]; | |
ALL_TAC; (* fi4*) | |
TYPE_THEN `s'` EXISTS_TAC; | |
ASM_REWRITE_TAC[INTERS_EQ_EMPTY]; | |
GEN_TAC; | |
USE 7 (REWRITE_RULE[EMPTY_EXISTS]); | |
CHO 7; | |
TYPE_THEN `UNIONS U x` ASM_CASES_TAC ; | |
TYPE_THEN `UNIONS W x` SUBGOAL_TAC; | |
USE 1 (REWRITE_RULE[SUBSET;IN]); | |
UND 8; | |
UND 1; | |
MESON_TAC[]; | |
DISCH_ALL_TAC; | |
TYPE_THEN `UNIONS (IMAGE (\r. UNIONS U DIFF r) s') x` SUBGOAL_TAC; | |
AND 6; | |
AND 6; | |
USE 6 (MATCH_MP UNIONS_UNIONS); | |
USE 6 (REWRITE_RULE[SUBSET;IN]); | |
ASM_MESON_TAC[]; | |
REWRITE_TAC[UNIONS;IN_IMAGE;IN_ELIM_THM']; | |
REWRITE_TAC[IN]; | |
DISCH_ALL_TAC; | |
LEFT 10 "x"; | |
LEFT 10 "x"; | |
TYPE_THEN `S:A->bool` (X_CHO 10) ; | |
CHO 10; | |
AND 10; | |
REWR 10; | |
TYPE_THEN `S` EXISTS_TAC; | |
ASM_REWRITE_TAC[]; | |
USE 10(REWRITE_RULE[REWRITE_RULE[IN] IN_DIFF]); | |
ASM_REWRITE_TAC[]; | |
TYPE_THEN `u` EXISTS_TAC; | |
IN_ELIM 7; | |
ASM_REWRITE_TAC[]; | |
PROOF_BY_CONTR_TAC; | |
USE 9 (REWRITE_RULE[]); | |
TYPE_THEN `V u` SUBGOAL_TAC; | |
AND 6; | |
AND 6; | |
USE 11 (REWRITE_RULE[SUBSET;IN]); | |
ASM_MESON_TAC[]; | |
DISCH_TAC; | |
H_MATCH_MP (HYP "3") (HYP "10"); | |
USE 11(REWRITE_RULE[closed;open_DEF]); | |
USE 11 (REWRITE_RULE [SUBSET;IN]); | |
ASM_MESON_TAC[]; | |
]);; | |
(* }}} *) | |
(* first part of the proof of cauchy_subseq *) | |
let cauchy_subseq_sublemma = prove_by_refinement( | |
`!(X:A->bool) d f. ((metric_space(X,d))/\(totally_bounded(X,d)) /\ | |
(sequence X f)) ==> | |
(?R Cn sn cond. | |
(&0 < R) /\ | |
(!x y. X x /\ X y ==> d x y < R) /\ | |
(cond (X,0) 0) /\ | |
(sn 0 = 0) /\ (Cn 0 = X) /\ | |
(!n. Cn n SUBSET X /\ cond (Cn n,sn n) n) /\ | |
(!n. Cn (SUC n) SUBSET Cn n /\ sn n <| sn (SUC n)) /\ | |
(((\ (C,s). \n. | |
(~FINITE {j | C (f j)}) /\ | |
(C (f s)) /\ | |
(!x y. (C x /\ C y) ==> d x y < R * (twopow (--: (&:n))))) = | |
cond) | |
))`, | |
(* {{{ proof *) | |
[ | |
DISCH_ALL_TAC; | |
COPY 0 THEN COPY 1; | |
JOIN 4 3; | |
USE 3 (MATCH_MP totally_bounded_bounded); | |
CHO 3; | |
CHO 3; | |
ALL_TAC; (* {{{ xxx *) | |
ALL_TAC; (* make r pos *) | |
ASSUME_TAC (REAL_ARITH `r <. (&.1 + abs(r))`); | |
ASSUME_TAC (REAL_ARITH `&.0 <. (&.1 + abs(r))`); | |
ABBREV_TAC (`r' = &.1 +. abs(r)`); | |
SUBGOAL_TAC `open_ball(X,d) a r SUBSET open_ball(X,d) (a:A) r'`; | |
ASM_SIMP_TAC[open_ball_nest]; | |
DISCH_TAC; | |
JOIN 3 7; | |
USE 3 (MATCH_MP SUBSET_TRANS); | |
KILL 6; | |
KILL 4; | |
ALL_TAC; (* "cs1" *) | |
SUBGOAL_TAC `( !(x:A) y. (X x) /\ (X y) ==> (d x y <. &.2 *. r'))`; | |
DISCH_ALL_TAC; | |
USE 3 (REWRITE_RULE[SUBSET;IN]); | |
COPY 3; | |
USE 7 (SPEC `x:A`); | |
USE 3 (SPEC `y:A`); | |
H_MATCH_MP (HYP "3") (HYP "6"); | |
H_MATCH_MP (HYP "7") (HYP "4"); | |
JOIN 9 8; | |
JOIN 0 8; | |
USE 0 (MATCH_MP BALL_DIST); | |
ASM_REWRITE_TAC[]; | |
DISCH_TAC; | |
ABBREV_TAC `cond = (\ ((C:A->bool),(s:num)) n. ~FINITE{j| C (f j)} /\ (C(f s)) /\ (!x y. (C x /\ C y) ==> d x y <. (&.2*.r')*. twopow(--: (&:n))))`; | |
ABBREV_TAC `R = (&.2)*r'`; | |
ALL_TAC ; (* 0 case of recursio *) | |
ALL_TAC; (* cs2 *) | |
SUBGOAL_TAC ` (X SUBSET X) /\ (cond ((X:A->bool),0) 0)`; | |
REWRITE_TAC[SUBSET_REFL]; | |
EXPAND_TAC "cond"; | |
CONV_TAC (TOP_DEPTH_CONV GEN_BETA_CONV); | |
USE 2 (REWRITE_RULE[sequence;SUBSET;IN_IMAGE;IN_UNIV]); | |
USE 2 (REWRITE_RULE[IN]); | |
USE 2 (CONV_RULE (NAME_CONFLICT_CONV)); | |
SUBGOAL_TAC `!x. X((f:num->A) x)`; | |
ASM_MESON_TAC[]; | |
REDUCE_TAC; | |
REWRITE_TAC[TWOPOW_0] THEN REDUCE_TAC; | |
ASM_REWRITE_TAC[]; | |
DISCH_TAC; | |
SUBGOAL_TAC `{ j | (X:A->bool) (f j) } = (UNIV:num->bool)`; | |
MATCH_MP_TAC EQ_EXT; | |
REWRITE_TAC[IN_ELIM_THM;UNIV]; | |
ASM_REWRITE_TAC[]; | |
DISCH_THEN REWRT_TAC; | |
ASM_REWRITE_TAC[]; | |
REWRITE_TAC[num_infinite]; | |
ALL_TAC; (* #save_goal "cs3" *) | |
SUBGOAL_TAC `&.0 <. R`; | |
EXPAND_TAC "R"; | |
UND 5; | |
REAL_ARITH_TAC; | |
DISCH_ALL_TAC; | |
SUBGOAL_TAC `!cs n. ?cs' . (FST cs SUBSET X) /\ (cond cs n)==>( (FST cs' SUBSET (FST cs)) /\(SND cs <| ((SND:((A->bool)#num)->num) cs') /\ (cond cs' (SUC n))) )`; | |
DISCH_ALL_TAC; | |
CONV_TAC (quant_right_CONV "cs'"); | |
DISCH_TAC; | |
AND 11; | |
H_REWRITE_RULE[GSYM o (HYP "6")] (HYP "11"); | |
USE 13 (CONV_RULE (SUBS_CONV[GSYM(ISPEC `cs:(A->bool)#num` PAIR)])); | |
USE 13 (CONV_RULE (TOP_DEPTH_CONV GEN_BETA_CONV)); | |
JOIN 10 13; | |
JOIN 12 10; | |
JOIN 2 10; | |
JOIN 1 2; | |
JOIN 0 1; | |
USE 0 (MATCH_MP subsequence_rec); | |
CHO 0; | |
CHO 0; | |
EXISTS_TAC `(C':A->bool,s':num)`; | |
ASM_REWRITE_TAC[FST;SND]; | |
EXPAND_TAC "cond"; | |
(CONV_TAC (TOP_DEPTH_CONV GEN_BETA_CONV)); | |
ASM_REWRITE_TAC[]; | |
DISCH_TAC; | |
ALL_TAC; (* "cs4" *) | |
USE 11 (REWRITE_RULE[SKOLEM_THM]); | |
CHO 11; | |
ASSUME_TAC (ISPECL[`((X:A->bool),0)`;`cs':(((A->bool)#num)->(num->(A->bool)#num))`] num_RECURSION); | |
CHO 12; | |
ALL_TAC;(* EXISTS_TAC `\i. (SND ((fn : num->(A->bool)#num) i))`; *) | |
USE 11 (CONV_RULE (quant_left_CONV "n")); | |
USE 11 (SPEC `n:num`); | |
USE 11 (SPEC `(fn:num->(A->bool)#num) n`); | |
AND 12; | |
H_REWRITE_RULE[GSYM o (HYP "12")] (HYP "11"); | |
USE 14 (GEN_ALL); | |
ABBREV_TAC `sn = (\i. SND ((fn:num->(A->bool)#num) i))`; | |
ABBREV_TAC `Cn = (\i. FST ((fn:num->(A->bool)#num) i))`; | |
SUBGOAL_TAC `((sn:num->num) 0 = 0) /\ (Cn 0 = (X:A->bool))`; | |
EXPAND_TAC "sn"; | |
EXPAND_TAC "Cn"; | |
UND 13; | |
MESON_TAC[FST;SND]; | |
DISCH_TAC; | |
KILL 13; | |
KILL 11; | |
SUBGOAL_TAC `!(n:num). ((fn n):(A->bool)#num) = (Cn n,sn n)`; | |
EXPAND_TAC "sn"; | |
EXPAND_TAC "Cn"; | |
REWRITE_TAC[PAIR]; | |
DISCH_TAC; | |
H_REWRITE_RULE[(HYP "11")] (HYP"14"); | |
KILL 12; | |
KILL 14; | |
KILL 11; | |
KILL 16; | |
KILL 15; | |
ALL_TAC; (* }}} *) | |
ALL_TAC; (* KILL 10; cs4m *) | |
KILL 8; | |
KILL 7; | |
KILL 3; | |
KILL 5; | |
ALL_TAC; (* cs5 *) | |
TYPE_THEN `!n. (Cn n SUBSET X) /\ (cond (Cn n,sn n) n)` SUBGOAL_TAC; | |
INDUCT_TAC; | |
ASM_REWRITE_TAC[]; | |
SET_TAC[SUBSET]; | |
USE 13 (SPEC `n:num`); | |
REWR 5; | |
ASM_REWRITE_TAC[]; | |
ASM_MESON_TAC[SUBSET_TRANS]; | |
DISCH_TAC; | |
REWR 13; | |
ALL_TAC; (* TO HERE EVERYTHING WORKS GENERALLY *) | |
TYPE_THEN `R` EXISTS_TAC; | |
TYPE_THEN `Cn` EXISTS_TAC; | |
TYPE_THEN `sn` EXISTS_TAC; | |
TYPE_THEN `cond` EXISTS_TAC; | |
ASM_REWRITE_TAC[]; | |
]);; | |
(* }}} *) | |
(* more on metric spaces and topology *) | |
let subseq_cauchy = prove_by_refinement( | |
`!(X:A->bool) d f s. (metric_space(X,d)) /\ | |
(cauchy_seq (X,d) f) /\ (subseq s) /\ | |
(converge(X,d) (f o s)) ==> (converge(X,d) f)`, | |
(* {{{ proof *) | |
[ | |
REWRITE_TAC[cauchy_seq;converge;sequence_in]; | |
DISCH_ALL_TAC; | |
CHO 4; | |
TYPE_THEN `x` EXISTS_TAC ; | |
ASM_REWRITE_TAC[]; | |
DISCH_ALL_TAC; | |
AND 4; | |
TYPE_THEN `eps/(&.2)` (USE 2 o SPEC); | |
TYPE_THEN `eps/(&.2)` (USE 4 o SPEC); | |
CHO 4; | |
CHO 2; | |
CONV_TAC (quant_right_CONV "n"); | |
DISCH_ALL_TAC; | |
USE 2 (REWRITE_RULE[REAL_LT_HALF1]); | |
USE 4 (REWRITE_RULE[REAL_LT_HALF1]); | |
REWR 2; | |
REWR 4; | |
TYPE_THEN `n'` EXISTS_TAC ; | |
DISCH_ALL_TAC; | |
TYPE_THEN `n +| n'` (USE 4 o SPEC); | |
USE 4 (REWRITE_RULE[ARITH_RULE `n <=| n +| n'`]); | |
TYPE_THEN `s(n +| n')` (USE 2 o SPEC); | |
TYPE_THEN `i` (USE 2 o SPEC); | |
TYPE_THEN `n' <=| s (n +| n')` SUBGOAL_TAC; | |
USE 3 (MATCH_MP SEQ_SUBLE); | |
TYPE_THEN `n +| n'` (USE 3 o SPEC); | |
ASM_MESON_TAC[ LE_TRANS; ARITH_RULE `n' <=| n +| n'`]; | |
DISCH_TAC; | |
REWR 2; | |
USE 4 (REWRITE_RULE[o_DEF]); | |
(* save_goal"sc1"; *) | |
TYPEL_THEN [`X`;`d`;`x`;`f (s(n +| n'))`;`f i`] (fun t-> ASSUME_TAC (ISPECL t metric_space_triangle)); | |
USE 5 (REWRITE_RULE[IN]); | |
REWR 9; | |
USE 1 (MATCH_MP sequence_in); | |
REWR 9; | |
UND 9; | |
UND 4; | |
UND 2; | |
MP_TAC (SPEC `eps:real` REAL_HALF_DOUBLE); | |
TYPE_THEN `a = d (f (s (n +| n'))) (f i)` ABBREV_TAC ; | |
TYPE_THEN `b = d x (f (s (n +| n')))` ABBREV_TAC ; | |
TYPE_THEN `c = d x (f i)` ABBREV_TAC ; | |
REAL_ARITH_TAC; | |
]);; | |
(* }}} *) | |
let compact_complete = prove_by_refinement( | |
`!(X:A->bool) d. metric_space(X,d) /\ | |
(compact (top_of_metric(X,d)) X) ==> | |
(complete(X,d))`, | |
(* {{{ proof *) | |
[ | |
REWRITE_TAC [complete]; | |
DISCH_ALL_TAC; | |
DISCH_ALL_TAC; | |
COPY 0; | |
COPY 1; | |
JOIN 3 4; | |
USE 3 (MATCH_MP compact_totally_bounded); | |
COPY 2; | |
USE 4 (REWRITE_RULE[cauchy_seq]); | |
AND 4; | |
COPY 0; | |
COPY 3; | |
COPY 5; | |
JOIN 7 8; | |
JOIN 6 7; | |
USE 6 (MATCH_MP cauchy_subseq_sublemma); | |
CHO 6; | |
CHO 6; | |
CHO 6; | |
CHO 6; | |
(AND 6); | |
(AND 6); | |
(AND 6); | |
(AND 6); | |
(AND 6); | |
(AND 6); | |
(AND 6); | |
ALL_TAC ; (* cc1 *) | |
MATCH_MP_TAC subseq_cauchy; | |
TYPE_THEN `sn` EXISTS_TAC; | |
ASM_REWRITE_TAC [converge]; | |
SUBCONJ_TAC; | |
REWRITE_TAC[SUBSEQ_SUC]; | |
ASM_MESON_TAC[ ]; | |
DISCH_ALL_TAC; | |
TYPE_THEN `~(INTERS {z | ?n. z = closed_ball(X,d) (f (sn n)) (R* twopow(--: (&:n)))} =EMPTY)` SUBGOAL_TAC; | |
PROOF_BY_CONTR_TAC ; | |
REWR 15; | |
TYPEL_THEN [`top_of_metric(X,d)`;`{z | ?n. z = closed_ball (X,d) (f(sn n)) (R * twopow (--: (&:n)))}`] (fun t-> ASSUME_TAC (ISPECL t finite_inters)); | |
REWR 16; | |
TYPE_THEN `topology_ (top_of_metric (X,d)) /\ compact (top_of_metric (X,d)) (UNIONS (top_of_metric (X,d))) /\ (!u. {z | ?n. z = closed_ball (X,d) (f(sn n)) (R * twopow (--: (&:n)))} u ==> closed_ (top_of_metric (X,d)) u)` SUBGOAL_TAC ; | |
ASM_SIMP_TAC[GSYM top_of_metric_unions;]; | |
ASM_SIMP_TAC[top_of_metric_top]; | |
REWRITE_TAC[IN_ELIM_THM']; | |
ASM_MESON_TAC[closed_ball_closed]; | |
DISCH_TAC; | |
REWR 16; | |
CHO 16; | |
ALL_TAC ; (* cc2 *) | |
TYPE_THEN `{z | ?n. z = closed_ball (X,d) (f (sn n)) (R * twopow (--: (&:n)))} = IMAGE (\n. closed_ball (X,d) (f (sn n)) (R * twopow (--: (&:n)))) (UNIV)` SUBGOAL_TAC ; | |
MATCH_MP_TAC EQ_EXT; | |
GEN_TAC ; | |
REWRITE_TAC[IN_ELIM_THM';INR IN_IMAGE;UNIV]; | |
DISCH_TAC; | |
REWR 16; | |
AND 16; | |
AND 16; | |
JOIN 20 19; | |
(*** Modified by JRH for new theorem name | |
USE 19 (MATCH_MP FINITE_SUBSET_IMAGE); | |
***) | |
USE 19 (MATCH_MP FINITE_SUBSET_IMAGE_IMP); | |
CHO 19; | |
AND 19; | |
AND 19; | |
(*** JRH --- originally for implicational num_FINITE: | |
USE 20 (MATCH_MP num_FINITE); | |
***) | |
USE 20 (CONV_RULE (REWR_CONV num_FINITE)); | |
CHO 20; | |
TYPE_THEN `f (sn a) IN (INTERS W)` SUBGOAL_TAC ; | |
REWRITE_TAC[IN_INTERS]; | |
REWRITE_TAC[IN]; | |
DISCH_ALL_TAC; | |
USE 19 (REWRITE_RULE [SUBSET;IN_IMAGE]); | |
TYPE_THEN `t` (USE 19 o SPEC); | |
USE 19 (REWRITE_RULE [IN]); | |
REWR 19; | |
X_CHO 19 `m:num`; | |
USE 20 (SPEC `m:num`); | |
USE 20 (REWRITE_RULE[IN]); | |
REWR 20; | |
TYPE_THEN `Cn m SUBSET closed_ball (X,d) (f (sn m)) (R * twopow (--: (&:m)))` SUBGOAL_TAC ; | |
REWRITE_TAC[SUBSET;closed_ball;IN_ELIM_THM']; | |
USE 12 (SPEC `m:num`); | |
UND 12; | |
EXPAND_TAC "cond"; | |
(CONV_TAC (TOP_DEPTH_CONV GEN_BETA_CONV)); | |
REWRITE_TAC[SUBSET]; | |
MESON_TAC[IN;REAL_ARITH `x <. y ==> x <=. y`]; | |
REWRITE_TAC[SUBSET;IN]; | |
DISCH_THEN (MATCH_MP_TAC ); | |
ALL_TAC ; (* cc3 *) | |
TYPE_THEN `Cn a SUBSET Cn m` SUBGOAL_TAC ; | |
UND 13; | |
UND 20; | |
MESON_TAC [SUBSET_SUC2]; | |
REWRITE_TAC[SUBSET;IN]; | |
DISCH_THEN (MATCH_MP_TAC ); | |
USE 12 (SPEC `a:num`); | |
AND 12; | |
UND 12; | |
EXPAND_TAC "cond"; | |
(CONV_TAC (TOP_DEPTH_CONV GEN_BETA_CONV)); | |
MESON_TAC[]; | |
ASM_REWRITE_TAC [NOT_IN_EMPTY]; | |
DISCH_TAC; | |
ALL_TAC ; (* cc4 *) | |
USE 15 (REWRITE_RULE[EMPTY_EXISTS]); | |
CHO 15; | |
TYPE_THEN `u` EXISTS_TAC ; | |
REWRITE_TAC[IN]; | |
SUBCONJ_TAC; | |
USE 15 (REWRITE_RULE [IN_INTERS]); | |
TYPE_THEN `closed_ball (X,d) (f (sn 0)) (R * twopow (--: (&:0)))` (USE 15 o SPEC); | |
USE 15 (REWRITE_RULE[IN_ELIM_THM']); | |
LEFT 15 "n"; | |
TYPE_THEN `0` (USE 15 o SPEC); | |
USE 15 (REWRITE_RULE[IN;closed_ball]); | |
USE 15 (REWRITE_RULE [IN_ELIM_THM']); | |
ASM_REWRITE_TAC[]; | |
DISCH_ALL_TAC; | |
DISCH_ALL_TAC; | |
CONV_TAC (quant_right_CONV "n"); | |
DISCH_ALL_TAC; | |
TYPEL_THEN [`(&.2)*R`;`eps`] (fun t-> ASSUME_TAC (ISPECL t twopow_eps)); | |
CHO 18; | |
REWR 18; | |
TYPE_THEN `n` EXISTS_TAC; | |
DISCH_ALL_TAC; | |
TYPE_THEN `&0 < &2 * R ` SUBGOAL_TAC; | |
MATCH_MP_TAC REAL_PROP_POS_MUL2; | |
REDUCE_TAC; | |
ASM_REWRITE_TAC[]; | |
ARITH_TAC; | |
DISCH_ALL_TAC; | |
REWR 18; | |
UND 18; | |
MATCH_MP_TAC (REAL_ARITH `x <= a ==> ((a < b) ==> (x < b))`); | |
USE 15 (REWRITE_RULE[IN_INTERS]); | |
TYPE_THEN `closed_ball (X,d) (f (sn n)) (R * twopow (--: (&:n)))` (USE 15 o SPEC); | |
USE 15 (REWRITE_RULE[IN_ELIM_THM']); | |
LEFT 15 "n'"; | |
USE 15 (SPEC `n:num`); | |
REWR 15; | |
TYPE_THEN `Cn n SUBSET closed_ball (X,d) (f (sn n)) (R * twopow (--: (&:n)))` SUBGOAL_TAC ; | |
REWRITE_TAC[SUBSET;closed_ball;IN_ELIM_THM']; | |
USE 12 (SPEC `n:num`); | |
UND 12; | |
EXPAND_TAC "cond"; | |
(CONV_TAC (TOP_DEPTH_CONV GEN_BETA_CONV)); | |
REWRITE_TAC[SUBSET]; | |
MESON_TAC[IN;REAL_ARITH `x <. y ==> x <=. y`]; | |
DISCH_TAC; | |
TYPE_THEN `Cn i SUBSET Cn n` SUBGOAL_TAC ; | |
UND 13; | |
UND 19; | |
MESON_TAC [SUBSET_SUC2]; | |
ALL_TAC ; (* REWRITE_TAC[SUBSET;IN];*) | |
DISCH_ALL_TAC; | |
USE 12 (SPEC `i:num`); | |
AND 12; | |
UND 12; | |
EXPAND_TAC "cond"; | |
(CONV_TAC (TOP_DEPTH_CONV GEN_BETA_CONV)); | |
DISCH_ALL_TAC; | |
TYPE_THEN `((f o sn) i) IN closed_ball (X,d) (f (sn n)) (R * twopow (--: (&:n)))` SUBGOAL_TAC; | |
KILL 1; | |
KILL 0; | |
KILL 2; | |
KILL 3; | |
KILL 5; | |
KILL 4; | |
JOIN 21 18; | |
USE 0 (MATCH_MP SUBSET_TRANS); | |
ALL_TAC; (* "CC5"; *) | |
ASM_MESON_TAC[IN;o_DEF;SUBSET]; | |
REWRITE_TAC[GSYM REAL_MUL_ASSOC]; | |
UND 15; | |
TYPE_THEN `r = R * twopow (--: (&:n))` ABBREV_TAC; | |
UND 0; | |
REWRITE_TAC[IN]; | |
MESON_TAC[BALL_DIST_CLOSED]; | |
]);; | |
(* }}} *) | |
let countable_cover = prove_by_refinement( | |
`!(X:A->bool) d U. (metric_space(X,d)) /\ (totally_bounded(X,d)) /\ | |
(X SUBSET (UNIONS U)) /\ (U SUBSET (top_of_metric(X,d))) ==> | |
(?V. (V SUBSET U) /\ (X SUBSET (UNIONS V)) /\ (COUNTABLE V))`, | |
(* {{{ proof *) | |
[ | |
DISCH_ALL_TAC; | |
TYPE_THEN `(?Z. COUNTABLE Z /\ dense (top_of_metric (X,d)) Z)` SUBGOAL_TAC; | |
ASM_MESON_TAC[countable_dense]; | |
DISCH_ALL_TAC; | |
CHO 4; | |
TYPE_THEN `S = {(z,n) | ?A. (Z z) /\ (open_ball(X,d) z (twopow(--: (&:n))) SUBSET A) /\ U A}` ABBREV_TAC ; | |
TYPE_THEN `COUNTABLE S` SUBGOAL_TAC; | |
IMATCH_MP_TAC (INST_TYPE [`:A#num`,`:A`] COUNTABLE_IMAGE); | |
TYPE_THEN `{(z,(n:num)) | (Z z) /\ (UNIV n)}` EXISTS_TAC ; | |
CONJ_TAC ; | |
IMATCH_MP_TAC countable_prod; | |
ASM_REWRITE_TAC [NUM_COUNTABLE]; | |
TYPE_THEN `I:(A#num) -> (A#num)` EXISTS_TAC; | |
REWRITE_TAC[IMAGE_I;UNIV;SUBSET]; | |
IN_OUT_TAC; | |
EXPAND_TAC "S"; | |
GEN_TAC; | |
REWRITE_TAC[IN_ELIM_THM']; | |
ASM_MESON_TAC[GSPEC]; | |
DISCH_TAC; | |
TYPE_THEN `!z n. (S (z,n) ==> ?A. Z z /\ open_ball (X,d) z (twopow (--: (&:n))) SUBSET A /\ U A)` SUBGOAL_TAC; | |
EXPAND_TAC "S"; | |
REWRITE_TAC[IN_ELIM_THM']; | |
DISCH_ALL_TAC; | |
CHO 7; | |
CHO 7; | |
AND 7; | |
CHO 8; | |
TYPE_THEN `A` EXISTS_TAC; | |
ASM_MESON_TAC[PAIR_EQ]; | |
DISCH_TAC ; | |
LEFT 7 "A"; | |
LEFT 7 "A"; | |
LEFT 7 "A"; | |
CHO 7; | |
ALL_TAC ; (* "cc1"; *) | |
TYPE_THEN `IMAGE (\ (z,n). A z n) S` EXISTS_TAC; | |
SUBCONJ_TAC ; | |
REWRITE_TAC[SUBSET;IN_IMAGE]; | |
NAME_CONFLICT_TAC; | |
TYPE_THEN `Azn:A->bool` X_GEN_TAC; | |
DISCH_THEN (X_CHOOSE_TAC `zn:A#num`); | |
USE 8 (SUBS [(ISPEC `zn:A#num` (GSYM PAIR))]); | |
USE 8 (GBETA_RULE); | |
TYPE_THEN `z = FST zn` ABBREV_TAC ; | |
TYPE_THEN `n = SND zn` ABBREV_TAC ; | |
IN_OUT_TAC; | |
ASM_MESON_TAC[]; | |
DISCH_TAC; | |
CONJ_TAC ; | |
REWRITE_TAC[SUBSET]; | |
USE 2 (REWRITE_RULE[SUBSET;IN_UNIONS]); | |
IN_OUT_TAC; | |
DISCH_ALL_TAC; | |
TYPE_THEN `x` ( USE 6 o SPEC); | |
REWR 6; | |
CHO 6; | |
TYPE_THEN `top_of_metric (X,d) t` SUBGOAL_TAC; | |
AND 6; | |
UND 10; | |
UND 5; | |
REWRITE_TAC[SUBSET;IN]; | |
MESON_TAC[]; | |
ASM_SIMP_TAC[top_of_metric_nbd]; | |
DISCH_ALL_TAC; | |
TYPE_THEN `x` (USE 11 o SPEC); | |
IN_OUT_TAC; | |
REWR 0; | |
CHO 0; | |
AND 0; | |
ASSUME_TAC (SPECL[`&.1`;`r:real`] twopow_eps); | |
CHO 13; | |
USE 13 (CONV_RULE REDUCE_CONV); | |
REWR 13; | |
TYPEL_THEN [`X`;`d`;`x`] (fun t-> USE 13 (MATCH_MP (SPECL t open_ball_nest))); | |
JOIN 13 0; | |
USE 0 (MATCH_MP SUBSET_TRANS); | |
ASSUME_TAC (SPEC `(--: (&:n))` twopow_pos); | |
WITH 3 (MATCH_MP top_of_metric_top); | |
AND 7; | |
COPY 7; | |
COPY 14; | |
JOIN 14 7; | |
USE 7 (MATCH_MP dense_subset); | |
UND 16; | |
ASM_SIMP_TAC [dense_open]; | |
DISCH_TAC ; | |
TYPE_THEN `(open_ball(X,d) x (twopow (--: (&:(n+1)))))` (USE 14 o SPEC); | |
ALL_TAC ; (* "cc2"; *) | |
TYPE_THEN `open_ball (X,d) x (twopow (--: (&:(n +| 1)))) x` SUBGOAL_TAC; | |
IMATCH_MP_TAC open_ball_nonempty; | |
ASM_REWRITE_TAC[]; | |
DISCH_TAC; | |
TYPE_THEN `?z. (Z z) /\ (open_ball(X,d) x (twopow (--: (&:(n+1)))) z)` SUBGOAL_TAC; | |
UND 14; | |
REWRITE_TAC[open_DEF]; | |
ASM_SIMP_TAC[open_ball_open]; | |
UND 16; | |
TYPE_THEN `B = open_ball (X,d) x (twopow (--: (&:(n +| 1))))` ABBREV_TAC ; | |
REWRITE_TAC[INTER;IN]; | |
POP_ASSUM_LIST (fun t->ALL_TAC); | |
REWRITE_TAC[EMPTY_NOT_EXISTS]; | |
REWRITE_TAC[IN_ELIM_THM']; | |
MESON_TAC[]; | |
DISCH_TAC; | |
CHO 18; | |
AND 18; | |
WITH 3 (MATCH_MP top_of_metric_unions); | |
USE 20 (SYM); | |
REWR 7; | |
TYPE_THEN `X z` SUBGOAL_TAC; | |
UND 7; | |
UND 19; | |
MESON_TAC[SUBSET;IN]; | |
DISCH_TAC; | |
TYPE_THEN `open_ball (X,d) z (twopow (--: (&:(n +| 1)))) x` SUBGOAL_TAC; | |
ASM_MESON_TAC[ball_symm]; | |
DISCH_TAC; | |
ALL_TAC ; (* "cc3"; *) | |
REWRITE_TAC[UNIONS;IN_IMAGE;IN_ELIM_THM']; | |
REWRITE_TAC[IN]; | |
LEFT_TAC "x"; | |
LEFT_TAC "x"; | |
TYPE_THEN `(z,n+1)` EXISTS_TAC; | |
TYPE_THEN `A z (n+1)` EXISTS_TAC; | |
GBETA_TAC; | |
EXPAND_TAC "S"; | |
REWRITE_TAC[IN_ELIM_THM']; | |
LEFT_TAC "z'"; | |
TYPE_THEN `z` EXISTS_TAC; | |
LEFT_TAC "n'"; | |
TYPE_THEN `n + 1` EXISTS_TAC; | |
REWRITE_TAC[]; | |
LEFT_TAC "A"; | |
TYPE_THEN `t` EXISTS_TAC; | |
ASM_REWRITE_TAC[]; | |
ALL_TAC ; (* "cc4"; *) | |
SUBCONJ_TAC ; | |
TYPE_THEN `open_ball (X,d) z (twopow (--: (&:(n +| 1)))) SUBSET (open_ball (X,d) x (twopow (--: (&:n))))` SUBGOAL_TAC ; | |
CONV_TAC (RAND_CONV (ONCE_REWRITE_CONV [(GSYM twopow_double)])); | |
IMATCH_MP_TAC ball_subset_ball; | |
ASM_REWRITE_TAC[]; | |
UND 0; | |
MESON_TAC[SUBSET_TRANS]; | |
DISCH_TAC ; | |
TYPEL_THEN [`z`;`n+1`] (fun t -> USE 10 (SPECL t)); | |
USE 10 (REWRITE_RULE [SUBSET ]); | |
IN_OUT_TAC ; | |
ALL_TAC ; (* "cc5" *) | |
TYPE_THEN `S (z,n +| 1)` SUBGOAL_TAC ; | |
EXPAND_TAC "S"; | |
REWRITE_TAC[IN_ELIM_THM' ]; | |
TYPE_THEN `z` EXISTS_TAC ; | |
TYPE_THEN `n + 1` EXISTS_TAC; | |
ASM_REWRITE_TAC[]; | |
TYPE_THEN `t` EXISTS_TAC; | |
ASM_REWRITE_TAC[]; | |
DISCH_TAC ; | |
REWR 13; | |
AND 13; | |
TYPE_THEN `x` (USE 25 o SPEC ); | |
UND 25; | |
ASM_REWRITE_TAC[]; | |
TYPE_THEN `S` ( fun t-> IMATCH_MP_TAC ( ISPEC t COUNTABLE_IMAGE)) ; | |
ASM_REWRITE_TAC[]; | |
TYPE_THEN `\ (z,n). A z n` EXISTS_TAC; | |
REWRITE_TAC[SUBSET_REFL ]; | |
]);; | |
(* }}} *) | |
let complete_compact = prove_by_refinement( | |
`!(X:A->bool) d . (metric_space(X,d)) /\ (totally_bounded(X,d)) /\ | |
(complete (X,d)) ==> (compact (top_of_metric(X,d)) X)`, | |
(* {{{ proof *) | |
[ | |
DISCH_ALL_TAC; | |
REWRITE_TAC[compact]; | |
CONJ_TAC ; | |
UND 0; | |
SIMP_TAC[GSYM top_of_metric_unions ]; | |
REWRITE_TAC[SUBSET_REFL]; | |
GEN_TAC; | |
DISCH_ALL_TAC; | |
TYPE_THEN `(?V'. (V' SUBSET V) /\ (X SUBSET (UNIONS V')) /\ (COUNTABLE V'))` SUBGOAL_TAC ; | |
IMATCH_MP_TAC countable_cover; | |
TYPE_THEN `d` EXISTS_TAC; | |
ASM_REWRITE_TAC[]; | |
DISCH_THEN (CHOOSE_THEN MP_TAC); | |
DISCH_ALL_TAC; | |
ALL_TAC; (* ASM_MESON_TAC[]; *) | |
ALL_TAC; (* DISCH_THEN (CHOOSE_THEN MP_TAC); *) | |
ALL_TAC; (* DISCH_ALL_TAC; *) | |
USE 7 (REWRITE_RULE[COUNTABLE;GE_C;UNIV]); | |
IN_OUT_TAC; | |
CHO 0; | |
TYPE_THEN `B = \i. (IMAGE f { u | (u <=| i ) /\ V' (f u)}) ` ABBREV_TAC ; | |
TYPE_THEN `?i . UNIONS (B i ) = X ` ASM_CASES_TAC; | |
CHO 9; | |
TYPE_THEN `B i ` EXISTS_TAC; | |
EXPAND_TAC "B"; | |
CONJ_TAC; | |
REWRITE_TAC[IMAGE;SUBSET ;IN ]; | |
GEN_TAC; | |
REWRITE_TAC[IN_ELIM_THM']; | |
NAME_CONFLICT_TAC; | |
UND 2; | |
REWRITE_TAC[SUBSET;IN ]; | |
MESON_TAC[]; | |
CONJ_TAC ; | |
IMATCH_MP_TAC FINITE_IMAGE; | |
IMATCH_MP_TAC FINITE_SUBSET; | |
TYPE_THEN `{u | u <=| i }` EXISTS_TAC; | |
REWRITE_TAC[FINITE_NUMSEG_LE;SUBSET;IN ;IN_ELIM_THM' ]; | |
MESON_TAC[]; | |
UND 9; | |
DISCH_THEN (fun t-> REWRITE_TAC[GSYM t]); | |
EXPAND_TAC "B"; | |
REWRITE_TAC[SUBSET_REFL ]; | |
ALL_TAC ; (* "sv1" *) | |
LEFT 9 "i"; | |
TYPE_THEN `UNIONS V' SUBSET X` SUBGOAL_TAC; | |
JOIN 2 3; | |
USE 2 (MATCH_MP SUBSET_TRANS ); | |
USE 2 (MATCH_MP UNIONS_UNIONS ); | |
UND 2; | |
ASM_MESON_TAC[top_of_metric_unions ]; | |
DISCH_TAC ; | |
TYPE_THEN `!i. UNIONS (B i) SUBSET X` SUBGOAL_TAC; | |
GEN_TAC; | |
UND 10; | |
EXPAND_TAC "B"; | |
REWRITE_TAC[SUBSET;IN_UNIONS;IN_IMAGE ]; | |
REWRITE_TAC[IN;IN_ELIM_THM' ]; | |
MESON_TAC[]; | |
DISCH_TAC ; | |
COPY 11; | |
COPY 9; | |
JOIN 12 13; | |
LEFT 12 "i"; | |
USE 12 (REWRITE_RULE [GSYM PSUBSET ;PSUBSET_ALT;IN ]); | |
LEFT 12 "a"; | |
LEFT 12 "a"; | |
CHO 12; | |
ALL_TAC ; (* "sv2" *) | |
TYPE_THEN `(?ss. subseq ss /\ converge (X,d) (a o ss))` SUBGOAL_TAC; | |
IMATCH_MP_TAC convergent_subseq ; | |
ASM_REWRITE_TAC[sequence]; | |
REWRITE_TAC[SUBSET;UNIV;IN_IMAGE ]; | |
REWRITE_TAC[IN]; | |
ASM_MESON_TAC[]; | |
DISCH_TAC; | |
CHO 13; | |
AND 13; | |
COPY 13; | |
USE 13 (REWRITE_RULE[converge;IN ]); | |
CHO 13; | |
AND 13; | |
USE 1 (REWRITE_RULE[SUBSET;UNIONS;IN;IN_ELIM_THM' ]); | |
TYPE_THEN `x` (USE 1 o SPEC); | |
REWR 1; | |
CHO 1; | |
TYPE_THEN `u` (USE 0 o SPEC); | |
REWR 0; | |
X_CHO 0 `j:num`; | |
TYPE_THEN `(UNIONS (B j)) x` SUBGOAL_TAC; | |
EXPAND_TAC "B"; | |
REWRITE_TAC[UNIONS;IN_IMAGE ]; | |
REWRITE_TAC[IN;IN_ELIM_THM' ]; | |
TYPE_THEN `u` EXISTS_TAC; | |
ASM_REWRITE_TAC[]; | |
TYPE_THEN `j` EXISTS_TAC; | |
ASM_MESON_TAC[ARITH_RULE `j <=| j`]; | |
DISCH_TAC; | |
TYPE_THEN `u SUBSET (UNIONS (B j))` SUBGOAL_TAC; | |
IMATCH_MP_TAC sub_union; | |
EXPAND_TAC "B"; | |
REWRITE_TAC[IMAGE;IN;IN_ELIM_THM' ]; | |
TYPE_THEN `j` EXISTS_TAC; | |
ASM_MESON_TAC[ARITH_RULE `j <=| j`]; | |
DISCH_TAC; | |
JOIN 2 3; | |
USE 2 (MATCH_MP SUBSET_TRANS); | |
ALL_TAC ; (* "sv3" *) | |
TYPE_THEN `top_of_metric(X,d) u` SUBGOAL_TAC; | |
USE 2 (REWRITE_RULE[SUBSET;IN ]); | |
ASM_MESON_TAC[]; | |
ASM_SIMP_TAC[top_of_metric_nbd]; | |
REWRITE_TAC[IN ]; | |
DISCH_ALL_TAC; | |
TYPE_THEN `x` (USE 19 o SPEC); | |
REWR 1; | |
REWR 19; | |
CHO 19; | |
TYPE_THEN `r` (USE 13 o SPEC); | |
CHO 13; | |
REWR 13; | |
REWR 0; | |
TYPE_THEN `n +| (j)` (USE 13 o SPEC); | |
USE 13 (REWRITE_RULE[ARITH_RULE `n<=| (n+| a)`]); | |
AND 19; | |
TYPE_THEN `u ((a o ss) (n +| j) )` SUBGOAL_TAC; | |
USE 19 (REWRITE_RULE[SUBSET;open_ball;IN ;IN_ELIM_THM' ]); | |
TYPE_THEN `((a o ss) (n +| j))` (USE 19 o SPEC); | |
ASM_REWRITE_TAC[]; | |
UND 19; | |
DISCH_THEN IMATCH_MP_TAC ; | |
ASM_REWRITE_TAC[]; | |
TYPE_THEN `(ss (n +| j))` (USE 12 o SPEC); | |
ASM_REWRITE_TAC[o_DEF ]; | |
DISCH_TAC; | |
TYPE_THEN `z = ((a o ss) (n +| j))` ABBREV_TAC; | |
TYPE_THEN `UNIONS (B (ss (n+| j))) ((a o ss) (n +| j))` SUBGOAL_TAC; | |
EXPAND_TAC "B"; | |
ASM_REWRITE_TAC[]; | |
REWRITE_TAC[UNIONS;IN_IMAGE]; | |
REWRITE_TAC[IN; IN_ELIM_THM']; | |
TYPE_THEN `u` EXISTS_TAC; | |
ASM_REWRITE_TAC[]; | |
TYPE_THEN `j` EXISTS_TAC; | |
ASM_REWRITE_TAC[]; | |
IMATCH_MP_TAC (ARITH_RULE `j <= a /\ a <= ss(a) ==> (j <=| (ss (a)))`); | |
ASM_SIMP_TAC[SEQ_SUBLE]; | |
ARITH_TAC; | |
REWRITE_TAC[o_DEF]; | |
TYPE_THEN `ss(n +| j)` (USE 12 o SPEC); | |
UND 12; | |
MESON_TAC[]; | |
]);; | |
(* }}} *) | |
let uniformly_continuous = euclid_def | |
`uniformly_continuous (f:A->B) ((X:A->bool),dX) ((Y:B->bool),dY) <=> | |
(!epsilon. ?delta. (&.0 < epsilon) ==> (&.0 <. delta) /\ | |
(!x y. (X x) /\ (X y) /\ | |
(dX x y < delta) ==> (dY (f x) (f y) < epsilon)))`;; | |
(* NB. It is not part of the hypothesis on metric_continuous | |
that the IMAGE of f on X is contained in Y. Hence the | |
extra hypothesis. *) | |
let compact_uniformly_continuous = prove_by_refinement( | |
`!f X dX Y dY. metric_continuous f (X,dX) (Y,dY) /\ (metric_space(X,dX)) | |
/\ (metric_space(Y,dY)) /\ (compact(top_of_metric(X,dX)) X) /\ | |
(IMAGE f X SUBSET Y) ==> | |
uniformly_continuous (f:A->B) ((X:A->bool),dX) ((Y:B->bool),dY)`, | |
(* {{{ proof *) | |
[ | |
REWRITE_TAC[uniformly_continuous;metric_continuous;metric_continuous_pt]; | |
DISCH_ALL_TAC; | |
GEN_TAC; | |
LEFT 0 "epsilon"; | |
TYPE_THEN `epsilon/(&.2)` (USE 0 o SPEC); | |
LEFT 0 "delta"; | |
CHO 0; | |
TYPE_THEN `cov = IMAGE (\x. open_ball (X,dX) x ((delta x)/(&.2))) X` ABBREV_TAC; | |
USE 3 (REWRITE_RULE[compact]); | |
UND 3; | |
ASM_SIMP_TAC[GSYM top_of_metric_unions;SUBSET_REFL ]; | |
DISCH_TAC; | |
TYPE_THEN `cov` (USE 3 o SPEC); | |
CONV_TAC (quant_right_CONV "delta"); | |
DISCH_TAC; | |
WITH 6 (ONCE_REWRITE_RULE [GSYM REAL_LT_HALF1]); | |
REWR 0; | |
TYPE_THEN `!x. (&.0 < (delta x)/(&.2))` SUBGOAL_TAC; | |
ASM_MESON_TAC[REAL_LT_HALF1]; | |
DISCH_TAC; | |
TYPE_THEN `X SUBSET UNIONS cov /\ cov SUBSET top_of_metric (X,dX)` SUBGOAL_TAC; | |
SUBCONJ_TAC; | |
REWRITE_TAC[SUBSET;UNIONS;IN;IN_ELIM_THM' ]; | |
DISCH_ALL_TAC; | |
TYPE_THEN `open_ball (X,dX) x ((delta x)/(&.2))` EXISTS_TAC; | |
CONJ_TAC; | |
EXPAND_TAC "cov"; | |
REWRITE_TAC[IMAGE;IN ;IN_ELIM_THM' ]; | |
ASM_MESON_TAC[]; | |
IMATCH_MP_TAC (REWRITE_RULE[IN] open_ball_nonempty); | |
ASM_REWRITE_TAC[]; | |
DISCH_TAC ; | |
REWRITE_TAC[SUBSET;IN ]; | |
EXPAND_TAC "cov"; | |
REWRITE_TAC[IMAGE;IN;IN_ELIM_THM' ]; | |
NAME_CONFLICT_TAC; | |
DISCH_ALL_TAC; | |
CHO 10; | |
AND 10; | |
ASM_REWRITE_TAC[]; | |
ASM_MESON_TAC[open_ball_open]; | |
DISCH_TAC; | |
REWR 3; | |
CHO 3; | |
ALL_TAC; (* "cc1"; *) | |
AND 3; | |
AND 3; | |
JOIN 11 10; | |
UND 10; | |
EXPAND_TAC "cov"; | |
DISCH_TAC; | |
(*** Modified by JRH for changed theorem name | |
USE 10 (MATCH_MP FINITE_SUBSET_IMAGE); | |
***) | |
USE 10 (MATCH_MP FINITE_SUBSET_IMAGE_IMP); | |
X_CHO 10 `S:A->bool`; | |
TYPE_THEN `ds = IMAGE delta S` ABBREV_TAC ; | |
TYPE_THEN `(FINITE ds) /\ ( !x. (ds x) ==> (&.0 <. x) )` SUBGOAL_TAC; | |
EXPAND_TAC "ds"; | |
CONJ_TAC; | |
IMATCH_MP_TAC FINITE_IMAGE ; | |
ASM_REWRITE_TAC[]; | |
REWRITE_TAC[IMAGE;IN;IN_ELIM_THM' ]; | |
NAME_CONFLICT_TAC ; | |
DISCH_ALL_TAC; | |
CHO 12; | |
ASM_REWRITE_TAC[]; | |
DISCH_TAC; | |
USE 12 (MATCH_MP min_finite_delta); | |
CHO 12; | |
TYPE_THEN `delta'/(&.2)` EXISTS_TAC; | |
ASM_REWRITE_TAC[]; | |
ALL_TAC ; (* "cc2" *) | |
ASM_REWRITE_TAC[REAL_LT_HALF1]; | |
DISCH_ALL_TAC; | |
AND 10; | |
AND 10; | |
USE 10( MATCH_MP UNIONS_UNIONS ); | |
JOIN 3 10; | |
USE 3 (MATCH_MP SUBSET_TRANS); | |
USE 3 (REWRITE_RULE [SUBSET;IN;UNIONS;IN_ELIM_THM' ]); | |
USE 3 (REWRITE_RULE[IMAGE;IN ;IN_ELIM_THM' ]); | |
TYPE_THEN `x` (WITH 3 o SPEC); | |
TYPE_THEN `y` (WITH 3 o SPEC); | |
KILL 3; (* start of yest *) | |
H_MATCH_MP (HYP "18")(HYP "14"); | |
H_MATCH_MP (HYP "10") (HYP "13"); | |
CHO 19; | |
CHO 3; | |
AND 19; | |
CHO 20; | |
AND 20; | |
USE 20 (REWRITE_RULE [open_ball]); | |
REWR 19; | |
USE 19 (REWRITE_RULE [IN_ELIM_THM']); | |
AND 19; | |
AND 19; | |
TYPE_THEN `dX x' x < delta x'` SUBGOAL_TAC; | |
UND 19; | |
IMATCH_MP_TAC (REAL_ARITH `((u <. v) ==> (a< u)==>(a <v))`); | |
TYPE_THEN `x'` (USE 8 o SPEC); | |
UND 8; | |
REWRITE_TAC[REAL_LT_HALF2;REAL_LT_HALF1 ]; | |
DISCH_TAC; | |
ALL_TAC ; (* cc3 *) | |
TYPE_THEN `dX x' y < delta x'` SUBGOAL_TAC; | |
CONV_TAC (RAND_CONV (ONCE_REWRITE_CONV [GSYM REAL_HALF_DOUBLE])); | |
IMATCH_MP_TAC (REAL_ARITH `(dX x' x <. u) /\ (dX x y <. u) /\ (dX x' y <= dX x' x +. dX x y) ==> (dX x' y <. u + u)`); | |
ASM_REWRITE_TAC[]; | |
CONJ_TAC; | |
UND 15; | |
IMATCH_MP_TAC (REAL_ARITH `((u <=. v) ==> (a< u)==>(a <v))`); | |
IMATCH_MP_TAC (REAL_ARITH `(u + u) <= (v +. v) ==> (u <= v)`); | |
REWRITE_TAC[REAL_HALF_DOUBLE]; | |
AND 12; | |
UND 12; | |
DISCH_THEN (MATCH_MP_TAC); | |
EXPAND_TAC "ds"; | |
REWRITE_TAC[IMAGE;IN; IN_ELIM_THM' ]; | |
UND 21; | |
MESON_TAC[]; | |
IMATCH_MP_TAC metric_space_triangle; | |
TYPE_THEN `X` EXISTS_TAC; | |
ASM_REWRITE_TAC[]; | |
DISCH_ALL_TAC; | |
CONV_TAC (RAND_CONV (ONCE_REWRITE_CONV [GSYM REAL_HALF_DOUBLE])); | |
TYPE_THEN `(dY (f x) (f x') <. u0) /\ (dY (f x') (f y) <. u0) /\ (dY (f x) (f y) <= (dY (f x) (f x')) + (dY (f x') (f y))) ==> ((dY (f x) (f y)) < u0 + u0)` (fun t-> (IMATCH_MP_TAC (REAL_ARITH t))); | |
TYPE_THEN `x'` (USE 0 o SPEC); | |
AND 0; | |
USE 0 (REWRITE_RULE[IN ]); | |
TYPE_THEN `y` (WITH 0 o SPEC); | |
TYPE_THEN `x` (USE 0 o SPEC); | |
ALL_TAC; (* cc4 *) | |
TYPE_THEN `Y (f x) /\ Y (f y) /\ Y (f x')` SUBGOAL_TAC; | |
UND 4; | |
REWRITE_TAC[SUBSET;IN_IMAGE; ]; | |
REWRITE_TAC[IN ]; | |
UND 13; | |
UND 14; | |
UND 22; | |
MESON_TAC[]; | |
DISCH_ALL_TAC; | |
CONJ_TAC; | |
TYPE_THEN `dY (f x) (f x') = dY (f x') (f x)` SUBGOAL_TAC; | |
UND 2; | |
UND 28; | |
UND 30; | |
TYPEL_THEN [`Y`;`dY`;`f x`;`f x'`] (fun t-> MP_TAC(ISPECL t metric_space_symm)); | |
MESON_TAC[]; | |
DISCH_THEN (fun t-> REWRITE_TAC[t]); | |
UND 0; | |
DISCH_THEN IMATCH_MP_TAC ; | |
ASM_REWRITE_TAC[]; | |
CONJ_TAC; | |
UND 27; | |
DISCH_THEN IMATCH_MP_TAC ; | |
ASM_REWRITE_TAC[]; | |
TYPEL_THEN [`Y`;`dY`;`f x`;`f x'`;`f y`] (fun t-> MP_TAC(ISPECL t metric_space_triangle)); | |
DISCH_THEN IMATCH_MP_TAC ; | |
ASM_REWRITE_TAC[]; | |
]);; | |
(* }}} *) | |
(* I'm rather surprised that this lemma did not need the | |
hypothesis that U and- V are topologies. *) | |
let image_compact = prove_by_refinement( | |
`!U V (f:A->B) K. (continuous f U V ) /\ | |
(compact U K) /\ (IMAGE f K SUBSET (UNIONS V)) | |
==> (compact V (IMAGE f K))`, | |
(* {{{ proof *) | |
[ | |
DISCH_ALL_TAC; | |
REWRITE_TAC[compact]; | |
ASM_REWRITE_TAC[]; | |
DISCH_ALL_TAC; | |
TYPE_THEN `cov = IMAGE (\v. preimage (UNIONS U) f v ) V'` ABBREV_TAC ; | |
TYPE_THEN `cov SUBSET U` SUBGOAL_TAC ; | |
EXPAND_TAC "cov"; | |
REWRITE_TAC[SUBSET;IN_IMAGE ]; | |
NAME_CONFLICT_TAC; | |
GEN_TAC; | |
DISCH_ALL_TAC; | |
CHO 6; | |
AND 6; | |
ASM_REWRITE_TAC[]; | |
USE 4 (REWRITE_RULE[SUBSET]); | |
TYPE_THEN `x'` (USE 4 o SPEC); | |
REWR 4; | |
UND 4; | |
UND 0; | |
REWRITE_TAC[continuous]; | |
MESON_TAC[]; | |
TYPE_THEN `K SUBSET UNIONS cov` SUBGOAL_TAC; | |
ALL_TAC; (* ic1 *) | |
UND 3; | |
REWRITE_TAC[SUBSET;IN_IMAGE ]; | |
NAME_CONFLICT_TAC; | |
REWRITE_TAC[IN]; | |
DISCH_ALL_TAC; | |
LEFT 3 "x'"; | |
DISCH_ALL_TAC; | |
LEFT 3 "x'"; | |
TYPE_THEN `x'` (USE 3 o SPEC); | |
TYPE_THEN `f x'` (USE 3 o SPEC); | |
REWR 3; | |
UND 3; | |
REWRITE_TAC[UNIONS;IN;IN_ELIM_THM' ]; | |
USE 5 (REWRITE_RULE[IMAGE]); | |
EXPAND_TAC "cov"; | |
REWRITE_TAC[IN_ELIM_THM';IN ]; | |
DISCH_ALL_TAC; | |
CHO 5; | |
CONV_TAC (quant_left_CONV "x"); | |
CONV_TAC (quant_left_CONV "x"); | |
TYPE_THEN `u` EXISTS_TAC; | |
NAME_CONFLICT_TAC; | |
TYPE_THEN `preimage (UNIONS U) f u` EXISTS_TAC; | |
ASM_REWRITE_TAC[preimage;IN_ELIM_THM' ;IN ]; | |
USE 1 (REWRITE_RULE[compact;SUBSET;IN ]); | |
AND 1; | |
UND 7; | |
UND 6; | |
MESON_TAC[]; | |
DISCH_ALL_TAC; | |
USE 1 (REWRITE_RULE[compact]); | |
AND 1; | |
TYPE_THEN `cov` (USE 1 o SPEC); | |
REWR 1; | |
CHO 1; | |
ALL_TAC ; (* ic2 *) | |
TYPE_THEN `(?V''. V'' SUBSET V' /\ FINITE V'' /\ (W = IMAGE (\v. preimage (UNIONS U) f v) V''))` SUBGOAL_TAC; | |
IMATCH_MP_TAC finite_subset ; | |
ASM_MESON_TAC[]; | |
DISCH_ALL_TAC; | |
CHO 9; | |
TYPE_THEN `V''` EXISTS_TAC; | |
ASM_REWRITE_TAC[]; | |
REWRITE_TAC[SUBSET;IN_IMAGE]; | |
REWRITE_TAC[IN;UNIONS;IN_ELIM_THM' ]; | |
NAME_CONFLICT_TAC; | |
CONV_TAC (quant_left_CONV "x'"); | |
CONV_TAC (quant_left_CONV "x'"); | |
DISCH_ALL_TAC; | |
ASM_REWRITE_TAC[]; | |
AND 1; | |
AND 1; | |
USE 1 (REWRITE_RULE[SUBSET;UNIONS;IN;IN_ELIM_THM' ]); | |
TYPE_THEN `x'` (USE 1 o SPEC); | |
REWR 1; | |
CHO 1; | |
AND 1; | |
USE 14 (REWRITE_RULE[IMAGE;IN ;IN_ELIM_THM' ]); | |
TYPE_THEN `u':B->bool` (X_CHO 14); | |
TYPE_THEN `u'` EXISTS_TAC; | |
ASM_REWRITE_TAC[]; | |
UND 1; | |
ASM_REWRITE_TAC[preimage;IN;IN_ELIM_THM' ]; | |
MESON_TAC []; | |
]);; | |
(* }}} *) | |
let metric_bounded = euclid_def | |
`metric_bounded (X,d) <=> | |
?(x:A) r. X SUBSET (open_ball(X,d) x r)`;; | |
let euclid_ball_cube = prove_by_refinement( | |
`!n x r. ?N. (open_ball(euclid n,d_euclid) x r) SUBSET | |
{x | euclid n x /\ (!i. abs (x i) <= &N)}`, | |
(* {{{ proof *) | |
[ | |
DISCH_ALL_TAC; | |
REWRITE_TAC[SUBSET;IN;IN_ELIM_THM';open_ball; ]; | |
ASSUME_TAC REAL_ARCH_SIMPLE; | |
TYPE_THEN ` (d_euclid x (\i. &.0) +. r)` (USE 0 o SPEC); | |
X_CHO 0 `N:num`; | |
TYPE_THEN `N` EXISTS_TAC; | |
DISCH_ALL_TAC; | |
ASM_REWRITE_TAC[]; | |
GEN_TAC ; | |
ASSUME_TAC proj_contraction; | |
TYPEL_THEN [`n`;`x'`;`(\(i :num). &.0)`;`i`] (USE 4 o SPECL); | |
USE 4 BETA_RULE ; | |
USE 4 (CONV_RULE REDUCE_CONV ); | |
TYPE_THEN `euclid n (\i. &.0)` SUBGOAL_TAC ; | |
REWRITE_TAC[euclid]; | |
DISCH_TAC; | |
REWR 4; | |
ASSUME_TAC metric_euclid; | |
TYPE_THEN `n` (USE 6 o SPEC); | |
TYPE_THEN `d_euclid x' (\i. &.0) <=. d_euclid x' x + d_euclid x (\i. &0)` SUBGOAL_TAC; | |
IMATCH_MP_TAC metric_space_triangle; | |
TYPE_THEN `euclid n` EXISTS_TAC; | |
ASM_REWRITE_TAC[]; | |
TYPE_THEN `d_euclid x' x = d_euclid x x'` SUBGOAL_TAC; | |
IMATCH_MP_TAC metric_space_symm; | |
TYPE_THEN `euclid n` EXISTS_TAC; | |
ASM_REWRITE_TAC[]; | |
UND 0; | |
UND 3; | |
UND 4; | |
REAL_ARITH_TAC; | |
]);; | |
(* }}} *) | |
let totally_bounded_euclid = prove_by_refinement( | |
`!X n. (metric_bounded (X,d_euclid) /\ | |
(X SUBSET (euclid n))) ==> | |
(totally_bounded (X,d_euclid))`, | |
(* {{{ proof *) | |
[ | |
REWRITE_TAC[metric_bounded]; | |
DISCH_ALL_TAC; | |
IMATCH_MP_TAC totally_bounded_subset; | |
CHO 0; | |
CHO 0; | |
ASSUME_TAC euclid_ball_cube; | |
TYPEL_THEN [`n`;`x`;`r`] (USE 2 o SPECL); | |
CHO 2; | |
ASSUME_TAC open_ball_subspace; | |
TYPEL_THEN [`euclid n`;`X`;`d_euclid`;`x`;`r`] (USE 3 o ISPECL); | |
REWR 3; | |
JOIN 0 3; | |
USE 0 (MATCH_MP SUBSET_TRANS); | |
JOIN 0 2; | |
USE 0 (MATCH_MP SUBSET_TRANS); | |
TYPE_THEN `{x | euclid n x /\ (!i. abs (x i) <= &N)}` EXISTS_TAC; | |
ASM_REWRITE_TAC[totally_bounded_cube ]; | |
IMATCH_MP_TAC metric_subspace; | |
TYPE_THEN `euclid n` EXISTS_TAC; | |
REWRITE_TAC[metric_euclid]; | |
REWRITE_TAC[SUBSET;IN;IN_ELIM_THM' ]; | |
MESON_TAC[]; | |
]);; | |
(* }}} *) | |
(* topology is not needed as an assumption here! *) | |
let induced_compact = prove_by_refinement( | |
`!U (K:A->bool). (K SUBSET (UNIONS U)) ==> | |
(compact U K <=> (compact (induced_top U K) K))`, | |
(* {{{ proof *) | |
[ | |
DISCH_ALL_TAC; | |
ASM_REWRITE_TAC[compact]; | |
EQ_TAC; | |
DISCH_ALL_TAC; | |
ASM_REWRITE_TAC[induced_top_support;SUBSET_INTER;SUBSET_REFL ]; | |
DISCH_ALL_TAC; | |
USE 3 (REWRITE_RULE[induced_top;SUBSET;IN_IMAGE ]); | |
LEFT 3 "x'"; | |
LEFT 3 "x'"; | |
X_CHO 3 `u:(A->bool)->(A->bool)`; | |
TYPE_THEN `IMAGE u V` (USE 1 o SPEC); | |
TYPE_THEN `K SUBSET UNIONS (IMAGE u V) /\ IMAGE u V SUBSET U` SUBGOAL_TAC; | |
REWRITE_TAC[IMAGE;SUBSET;IN_UNIONS;IN_ELIM_THM' ]; | |
CONJ_TAC; | |
REWRITE_TAC[IN]; | |
DISCH_ALL_TAC; | |
USE 2 (REWRITE_RULE[SUBSET;IN_UNIONS ]); | |
USE 2 (REWRITE_RULE[IN ]); | |
TYPE_THEN `x` (USE 2 o SPEC); | |
REWR 2; | |
X_CHO 2 `v:A->bool`; | |
NAME_CONFLICT_TAC; | |
CONV_TAC (quant_left_CONV "x'"); | |
CONV_TAC (quant_left_CONV "x'"); | |
TYPE_THEN `v` EXISTS_TAC; | |
TYPE_THEN `u v` EXISTS_TAC; | |
ASM_REWRITE_TAC[]; | |
TYPE_THEN `v` (USE 3 o SPEC); | |
USE 3 (REWRITE_RULE[IN]); | |
REWR 3; | |
ASSUME_TAC INTER_SUBSET; | |
USE 5 (CONJUNCT1); | |
TYPEL_THEN [`u v`;`K`] (USE 5 o ISPECL); | |
ASM_MESON_TAC[SUBSET;IN]; | |
NAME_CONFLICT_TAC; | |
REWRITE_TAC[IN ]; | |
ASM_MESON_TAC[IN]; | |
DISCH_TAC; | |
REWR 1; | |
CHO 1; | |
AND 1; | |
AND 1; | |
JOIN 6 5; | |
(*** Modified by JRH for changed theorem name | |
USE 5 (MATCH_MP FINITE_SUBSET_IMAGE); | |
***) | |
USE 5 (MATCH_MP FINITE_SUBSET_IMAGE_IMP); | |
X_CHO 5 `W':(A->bool)->bool`; | |
TYPE_THEN `W'` EXISTS_TAC; | |
ASM_REWRITE_TAC[]; | |
TYPE_THEN `K SUBSET UNIONS (IMAGE u W')` SUBGOAL_TAC; | |
ASM_MESON_TAC[UNIONS_UNIONS ;SUBSET_TRANS]; | |
REWRITE_TAC[SUBSET;IN_UNIONS;IN_IMAGE; ]; | |
NAME_CONFLICT_TAC; | |
REWRITE_TAC[IN]; | |
DISCH_ALL_TAC; | |
DISCH_ALL_TAC; | |
TYPE_THEN `x'` (USE 6 o SPEC); | |
REWR 6; | |
CHO 6; | |
AND 6; | |
CHO 8; | |
AND 5; | |
AND 5; | |
USE 10 (REWRITE_RULE[SUBSET;IN ]); | |
TYPE_THEN `x''` (USE 10 o SPEC); | |
REWR 10; | |
USE 3 (REWRITE_RULE[IN]); | |
TYPE_THEN `x''` (USE 3 o SPEC); | |
REWR 3; | |
TYPE_THEN `x''` EXISTS_TAC; | |
ASM_REWRITE_TAC[]; | |
ASM ONCE_REWRITE_TAC[]; | |
REWRITE_TAC[INTER;IN;IN_ELIM_THM' ]; | |
ASM_MESON_TAC[]; | |
ALL_TAC ; (* dd1*) | |
DISCH_ALL_TAC; | |
DISCH_ALL_TAC; | |
TYPE_THEN `VK = IMAGE (\b. (b INTER K)) V` ABBREV_TAC ; | |
TYPE_THEN `VK` (USE 2 o SPEC); | |
TYPE_THEN `K SUBSET UNIONS VK /\ VK SUBSET induced_top U K` SUBGOAL_TAC; | |
CONJ_TAC; | |
EXPAND_TAC "VK"; | |
REWRITE_TAC[INTER_THM;GSYM UNIONS_INTER ]; | |
ASM_REWRITE_TAC[SUBSET_INTER;SUBSET_REFL ]; (* end of branch *) | |
REWRITE_TAC[induced_top]; | |
EXPAND_TAC "VK"; | |
REWRITE_TAC[INTER_THM ]; | |
IMATCH_MP_TAC IMAGE_SUBSET; | |
ASM_REWRITE_TAC[]; | |
DISCH_ALL_TAC; | |
REWR 2; | |
X_CHO 2 `WK:(A->bool)->bool`; | |
TYPEL_THEN [`V`;`(INTER) K`;`WK`] (fun t-> MP_TAC (ISPECL t finite_subset )); | |
ASM_REWRITE_TAC[]; | |
AND 2; | |
UND 8; | |
EXPAND_TAC "VK"; | |
REWRITE_TAC[INTER_THM]; | |
DISCH_ALL_TAC; | |
REWR 8; | |
CHO 8; | |
TYPE_THEN `C` EXISTS_TAC; | |
ASM_REWRITE_TAC[]; | |
REWR 2; | |
AND 2; | |
USE 2 (REWRITE_RULE[GSYM UNIONS_INTER]); | |
UND 2; | |
TYPE_THEN `R = UNIONS C` ABBREV_TAC; | |
SET_TAC[]; | |
]);; | |
(* }}} *) | |
let compact_euclid = prove_by_refinement( | |
`!X n. (X SUBSET euclid n) ==> | |
(compact (top_of_metric(euclid n,d_euclid)) X <=> | |
(closed_ (top_of_metric(euclid n,d_euclid)) X /\ | |
(metric_bounded(X,d_euclid))))`, | |
(* {{{ proof *) | |
[ | |
DISCH_ALL_TAC; | |
TYPE_THEN `top_of_metric (X,d_euclid) = induced_top (top_of_metric(euclid n,d_euclid)) X` SUBGOAL_TAC; | |
IMATCH_MP_TAC (GSYM top_of_metric_induced); | |
ASM_REWRITE_TAC[metric_euclid]; | |
DISCH_TAC; | |
TYPE_THEN `metric_space (X,d_euclid)` SUBGOAL_TAC ; | |
ASM_MESON_TAC [metric_euclid;metric_subspace]; | |
DISCH_TAC ; | |
EQ_TAC; | |
DISCH_ALL_TAC; | |
CONJ_TAC; | |
IMATCH_MP_TAC compact_closed; | |
SIMP_TAC [metric_euclid;metric_hausdorff;top_of_metric_top ]; | |
ASM_REWRITE_TAC[]; | |
REWRITE_TAC[metric_bounded]; | |
IMATCH_MP_TAC totally_bounded_bounded; | |
ASM_REWRITE_TAC[]; | |
IMATCH_MP_TAC compact_totally_bounded ; | |
ASM_REWRITE_TAC[]; | |
ASM_MESON_TAC[induced_compact;top_of_metric_unions;metric_euclid ]; | |
DISCH_ALL_TAC; | |
TYPE_THEN `X SUBSET (UNIONS (top_of_metric (euclid n,d_euclid)))` SUBGOAL_TAC; | |
ASM_MESON_TAC[top_of_metric_unions ; metric_euclid]; | |
ASM_SIMP_TAC [induced_compact ]; | |
ASSUME_TAC metric_euclid; | |
DISCH_TAC; | |
TYPE_THEN `induced_top (top_of_metric(euclid n,d_euclid)) X = top_of_metric(X,d_euclid)` SUBGOAL_TAC; | |
IMATCH_MP_TAC top_of_metric_induced; | |
ASM_REWRITE_TAC[]; | |
DISCH_THEN REWRT_TAC; | |
IMATCH_MP_TAC complete_compact; | |
ASM_REWRITE_TAC[]; | |
CONJ_TAC ; | |
ASM_MESON_TAC[totally_bounded_euclid]; | |
IMATCH_MP_TAC complete_closed; | |
TYPE_THEN `n` EXISTS_TAC; | |
ASM_REWRITE_TAC[]; | |
]);; | |
(* }}} *) | |
let neg_continuous = prove_by_refinement( | |
`!n. metric_continuous (euclid_neg) (euclid n,d_euclid) (euclid n,d_euclid)`, | |
(* {{{ proof *) | |
[ | |
DISCH_ALL_TAC; | |
REWRITE_TAC[metric_continuous;metric_continuous_pt]; | |
DISCH_ALL_TAC; | |
RIGHT_TAC "delta"; | |
DISCH_TAC; | |
TYPE_THEN `epsilon` EXISTS_TAC; | |
ASM_REWRITE_TAC[IN ]; | |
DISCH_ALL_TAC; | |
REWRITE_TAC[d_euclid]; | |
REWRITE_TAC[euclid_neg_sum]; | |
REWRITE_TAC[norm_neg]; | |
REWRITE_TAC[GSYM d_euclid]; | |
ASM_REWRITE_TAC[]; | |
]);; | |
(* }}} *) | |
let continuous_comp = prove_by_refinement( | |
`!(f:A->B) (g:B->C) U V W. | |
continuous f U V /\ continuous g V W /\ | |
(IMAGE f (UNIONS U) SUBSET (UNIONS V)) ==> | |
continuous (g o f) U W`, | |
(* {{{ proof *) | |
[ | |
REWRITE_TAC[continuous;IN;preimage]; | |
DISCH_ALL_TAC; | |
X_GEN_TAC `w :C->bool`; | |
DISCH_TAC; | |
TYPE_THEN `w ` (USE 1 o SPEC); | |
REWR 1; | |
TYPE_THEN `{x | UNIONS V x /\ w (g x)}` (USE 0 o SPEC); | |
REWR 0; | |
USE 0 (REWRITE_RULE[IN_ELIM_THM' ]); | |
REWRITE_TAC[o_DEF ]; | |
TYPE_THEN `U {x | UNIONS U x /\ UNIONS V (f x) /\ w (g (f x))} = U {x | UNIONS U x /\ w (g (f x))}` SUBGOAL_TAC; | |
AP_TERM_TAC; | |
IMATCH_MP_TAC EQ_EXT; | |
DISCH_ALL_TAC; | |
REWRITE_TAC[IN_ELIM_THM']; | |
IMATCH_MP_TAC (TAUT `(a ==> b) ==> ((a /\ b /\ c) <=> (a /\ c ))`); | |
TYPE_THEN `UU = UNIONS U ` ABBREV_TAC; | |
TYPE_THEN `VV = UNIONS V` ABBREV_TAC ; | |
USE 2 (REWRITE_RULE[SUBSET;IN_IMAGE ]); | |
ASM_MESON_TAC[IN]; | |
DISCH_THEN (fun t-> (USE 0 ( REWRITE_RULE[t]))); | |
ASM_REWRITE_TAC[]; | |
]);; | |
(* }}} *) | |
let compact_max = prove_by_refinement( | |
`!(f:A->(num->real)) U K. | |
(continuous f U (top_of_metric(euclid 1,d_euclid))) /\ | |
(IMAGE f K SUBSET (euclid 1)) /\ | |
(compact U K) /\ ~(K=EMPTY)==> | |
(?x. K x /\ (!y. (K y) ==> (f y 0 <= f x 0)))`, | |
(* {{{ proof *) | |
[ | |
DISCH_ALL_TAC; | |
COPY 2; | |
COPY 1; | |
TYPE_THEN `euclid 1 = UNIONS (top_of_metric (euclid 1,d_euclid))` SUBGOAL_TAC; | |
MESON_TAC[top_of_metric_unions;metric_euclid]; | |
DISCH_THEN (fun t-> USE 5 (ONCE_REWRITE_RULE[t])); | |
JOIN 4 5; | |
COPY 0; | |
JOIN 0 4; | |
WITH 0 (MATCH_MP image_compact); | |
UND 4; | |
ASM_SIMP_TAC[compact_euclid]; | |
DISCH_ALL_TAC; | |
TYPE_THEN `P = (IMAGE (coord 0) (IMAGE f K))` ABBREV_TAC ; | |
TYPE_THEN `(?s. !y. (?x. P x /\ y <. x) <=> y <. s)` SUBGOAL_TAC; | |
IMATCH_MP_TAC REAL_SUP_EXISTS; | |
CONJ_TAC; | |
USE 3 (REWRITE_RULE[EMPTY_EXISTS;IN ]); | |
CHO 3; | |
TYPE_THEN `f u 0` EXISTS_TAC; | |
EXPAND_TAC "P"; | |
REWRITE_TAC[IMAGE;IN;IN_ELIM_THM';coord ]; | |
NAME_CONFLICT_TAC; | |
LEFT_TAC "x'"; | |
LEFT_TAC "x'"; | |
TYPE_THEN `u` EXISTS_TAC; | |
ASM_MESON_TAC[]; | |
USE 6 (REWRITE_RULE[metric_bounded;open_ball;SUBSET;IN_IMAGE ]); | |
X_CHO 6 `x0:num->real`; | |
X_CHO 6 `r:real`; | |
USE 6 (REWRITE_RULE[IN;IN_ELIM_THM' ]); | |
EXPAND_TAC "P"; | |
REWRITE_TAC[IMAGE;IN;IN_ELIM_THM';coord]; | |
NAME_CONFLICT_TAC; | |
TYPE_THEN `x0 0 +. r` EXISTS_TAC; | |
DISCH_ALL_TAC; | |
X_CHO 8 `fx:num->real`; | |
AND 8; | |
ASM_REWRITE_TAC[]; | |
KILL 8; | |
X_CHO 9 `x:A`; | |
LEFT 6 "x"; | |
LEFT 6 "x"; | |
TYPE_THEN `x` (USE 6 o SPEC); | |
TYPE_THEN `fx` (USE 6 o SPEC); | |
REWR 6; | |
TYPE_THEN `(d_euclid x0 (f x) = abs (x0 0 - (f x 0)))` SUBGOAL_TAC; | |
IMATCH_MP_TAC euclid1_abs; | |
USE 1 (REWRITE_RULE[SUBSET;IN ]); | |
ASM_MESON_TAC[]; | |
AND 6; | |
AND 6; | |
DISCH_TAC; | |
REWR 6; | |
UND 6; | |
REAL_ARITH_TAC; | |
DISCH_TAC; | |
ALL_TAC ; (* cc1 *) | |
TYPE_THEN `(!u. (P u) ==> (u <=. sup P)) /\ (P (sup P))` SUBGOAL_TAC; | |
REWRITE_TAC[sup]; | |
SELECT_TAC; | |
CHO 8; | |
ASM_REWRITE_TAC[]; | |
DISCH_TAC; | |
TYPE_THEN `s = t` SUBGOAL_TAC; | |
PROOF_BY_CONTR_TAC; | |
USE 10 (MATCH_MP (REAL_ARITH `~(s=t) ==> (s<. t) \/ (t <. s)`)); | |
TYPE_THEN `s ` (WITH 9 o SPEC); | |
TYPE_THEN `t` (WITH 9 o SPEC); | |
ASM_MESON_TAC[REAL_ARITH `~(x <. x)`]; | |
DISCH_TAC; | |
REWR 8; | |
SUBCONJ_TAC; | |
DISCH_ALL_TAC; | |
TYPE_THEN `t` (USE 8 o SPEC); | |
UND 8; | |
REWRITE_TAC[REAL_ARITH `~(x <. x)`]; | |
LEFT_TAC "x"; | |
LEFT_TAC "x"; | |
TYPE_THEN `u` EXISTS_TAC; | |
ASM_REWRITE_TAC[]; | |
REAL_ARITH_TAC; | |
DISCH_ALL_TAC; | |
PROOF_BY_CONTR_TAC; | |
TYPE_THEN `~ (IMAGE f K) (t *# (dirac_delta 0))` SUBGOAL_TAC; | |
PROOF_BY_CONTR_TAC; | |
REWR 13; | |
UND 12; | |
EXPAND_TAC "P"; | |
ONCE_REWRITE_TAC[IMAGE]; | |
ONCE_REWRITE_TAC[IMAGE]; | |
ONCE_REWRITE_TAC[IMAGE]; | |
REWRITE_TAC[IN_ELIM_THM';IN]; | |
TYPE_THEN `t *# (dirac_delta 0)` EXISTS_TAC; | |
ASM_REWRITE_TAC[]; | |
ALL_TAC ; (* cc2 *) | |
REWRITE_TAC[coord_dirac]; | |
DISCH_TAC; | |
USE 4 (MATCH_MP closed_open); | |
ASSUME_TAC (SPEC `1` metric_euclid); | |
WITH 14 (MATCH_MP top_of_metric_unions); | |
WITH 15 (GSYM); | |
REWR 4; | |
TYPE_THEN `z = t *# dirac_delta 0` ABBREV_TAC ; | |
TYPE_THEN `(euclid 1 DIFF (IMAGE f K)) z` SUBGOAL_TAC ; | |
REWRITE_TAC[REWRITE_RULE[IN] IN_DIFF]; | |
ASM_REWRITE_TAC[]; | |
EXPAND_TAC "z"; | |
REWRITE_TAC[euclid;euclid_scale;dirac_delta]; | |
DISCH_ALL_TAC; | |
ASSUME_TAC (ARITH_RULE `1 <=| m ==> (~(0=m))`); | |
REWR 19; | |
ASM_REWRITE_TAC[]; | |
REDUCE_TAC; | |
REWRITE_TAC[]; | |
UND 16; | |
DISCH_THEN (fun t-> ONCE_REWRITE_TAC [GSYM t]); | |
UND 4; | |
REWRITE_TAC[open_DEF]; | |
ASM_SIMP_TAC[top_of_metric_nbd]; | |
DISCH_ALL_TAC; | |
IN_OUT_TAC ; | |
TYPE_THEN `z` (USE 0 o SPEC); | |
KILL 12; | |
KILL 13; | |
KILL 9; | |
UND 14; | |
UND 3; | |
REWRITE_TAC[]; | |
DISCH_THEN (fun t-> ONCE_REWRITE_TAC[GSYM t]); | |
DISCH_ALL_TAC; | |
REWR 0; | |
CHO 0; | |
AND 0; | |
USE 0 (REWRITE_RULE[SUBSET;IN; open_ball;IN_ELIM_THM' ]); | |
COPY 0; | |
TYPE_THEN `(t- (r/(&.2)))*# (dirac_delta 0)` (USE 0 o SPEC); | |
TYPE_THEN `euclid 1 z /\ euclid 1 ((t - r / &2) *# dirac_delta 0) /\ d_euclid z ((t - r / &2) *# dirac_delta 0) < r` SUBGOAL_TAC; | |
EXPAND_TAC "z"; | |
SUBCONJ_TAC; | |
REWRITE_TAC[euclid;dirac_delta;euclid_scale]; | |
GEN_TAC; | |
SIMP_TAC [ (ARITH_RULE `1 <=| m ==> (~(0=m))`)]; | |
REWRITE_TAC[REAL_ARITH `t*(&.0) = (&.0)`]; | |
DISCH_ALL_TAC; | |
SUBCONJ_TAC; | |
REWRITE_TAC[euclid;dirac_delta;euclid_scale]; | |
GEN_TAC; | |
SIMP_TAC [ (ARITH_RULE `1 <=| m ==> (~(0=m))`)]; | |
REWRITE_TAC[REAL_ARITH `t*(&.0) = (&.0)`]; | |
ALL_TAC ; (* cc3 *) | |
UND 13 ; | |
SIMP_TAC[euclid1_abs]; | |
DISCH_ALL_TAC; | |
REWRITE_TAC[euclid_minus ; euclid_scale;dirac_delta ]; | |
REDUCE_TAC ; | |
REWRITE_TAC[REAL_ARITH `t - (t - (r/(&.2))) = r/(&.2)`]; | |
WITH 9 (ONCE_REWRITE_RULE[GSYM REAL_LT_HALF1]); | |
WITH 19 (MATCH_MP (REAL_ARITH `&.0 < x ==> (&.0 <= x)`)); | |
WITH 20 (REWRITE_RULE[GSYM REAL_ABS_REFL]); | |
ASM_REWRITE_TAC[]; | |
REWRITE_TAC[REAL_LT_HALF2]; | |
ASM_REWRITE_TAC[]; | |
DISCH_THEN (fun t-> (USE 0 (REWRITE_RULE[t]))); | |
ALL_TAC ; (* cc4 *) | |
TYPE_THEN `t - (r/(&.2)) ` (USE 10 o SPEC); | |
TYPE_THEN `t - r / &2 < t` SUBGOAL_TAC; | |
IMATCH_MP_TAC (REAL_ARITH `&.0 < x ==> (t - x < t)`); | |
WITH 9 (ONCE_REWRITE_RULE[GSYM REAL_LT_HALF1]); | |
ASM_REWRITE_TAC[]; | |
DISCH_TAC ; | |
REWR 10; | |
X_CHO 10 `u:real`; | |
TYPE_THEN `u` (USE 7 o SPEC); | |
REWR 7; | |
TYPE_THEN `(euclid 1 DIFF IMAGE f K) (u *# (dirac_delta 0))` SUBGOAL_TAC ; | |
UND 12; | |
DISCH_THEN (IMATCH_MP_TAC ); | |
EXPAND_TAC "z"; | |
SUBCONJ_TAC; | |
REWRITE_TAC[euclid;euclid_scale;dirac_delta]; | |
REWRITE_TAC[ (ARITH_RULE `1 <=| m <=> (~(0=m))`)]; | |
DISCH_ALL_TAC; | |
ASM_REWRITE_TAC[]; | |
REAL_ARITH_TAC; | |
DISCH_ALL_TAC; | |
SUBCONJ_TAC; | |
REWRITE_TAC[euclid;euclid_scale;dirac_delta]; | |
REWRITE_TAC[ (ARITH_RULE `1 <=| m <=> (~(0=m))`)]; | |
DISCH_ALL_TAC; | |
ASM_REWRITE_TAC[]; | |
REAL_ARITH_TAC; | |
DISCH_ALL_TAC; | |
ASM_SIMP_TAC[euclid1_abs]; | |
EXPAND_TAC "z"; | |
REWRITE_TAC[dirac_delta;euclid_scale;euclid_minus]; | |
REDUCE_TAC; | |
AND 10; | |
REWRITE_TAC[GSYM ABS_BETWEEN]; | |
ASM_REWRITE_TAC[]; | |
CONJ_TAC; | |
UND 7; | |
UND 9; | |
REAL_ARITH_TAC; | |
UND 10; | |
IMATCH_MP_TAC (REAL_ARITH `y <. x ==> ((t - y <. u) ==> (t <. u + x))`); | |
REWRITE_TAC[REAL_LT_HALF2]; | |
ASM_REWRITE_TAC[]; | |
REWRITE_TAC[REWRITE_RULE[IN] IN_DIFF]; | |
IMATCH_MP_TAC (TAUT `B ==> (~(A /\ ~B))`); | |
AND 10; | |
UND 14; | |
EXPAND_TAC "P"; | |
TYPE_THEN `B = IMAGE f K` ABBREV_TAC ; | |
ALL_TAC ; (* cc5 *) | |
REWRITE_TAC[IMAGE;coord;IN;IN_ELIM_THM' ]; | |
DISCH_TAC; | |
CHO 19; | |
AND 19; | |
ASM_REWRITE_TAC[]; | |
USE 17 (REWRITE_RULE[SUBSET;IN]); | |
TYPE_THEN `x` (USE 17 o SPEC); | |
REWR 17; | |
USE 17 (REWRITE_RULE[euclid1_dirac]); | |
ASM_MESON_TAC[]; | |
ASM_MESON_TAC[]; | |
TYPE_THEN `t = sup P` ABBREV_TAC; | |
DISCH_ALL_TAC; | |
UND 11; | |
EXPAND_TAC "P"; | |
REWRITE_TAC[]; | |
ONCE_REWRITE_TAC[IMAGE]; | |
REWRITE_TAC[IN_IMAGE;IN_ELIM_THM';IN ]; | |
NAME_CONFLICT_TAC; | |
DISCH_ALL_TAC; | |
CHO 11; | |
AND 11; | |
CHO 12; | |
REWR 11; | |
TYPE_THEN `x'` EXISTS_TAC; | |
ASM_REWRITE_TAC[]; | |
DISCH_ALL_TAC; | |
UND 10; | |
EXPAND_TAC "P"; | |
REWRITE_TAC[]; | |
ONCE_REWRITE_TAC[IMAGE]; | |
REWRITE_TAC[IN_IMAGE;IN_ELIM_THM' ]; | |
REWRITE_TAC[IN]; | |
ASM_REWRITE_TAC[]; | |
REWRITE_TAC[coord]; | |
NAME_CONFLICT_TAC; | |
DISCH_ALL_TAC; | |
TYPE_THEN `f y' 0` (USE 10 o SPEC); | |
UND 10; | |
DISCH_THEN IMATCH_MP_TAC ; | |
LEFT_TAC "x'"; | |
LEFT_TAC "x'"; | |
ASM_MESON_TAC[]; | |
(* finish *) | |
]);; | |
(* }}} *) | |
(* ------------------------------------------------------------------ *) | |
(* homeomorphisms *) | |
(* ------------------------------------------------------------------ *) | |
let homeomorphism = euclid_def `homeomorphism (f:A->B) U V <=> | |
(BIJ f (UNIONS U) (UNIONS V) ) /\ (continuous f U V) /\ | |
(!A. (U A) ==> (V (IMAGE f A)))`;; | |
let INV_homeomorphism = prove_by_refinement( | |
`!f U V. homeomorphism (f:A-> B) U V ==> | |
(continuous (INV f (UNIONS U) (UNIONS V)) V U)`, | |
(* {{{ proof *) | |
[ | |
REWRITE_TAC[continuous;IN;preimage]; | |
REWRITE_TAC[homeomorphism]; | |
DISCH_ALL_TAC; | |
X_GEN_TAC `u:A->bool`; | |
DISCH_ALL_TAC; | |
TYPE_THEN `{ x | UNIONS V x /\ u (INV f (UNIONS U) (UNIONS V) x)} = IMAGE f u` SUBGOAL_TAC; | |
IMATCH_MP_TAC EQ_EXT ; | |
X_GEN_TAC `t:B`; | |
REWRITE_TAC[IN_ELIM_THM';IMAGE ;IN ]; | |
EQ_TAC ; | |
DISCH_ALL_TAC; | |
TYPE_THEN `(INV f (UNIONS U) (UNIONS V) t)` EXISTS_TAC; | |
ASM_REWRITE_TAC[]; | |
ASM_MESON_TAC[INVERSE_DEF;IN;BIJ ]; | |
DISCH_ALL_TAC; | |
CHO 4; | |
SUBCONJ_TAC; | |
USE 0 (REWRITE_RULE[BIJ;INJ]); | |
IN_OUT_TAC ; | |
ASM_REWRITE_TAC[]; | |
AND 4; | |
AND 5; | |
TYPE_THEN `x` (USE 6 o SPEC); | |
UND 6; | |
DISCH_THEN (IMATCH_MP_TAC ); | |
REWRITE_TAC[UNIONS;IN;IN_ELIM_THM' ]; | |
ASM_MESON_TAC[]; | |
DISCH_TAC ; | |
TYPE_THEN `INV f (UNIONS U) (UNIONS V) t = x` SUBGOAL_TAC; | |
(* stop here this is an example that ASM_MESON_TAC should catch *) | |
(* ASM_MESON_TAC[INVERSE_XY;IN ;UNIONS ]; *) | |
TYPE_THEN `(UNIONS U x)` SUBGOAL_TAC; | |
REWRITE_TAC[UNIONS;IN_ELIM_THM';IN ]; | |
ASM_MESON_TAC[]; | |
ASM_MESON_TAC[INVERSE_XY;IN ]; | |
DISCH_THEN (fun t-> REWRITE_TAC[t]); | |
ASM_REWRITE_TAC[]; | |
DISCH_THEN (fun t-> REWRITE_TAC[t]); | |
UND 2; | |
DISCH_THEN IMATCH_MP_TAC ; | |
ASM_REWRITE_TAC[]; | |
]);; | |
(* }}} *) | |
let bicont_homeomorphism = prove_by_refinement( | |
`!f U V. (BIJ (f:A->B) (UNIONS U) (UNIONS V)) /\ (continuous f U V) /\ | |
(continuous (INV f (UNIONS U) (UNIONS V)) V U) ==> | |
(homeomorphism f U V)`, | |
(* {{{ proof *) | |
[ | |
REWRITE_TAC[homeomorphism]; | |
DISCH_ALL_TAC; | |
ASM_REWRITE_TAC[]; | |
DISCH_ALL_TAC; | |
UND 2; | |
REWRITE_TAC[continuous;IN;preimage ]; | |
DISCH_ALL_TAC; | |
TYPE_THEN `A` (USE 2 o SPEC); | |
REWR 2; | |
TYPE_THEN `{x | UNIONS V x /\ A (INV f (UNIONS U) (UNIONS V) x)}= (IMAGE f A) ` SUBGOAL_TAC; | |
IMATCH_MP_TAC EQ_EXT ; | |
X_GEN_TAC `t:B`; | |
REWRITE_TAC[IN_ELIM_THM';IMAGE ;IN ]; | |
EQ_TAC ; | |
DISCH_ALL_TAC; | |
TYPE_THEN `(INV f (UNIONS U) (UNIONS V) t)` EXISTS_TAC; | |
ASM_REWRITE_TAC[]; | |
ASM_MESON_TAC[INVERSE_DEF;IN;BIJ ]; | |
DISCH_ALL_TAC; | |
CHO 4; | |
SUBCONJ_TAC; | |
USE 0 (REWRITE_RULE[BIJ;INJ]); | |
IN_OUT_TAC ; | |
ASM_REWRITE_TAC[]; | |
AND 4; | |
AND 5; | |
TYPE_THEN `x` (USE 6 o SPEC); | |
UND 6; | |
DISCH_THEN (IMATCH_MP_TAC ); | |
REWRITE_TAC[UNIONS;IN;IN_ELIM_THM' ]; | |
ASM_MESON_TAC[]; | |
DISCH_TAC ; | |
TYPE_THEN `INV f (UNIONS U) (UNIONS V) t = x` SUBGOAL_TAC; | |
TYPE_THEN `(UNIONS U x)` SUBGOAL_TAC; | |
REWRITE_TAC[UNIONS;IN_ELIM_THM';IN ]; | |
ASM_MESON_TAC[]; | |
ASM_MESON_TAC[INVERSE_XY;IN ]; | |
DISCH_THEN (fun t-> REWRITE_TAC[t]); | |
ASM_REWRITE_TAC[]; | |
DISCH_THEN (fun t-> REWRITE_TAC[GSYM t]); | |
ASM_REWRITE_TAC[]; | |
]);; | |
(* }}} *) | |
let open_and_closed = prove_by_refinement( | |
`!(f:A->B) U V. (topology_ U) /\ (topology_ V) /\ | |
(BIJ f (UNIONS U) (UNIONS V)) ==> | |
((!A. (U A ==> V (IMAGE f A))) <=> | |
(!B. (closed_ U B) ==> (closed_ V (IMAGE f B))))`, | |
(* {{{ proof *) | |
[ | |
DISCH_ALL_TAC; | |
REWRITE_TAC[closed]; | |
EQ_TAC; | |
DISCH_ALL_TAC; | |
DISCH_ALL_TAC; | |
SUBCONJ_TAC; | |
UND 4; | |
UND 2; | |
(* should have worked: | |
ASM_MESON_TAC[SUBSET;IN;BIJ;INJ;IMAGE;IN_ELIM_THM' ]; | |
bug found? *) | |
REWRITE_TAC[BIJ;IN;INJ;SUBSET;IMAGE;IN_ELIM_THM' ]; | |
DISCH_ALL_TAC; | |
NAME_CONFLICT_TAC; | |
TYPE_THEN `y:B` X_GEN_TAC; | |
ASM_MESON_TAC[]; | |
DISCH_ALL_TAC; | |
REWRITE_TAC[open_DEF]; | |
USE 5 (REWRITE_RULE[open_DEF]); | |
TYPE_THEN `UNIONS U DIFF B` (USE 3 o SPEC); | |
REWR 3; | |
TYPE_THEN `IMAGE f (UNIONS U DIFF B) = (UNIONS V DIFF IMAGE f B)` SUBGOAL_TAC; | |
ASM_MESON_TAC[DIFF_SURJ]; | |
ASM_MESON_TAC[]; | |
REWRITE_TAC[open_DEF]; | |
DISCH_ALL_TAC; | |
DISCH_ALL_TAC; | |
TYPE_THEN `UNIONS U DIFF A` (USE 3 o SPEC); | |
TYPE_THEN `UNIONS U DIFF A SUBSET UNIONS U /\ U (UNIONS U DIFF (UNIONS U DIFF A))` SUBGOAL_TAC; | |
ASM_SIMP_TAC[sub_union ; DIFF_DIFF2 ]; | |
ASM_REWRITE_TAC[SUBSET_DIFF]; | |
DISCH_TAC ; | |
REWR 3; | |
TYPE_THEN `UNIONS V DIFF IMAGE f (UNIONS U DIFF A) = IMAGE f A` SUBGOAL_TAC; | |
ASM_MESON_TAC[DIFF_SURJ; sub_union; DIFF_DIFF2]; | |
ASM_MESON_TAC[]; | |
]);; | |
(* }}} *) | |
let hausdorff_homeomorphsim = prove_by_refinement( | |
`!f U V. (BIJ (f:A->B) (UNIONS U) (UNIONS V)) /\ (continuous f U V) /\ | |
(compact U (UNIONS U)) /\ (hausdorff V) /\ (topology_ U) /\ | |
(topology_ V) ==> (homeomorphism f U V)`, | |
(* {{{ proof *) | |
[ | |
DISCH_ALL_TAC; | |
ASM_REWRITE_TAC[homeomorphism]; | |
ASM_SIMP_TAC[open_and_closed]; | |
DISCH_ALL_TAC; | |
TYPEL_THEN [`U`;`UNIONS U`;`B`] (fun t-> ASSUME_TAC (SPECL t closed_compact)); | |
REWR 7; | |
WITH 6 (REWRITE_RULE[closed]); | |
REWR 7; | |
IMATCH_MP_TAC compact_closed ; | |
ASM_REWRITE_TAC[]; | |
IMATCH_MP_TAC image_compact; | |
TYPE_THEN `U` EXISTS_TAC; | |
ASM_REWRITE_TAC[]; | |
AND 8; | |
USE 0 (REWRITE_RULE[BIJ;INJ;IN ]); | |
AND 0; | |
AND 10; | |
REWRITE_TAC[SUBSET;IN_IMAGE]; | |
REWRITE_TAC[IN]; | |
USE 9 (REWRITE_RULE[SUBSET;IN]); | |
ASM_MESON_TAC[]; | |
]);; | |
(* }}} *) | |
(* ------------------------------------------------------------------ *) | |
(* the metric and topology on the real numbers *) | |
(* ------------------------------------------------------------------ *) | |
let d_real = euclid_def `d_real x y = ||. (x -. y)`;; | |
(* | |
let real_topology = euclid_def | |
`real_topology = top_of_metric (UNIV,d_real)`;; | |
*) | |
let metric_real = prove_by_refinement( | |
`metric_space (UNIV,d_real)`, | |
(* {{{ proof *) | |
[ | |
REWRITE_TAC[metric_space;UNIV;d_real ]; | |
REAL_ARITH_TAC; | |
]);; | |
(* }}} *) | |
let continuous_euclid1 = prove_by_refinement( | |
`!i n. continuous (coord i) | |
(top_of_metric (euclid n,d_euclid)) | |
(top_of_metric (UNIV,d_real))`, | |
(* {{{ proof *) | |
[ | |
TYPE_THEN `!i n . IMAGE (coord i) (euclid n) SUBSET (UNIV) /\ metric_space (euclid n,d_euclid) /\ metric_space (UNIV,d_real)` SUBGOAL_TAC; | |
REP_GEN_TAC; | |
REWRITE_TAC[UNIV ;SUBSET;IN]; | |
REWRITE_TAC[metric_euclid;metric_real;GSYM UNIV]; | |
DISCH_TAC; | |
DISCH_ALL_TAC; | |
TYPEL_THEN [`i`;`n`] (USE 0 o SPECL); | |
USE 0 (IMATCH_MP metric_continuous_continuous); | |
ASM_REWRITE_TAC[]; | |
REWRITE_TAC[metric_continuous;metric_continuous_pt]; | |
DISCH_ALL_TAC; | |
RIGHT_TAC "delta"; | |
DISCH_ALL_TAC; | |
REWRITE_TAC[d_real;IN;coord]; | |
TYPE_THEN `epsilon` EXISTS_TAC; | |
ASM_REWRITE_TAC[]; | |
GEN_TAC; | |
DISCH_ALL_TAC; | |
UND 4; | |
IMATCH_MP_TAC (REAL_ARITH `(a <=. b) ==> ((b <. e) ==> (a <. e))`); | |
ASM_MESON_TAC[proj_contraction]; | |
]);; | |
(* }}} *) | |
let interval_closed_ball = prove_by_refinement( | |
`!a b . ? x r. (a <=. b) ==> | |
({x | euclid 1 x /\ a <= x 0 /\ x 0 <= b} = | |
(closed_ball(euclid 1,d_euclid)) x r)`, | |
(* {{{ proof *) | |
[ | |
DISCH_ALL_TAC; | |
TYPE_THEN `((a +b)/(&.2)) *# (dirac_delta 0)` EXISTS_TAC; | |
TYPE_THEN `((b -a)/(&.2))` EXISTS_TAC; | |
DISCH_ALL_TAC; | |
IMATCH_MP_TAC EQ_EXT; | |
REWRITE_TAC[closed_ball;IN_ELIM_THM']; | |
DISCH_ALL_TAC; | |
IMATCH_MP_TAC (TAUT `(a ==> (b <=> d /\ c)) ==> (a /\ b <=> d /\ a /\ c)`); | |
DISCH_ALL_TAC; | |
TYPE_THEN `z = ((a + b) / &2 *# dirac_delta 0)` ABBREV_TAC; | |
TYPE_THEN `euclid 1 z` SUBGOAL_TAC; | |
EXPAND_TAC "z"; | |
MESON_TAC[euclid_dirac]; | |
DISCH_TAC; | |
ASM_REWRITE_TAC[]; | |
ASM_SIMP_TAC[euclid1_abs]; | |
EXPAND_TAC "z"; | |
TYPE_THEN `t = x 0` ABBREV_TAC ; | |
REWRITE_TAC[dirac_delta;euclid_scale]; | |
REDUCE_TAC ; | |
REWRITE_TAC[GSYM INTERVAL_ABS ]; | |
IMATCH_MP_TAC (TAUT `((a = d) /\ (b = C)) ==> ((a /\ b) <=> (C /\ d))`); | |
ONCE_REWRITE_TAC[REAL_ARITH `((x <=. u + v) <=> (x - v <=. u)) /\ ((x - u <= v) <=> (x <=. v + u))`]; | |
CONJ_TAC; | |
TYPE_THEN `(a + b) / &2 - (b - a) / &2 = a` SUBGOAL_TAC ; | |
REWRITE_TAC[real_div]; | |
REWRITE_TAC[REAL_ARITH `(a+b)*C - (b-a)*C = a*(&.2*C) `]; | |
REDUCE_TAC ; | |
DISCH_THEN (fun t-> REWRITE_TAC[t]); | |
TYPE_THEN `(a+ b) /(&.2) + (b - a)/(&.2) = b` SUBGOAL_TAC; | |
REWRITE_TAC[real_div]; | |
REWRITE_TAC[REAL_ARITH `(a+b) * C + (b - a) * C = b *(&.2*C)`]; | |
REDUCE_TAC; | |
DISCH_THEN (fun t-> REWRITE_TAC[t]); | |
]);; | |
(* }}} *) | |
let interval_euclid1_closed = prove_by_refinement( | |
`!a b. closed_ (top_of_metric (euclid 1,d_euclid)) | |
{x | euclid 1 x /\ a <= x 0 /\ x 0 <= b}`, | |
(* {{{ proof *) | |
[ | |
DISCH_ALL_TAC; | |
ASM_CASES_TAC `a <=. b`; | |
ASSUME_TAC interval_closed_ball; | |
TYPEL_THEN [`a`;`b`] (USE 1 o SPECL); | |
(CHO 1); | |
CHO 1; | |
REWR 1; | |
ASM_REWRITE_TAC[]; | |
IMATCH_MP_TAC closed_ball_closed; | |
REWRITE_TAC[metric_euclid]; | |
TYPE_THEN `{x | euclid 1 x /\ a <= x 0 /\ x 0 <= b}= EMPTY ` SUBGOAL_TAC ; | |
REWRITE_TAC[EQ_EMPTY;IN_ELIM_THM' ]; | |
GEN_TAC; | |
TYPE_THEN `t = x 0 ` ABBREV_TAC; | |
KILL 1; | |
IMATCH_MP_TAC (TAUT `~(b /\ C) ==> ~( a /\ b/\ C)`); | |
UND 0; | |
REAL_ARITH_TAC; | |
DISCH_THEN (fun t-> REWRITE_TAC[t]); | |
IMATCH_MP_TAC empty_closed; | |
IMATCH_MP_TAC top_of_metric_top ; | |
REWRITE_TAC[metric_euclid]; | |
]);; | |
(* }}} *) | |
let interval_euclid1_bounded = prove_by_refinement( | |
`!a b. metric_bounded | |
({x | euclid 1 x /\ a <= x 0 /\ x 0 <= b},d_euclid)`, | |
(* {{{ proof *) | |
[ | |
DISCH_ALL_TAC; | |
REWRITE_TAC[metric_bounded]; | |
ASSUME_TAC interval_closed_ball; | |
TYPEL_THEN [`a`;`b`] (USE 0 o SPECL); | |
CHO 0; | |
CHO 0; | |
ASM_CASES_TAC `a <=. b`; | |
REWR 0; | |
ASM_REWRITE_TAC[]; | |
TYPE_THEN `x` EXISTS_TAC; | |
TYPE_THEN `r + (&.1) ` EXISTS_TAC; | |
REWRITE_TAC[open_ball;SUBSET;IN ;IN_ELIM_THM' ]; | |
DISCH_ALL_TAC; | |
ASM_REWRITE_TAC[]; | |
UND 2; | |
REWRITE_TAC[closed_ball;IN_ELIM_THM' ]; | |
DISCH_ALL_TAC; | |
ASM_REWRITE_TAC[]; | |
UND 4; | |
ASM_SIMP_TAC[euclid1_abs ]; | |
TYPE_THEN `t = x 0` ABBREV_TAC; | |
TYPE_THEN `s = x' 0` ABBREV_TAC; | |
DISCH_ALL_TAC; | |
TYPE_THEN `&.0 <=. r` SUBGOAL_TAC; | |
UND 6; | |
REAL_ARITH_TAC; | |
DISCH_ALL_TAC; | |
REDUCE_TAC; | |
ASM_REWRITE_TAC[]; | |
UND 6; | |
UND 7; | |
REAL_ARITH_TAC ; | |
TYPE_THEN `{x | euclid 1 x /\ a <= x 0 /\ x 0 <= b} = EMPTY` SUBGOAL_TAC; | |
REWRITE_TAC[EQ_EMPTY;IN_ELIM_THM' ]; | |
GEN_TAC; | |
TYPE_THEN `t = x 0 ` ABBREV_TAC; | |
KILL 2; | |
IMATCH_MP_TAC (TAUT `~(b /\ C) ==> ~( a /\ b/\ C)`); | |
UND 1; | |
REAL_ARITH_TAC; | |
DISCH_THEN (fun t-> REWRITE_TAC[t]); | |
REWRITE_TAC[EMPTY_SUBSET]; | |
]);; | |
(* }}} *) | |
let interval_euclid1_compact = prove_by_refinement( | |
`!a b. compact (top_of_metric(euclid 1,d_euclid)) | |
{x | (euclid 1 x) /\ (a <=. (x 0)) /\ (x 0 <= b)}`, | |
(* {{{ proof *) | |
[ | |
DISCH_ALL_TAC; | |
TYPE_THEN `{x | euclid 1 x /\ a <= x 0 /\ x 0 <= b} SUBSET (euclid 1)` SUBGOAL_TAC; | |
REWRITE_TAC [SUBSET;IN;IN_ELIM_THM' ]; | |
MESON_TAC[]; | |
DISCH_TAC; | |
ASM_SIMP_TAC[compact_euclid]; | |
CONJ_TAC; | |
MATCH_ACCEPT_TAC interval_euclid1_closed; | |
MATCH_ACCEPT_TAC interval_euclid1_bounded; | |
]);; | |
(* }}} *) | |
let interval_image = prove_by_refinement( | |
`!a b. {x | a <=. x /\ (x <= b)} = | |
IMAGE (coord 0) {x | euclid 1 x /\ a <= x 0 /\ x 0 <= b}`, | |
(* {{{ proof *) | |
[ | |
DISCH_ALL_TAC; | |
IMATCH_MP_TAC EQ_EXT; | |
REWRITE_TAC[IN_ELIM_THM';IMAGE]; | |
GEN_TAC; | |
EQ_TAC; | |
DISCH_ALL_TAC; | |
TYPE_THEN `x *# (dirac_delta 0)` EXISTS_TAC; | |
REWRITE_TAC[coord_dirac;euclid_dirac;dirac_0]; | |
ASM_REWRITE_TAC[]; | |
DISCH_ALL_TAC; | |
CHO 0; | |
USE 0 (REWRITE_RULE[coord]); | |
ASM_REWRITE_TAC[]; | |
]);; | |
(* }}} *) | |
let interval_compact = prove_by_refinement( | |
`!a b. compact (top_of_metric (UNIV,d_real)) | |
{x | a <=. x /\ (x <=. b)} `, | |
(* {{{ proof *) | |
[ | |
DISCH_ALL_TAC; | |
REWRITE_TAC[interval_image]; | |
IMATCH_MP_TAC image_compact; | |
TYPE_THEN `(top_of_metric (euclid 1,d_euclid))` EXISTS_TAC; | |
REWRITE_TAC[continuous_euclid1;interval_euclid1_compact]; | |
SIMP_TAC[GSYM top_of_metric_unions;metric_real]; | |
REWRITE_TAC[UNIV;SUBSET;IN]; | |
]);; | |
(* }}} *) | |
let half_open = prove_by_refinement( | |
`!a. top_of_metric(UNIV,d_real ) { x | x <. a}`, | |
(* {{{ proof *) | |
[ | |
GEN_TAC; | |
ASSUME_TAC open_nbd ; | |
TYPEL_THEN [`top_of_metric (UNIV,d_real)`;` {x | x < a}`] (USE 0 o ISPECL); | |
USE 0 (SIMP_RULE[top_of_metric_top;metric_real ]); | |
ASM_REWRITE_TAC[]; | |
GEN_TAC; | |
TYPE_THEN `open_ball (UNIV,d_real) x (a - x)` EXISTS_TAC; | |
REWRITE_TAC[IN_ELIM_THM']; | |
DISCH_ALL_TAC; | |
CONJ_TAC; | |
REWRITE_TAC[open_ball;d_real ;IN;IN_ELIM_THM';UNIV ;SUBSET ]; | |
GEN_TAC ; | |
UND 1; | |
REAL_ARITH_TAC; | |
CONJ_TAC; | |
IMATCH_MP_TAC (REWRITE_RULE[IN] open_ball_nonempty); | |
REWRITE_TAC[metric_real; UNIV ]; | |
UND 1; | |
REAL_ARITH_TAC; | |
IMATCH_MP_TAC open_ball_open; | |
REWRITE_TAC[metric_real]; | |
]);; | |
(* }}} *) | |
let half_open_above = prove_by_refinement( | |
`!a. top_of_metric(UNIV,d_real ) { x | a <. x}`, | |
(* {{{ proof *) | |
[ | |
GEN_TAC; | |
ASSUME_TAC open_nbd ; | |
TYPEL_THEN [`top_of_metric (UNIV,d_real)`;` {x | a <. x}`] (USE 0 o ISPECL); | |
USE 0 (SIMP_RULE[top_of_metric_top;metric_real ]); | |
ASM_REWRITE_TAC[]; | |
GEN_TAC; | |
TYPE_THEN `open_ball (UNIV,d_real) x (x -. a)` EXISTS_TAC; | |
REWRITE_TAC[IN_ELIM_THM']; | |
DISCH_ALL_TAC; | |
CONJ_TAC; | |
REWRITE_TAC[open_ball;d_real ;IN;IN_ELIM_THM';UNIV ;SUBSET ]; | |
GEN_TAC ; | |
UND 1; | |
REAL_ARITH_TAC; | |
CONJ_TAC; | |
IMATCH_MP_TAC (REWRITE_RULE[IN] open_ball_nonempty); | |
REWRITE_TAC[metric_real; UNIV ]; | |
UND 1; | |
REAL_ARITH_TAC; | |
IMATCH_MP_TAC open_ball_open; | |
REWRITE_TAC[metric_real]; | |
]);; | |
(* }}} *) | |
let joinf = euclid_def `joinf (f:real -> A) g a = | |
(\ x . (if (x <. a) then (f x) else (g x)))`;; | |
let joinf_cont = prove_by_refinement( | |
`!U a (f:real -> A) g. | |
(continuous f (top_of_metric(UNIV,d_real)) U) /\ | |
(continuous g (top_of_metric(UNIV,d_real)) U) /\ | |
(f a = (g a)) ==> | |
( (continuous (joinf f g a) (top_of_metric(UNIV,d_real)) U))`, | |
(* {{{ proof *) | |
[ | |
REWRITE_TAC[continuous]; | |
DISCH_ALL_TAC; | |
DISCH_ALL_TAC; | |
REWRITE_TAC[IN ]; | |
ASSUME_TAC open_nbd; | |
TYPEL_THEN [`top_of_metric (UNIV,d_real)`;`(preimage (UNIONS (top_of_metric (UNIV,d_real))) (joinf f g a) v)`] (USE 4 o ISPECL); | |
USE 4 (SIMP_RULE [top_of_metric_top;metric_real ]); | |
ASM_REWRITE_TAC[]; | |
GEN_TAC; | |
REWRITE_TAC[subset_preimage]; | |
RIGHT_TAC "B"; | |
DISCH_TAC; | |
SIMP_TAC[GSYM top_of_metric_unions; metric_real]; | |
REWRITE_TAC[SUBSET_UNIV]; | |
MP_TAC (REAL_ARITH `(x = a) \/ (x <. a) \/ (a <. x)`); | |
REP_CASES_TAC; | |
TYPE_THEN `B = (preimage (UNIONS (top_of_metric (UNIV,d_real))) f v) INTER (preimage (UNIONS (top_of_metric (UNIV,d_real))) g v)` ABBREV_TAC ; | |
TYPE_THEN `B` EXISTS_TAC; | |
CONJ_TAC; | |
REWRITE_TAC[SUBSET;IN_IMAGE;IN ]; | |
GEN_TAC; | |
LEFT_TAC "x"; | |
GEN_TAC ; | |
DISCH_ALL_TAC; | |
ASM_REWRITE_TAC[]; | |
UND 9; | |
EXPAND_TAC "B"; | |
REWRITE_TAC[INTER;IN_ELIM_THM';IN ]; | |
REWRITE_TAC[REWRITE_RULE[IN] in_preimage;joinf ]; | |
COND_CASES_TAC; | |
MESON_TAC[]; | |
MESON_TAC[]; | |
CONJ_TAC ; | |
ASM_REWRITE_TAC[]; | |
UND 5; | |
EXPAND_TAC "B"; | |
REWRITE_TAC[INTER;IN;IN_ELIM_THM']; | |
REWRITE_TAC[REWRITE_RULE[IN] in_preimage]; | |
ASM_REWRITE_TAC[]; | |
REWRITE_TAC[joinf]; | |
REWRITE_TAC[REAL_ARITH `~(a<. a)`]; | |
ASSUME_TAC top_of_metric_top; | |
TYPEL_THEN [`UNIV:real -> bool`;`d_real `] (USE 8 o ISPECL); | |
USE 8 (REWRITE_RULE[metric_real ]); | |
USE 8 (REWRITE_RULE[topology]); | |
EXPAND_TAC "B"; | |
KILL 7; | |
TYPE_THEN `v` (USE 0 o SPEC); | |
TYPE_THEN `v` (USE 1 o SPEC); | |
ASM_MESON_TAC[IN ]; | |
(* 2nd case x < a *) | |
TYPE_THEN `B = { x | x <. a } INTER (preimage (UNIONS (top_of_metric (UNIV,d_real))) f v)` ABBREV_TAC ; | |
TYPE_THEN `B` EXISTS_TAC; | |
CONJ_TAC; | |
ASM_REWRITE_TAC[SUBSET;IN_IMAGE ; IN;joinf ]; | |
GEN_TAC ; | |
LEFT_TAC "x"; | |
GEN_TAC ; | |
DISCH_ALL_TAC; | |
ASM_REWRITE_TAC[]; | |
UND 9; | |
EXPAND_TAC "B"; | |
REWRITE_TAC[INTER ;IN ;IN_ELIM_THM']; | |
DISCH_ALL_TAC; | |
ASM_REWRITE_TAC[]; | |
USE 10 (REWRITE_RULE[REWRITE_RULE[IN] in_preimage]); | |
ASM_REWRITE_TAC[]; | |
CONJ_TAC; | |
UND 5; | |
EXPAND_TAC "B"; | |
REWRITE_TAC[INTER;IN;IN_ELIM_THM']; | |
REWRITE_TAC[REWRITE_RULE[IN] in_preimage]; | |
ASM_REWRITE_TAC[]; | |
DISCH_ALL_TAC; | |
ASM_REWRITE_TAC[]; | |
UND 8; | |
REWRITE_TAC[joinf]; | |
ASM_REWRITE_TAC[]; | |
ASSUME_TAC top_of_metric_top; | |
TYPEL_THEN [`UNIV:real -> bool`;`d_real `] (USE 8 o ISPECL); | |
USE 8 (REWRITE_RULE[metric_real ]); | |
USE 8 (REWRITE_RULE[topology]); | |
TYPE_THEN `v` (USE 0 o SPEC); | |
TYPE_THEN `v` (USE 1 o SPEC); | |
EXPAND_TAC "B"; | |
KILL 7; | |
KILL 5; | |
KILL 4; | |
KILL 1; | |
KILL 6; | |
TYPEL_THEN [`{x | x < a}`;`preimage (UNIONS (top_of_metric (UNIV,d_real))) f v`] (USE 8 o ISPECL); | |
RIGHT 1 "V"; | |
RIGHT 1 "V"; | |
AND 1; | |
AND 1; | |
REWR 0; | |
USE 0 (REWRITE_RULE[IN]); | |
REWR 5; | |
USE 5 (REWRITE_RULE[half_open]); | |
ASM_REWRITE_TAC[]; | |
(* case 3 a < x *) | |
TYPE_THEN `B = { x | a <. x } INTER (preimage (UNIONS (top_of_metric (UNIV,d_real))) g v)` ABBREV_TAC ; | |
TYPE_THEN `B` EXISTS_TAC; | |
CONJ_TAC; | |
ASM_REWRITE_TAC[SUBSET;IN_IMAGE ; IN;joinf ]; | |
GEN_TAC ; | |
LEFT_TAC "x"; | |
GEN_TAC ; | |
DISCH_ALL_TAC; | |
ASM_REWRITE_TAC[]; | |
UND 9; | |
EXPAND_TAC "B"; | |
REWRITE_TAC[INTER ;IN ;IN_ELIM_THM']; | |
DISCH_ALL_TAC; | |
ASM_REWRITE_TAC[]; | |
USE 10 (REWRITE_RULE[REWRITE_RULE[IN] in_preimage]); | |
ASM_REWRITE_TAC[]; | |
USE 9 (MATCH_MP (REAL_ARITH `a < x'' ==> (~(x'' <. a))`)); | |
ASM_REWRITE_TAC[]; | |
CONJ_TAC; | |
UND 5; | |
EXPAND_TAC "B"; | |
REWRITE_TAC[INTER;IN;IN_ELIM_THM']; | |
REWRITE_TAC[REWRITE_RULE[IN] in_preimage]; | |
ASM_REWRITE_TAC[]; | |
DISCH_ALL_TAC; | |
ASM_REWRITE_TAC[]; | |
UND 8; | |
REWRITE_TAC[joinf]; | |
USE 6 (MATCH_MP (REAL_ARITH `a < x'' ==> (~(x'' <. a))`)); | |
ASM_REWRITE_TAC[]; | |
ASSUME_TAC top_of_metric_top; | |
TYPEL_THEN [`UNIV:real -> bool`;`d_real `] (USE 8 o ISPECL); | |
USE 8 (REWRITE_RULE[metric_real ]); | |
USE 8 (REWRITE_RULE[topology]); | |
TYPE_THEN `v` (USE 0 o SPEC); | |
TYPE_THEN `v` (USE 1 o SPEC); | |
EXPAND_TAC "B"; | |
KILL 7; | |
KILL 5; | |
KILL 4; | |
KILL 0; | |
KILL 6; | |
TYPEL_THEN [`{x | a < x}`;`preimage (UNIONS (top_of_metric (UNIV,d_real))) g v`] (USE 8 o ISPECL); | |
RIGHT 0 "V"; | |
RIGHT 0 "V"; | |
AND 0; | |
AND 0; | |
REWR 1; | |
USE 1 (REWRITE_RULE[IN]); | |
REWR 5; | |
USE 5 (REWRITE_RULE[half_open_above]); | |
ASM_REWRITE_TAC[]; | |
]);; | |
(* }}} *) | |
let neg_cont = prove_by_refinement( | |
`continuous ( --.) | |
(top_of_metric(UNIV,d_real)) (top_of_metric(UNIV,d_real)) `, | |
(* {{{ proof *) | |
[ | |
TYPE_THEN `IMAGE ( --. ) (UNIV) SUBSET (UNIV)` SUBGOAL_TAC; | |
REWRITE_TAC[SUBSET;IN;UNION;UNIV ]; | |
DISCH_TAC; | |
ASM_SIMP_TAC[metric_continuous_continuous;metric_real ]; | |
REWRITE_TAC[metric_continuous;metric_continuous_pt]; | |
DISCH_ALL_TAC; | |
TYPE_THEN `epsilon` EXISTS_TAC; | |
DISCH_ALL_TAC; | |
ASM_REWRITE_TAC[UNIV;IN;d_real ]; | |
REAL_ARITH_TAC; | |
]);; | |
(* }}} *) | |
let add_cont = prove_by_refinement( | |
`!u. (continuous ( (+.) u)) | |
(top_of_metric(UNIV,d_real)) (top_of_metric(UNIV,d_real)) `, | |
(* {{{ proof *) | |
[ | |
GEN_TAC; | |
TYPE_THEN `IMAGE ( (+.) u ) (UNIV) SUBSET (UNIV)` SUBGOAL_TAC; | |
REWRITE_TAC[SUBSET;IN;UNION;UNIV ]; | |
DISCH_TAC; | |
ASM_SIMP_TAC[metric_continuous_continuous;metric_real ]; | |
REWRITE_TAC[metric_continuous;metric_continuous_pt]; | |
DISCH_ALL_TAC; | |
TYPE_THEN `epsilon` EXISTS_TAC; | |
DISCH_ALL_TAC; | |
ASM_REWRITE_TAC[UNIV;IN;d_real ]; | |
REAL_ARITH_TAC; | |
]);; | |
(* }}} *) | |
let continuous_scale = prove_by_refinement( | |
`!x n. (euclid n x) ==> | |
(continuous (\t. (t *# x)) (top_of_metric(UNIV,d_real)) | |
(top_of_metric(euclid n,d_euclid)))`, | |
(* {{{ proof *) | |
[ | |
DISCH_ALL_TAC; | |
ASSUME_TAC metric_euclid; | |
ASSUME_TAC metric_real ; | |
TYPE_THEN `IMAGE (\t. (t *# x)) (UNIV) SUBSET (euclid n)` SUBGOAL_TAC; | |
REWRITE_TAC[SUBSET;IN_IMAGE;IN_ELIM_THM']; | |
REWRITE_TAC[Q_ELIM_THM'';IN ; UNIV ]; | |
ASM_MESON_TAC[euclid_scale_closure]; | |
ASM_SIMP_TAC[metric_continuous_continuous]; | |
DISCH_TAC; | |
REWRITE_TAC[metric_continuous;metric_continuous_pt]; | |
DISCH_ALL_TAC; | |
REWRITE_TAC[IN;UNIV]; | |
TYPE_THEN `euclidean x` SUBGOAL_TAC; | |
ASM_MESON_TAC[euclidean]; | |
ASM_SIMP_TAC[norm_scale;d_real]; | |
DISCH_TAC; | |
TYPE_THEN `norm x <=. &.1` ASM_CASES_TAC ; | |
TYPE_THEN `epsilon` EXISTS_TAC; | |
DISCH_ALL_TAC; | |
ASM_REWRITE_TAC[]; | |
DISCH_ALL_TAC; | |
MP_TAC (SPEC `x' -. y` REAL_ABS_POS); | |
DISCH_TAC ; | |
USE 5 (MATCH_MP (SPEC `x' -. y` REAL_PROP_LE_LABS)); | |
USE 5 (CONV_RULE REDUCE_CONV); | |
UND 5; | |
UND 7; | |
REAL_ARITH_TAC ; | |
TYPE_THEN `epsilon / norm x` EXISTS_TAC; | |
DISCH_ALL_TAC; | |
CONJ_TAC; | |
IMATCH_MP_TAC REAL_LT_DIV; | |
ASM_REWRITE_TAC[]; | |
UND 5; | |
REAL_ARITH_TAC; | |
DISCH_ALL_TAC; | |
ASM_MESON_TAC[REAL_ARITH `~(x <= &.1) ==> (&.0 <. x)`;REAL_LT_RDIV_EQ]; | |
]);; | |
(* }}} *) | |
let continuous_lin_combo = prove_by_refinement( | |
`! x y n. (euclid n x) /\ (euclid n y) ==> | |
(continuous (\t. (t *# x + (&.1 - t) *# y)) | |
(top_of_metric(UNIV,d_real)) | |
(top_of_metric(euclid n,d_euclid)))`, | |
(* {{{ proof *) | |
let comp_elim_tac = ( IMATCH_MP_TAC continuous_comp THEN | |
TYPE_THEN `(top_of_metric (UNIV,d_real))` EXISTS_TAC THEN | |
ASM_SIMP_TAC[add_cont;neg_cont;continuous_scale] THEN | |
REWRITE_TAC[SUBSET;IN_IMAGE;Q_ELIM_THM''] THEN | |
SIMP_TAC[GSYM top_of_metric_unions ;metric_real;IN_UNIV ] ) in | |
[ | |
DISCH_ALL_TAC; | |
IMATCH_MP_TAC continuous_sum; | |
ASM_SIMP_TAC[metric_real;metric_euclid;top_of_metric_top;continuous_scale;SUBSET ;IN_IMAGE;Q_ELIM_THM'' ]; | |
ASM_SIMP_TAC[IN;euclid_scale_closure;continuous_scale]; | |
TYPE_THEN `(\t . (&. 1 - t) *# y) = (\t. t *# y) o ((--.) o ((+.) (--. (&.1))))` SUBGOAL_TAC; | |
IMATCH_MP_TAC EQ_EXT; | |
REWRITE_TAC[o_DEF;REAL_ARITH `--.(--. u +. v) = (u -. v)`]; | |
DISCH_THEN (fun t-> REWRITE_TAC [t]); | |
REPEAT comp_elim_tac; | |
]);; | |
(* }}} *) | |
(* ------------------------------------------------------------------ *) | |
(* Connected Sets *) | |
(* ------------------------------------------------------------------ *) | |
let connected = euclid_def `connected U (Z:A->bool) <=> | |
(Z SUBSET (UNIONS U)) /\ | |
(!A B. (U A) /\ (U B) /\ (A INTER B = EMPTY ) /\ | |
(Z SUBSET (A UNION B)) ==> ((Z SUBSET A) \/ (Z SUBSET B)))`;; | |
let connected_unions = prove_by_refinement( | |
`!U (Z1:A->bool) Z2. (connected U Z1) /\ (connected U Z2) /\ | |
~(Z1 INTER Z2 = EMPTY) ==> (connected U (Z1 UNION Z2))`, | |
(* {{{ proof *) | |
[ | |
REWRITE_TAC[connected]; | |
DISCH_ALL_TAC; | |
DISCH_ALL_TAC; | |
SUBCONJ_TAC; | |
REWRITE_TAC[UNION;SUBSET;IN;IN_ELIM_THM' ]; | |
ASM_MESON_TAC[SUBSET ;IN]; | |
DISCH_TAC ; | |
DISCH_ALL_TAC; | |
TYPEL_THEN [`A`;`B`] (USE 1 o SPECL); | |
REWR 1; | |
TYPEL_THEN [`A`;`B`] (USE 3 o SPECL); | |
REWR 3; | |
WITH 9 (REWRITE_RULE[union_subset]); | |
REWR 1; | |
REWR 3; | |
IMATCH_MP_TAC (TAUT `(~b ==> a) ==> (a \/ b)`); | |
DISCH_ALL_TAC; | |
USE 11 (REWRITE_RULE[union_subset]); | |
(* start a case *) | |
USE 4 (REWRITE_RULE[EMPTY_EXISTS]); | |
CHO 4; | |
USE 4 (REWRITE_RULE[IN;INTER;IN_ELIM_THM' ]); | |
REWRITE_TAC[union_subset]; | |
TYPE_THEN `~((Z1 SUBSET A) /\ (Z2 SUBSET B))` SUBGOAL_TAC; | |
DISCH_ALL_TAC; | |
USE 8 (REWRITE_RULE[EQ_EMPTY]); | |
USE 8 (REWRITE_RULE[INTER;IN;IN_ELIM_THM' ]); | |
ASM_MESON_TAC[SUBSET;IN]; | |
TYPE_THEN `~((Z2 SUBSET A) /\ (Z1 SUBSET B))` SUBGOAL_TAC; | |
DISCH_ALL_TAC; | |
USE 8 (REWRITE_RULE[EQ_EMPTY]); | |
USE 8 (REWRITE_RULE[INTER;IN;IN_ELIM_THM' ]); | |
ASM_MESON_TAC[SUBSET;IN]; | |
ASM_MESON_TAC[]; | |
]);; | |
(* }}} *) | |
let component_DEF = euclid_def `component U (x:A) y <=> | |
(?Z. (connected U Z) /\ (Z x) /\ (Z y))`;; | |
let connected_sing = prove_by_refinement( | |
`!U (x:A). (UNIONS U x) ==> (connected U {x})`, | |
(* {{{ proof *) | |
[ | |
REWRITE_TAC[connected]; | |
DISCH_ALL_TAC; | |
CONJ_TAC; | |
REWRITE_TAC[SUBSET;IN_SING ]; | |
ASM_MESON_TAC[IN]; | |
DISCH_ALL_TAC; | |
UND 4; | |
SET_TAC[]; | |
]);; | |
(* }}} *) | |
let component_refl = prove_by_refinement( | |
`!U x. (UNIONS U x) ==> (component U x (x:A))`, | |
(* {{{ proof *) | |
[ | |
REWRITE_TAC[component_DEF]; | |
ASM_MESON_TAC[IN_SING;IN;connected_sing]; | |
]);; | |
(* }}} *) | |
let component_symm = prove_by_refinement( | |
`!U x y. (component U x y) ==> | |
(component U (y:A) x)`, | |
(* {{{ proof *) | |
[ | |
MESON_TAC[component_DEF]; | |
]);; | |
(* }}} *) | |
let component_trans = prove_by_refinement( | |
`!U (x:A) y z. (component U x y) /\ (component U y z) ==> | |
(component U x z)`, | |
(* {{{ proof *) | |
[ | |
REWRITE_TAC[component_DEF]; | |
DISCH_ALL_TAC; | |
CHO 0; | |
CHO 1; | |
TYPE_THEN `connected U (Z UNION Z')` SUBGOAL_TAC; | |
IMATCH_MP_TAC connected_unions; | |
ASM_REWRITE_TAC[]; | |
REWRITE_TAC[EMPTY_EXISTS ]; | |
REWRITE_TAC[IN;INTER;IN_ELIM_THM' ]; | |
TYPE_THEN `y` EXISTS_TAC; | |
ASM_REWRITE_TAC[]; | |
DISCH_ALL_TAC; | |
TYPE_THEN `Z UNION Z'` EXISTS_TAC; | |
ASM_REWRITE_TAC[]; | |
REWRITE_TAC[UNION;IN;IN_ELIM_THM' ]; | |
ASM_REWRITE_TAC[]; | |
]);; | |
(* }}} *) | |
(* based on the Bolzano lemma *) | |
let connect_real = prove_by_refinement( | |
`!a b. connected (top_of_metric (UNIV,d_real)) | |
{x | a <=. x /\ x <=. b }`, | |
(* {{{ proof *) | |
[ | |
DISCH_ALL_TAC; | |
REWRITE_TAC[connected]; | |
ASSUME_TAC metric_real; | |
ASM_SIMP_TAC[GSYM top_of_metric_unions]; | |
SUBCONJ_TAC; | |
REWRITE_TAC[UNIV;SUBSET;IN ]; | |
DISCH_TAC; | |
DISCH_ALL_TAC; | |
TYPE_THEN `\ (u ,v ). ( u <. a) \/ (b <. v) \/ ({x | u <=. x /\ x <=. v } SUBSET A) \/ ({x | u <=. x /\ x <=. v } SUBSET B)` (fun t-> ASSUME_TAC (SPEC t BOLZANO_LEMMA )); | |
UND 6; | |
GBETA_TAC ; | |
IMATCH_MP_TAC (TAUT `((b ==> c ) /\ a ) ==> ((a ==> b) ==> c )`); | |
CONJ_TAC; | |
DISCH_ALL_TAC; | |
TYPEL_THEN [`a`;`b`] ((USE 6 o SPECL)); | |
USE 6 (REWRITE_RULE[ARITH_RULE `~(a <. a)`]); | |
ASM_CASES_TAC `a <=. b`; | |
REWR 6; | |
TYPE_THEN `{x | a <=. x /\ x <=. b} = EMPTY ` SUBGOAL_TAC; | |
IMATCH_MP_TAC EQ_EXT; | |
REWRITE_TAC[IN_ELIM_THM';EMPTY]; | |
GEN_TAC; | |
UND 7; | |
REAL_ARITH_TAC; | |
DISCH_THEN (fun t-> REWRITE_TAC[t]); | |
REWRITE_TAC[EMPTY_SUBSET]; | |
CONJ_TAC; | |
DISCH_ALL_TAC; | |
UND 8; | |
UND 9; | |
(* c1 *) | |
USE 4 (REWRITE_RULE[EQ_EMPTY;INTER;IN;IN_ELIM_THM' ]); | |
TYPE_THEN `b'` (USE 4 o SPEC); | |
TYPE_THEN `{x | a' <=. x /\ x <=. b' } b'` SUBGOAL_TAC; | |
ASM_REWRITE_TAC[IN_ELIM_THM']; | |
REAL_ARITH_TAC; | |
DISCH_TAC; | |
TYPE_THEN `{x | b' <=. x /\ x <=. c } b'` SUBGOAL_TAC; | |
ASM_REWRITE_TAC[IN_ELIM_THM']; | |
REAL_ARITH_TAC; | |
DISCH_TAC; | |
TYPE_THEN `{x | a' <=. x /\ x <=. b' } UNION {x | b' <=. x /\ x <= c } = { x | a' <=. x /\ x <=. c }` SUBGOAL_TAC; | |
REWRITE_TAC[UNION;IN;IN_ELIM_THM']; | |
IMATCH_MP_TAC EQ_EXT ; | |
GEN_TAC; | |
REWRITE_TAC[IN_ELIM_THM']; | |
UND 6; | |
UND 7; | |
REAL_ARITH_TAC; | |
DISCH_TAC; | |
(* cr 1*) | |
REPEAT (DISCH_THEN (REPEAT_TCL DISJ_CASES_THEN ASSUME_TAC)) THEN ASM_REWRITE_TAC[] THEN (TRY (GEN_MESON_TAC 0 7 1[REAL_ARITH `(b < b' /\ b' <=. c ==> b <. c ) /\ (a' <=. b' /\ b' <. a ==> a' <. a)`])); | |
IMATCH_MP_TAC (TAUT `c ==> (a \/ b \/ c \/ d)`); | |
UND 10; | |
DISCH_THEN (fun t-> REWRITE_TAC [GSYM t]); | |
ASM_REWRITE_TAC[union_subset]; | |
(* ASM_MESON_TAC[SUBSET;IN]; should have worked *) | |
PROOF_BY_CONTR_TAC; | |
UND 11; | |
UND 12; | |
UND 9; | |
UND 8; | |
UND 4; | |
REWRITE_TAC[SUBSET;IN]; | |
TYPE_THEN `R ={x | a' <=. x /\ x <=. b'}` ABBREV_TAC; | |
TYPE_THEN `S = {x | b' <=. x /\ x <=. c}` ABBREV_TAC; | |
MESON_TAC[]; (* ok now it works *) | |
PROOF_BY_CONTR_TAC; | |
UND 11; | |
UND 12; | |
UND 9; | |
UND 8; | |
UND 4; | |
REWRITE_TAC[SUBSET;IN]; | |
TYPE_THEN `R ={x | a' <=. x /\ x <=. b'}` ABBREV_TAC; | |
TYPE_THEN `S = {x | b' <=. x /\ x <=. c}` ABBREV_TAC; | |
MESON_TAC[]; (* ok now it works *) | |
IMATCH_MP_TAC (TAUT `d ==> (a \/ b \/ c \/ d)`); | |
UND 10; | |
DISCH_THEN (fun t-> REWRITE_TAC [GSYM t]); | |
ASM_REWRITE_TAC[union_subset]; | |
(* cr 2*) | |
DISCH_ALL_TAC; | |
ASM_CASES_TAC `x <. a`; | |
TYPE_THEN `&.1` EXISTS_TAC; | |
REDUCE_TAC; | |
DISCH_ALL_TAC; | |
DISJ1_TAC ; | |
UND 7; | |
UND 6; | |
REAL_ARITH_TAC; | |
ASM_CASES_TAC `b <. x`; | |
TYPE_THEN `&.1` EXISTS_TAC; | |
REDUCE_TAC; | |
DISCH_ALL_TAC; | |
DISJ2_TAC; | |
DISJ1_TAC; | |
UND 9; | |
UND 7; | |
REAL_ARITH_TAC; | |
TYPE_THEN ` (A UNION B) x` SUBGOAL_TAC; | |
USE 5 (REWRITE_RULE[SUBSET;IN]); | |
UND 5; | |
DISCH_THEN (IMATCH_MP_TAC ); | |
REWRITE_TAC[IN_ELIM_THM']; | |
UND 7; | |
UND 6; | |
REAL_ARITH_TAC; | |
DISCH_TAC; | |
(* cr3 *) | |
TYPEL_THEN [`UNIV:real -> bool`;`d_real`] (fun t-> (ASSUME_TAC (ISPECL t open_ball_nbd))); (* --//-- *) | |
USE 8 (REWRITE_RULE[REWRITE_RULE[IN] IN_UNION]); | |
TYPE_THEN `A x` ASM_CASES_TAC; (* *) | |
TYPE_THEN `A` (USE 9 o SPEC); | |
TYPE_THEN `x` (USE 9 o SPEC); (* --//-- *) | |
CHO 9; | |
REWR 9; | |
USE 9 (REWRITE_RULE[open_ball;d_real;UNIV ]); | |
TYPE_THEN `e` EXISTS_TAC; | |
ASM_REWRITE_TAC[]; | |
DISCH_ALL_TAC; | |
IMATCH_MP_TAC (TAUT `C ==> (a \/ b \/ C\/ d)`); | |
AND 9; | |
UND 9; | |
TYPE_THEN `{x | a' <=. x /\ x <=. b'} SUBSET {y | abs (x - y) <. e}` SUBGOAL_TAC; | |
REWRITE_TAC[SUBSET;IN;IN_ELIM_THM']; | |
GEN_TAC; | |
UND 11; | |
UND 12; | |
UND 13; | |
REAL_ARITH_TAC; | |
REWRITE_TAC[SUBSET;IN;IN_ELIM_THM' ]; | |
MESON_TAC[]; | |
REWR 8; | |
TYPE_THEN `B` (USE 9 o SPEC); | |
TYPE_THEN `x` (USE 9 o SPEC); (* --//-- *) | |
CHO 9; | |
REWR 9; | |
USE 9 (REWRITE_RULE[open_ball;d_real;UNIV ]); | |
TYPE_THEN `e` EXISTS_TAC; | |
ASM_REWRITE_TAC[]; | |
DISCH_ALL_TAC; | |
IMATCH_MP_TAC (TAUT `d ==> (a \/ b \/ C\/ d)`); | |
AND 9; | |
UND 9; | |
TYPE_THEN `{x | a' <=. x /\ x <=. b'} SUBSET {y | abs (x - y) <. e}` SUBGOAL_TAC; | |
REWRITE_TAC[SUBSET;IN;IN_ELIM_THM']; | |
GEN_TAC; | |
UND 11; | |
UND 12; | |
UND 13; | |
REAL_ARITH_TAC; | |
REWRITE_TAC[SUBSET;IN;IN_ELIM_THM' ]; | |
MESON_TAC[]; | |
]);; | |
(* }}} *) | |
let connect_image = prove_by_refinement( | |
`!f U V Z. (continuous (f:A->B) U V) /\ | |
(IMAGE f Z SUBSET (UNIONS V)) /\ (connected U Z) ==> | |
(connected V (IMAGE f Z))`, | |
(* {{{ proof *) | |
[ | |
REWRITE_TAC[connected]; | |
DISCH_ALL_TAC; | |
ASM_REWRITE_TAC[]; | |
DISCH_ALL_TAC; | |
USE 0 (REWRITE_RULE[continuous;IN ]); | |
TYPE_THEN `A` (WITH 0 o SPEC); | |
TYPE_THEN `B` (USE 0 o SPEC); | |
TYPE_THEN `(preimage (UNIONS U) f A)` (USE 3 o SPEC); | |
TYPE_THEN `(preimage (UNIONS U) f B)` (USE 3 o SPEC); | |
USE 6 (MATCH_MP preimage_disjoint ); | |
TYPE_THEN `Z SUBSET preimage (UNIONS U) f A UNION preimage (UNIONS U) f B` SUBGOAL_TAC; | |
REWRITE_TAC[preimage_union]; | |
ASM_REWRITE_TAC[]; | |
USE 3 (REWRITE_RULE[subset_preimage ]); | |
ASM_MESON_TAC[]; | |
]);; | |
(* }}} *) | |
let path = euclid_def `path U x y <=> | |
(?f a b. (continuous f (top_of_metric(UNIV,d_real )) U ) /\ | |
(f a = (x:A)) /\ (f b = y))`;; | |
(**** Old proof modified by JRH to avoid use of GSPEC | |
let const_continuous = prove_by_refinement( | |
`!U V y. (topology_ U) ==> | |
(continuous (\ (x:A). (y:B)) U V)`, | |
(* {{{ proof *) | |
[ | |
REWRITE_TAC[continuous]; | |
DISCH_ALL_TAC; | |
REWRITE_TAC[IN]; | |
DISCH_ALL_TAC; | |
REWRITE_TAC[preimage;IN ]; | |
TYPE_THEN `v y` ASM_CASES_TAC ; | |
ASM_REWRITE_TAC[IN_ELIM_THM;GSPEC ]; | |
USE 0 (MATCH_MP top_univ); | |
TYPE_THEN`t = UNIONS U` ABBREV_TAC; | |
UND 0; | |
REWRITE_TAC[ETA_AX]; | |
ASM_REWRITE_TAC[GSPEC ]; | |
USE 0 (MATCH_MP open_EMPTY); | |
USE 0 (REWRITE_RULE[open_DEF ;EMPTY]); | |
ASM_REWRITE_TAC[]; | |
]);; | |
(* }}} *) | |
****) | |
let const_continuous = prove_by_refinement( | |
`!U V y. (topology_ U) ==> | |
(continuous (\ (x:A). (y:B)) U V)`, | |
(* {{{ proof *) | |
[ | |
REWRITE_TAC[continuous]; | |
DISCH_ALL_TAC; | |
REWRITE_TAC[IN]; | |
DISCH_ALL_TAC; | |
REWRITE_TAC[preimage;IN ]; | |
TYPE_THEN `v y` ASM_CASES_TAC ; | |
ASM_REWRITE_TAC[IN_ELIM_THM]; | |
USE 0 (MATCH_MP top_univ); | |
TYPE_THEN`t = UNIONS U` ABBREV_TAC; | |
UND 0; | |
MATCH_MP_TAC(TAUT `(a <=> b) ==> a ==> b`); | |
AP_TERM_TAC; | |
REWRITE_TAC[EXTENSION; IN_ELIM_THM; IN]; | |
USE 0 (MATCH_MP open_EMPTY); | |
USE 0 (REWRITE_RULE[open_DEF ;EMPTY]); | |
ASM_REWRITE_TAC[]; | |
SUBGOAL_THEN `{x:A | F} = \x. F` SUBST1_TAC; | |
REWRITE_TAC[EXTENSION; IN; IN_ELIM_THM]; | |
ASM_REWRITE_TAC[] | |
]);; | |
(* }}} *) | |
let path_component = euclid_def `path_component U x y <=> | |
(?f a b. (continuous f (top_of_metric(UNIV,d_real )) U ) /\ (a <. b) /\ | |
(f a = (x:A)) /\ (f b = y) /\ | |
(IMAGE f { t | a <=. t /\ t <=. b } SUBSET (UNIONS U)))`;; | |
let path_refl = prove_by_refinement( | |
`!U x. (UNIONS U x) ==> (path_component U x (x:A))`, | |
(* {{{ proof *) | |
[ | |
DISCH_ALL_TAC; | |
ASSUME_TAC (top_of_metric_top ); | |
TYPEL_THEN [`UNIV:real ->bool`;`d_real`] (USE 1 o ISPECL); | |
USE 1 (REWRITE_RULE[metric_real ]); | |
USE 1 (MATCH_MP const_continuous); | |
REWRITE_TAC[path_component]; | |
TYPE_THEN `(\ (t:real). x)` EXISTS_TAC; | |
ASM_REWRITE_TAC[IMAGE;IN;]; | |
TYPE_THEN `&.0` EXISTS_TAC; | |
TYPE_THEN `&.1` EXISTS_TAC; | |
CONJ_TAC; | |
REAL_ARITH_TAC; | |
REWRITE_TAC[SUBSET;IN;IN_ELIM_THM']; | |
ASM_MESON_TAC[]; | |
]);; | |
(* }}} *) | |
let path_symm = prove_by_refinement( | |
`!U x y . (path_component U x (y:A)) ==> (path_component U y (x:A))`, | |
(* {{{ proof *) | |
[ | |
REWRITE_TAC[path_component]; | |
DISCH_ALL_TAC; | |
(CHO 0); | |
(CHO 0); | |
(CHO 0); | |
TYPE_THEN `f o (--.)` EXISTS_TAC; | |
TYPE_THEN `--. b` EXISTS_TAC; | |
TYPE_THEN `--. a` EXISTS_TAC; | |
CONJ_TAC; | |
IMATCH_MP_TAC continuous_comp; | |
TYPE_THEN `(top_of_metric (UNIV,d_real))` EXISTS_TAC; | |
REWRITE_TAC[neg_cont]; | |
SIMP_TAC[top_of_metric_top; metric_real; metric_euclidean; metric_euclid; metric_hausdorff; GSYM top_of_metric_unions; open_ball_open;]; | |
ASM_REWRITE_TAC[]; | |
REWRITE_TAC[UNIV;IN;SUBSET ]; | |
CONJ_TAC ; | |
AND 0; | |
AND 0; | |
UND 2; | |
REAL_ARITH_TAC ; | |
REWRITE_TAC[o_DEF ;]; | |
REDUCE_TAC ; | |
ASM_REWRITE_TAC[]; | |
UND 0; | |
REWRITE_TAC[IMAGE;IN;SUBSET;IN_ELIM_THM']; | |
DISCH_ALL_TAC; | |
DISCH_ALL_TAC; | |
CHO 5; | |
USE 4 (CONV_RULE NAME_CONFLICT_CONV ); | |
TYPE_THEN `x'` (USE 4 o SPEC); | |
UND 4; | |
DISCH_THEN IMATCH_MP_TAC ; | |
NAME_CONFLICT_TAC; | |
TYPE_THEN `--. x''` EXISTS_TAC; | |
ASM_REWRITE_TAC[]; | |
UND 5; | |
REAL_ARITH_TAC ; | |
]);; | |
(* }}} *) | |
let path_symm_eq = prove_by_refinement( | |
`!U x y . (path_component U x (y:A)) <=> (path_component U y (x:A))`, | |
(* {{{ proof *) | |
[ | |
MESON_TAC[path_symm]; | |
]);; | |
(* }}} *) | |
let path_trans = prove_by_refinement( | |
`!U x y (z:A). (path_component U x y) /\ (path_component U y z) ==> | |
(path_component U x z)`, | |
(* {{{ proof *) | |
[ | |
REWRITE_TAC[path_component]; | |
DISCH_ALL_TAC; | |
CHO 0; | |
CHO 0; | |
CHO 0; | |
CHO 1; | |
CHO 1; | |
CHO 1; | |
TYPE_THEN `joinf f (f' o ((+.) (a' -. b))) b` EXISTS_TAC; | |
TYPE_THEN `a` EXISTS_TAC; | |
TYPE_THEN `b' +. (b - a')` EXISTS_TAC; | |
CONJ_TAC; (* start of continuity *) | |
IMATCH_MP_TAC joinf_cont; | |
ASM_REWRITE_TAC[]; | |
CONJ_TAC; | |
IMATCH_MP_TAC continuous_comp; | |
TYPE_THEN `(top_of_metric (UNIV,d_real))` EXISTS_TAC; | |
ASM_REWRITE_TAC [top_of_metric_top; metric_real; metric_euclidean; metric_euclid; metric_hausdorff; GSYM top_of_metric_unions; open_ball_open;]; | |
REWRITE_TAC[add_cont]; | |
ASM_SIMP_TAC [top_of_metric_top; metric_real; metric_euclidean; metric_euclid; metric_hausdorff; GSYM top_of_metric_unions; open_ball_open;]; | |
REWRITE_TAC[SUBSET;UNIV;IN;IN_ELIM_THM']; | |
REWRITE_TAC[o_DEF]; | |
REDUCE_TAC; | |
ASM_REWRITE_TAC[]; (* end of continuity *) | |
CONJ_TAC; (* start real ineq *) | |
AND 1; | |
AND 1; | |
AND 0; | |
AND 0; | |
UND 5; | |
UND 3; | |
REAL_ARITH_TAC; (* end of real ineq *) | |
CONJ_TAC; | |
REWRITE_TAC[joinf;o_DEF]; | |
ASM_REWRITE_TAC[]; (* end of JOIN statement *) | |
CONJ_TAC; (* next JOIN statement *) | |
REWRITE_TAC[joinf;o_DEF]; | |
TYPE_THEN `~(b' +. b -. a' <. b)` SUBGOAL_TAC; | |
TYPE_THEN `(a' <. b') /\ (a <. b)` SUBGOAL_TAC; | |
ASM_REWRITE_TAC[]; | |
REAL_ARITH_TAC; | |
DISCH_THEN (fun t-> REWRITE_TAC[t]); | |
TYPE_THEN ` a' -. b +. b' +. b -. a' = b'` SUBGOAL_TAC; | |
REAL_ARITH_TAC ; | |
DISCH_THEN (fun t-> REWRITE_TAC[t]); | |
ASM_REWRITE_TAC[]; (* end of next joinf *) | |
TYPE_THEN `(a <=. b) /\ (b <=. (b' + b - a'))` SUBGOAL_TAC; (* subreal *) | |
TYPE_THEN `(a' <. b') /\ (a <. b)` SUBGOAL_TAC; | |
ASM_REWRITE_TAC[]; | |
REAL_ARITH_TAC; | |
DISCH_TAC; (* end of subreal *) | |
USE 2 (MATCH_MP union_closed_interval); | |
UND 2; | |
DISCH_THEN (fun t-> REWRITE_TAC[GSYM t]); | |
REWRITE_TAC[IMAGE_UNION;union_subset]; | |
CONJ_TAC; (* start of FIRST interval *) | |
TYPE_THEN `IMAGE (joinf f (f' o (+.) (a' -. b)) b) {t | a <=. t /\ t <. b} = IMAGE f {t | a <=. t /\ t <. b}` SUBGOAL_TAC; | |
REWRITE_TAC[joinf;IMAGE;IN_IMAGE ]; | |
IMATCH_MP_TAC EQ_EXT; | |
X_GEN_TAC `t:A`; | |
REWRITE_TAC[IN_ELIM_THM']; | |
EQ_TAC; | |
DISCH_ALL_TAC; | |
CHO 2; | |
UND 2; | |
DISCH_ALL_TAC; | |
REWR 4; | |
ASM_MESON_TAC[]; | |
DISCH_ALL_TAC; | |
CHO 2; | |
UND 2; | |
DISCH_ALL_TAC; | |
TYPE_THEN `x'` EXISTS_TAC; | |
ASM_REWRITE_TAC[]; | |
DISCH_THEN (fun t-> REWRITE_TAC[t]); (* FIRST interval still *) | |
TYPE_THEN `IMAGE f {t | a <=. t /\ t <. b} SUBSET IMAGE f {t | a <=. t /\ t <=. b} ` SUBGOAL_TAC; | |
REWRITE_TAC[SUBSET;IN_IMAGE ;IN_ELIM_THM']; | |
GEN_TAC; | |
DISCH_THEN (CHOOSE_THEN MP_TAC); | |
MESON_TAC[REAL_ARITH `a <. b ==> a<=. b`]; | |
KILL 1; | |
UND 0; | |
DISCH_ALL_TAC; | |
JOIN 0 5; | |
USE 0 (MATCH_MP SUBSET_TRANS ); | |
ASM_REWRITE_TAC[]; (* end of FIRST interval *) | |
(* lc 1*) | |
TYPE_THEN `IMAGE (joinf f (f' o (+.) (a' -. b)) b) {t | b <=. t /\ t <=. b' + b -. a'} = IMAGE f' {t | a' <=. t /\ t <=. b'}` SUBGOAL_TAC; | |
REWRITE_TAC[joinf;IMAGE;IN_IMAGE ]; | |
IMATCH_MP_TAC EQ_EXT; | |
REWRITE_TAC[IN_ELIM_THM']; | |
NAME_CONFLICT_TAC ; | |
X_GEN_TAC `t:A`; | |
EQ_TAC; | |
DISCH_ALL_TAC; | |
CHO 2; | |
UND 2; | |
DISCH_ALL_TAC; | |
TYPE_THEN `~(x' <. b)` SUBGOAL_TAC; | |
UND 2; | |
REAL_ARITH_TAC ; | |
DISCH_TAC ; | |
REWR 4; | |
USE 4 (REWRITE_RULE[o_DEF]); | |
TYPE_THEN `a' -. b +. x'` EXISTS_TAC; (* * *) | |
ASM_REWRITE_TAC[]; | |
TYPE_THEN `(a' <. b') /\ (a <. b) /\ (b <=. x') /\ (x' <=. b' +. b -. a')` SUBGOAL_TAC; | |
ASM_REWRITE_TAC[]; | |
REAL_ARITH_TAC; | |
DISCH_ALL_TAC; | |
CHO 2; | |
UND 2; | |
DISCH_ALL_TAC; | |
TYPE_THEN `x' +. b -. a'` EXISTS_TAC; | |
ASM_REWRITE_TAC[]; | |
SUBCONJ_TAC; | |
UND 2; | |
UND 3; | |
REAL_ARITH_TAC; | |
DISCH_ALL_TAC; | |
TYPE_THEN `~(x' +. b -. a' <. b)` SUBGOAL_TAC; | |
UND 5; | |
REAL_ARITH_TAC ; | |
DISCH_THEN (fun t-> REWRITE_TAC[t]); | |
REWRITE_TAC[o_DEF]; | |
AP_TERM_TAC; | |
REAL_ARITH_TAC ; | |
DISCH_THEN (fun t -> REWRITE_TAC [t]); | |
ASM_REWRITE_TAC[]; | |
]);; | |
(* }}} *) | |
let loc_path_conn = euclid_def `loc_path_conn U <=> | |
!A x. (U A) /\ (A (x:A)) ==> | |
(U (path_component (induced_top U A) x))`;; | |
let path_eq_conn = prove_by_refinement( | |
`!U (x:A). (loc_path_conn U) /\ (topology_ U) ==> | |
(path_component U x = component U x)`, | |
(* {{{ proof *) | |
[ | |
DISCH_ALL_TAC; | |
MATCH_MP_TAC EQ_EXT; | |
X_GEN_TAC `y:A`; | |
EQ_TAC ; | |
REWRITE_TAC[path_component]; | |
DISCH_ALL_TAC; | |
CHO 2; | |
CHO 2; | |
CHO 2; | |
UND 2 THEN DISCH_ALL_TAC; | |
REWRITE_TAC[component_DEF]; | |
TYPE_THEN `IMAGE f {t | a <= t /\ t <= b}` EXISTS_TAC; | |
CONJ_TAC; | |
IMATCH_MP_TAC connect_image ; | |
NAME_CONFLICT_TAC; | |
TYPE_THEN `(top_of_metric (UNIV,d_real))` EXISTS_TAC ; | |
ASM_REWRITE_TAC[connect_real ]; | |
REWRITE_TAC[IMAGE;IN;IN_ELIM_THM' ]; | |
CONJ_TAC; | |
TYPE_THEN `a` EXISTS_TAC; | |
ASM_REWRITE_TAC[]; | |
UND 3; | |
REAL_ARITH_TAC ; | |
TYPE_THEN `b` EXISTS_TAC; | |
ASM_REWRITE_TAC[]; | |
UND 3; | |
REAL_ARITH_TAC; | |
REWRITE_TAC[component_DEF]; | |
DISCH_ALL_TAC; | |
CHO 2; | |
UND 2 THEN DISCH_ALL_TAC; | |
USE 2 (REWRITE_RULE[connected]); | |
UND 2 THEN DISCH_ALL_TAC; | |
TYPE_THEN `path_component U x` (USE 5 o SPEC); | |
TYPE_THEN `A = path_component U x` ABBREV_TAC; | |
TYPE_THEN `B = UNIONS (IMAGE (\z. (path_component U z)) (Z DIFF A))` ABBREV_TAC ; | |
TYPE_THEN `B` (USE 5 o SPEC); | |
TYPE_THEN `U A /\ U B /\ (A INTER B = {}) /\ Z SUBSET A UNION B` SUBGOAL_TAC; | |
WITH 0 (REWRITE_RULE[loc_path_conn]); | |
TYPE_THEN `(UNIONS U)` (USE 8 o SPEC); | |
TYPE_THEN `x` (USE 8 o SPEC); | |
UND 8; | |
ASM_SIMP_TAC[induced_top_unions]; | |
ASM_SIMP_TAC[top_univ]; | |
TYPE_THEN `UNIONS U x` SUBGOAL_TAC; | |
USE 2 (REWRITE_RULE[SUBSET;IN;]); | |
ASM_MESON_TAC[]; | |
DISCH_ALL_TAC; | |
REWR 8; | |
ASM_REWRITE_TAC[]; | |
(* dd *) | |
CONJ_TAC; | |
EXPAND_TAC "B"; | |
WITH 1 (REWRITE_RULE[topology]); | |
TYPEL_THEN [`EMPTY:A->bool`;`EMPTY:A->bool`;`(IMAGE (\z. path_component U z) (Z DIFF A))`] (USE 10 o ISPECL); | |
UND 10 THEN DISCH_ALL_TAC; | |
UND 12 THEN (DISCH_THEN IMATCH_MP_TAC ); | |
REWRITE_TAC[SUBSET;IN_IMAGE]; | |
REWRITE_TAC[IN]; | |
NAME_CONFLICT_TAC; | |
DISCH_ALL_TAC; | |
CHO 12; | |
ASM_REWRITE_TAC[]; | |
USE 0 (REWRITE_RULE[loc_path_conn]); | |
TYPE_THEN `(UNIONS U)` (USE 0 o SPEC); | |
USE 0 ( CONV_RULE NAME_CONFLICT_CONV); | |
TYPE_THEN `x'` (USE 0 o SPEC); | |
UND 0; | |
ASM_SIMP_TAC[induced_top_unions]; | |
DISCH_THEN MATCH_MP_TAC; | |
ASM_SIMP_TAC[top_univ]; | |
AND 12; | |
USE 2 (REWRITE_RULE[SUBSET;IN]); | |
USE 0 (REWRITE_RULE[DIFF;IN;IN_ELIM_THM' ]); | |
ASM_MESON_TAC[]; | |
CONJ_TAC; | |
REWRITE_TAC[EQ_EMPTY]; | |
DISCH_ALL_TAC; | |
USE 10 (REWRITE_RULE[INTER;IN;IN_ELIM_THM' ]); | |
AND 10; | |
UND 10; | |
EXPAND_TAC "B"; | |
REWRITE_TAC[UNIONS;IN_IMAGE ;IN_ELIM_THM' ]; | |
REWRITE_TAC[IN]; | |
LEFT_TAC "u"; | |
DISCH_ALL_TAC; | |
AND 10; | |
CHO 12; | |
AND 12; | |
REWR 10; | |
UND 11; | |
EXPAND_TAC "A"; | |
USE 10 (ONCE_REWRITE_RULE [path_symm_eq]); | |
DISCH_TAC; | |
JOIN 11 10; | |
USE 10 (MATCH_MP path_trans); | |
REWR 10; | |
UND 10; | |
UND 12; | |
REWRITE_TAC[DIFF;IN;IN_ELIM_THM']; | |
MESON_TAC[]; | |
REWRITE_TAC[SUBSET;IN;UNION;IN_ELIM_THM']; | |
DISCH_ALL_TAC; | |
TYPE_THEN `A x'` ASM_CASES_TAC; | |
ASM_REWRITE_TAC[]; | |
DISJ2_TAC ; | |
EXPAND_TAC "B"; | |
REWRITE_TAC[UNIONS;IN_IMAGE;IN_ELIM_THM' ]; | |
REWRITE_TAC[IN]; | |
LEFT_TAC "x"; | |
LEFT_TAC "x"; | |
TYPE_THEN `x'` EXISTS_TAC; | |
TYPE_THEN `path_component U x'` EXISTS_TAC; | |
ASM_REWRITE_TAC[DIFF;IN;IN_ELIM_THM' ]; | |
IMATCH_MP_TAC path_refl; | |
USE 2 (REWRITE_RULE[SUBSET;IN]); | |
ASM_MESON_TAC[]; | |
DISCH_TAC ; | |
REWR 5; | |
UND 5; | |
DISCH_THEN DISJ_CASES_TAC ; | |
USE 5 (REWRITE_RULE[SUBSET;IN ;]); | |
ASM_MESON_TAC[]; | |
UND 8 THEN DISCH_ALL_TAC; | |
USE 10 (REWRITE_RULE[EQ_EMPTY]); | |
TYPE_THEN `x` (USE 10 o SPEC); | |
USE 10 (REWRITE_RULE[INTER;IN;IN_ELIM_THM']); | |
USE 5 (REWRITE_RULE[SUBSET;IN;IN_ELIM_THM']); | |
TYPE_THEN `A x` SUBGOAL_TAC; | |
EXPAND_TAC "A"; | |
IMATCH_MP_TAC path_refl ; | |
USE 2 (REWRITE_RULE[SUBSET;IN;IN_ELIM_THM']); | |
ASM_MESON_TAC[]; | |
ASM_MESON_TAC[]; | |
]);; | |
(* }}} *) | |
let open_ball_star = prove_by_refinement( | |
`!x r y t n. (open_ball(euclid n,d_euclid) x r y) /\ | |
(&.0 <=. t) /\ (t <=. &.1) ==> | |
(open_ball(euclid n,d_euclid) x r ((t *# x + (&.1-t)*#y)))`, | |
(* {{{ proof *) | |
[ | |
REWRITE_TAC[open_ball;IN_ELIM_THM' ]; | |
DISCH_ALL_TAC; | |
ASM_SIMP_TAC[euclid_scale_closure;euclid_add_closure]; | |
GEN_REWRITE_TAC (LAND_CONV o LAND_CONV) [GSYM trivial_lin_combo]; | |
ASSUME_TAC (SPEC `n:num` metric_translate_LEFT); | |
TYPEL_THEN [`(&.1 - t) *# x`;`(&.1 - t)*# y`;`t *# x`] (USE 5 o ISPECL); | |
UND 5; | |
ASM_SIMP_TAC [euclid_scale_closure]; | |
ASM_MESON_TAC[norm_scale_vec;REAL_ARITH `(&.0 <=. t) /\ (t <=. (&.1)) ==> (||. (&.1 - t) <=. &.1)`;REAL_ARITH `(b <= a) ==> ((a < C) ==> (b < C))`;GSYM REAL_MUL_LID;REAL_LE_RMUL;d_euclid_pos]; | |
]);; | |
(* }}} *) | |
let open_ball_path = prove_by_refinement( | |
`!x r y n. (open_ball(euclid n,d_euclid) x r y) ==> | |
(path_component | |
(top_of_metric(open_ball(euclid n,d_euclid) x r,d_euclid)) y x)`, | |
(* {{{ proof *) | |
[ | |
REWRITE_TAC[path_component ;]; | |
DISCH_ALL_TAC; | |
TYPE_THEN `(\t. (t *# x + (&.1 - t) *# y))` EXISTS_TAC; | |
EXISTS_TAC `&.0`; | |
EXISTS_TAC `&.1`; | |
REDUCE_TAC; | |
TYPE_THEN `top_of_metric (open_ball (euclid n,d_euclid) x r,d_euclid) = (induced_top(top_of_metric(euclid n,d_euclid)) (open_ball (euclid n,d_euclid) x r))` SUBGOAL_TAC; | |
ASM_MESON_TAC[open_ball_subset;metric_euclid;top_of_metric_induced ]; | |
DISCH_TAC ; | |
TYPE_THEN `euclid n x /\ euclid n y` SUBGOAL_TAC; | |
USE 0 (REWRITE_RULE[open_ball;IN_ELIM_THM' ]); | |
ASM_REWRITE_TAC[]; | |
DISCH_ALL_TAC; | |
CONJ_TAC; | |
ASM_REWRITE_TAC[]; | |
IMATCH_MP_TAC continuous_induced; | |
ASM_SIMP_TAC [top_of_metric_top;metric_euclid;open_ball_open]; | |
IMATCH_MP_TAC continuous_lin_combo ; | |
ASM_REWRITE_TAC[]; | |
CONJ_TAC; | |
REWRITE_TAC[euclid_plus;euclid_scale]; | |
IMATCH_MP_TAC EQ_EXT THEN BETA_TAC ; | |
REDUCE_TAC; | |
CONJ_TAC; | |
REWRITE_TAC[euclid_plus;euclid_scale]; | |
IMATCH_MP_TAC EQ_EXT THEN BETA_TAC ; | |
REDUCE_TAC; | |
REWRITE_TAC[SUBSET;IN_IMAGE;Q_ELIM_THM'' ]; | |
REWRITE_TAC[IN;IN_ELIM_THM']; | |
TYPE_THEN `(UNIONS (top_of_metric (open_ball (euclid n,d_euclid) x r,d_euclid))) = (open_ball(euclid n,d_euclid) x r)` SUBGOAL_TAC; | |
IMATCH_MP_TAC (GSYM top_of_metric_unions); | |
IMATCH_MP_TAC metric_subspace; | |
ASM_MESON_TAC[metric_euclid;open_ball_subset]; | |
DISCH_THEN (fun t->REWRITE_TAC[t]); | |
ASM_MESON_TAC [open_ball_star]; | |
]);; | |
(* }}} *) | |
let path_domain = prove_by_refinement( | |
`!U x (y:A). path_component U x y <=> | |
(?f a b. (continuous f (top_of_metric(UNIV,d_real )) U ) /\ (a <. b) /\ | |
(f a = (x:A)) /\ (f b = y) /\ | |
(IMAGE f UNIV SUBSET (UNIONS U)))`, | |
(* {{{ proof *) | |
[ | |
REWRITE_TAC[path_component]; | |
DISCH_ALL_TAC; | |
EQ_TAC; | |
DISCH_TAC ; | |
CHO 0; | |
CHO 0; | |
CHO 0; | |
TYPE_THEN `joinf (\t. (f a)) (joinf f (\t. (f b)) b) a` EXISTS_TAC; | |
TYPE_THEN `a` EXISTS_TAC; | |
TYPE_THEN `b` EXISTS_TAC; | |
ASM_REWRITE_TAC[]; | |
CONJ_TAC; | |
IMATCH_MP_TAC joinf_cont; | |
ASM_SIMP_TAC[const_continuous;top_of_metric_top;metric_real]; | |
CONJ_TAC; | |
IMATCH_MP_TAC joinf_cont; | |
ASM_REWRITE_TAC[]; | |
ASM_SIMP_TAC[const_continuous;top_of_metric_top;metric_real]; | |
REWRITE_TAC[joinf]; | |
ASM_REWRITE_TAC[]; | |
CONJ_TAC; | |
ASM_REWRITE_TAC[joinf;REAL_ARITH `~(a<a)`]; | |
CONJ_TAC; | |
UND 0; | |
DISCH_ALL_TAC; | |
USE 1 (MATCH_MP (REAL_ARITH `(a < b) ==> (~(b < a))`)); | |
ASM_REWRITE_TAC [joinf;REAL_ARITH `~(b < b)`]; | |
REWRITE_TAC[SUBSET;IN_IMAGE;Q_ELIM_THM'';joinf ]; | |
REWRITE_TAC[IN_UNIV]; | |
GEN_TAC; | |
UND 0; | |
DISCH_ALL_TAC; | |
USE 4 (REWRITE_RULE[SUBSET;IN_IMAGE;Q_ELIM_THM'';]); | |
USE 4 (REWRITE_RULE[IN;IN_ELIM_THM' ]); | |
(* cc1 *) | |
TYPE_THEN `a` (WITH 4 o SPEC); | |
TYPE_THEN `b` (WITH 4 o SPEC); | |
TYPE_THEN `x'` (USE 4 o SPEC); | |
DISJ_CASES_TAC (REAL_ARITH `x' < a \/ (a <= x')`); | |
ASM_REWRITE_TAC[IN]; | |
ASM_MESON_TAC[REAL_ARITH `(a <=a) /\ ((a < b) ==> (a <= b))`]; | |
DISJ_CASES_TAC (REAL_ARITH `x' < b \/ (b <= x')`); | |
REWR 4; | |
USE 7 (MATCH_MP (REAL_ARITH `a <= x' ==> (~(x' < a))`)); | |
ASM_REWRITE_TAC[IN ]; | |
ASM_MESON_TAC[REAL_ARITH `x' < b ==> x' <= b`]; | |
USE 7 (MATCH_MP (REAL_ARITH `a <= x' ==> (~(x' < a))`)); | |
ASM_REWRITE_TAC[]; | |
USE 8 (MATCH_MP (REAL_ARITH `b <= x' ==> ~(x' < b)`)); | |
ASM_REWRITE_TAC[IN]; | |
ASM_MESON_TAC[REAL_ARITH `b <=b /\ ((a < b) ==> (a <= b))`]; | |
DISCH_TAC ; | |
CHO 0; | |
CHO 0; | |
CHO 0; | |
TYPE_THEN `f` EXISTS_TAC; | |
TYPE_THEN `a ` EXISTS_TAC; | |
TYPE_THEN `b` EXISTS_TAC; | |
ASM_REWRITE_TAC[]; | |
UND 0; | |
REWRITE_TAC[SUBSET;IN_IMAGE ;Q_ELIM_THM'']; | |
REWRITE_TAC[IN_UNIV]; | |
REWRITE_TAC[IN;IN_ELIM_THM']; | |
ASM_MESON_TAC[]; | |
]);; | |
(* }}} *) | |
let path_component_subspace = prove_by_refinement( | |
`!X Y d (y:A). ((Y SUBSET X) /\ (metric_space(X,d) /\ (Y y))) ==> | |
((path_component(top_of_metric(Y,d)) y) SUBSET | |
(path_component(top_of_metric(X,d)) y))`, | |
(* {{{ proof *) | |
[ | |
DISCH_ALL_TAC; | |
REWRITE_TAC[SUBSET;IN;path_domain]; | |
DISCH_ALL_TAC; | |
CHO 3; | |
CHO 3; | |
CHO 3; | |
TYPE_THEN `f` EXISTS_TAC; | |
TYPE_THEN `a` EXISTS_TAC; | |
TYPE_THEN `b` EXISTS_TAC; | |
ASM_REWRITE_TAC[]; | |
TYPE_THEN `metric_space(Y,d)` SUBGOAL_TAC; | |
ASM_MESON_TAC[metric_subspace]; | |
DISCH_TAC; | |
UND 3; | |
ASM_SIMP_TAC[GSYM top_of_metric_unions]; | |
DISCH_ALL_TAC; | |
CONJ_TAC; | |
UND 3; | |
TYPE_THEN `IMAGE f UNIV SUBSET X /\ IMAGE f UNIV SUBSET Y` SUBGOAL_TAC; | |
ASM_MESON_TAC[SUBSET;IN]; | |
DISCH_TAC; | |
ASM_SIMP_TAC[metric_continuous_continuous;metric_real]; | |
REWRITE_TAC[metric_continuous;metric_continuous_pt]; | |
ASM_MESON_TAC[SUBSET;IN]; | |
]);; | |
(* }}} *) | |
let path_component_in = prove_by_refinement( | |
`!x (y:A) U. (path_component U x y) ==> (UNIONS U y)`, | |
(* {{{ proof *) | |
[ | |
REWRITE_TAC[path_component]; | |
DISCH_ALL_TAC; | |
CHO 0; | |
CHO 0; | |
CHO 0; | |
UND 0; | |
DISCH_ALL_TAC; | |
USE 4 (REWRITE_RULE[SUBSET;IN_IMAGE;Q_ELIM_THM'']); | |
USE 4 (REWRITE_RULE[IN_ELIM_THM';IN]); | |
TYPE_THEN `b` (USE 4 o SPEC); | |
ASM_MESON_TAC[REAL_ARITH `(a < b) ==> ((a<=. b) /\ (b <= b))`]; | |
]);; | |
(* }}} *) | |
let loc_path_conn_euclid = prove_by_refinement( | |
`!n A. (top_of_metric(euclid n,d_euclid)) A ==> | |
(loc_path_conn (top_of_metric(A,d_euclid)))`, | |
(* {{{ proof *) | |
[ | |
DISCH_ALL_TAC; | |
REWRITE_TAC[loc_path_conn]; | |
DISCH_ALL_TAC; | |
TYPE_THEN `metric_space (A,d_euclid)` SUBGOAL_TAC; | |
IMATCH_MP_TAC metric_subspace; | |
TYPE_THEN `euclid n` EXISTS_TAC; | |
REWRITE_TAC[metric_euclid]; | |
USE 0 (MATCH_MP sub_union); | |
ASM_MESON_TAC[top_of_metric_unions;metric_euclid]; | |
DISCH_ALL_TAC; | |
WITH 3 (MATCH_MP top_of_metric_nbd); | |
UND 4; | |
DISCH_THEN (fun t-> REWRITE_TAC[t]); | |
TYPE_THEN `A' SUBSET A` SUBGOAL_TAC; | |
USE 1 (MATCH_MP sub_union); | |
ASM_MESON_TAC[top_of_metric_unions]; | |
DISCH_TAC; | |
ASM_SIMP_TAC[top_of_metric_induced]; | |
TYPE_THEN `metric_space(A',d_euclid)` SUBGOAL_TAC; | |
ASM_MESON_TAC[metric_subspace]; | |
DISCH_TAC ; | |
SUBCONJ_TAC; | |
REWRITE_TAC[SUBSET;IN]; | |
REWRITE_TAC[path_component]; | |
DISCH_ALL_TAC; | |
CHO 6; | |
CHO 6; | |
CHO 6; | |
USE 6 (REWRITE_RULE[SUBSET;IN_IMAGE ;IN_ELIM_THM';Q_ELIM_THM'']); | |
UND 6; | |
DISCH_ALL_TAC; | |
TYPE_THEN `b` (USE 10 o SPEC); | |
USE 4 (REWRITE_RULE[SUBSET;IN]); | |
UND 4; | |
DISCH_THEN IMATCH_MP_TAC ; | |
USE 5 (MATCH_MP top_of_metric_unions); | |
UND 10; | |
UND 4; | |
DISCH_THEN (fun t -> ONCE_REWRITE_TAC[GSYM t]); | |
ASM_REWRITE_TAC[IN]; | |
ASM_MESON_TAC[REAL_ARITH `b <=. b /\ ((a < b)==> (a <=. b))`]; | |
DISCH_TAC; | |
REWRITE_TAC[IN]; | |
DISCH_ALL_TAC; | |
(* c2 *) | |
WITH 7 (MATCH_MP path_component_in); | |
TYPE_THEN `A' a` SUBGOAL_TAC; | |
UND 8; | |
ASM_SIMP_TAC[GSYM top_of_metric_unions;]; | |
DISCH_TAC; | |
TYPE_THEN `A SUBSET (euclid n)` SUBGOAL_TAC; | |
USE 0 (MATCH_MP sub_union); | |
UND 0; | |
ASM_SIMP_TAC[GSYM top_of_metric_unions;metric_euclid]; | |
DISCH_TAC; | |
TYPE_THEN `top_of_metric(euclid n,d_euclid) A'` SUBGOAL_TAC; | |
IMATCH_MP_TAC induced_trans; | |
TYPE_THEN `A` EXISTS_TAC; | |
ASM_REWRITE_TAC[]; | |
ASM_SIMP_TAC[top_of_metric_top;metric_euclid;top_of_metric_induced ]; | |
DISCH_TAC; | |
COPY 11; | |
UND 12; | |
SIMP_TAC[top_of_metric_nbd;metric_euclid]; | |
DISCH_ALL_TAC; | |
TYPE_THEN `a` (USE 13 o SPEC); | |
USE 13 (REWRITE_RULE[IN]); | |
REWR 13; | |
CHO 13; | |
TYPE_THEN `r` EXISTS_TAC; | |
ASM_REWRITE_TAC[]; | |
TYPE_THEN `open_ball (A,d_euclid) a r SUBSET path_component (top_of_metric (A',d_euclid)) a` SUBGOAL_TAC ; | |
TYPE_THEN `open_ball (euclid n,d_euclid) a r SUBSET path_component (top_of_metric (A',d_euclid)) a` SUBGOAL_TAC ; | |
TYPE_THEN `open_ball (euclid n,d_euclid) a r SUBSET path_component (top_of_metric ((open_ball(euclid n,d_euclid) a r),d_euclid)) a` SUBGOAL_TAC; | |
REWRITE_TAC[SUBSET;IN]; | |
MESON_TAC[open_ball_path;SUBSET;IN;path_symm]; | |
IMATCH_MP_TAC (prove_by_refinement(`!A B C. (B:A->bool) SUBSET C ==> (A SUBSET B ==> A SUBSET C)`,[MESON_TAC[SUBSET_TRANS]])); | |
IMATCH_MP_TAC path_component_subspace; | |
ASM_REWRITE_TAC[]; | |
IMATCH_MP_TAC (REWRITE_RULE[IN] open_ball_nonempty); | |
ASM_SIMP_TAC[metric_euclid]; | |
ASM_MESON_TAC[SUBSET;IN]; | |
IMATCH_MP_TAC (prove_by_refinement (`!A B C. (A:A->bool) SUBSET B ==> (B SUBSET C ==> A SUBSET C)`,[MESON_TAC[SUBSET_TRANS]])); | |
ASM_SIMP_TAC[open_ball_subspace]; | |
IMATCH_MP_TAC (prove_by_refinement(`!A B C. (B:A->bool) SUBSET C ==> (A SUBSET B ==> A SUBSET C)`,[MESON_TAC[SUBSET_TRANS]])); | |
REWRITE_TAC[SUBSET;IN]; | |
GEN_TAC; | |
UND 7; | |
MESON_TAC[path_trans]; | |
]);; | |
(* }}} *) | |
let loc_path_euclid_cor = prove_by_refinement( | |
`!n A . (top_of_metric(euclid n,d_euclid)) A ==> | |
(path_component (top_of_metric(A,d_euclid)) = | |
component (top_of_metric(A,d_euclid)))`, | |
(* {{{ proof *) | |
[ | |
DISCH_ALL_TAC; | |
WITH 0 (MATCH_MP loc_path_conn_euclid); | |
IMATCH_MP_TAC EQ_EXT; | |
GEN_TAC; | |
IMATCH_MP_TAC path_eq_conn; | |
ASM_REWRITE_TAC[]; | |
IMATCH_MP_TAC top_of_metric_top; | |
USE 0 (MATCH_MP sub_union); | |
UND 0; | |
ASM_SIMP_TAC[GSYM top_of_metric_unions ;metric_euclid]; | |
ASM_MESON_TAC[metric_subspace;metric_euclid]; | |
]);; | |
(* }}} *) | |