Datasets:
Tasks:
Text Generation
Modalities:
Text
Sub-tasks:
language-modeling
Languages:
English
Size:
100K - 1M
License:
(* | |
Author: Thomas C. Hales, 2003 | |
GCD_CONV takes two HOL-light terms (NUMERALs) a and b and | |
produces a theorem of the form | |
|- GCD a b = g | |
(In particular, the arguments cannot be negative.) | |
*) | |
prioritize_num();; | |
let DIVIDE = new_definition(`DIVIDE a b = ?m. (b = m*a )`);; | |
parse_as_infix("||",(16,"right"));; | |
override_interface("||",`DIVIDE:num->num->bool`);; | |
(* Now prove the lemmas *) | |
let DIV_TAC t = EVERY[ REP_GEN_TAC; | |
REWRITE_TAC[DIVIDE]; | |
DISCH_ALL_TAC; | |
REPEAT (FIRST_X_ASSUM CHOOSE_TAC); | |
TRY (EXISTS_TAC t)];; | |
let DIVIDE_DIVIDE = prove_by_refinement( | |
`!a b c. (((a || b) /\ (b || c)) ==> (a || c))`, | |
[ | |
DIV_TAC `m'*m`; | |
ASM_REWRITE_TAC[MULT_ASSOC] | |
]);; | |
let DIVIDE_EQ = prove_by_refinement( | |
`! a b. (((a || b) /\ (b || a)) ==> (a = b))`, | |
[ | |
DIV_TAC `1`; | |
FIRST_X_ASSUM (fun th -> (POP_ASSUM MP_TAC) THEN REWRITE_TAC[th]); | |
ASM_CASES_TAC `b=0`; | |
ASM_REWRITE_TAC[]; | |
ARITH_TAC; | |
REWRITE_TAC[ARITH_RULE `(b = m*m'*b) = (1*b = m*m'*b)`]; | |
ASM_REWRITE_TAC[MULT_ASSOC;EQ_MULT_RCANCEL]; | |
DISCH_THEN (fun th -> MP_TAC (REWRITE_RULE[MULT_EQ_1] (GSYM th)) ); | |
DISCH_THEN (fun th -> REWRITE_TAC[CONJUNCT2 th] THEN ARITH_TAC); | |
]);; | |
let DIVIDE_SUM = prove_by_refinement( | |
`!a b h. (((h || a) /\ (h||b)) ==> (h || (a+b)))`, | |
[ | |
DIV_TAC `m+m'`; | |
ASM_REWRITE_TAC[ARITH;RIGHT_ADD_DISTRIB]; | |
]);; | |
let DIVIDE_SUMMAND = prove_by_refinement( | |
`!a b h. (((h|| b) /\ (h || (a+b))) ==> (h|| a))`, | |
[ | |
DIV_TAC `m'-m`; | |
REWRITE_TAC[RIGHT_SUB_DISTRIB]; | |
REPEAT (FIRST_X_ASSUM (fun th -> REWRITE_TAC[GSYM th])); | |
ARITH_TAC; | |
]);; | |
let DIVIDE_PROD = prove_by_refinement( | |
`!a b h. (((h|| a) ==> (h || (b*a))))`, | |
[ | |
DIV_TAC `b*m`; | |
ASM_REWRITE_TAC[MULT_ASSOC]; | |
]);; | |
let DIVIDE_PROD2 = prove_by_refinement( | |
`!a b h. (((h|| a) ==> (h || (a*b))))`, | |
[ | |
DIV_TAC `b*m`; | |
ASM_REWRITE_TAC[MULT_AC] | |
]);; | |
let GCD = new_definition(`GCD a b = @g. | |
((g || a) /\ (g || b) /\ | |
(!h. (((h || a) /\ (h || b)) ==> (h || g))))`);; | |
let gcd_certificate = prove(`!a b g. ((? r s r' s' a' b'. | |
((a = a'*g) /\ (b = b'*g) /\ (g +r'*a+s'*b= r*a + s*b))) | |
==> (GCD a b = g))`, | |
let tac1 = ( | |
(REPEAT GEN_TAC) | |
THEN (DISCH_TAC) | |
THEN (REPEAT (POP_ASSUM CHOOSE_TAC)) | |
THEN (REWRITE_TAC[GCD]) | |
THEN (MATCH_MP_TAC SELECT_UNIQUE) | |
THEN BETA_TAC | |
THEN GEN_TAC | |
THEN EQ_TAC) and | |
ygbranch = ( | |
DISCH_TAC | |
THEN (MATCH_MP_TAC DIVIDE_EQ) | |
THEN CONJ_TAC) and | |
ydivg_branch = ( | |
(SUBGOAL_TAC (` (y || (r*a + s*b))/\ (y || (r'*a +s'*b))`)) | |
THENL [((ASM MESON_TAC)[DIVIDE_SUM;DIVIDE_PROD]); | |
((ASM MESON_TAC)[DIVIDE_SUMMAND])] | |
) and | |
gdivy_branch = ( | |
(UNDISCH_TAC | |
(`(y||a) /\ (y ||b) /\ (!h. (((h||a)/\(h||b))==> (h||y)))`)) | |
THEN (TAUT_TAC (` (A ==> B) ==> ((C /\ D/\ A)==> B)`)) | |
THEN (DISCH_TAC) | |
THEN (POP_ASSUM MATCH_MP_TAC) | |
THEN (REWRITE_TAC[DIVIDE]) | |
THEN (CONJ_TAC) | |
THEN ((ASM MESON_TAC)[]) | |
) and | |
yghyp_branch = ( | |
(DISCH_TAC) | |
THEN (let x t = REWRITE_TAC[t] in (POP_ASSUM x)) | |
THEN (CONJ_TAC) | |
THENL [((ASM MESON_TAC)[DIVIDE]);ALL_TAC] | |
THEN (CONJ_TAC) | |
THENL [((ASM MESON_TAC)[DIVIDE]);ALL_TAC] | |
THEN GEN_TAC | |
THEN DISCH_TAC | |
THEN (SUBGOAL_TAC (` (h || (r*a + s*b))/\ (h || (r'*a+s'*b))`)) | |
THENL [((ASM MESON_TAC)[DIVIDE_SUM;DIVIDE_PROD]); | |
((ASM MESON_TAC)[DIVIDE_SUMMAND])] | |
) in | |
tac1 THENL [ygbranch THENL [ydivg_branch;gdivy_branch];yghyp_branch]);; | |
(* Now compute gcd with CAML num calculations, | |
then check the answer in HOL-light *) | |
let gcd_num x1 x2 = | |
let rec gcd_data (a1,b1,x1,a2,b2,x2) = | |
if (x1 < (Int 0)) then | |
gcd_data(minus_num a1,minus_num b1,minus_num x1,a2,b2,x2) | |
else if (x2 < (Int 0)) then gcd_data(a1,b1,x1,minus_num a2,minus_num | |
b2,minus_num x2) | |
else if (x1 = (Int 0)) then (a2,b2,x2) | |
else if (x1>x2) then gcd_data (a2,b2,x2,a1,b1,x1) | |
else ( | |
let r = (quo_num x2 x1) in | |
gcd_data (a1,b1,x1,a2 -/ r*/ a1,b2 -/ r*/ b1, x2 -/ r*/ x1) | |
) in | |
gcd_data ((Int 1),(Int 0),x1,(Int 0),(Int 1),x2);; | |
let gcd_num x1 x2 = | |
let rec gcd_data (a1,b1,x1,a2,b2,x2) = | |
if (x1 < (Int 0)) then | |
gcd_data(minus_num a1,minus_num b1,minus_num x1,a2,b2,x2) | |
else if (x2 < (Int 0)) then gcd_data(a1,b1,x1,minus_num a2,minus_num | |
b2,minus_num x2) | |
else if (x1 = (Int 0)) then (a2,b2,x2) | |
else if (x1>x2) then gcd_data (a2,b2,x2,a1,b1,x1) | |
else ( | |
let r = (quo_num x2 x1) in | |
gcd_data (a1,b1,x1,a2 -/ r*/ a1,b2 -/ r*/ b1, x2 -/ r*/ x1) | |
) in | |
gcd_data ((Int 1),(Int 0),x1,(Int 0),(Int 1),x2);; | |
(* g = gcd, (a',b') = (a,b)/g, g +r1'*a+s1'*b = r1*a+s1*b *) | |
let gcd_numdata a b = | |
let a = abs_num a in | |
let b = abs_num b in | |
let Z = Int 0 in | |
let (r,s,g) = gcd_num a b in | |
let a' = if (g=Z) then Z else round_num(a//g) in | |
let b' = if (g=Z) then Z else round_num(b//g) in | |
let _ = if not(a=a'*/g) then failwith "GCD_CONV a" else 0 in | |
let _ = if not(b=b'*/g) then failwith "GCD_CONV b" else 0 in | |
let _ = if not(g=r*/a+/s*/b) then failwith "GCD_CONV g" else 0 in | |
let (r1,r1') = if (r >/ Z) then (r,Z) else (Z,minus_num r) in | |
let (s1,s1') = if (s >/ Z) then (s,Z) else (Z,minus_num s) in | |
(g,a,b,a',b',r1',s1',r1,s1);; | |
(* Here is the conversion. | |
Example: | |
GCD_CONV (`66`) (`144`) | |
*) | |
let GCD_CONV at bt = | |
let a = dest_numeral at in | |
let b = dest_numeral bt in | |
let (g,a,b,a',b',r1',s1',r1,s1) = gcd_numdata a b in | |
prove(parse_term("GCD "^(string_of_num a)^" "^(string_of_num b)^" = "^ | |
(string_of_num g)), | |
(MATCH_MP_TAC gcd_certificate) | |
THEN (EXISTS_TAC (mk_numeral r1)) | |
THEN (EXISTS_TAC (mk_numeral s1)) | |
THEN (EXISTS_TAC (mk_numeral r1')) | |
THEN (EXISTS_TAC (mk_numeral s1')) | |
THEN (EXISTS_TAC (mk_numeral a')) | |
THEN (EXISTS_TAC (mk_numeral b')) | |
THEN (ARITH_TAC));; | |
(* Example: | |
hol_gcd 66 144 | |
This version can overflow on CAML integers before it reaches hol-light. | |
Example: | |
hol_gcd 1000000000000000000 10000000000000000000000 | |
- : thm = |- GCD 660865024 843055104 = 262144 | |
*) | |
let hol_gcd a b = GCD_CONV (mk_small_numeral a) (mk_small_numeral b);; | |
remove_interface ("||");; | |
pop_priority();; | |
(* test code *) | |
exception Test_suite_num_ext_gcd of string;; | |
(* For the tests we use integers a and b. These can overflow if | |
a and b are too large, so that we should confine ourselves to | |
tests that are not too large. | |
*) | |
let test_num_ext_gcd (a, b) = | |
let a1 = string_of_int (abs a) in | |
let b1 = string_of_int (abs b) in | |
let c = gcd a b in | |
let c1 = string_of_int (abs c) in | |
let th = GCD_CONV (mk_small_numeral a) (mk_small_numeral b) in | |
if (not (hyp th = ([]:term list))) then raise | |
(failwith ("num_ext_gcd test suite failure "^a1^" "^b1)) | |
else if (not (concl th = (parse_term ("GCD "^a1^" "^b1^"="^c1)))) | |
then raise (failwith ("num_ext_gcd test suite failure "^a1^" "^b1)) | |
else ();; | |
let test_suite_num_ext_gcd = | |
let _ = | |
map test_num_ext_gcd | |
[(0,0);(0,1);(1,0);(-0,-0); | |
(2,3);(4,6); | |
(0,2);(2,0); | |
(10,100);(100,10);(17,100);(100,17)] in | |
print_string "num_ext_gcd loaded\n";; | |
let divide = DIVIDE and | |
gcd = GCD and | |
gcd_conv = GCD_CONV;; | |