Datasets:

Modalities:
Text
Languages:
English
Libraries:
Datasets
License:
Zhangir Azerbayev
squashed?
4365a98
raw
history blame
31.3 kB
ocaml
#use "hol.ml";;
#load "unix.cma";;
loadt "miz3/miz3.ml";;
reset_miz3 0;;
verbose := true;;
report_timing := true;;
Theorem/Proof templates:
let = theorem `;
proof
qed;
`;;
interactive_goal `;
`;;
interactive_proof `;
`;;
interactive_proof `;
`;;
interactive_proof `;
`;;
interactive_proof `;
`;;
interactive_proof `;
`;;
βˆ‰ |- βˆ€ a l. a βˆ‰ l ⇔ Β¬(a ∈ l)
Interval_DEF |- βˆ€ A B X. open (A,B) = {X | Between A X B}
Collinear_DEF
|- βˆ€ A B C. Collinear A B C ⇔ βˆƒ l. Line l ∧ A ∈ l ∧ B ∈ l ∧ C ∈ l
SameSide_DEF
|- βˆ€ l A B. A,B same_side l ⇔ Line l ∧ Β¬ βˆƒ X. X ∈ l ∧ X ∈ open (A,B)
Ray_DEF |- βˆ€ A B. ray A B =
{X | Β¬(A = B) ∧ Collinear A B X ∧ A βˆ‰ open (X,B)}
Ordered_DEF
|- βˆ€ A C B D.
ordered A B C D ⇔
B ∈ open (A,C) ∧ B ∈ open (A,D) ∧ C ∈ open (A,D) ∧ C ∈ open (B,D)
InteriorAngle_DEF |- βˆ€ A O B.
int_angle A O B =
{P | ¬Collinear A O B ∧
βˆƒ a b.
Line a ∧ O ∈ a ∧ A ∈ a ∧
Line b ∧ O ∈ b ∧ B ∈ b ∧
P βˆ‰ a ∧ P βˆ‰ b ∧
P,B same_side a ∧ P,A same_side b}
InteriorTriangle_DEF
|- βˆ€ A B C.
int_triangle A B C =
{P | P ∈ int_angle A B C ∧
P ∈ int_angle B C A ∧
P ∈ int_angle C A B}
Tetralateral_DEF
|- βˆ€ C D A B.
Tetralateral A B C D ⇔
¬(A = B) ∧ ¬(A = C) ∧ ¬(A = D) ∧ ¬(B = C) ∧ ¬(B = D) ∧ ¬(C = D) ∧
¬Collinear A B C ∧ ¬Collinear B C D ∧ ¬Collinear C D A ∧ ¬Collinear D A B
Quadrilateral_DEF
|- βˆ€ B C D A.
Quadrilateral A B C D ⇔
Tetralateral A B C D ∧
open (A,B) ∩ open (C,D) = βˆ… ∧
open (B,C) ∩ open (D,A) = βˆ…
ConvexQuad_DEF
|- βˆ€ D A B C.
ConvexQuadrilateral A B C D ⇔
Quadrilateral A B C D ∧
A ∈ int_angle B C D ∧
B ∈ int_angle C D A ∧
C ∈ int_angle D A B ∧
D ∈ int_angle A B C
Segment_DEF |- βˆ€ A B. seg A B = {A, B} βˆͺ open (A,B)
SEGMENT |- βˆ€ s. Segment s ⇔ βˆƒ A B. s = seg A B ∧ Β¬(A = B)
SegmentOrdering_DEF
|- βˆ€ t s.
s <__ t ⇔
Segment s ∧
βˆƒ C D X. t = seg C D ∧ X ∈ open (C,D) ∧ s ≑ seg C X
Angle_DEF |- βˆ€ A O B. ∑ A O B = ray O A βˆͺ ray O B
ANGLE
|- βˆ€ Ξ±. Angle Ξ± ⇔ βˆƒ A O B. Ξ± = ∑ A O B ∧ Β¬Collinear A O B
AngleOrdering_DEF
|- βˆ€ Ξ² Ξ±.
Ξ± <_ang Ξ² ⇔
Angle α ∧
βˆƒ A O B G.
¬Collinear A O B ∧ β = ∑ A O B ∧
G ∈ int_angle A O B ∧ Ξ± ≑ ∑ A O G
RAY |- βˆ€ r. Ray r ⇔ βˆƒ O A. Β¬(O = A) ∧ r = ray O A
TriangleCong_DEF
|- βˆ€ A B C A' B' C'.
A,B,C β‰… A',B',C' ⇔
¬Collinear A B C ∧ ¬Collinear A' B' C' ∧
seg A B ≑ seg A' B' ∧
seg A C ≑ seg A' C' ∧
seg B C ≑ seg B' C' ∧
∑ A B C ≑ ∑ A' B' C' ∧
∑ B C A ≑ ∑ B' C' A' ∧
∑ C A B ≑ ∑ C' A' B'
SupplementaryAngles_DEF
|- βˆ€Ξ± Ξ².
Ξ± suppl Ξ² ⇔
βˆƒ A O B A'.
¬Collinear A O B ∧ O ∈ open (A,A') ∧
α = ∑ A O B ∧ β = ∑ B O A'
RightAngle_DEF
|- βˆ€Ξ±. Right Ξ± ⇔ βˆƒ Ξ². Ξ± suppl Ξ² ∧ Ξ± ≑ Ξ²
PlaneComplement_DEF
|- βˆ€ Ξ±. complement Ξ± = {P | P βˆ‰ Ξ±}
CONVEX
|- βˆ€Ξ±. Convex Ξ± ⇔
βˆ€ A B. A ∈ Ξ± ∧ B ∈ Ξ± β‡’ open (A,B) βŠ‚ Ξ±
PARALLEL
|- βˆ€ l k. l βˆ₯ k ⇔ Line l ∧ Line k ∧ l ∩ k = βˆ…
Parallelogram_DEF
|- βˆ€ A B C D.
Parallelogram A B C D ⇔
Quadrilateral A B C D ∧
βˆƒ a b c d.
Line a ∧ A ∈ a ∧ B ∈ a ∧ Line b ∧ B ∈ b ∧ C ∈ b ∧
Line c ∧ C ∈ c ∧ D ∈ d ∧ Line d ∧ D ∈ d ∧ A ∈ d ∧
a βˆ₯ c ∧ b βˆ₯ d
InteriorCircle_DEF
|- βˆ€ O R. int_circle O R = {P | Β¬(O = R) ∧ (P = O ∨ seg O P <__ seg O R)}
I1 |- βˆ€ A B. Β¬(A = B) β‡’ (βˆƒ! l. Line l ∧ A ∈ l ∧ B ∈ l)
I2 |- βˆ€ l. Line l β‡’ (βˆƒ A B. A ∈ l ∧ B ∈ l ∧ Β¬(A = B))
I3 |- βˆƒ A B C. Β¬(A = B) ∧ Β¬(A = C) ∧ Β¬(B = C) ∧ Β¬Collinear A B C
B1 |- βˆ€ A B C.
Between A B C
β‡’ Β¬(A = B) ∧ Β¬(A = C) ∧ Β¬(B = C) ∧
Between C B A ∧ Collinear A B C
B2 |- βˆ€ A B. Β¬(A = B) β‡’ βˆƒC. Between A B C
B3 |- βˆ€ A B C.
¬(A = B) ∧ ¬(A = C) ∧ ¬(B = C) ∧ Collinear A B C
β‡’ (Between A B C ∨ Between B C A ∨ Between C A B) ∧
¬(Between A B C ∧ Between B C A) ∧
¬(Between A B C ∧ Between C A B) ∧
¬(Between B C A ∧ Between C A B)
B4 |- βˆ€ l A B C.
Line l ∧
¬Collinear A B C ∧
A βˆ‰ l ∧ B βˆ‰ l ∧ C βˆ‰ l ∧
(βˆƒX. X ∈ l ∧ Between A X C)
β‡’ (βˆƒ Y. Y ∈ l ∧ Between A Y B) ∨
(βˆƒ Y. Y ∈ l ∧ Between B Y C)
C1 |- βˆ€ s O Z.
Segment s ∧ ¬(O = Z)
β‡’ βˆƒ! P. P ∈ ray O Z ━ O ∧ seg O P ≑ s
C2Reflexive |- Segment s β‡’ s ≑ s
C2Symmetric |- Segment s ∧ Segment t ∧ s ≑ t β‡’ t ≑ s
C2Transitive
|- Segment s ∧ Segment t ∧ Segment u ∧ s ≑ t ∧ t ≑ u β‡’ s ≑ u
C3 |- βˆ€ A B C A' B' C'.
B ∈ open (A,C) ∧ B' ∈ open (A',C') ∧
seg A B ≑ seg A' B' ∧ seg B C ≑ seg B' C'
β‡’ seg A C ≑ seg A' C'
C4 |- βˆ€ Ξ± O A l Y.
Angle Ξ± ∧ Β¬(O = A) ∧ Line l ∧ O ∈ l ∧ A ∈ l ∧ Y βˆ‰ l
β‡’ βˆƒ! r. Ray r ∧ βˆƒ B. Β¬(O = B) ∧ r = ray O B ∧
B βˆ‰ l ∧ B,Y same_side l ∧ ∑ A O B ≑ Ξ±
C5Reflexive |- Angle Ξ± β‡’ Ξ± ≑ Ξ±
C5Symmetric
|- Angle Ξ± ∧ Angle Ξ² ∧ Ξ± ≑ Ξ² β‡’ Ξ² ≑ Ξ±
C5Transitive
|- Angle Ξ± ∧ Angle Ξ² ∧ Angle Ξ³ ∧ Ξ± ≑ Ξ² ∧ Ξ² ≑ Ξ³
β‡’ Ξ± ≑ Ξ³
C6 |- βˆ€A B C A' B' C'.
¬Collinear A B C ∧ ¬Collinear A' B' C' ∧
seg B A ≑ seg B' A' ∧ seg B C ≑ seg B' C' ∧
∑ A B C ≑ ∑ A' B' C'
β‡’ ∑ B C A ≑ ∑ B' C' A'
IN_Interval |- βˆ€ A B X. X ∈ open (A,B) ⇔ Between A X B
IN_Ray |- βˆ€ A B X.
X ∈ ray A B ⇔ Β¬(A = B) ∧ Collinear A B X ∧ A βˆ‰ open (X,B)
IN_InteriorAngle |- βˆ€A O B P.
P ∈ int_angle A O B ⇔ Β¬Collinear A O B ∧ βˆƒ a b.
Line a ∧ O ∈ a ∧ A ∈ a ∧ Line b ∧ O ∈ b ∧ B ∈ b ∧
P βˆ‰ a ∧ P βˆ‰ b ∧ P,B same_side a ∧ P,A same_side b
IN_InteriorTriangle
|- βˆ€A B C P.
P ∈ int_triangle A B C ⇔
P ∈ int_angle A B C ∧ P ∈ int_angle B C A ∧ P ∈ int_angle C A B
IN_PlaneComplement
|- βˆ€Ξ± P. P ∈ complement Ξ± ⇔ P βˆ‰ Ξ±
IN_InteriorCircle
|- βˆ€ O R P.
P ∈ int_circle O R ⇔ Β¬(O = R) ∧ (P = O ∨ seg O P <__ seg O R)
B1' |- βˆ€ A B C.
B ∈ open (A,C)
β‡’ Β¬(A = B) ∧ Β¬(A = C) ∧ Β¬(B = C) ∧
B ∈ open (C,A) ∧ Collinear A B C
B2' |- βˆ€ A B. Β¬(A = B) β‡’ (βˆƒ C. B ∈ open (A,C))
B3' |- βˆ€ A B C.
¬(A = B) ∧ ¬(A = C) ∧ ¬(B = C) ∧ Collinear A B C
β‡’ (B ∈ open (A,C) ∨ C ∈ open (B,A) ∨ A ∈ open (C,B)) ∧
¬(B ∈ open (A,C) ∧ C ∈ open (B,A)) ∧
¬(B ∈ open (A,C) ∧ A ∈ open (C,B)) ∧
¬(C ∈ open (B,A) ∧ A ∈ open (C,B))
B4' |- βˆ€ l A B C.
Line l ∧ Β¬Collinear A B C ∧ A βˆ‰ l ∧ B βˆ‰ l ∧ C βˆ‰ l ∧
(βˆƒ X. X ∈ l ∧ X ∈ open (A,C))
β‡’ (βˆƒ Y. Y ∈ l ∧ Y ∈ open (A,B)) ∨
(βˆƒ Y. Y ∈ l ∧ Y ∈ open (B,C))
B4'' |- βˆ€ l A B C.
Line l ∧ Β¬Collinear A B C ∧ A βˆ‰ l ∧ B βˆ‰ l ∧ C βˆ‰ l ∧
A,B same_side l ∧ B,C same_side l
β‡’ A,C same_side l
DisjointOneNotOther
|- βˆ€ l m. (βˆ€x. x ∈ m β‡’ x βˆ‰ l) ⇔ l ∩ m = βˆ…
EquivIntersectionHelp
|- βˆ€ e x l m.
(l ∩ m = {x} ∨ m ∩ l = {x}) ∧ e ∈ m ━ x β‡’ e βˆ‰ l
CollinearSymmetry
|- βˆ€ A B C.
Collinear A B C
β‡’ Collinear A C B ∧ Collinear B A C ∧
Collinear B C A ∧ Collinear C A B ∧ Collinear C B A
ExistsNewPointOnLine
|- βˆ€ P l. Line l ∧ P ∈ l β‡’ βˆƒ Q. Q ∈ l ∧ Β¬(P = Q)
ExistsPointOffLine |- βˆ€ l. Line l β‡’ βˆƒ Q. Q βˆ‰ l
BetweenLinear
|- βˆ€ A B C m.
Line m ∧ A ∈ m ∧ C ∈ m ∧
B ∈ open (A,C) ∨ C ∈ open (B,A) ∨ A ∈ open (C,B)
β‡’ B ∈ m
CollinearLinear
|- βˆ€ A B C m.
Line m ∧ A ∈ m ∧ C ∈ m ∧ ¬(A = C) ∧
Collinear A B C ∨ Collinear B C A ∨ Collinear C A B
β‡’ B ∈ m
NonCollinearImpliesDistinct
|- βˆ€ A B C. Β¬Collinear A B C β‡’ Β¬(A = B) ∧ Β¬(A = C) ∧ Β¬(B = C)
NonCollinearRaa
|- βˆ€A B C l.
Β¬(A = C) ∧ Line l ∧ A ∈ l ∧ C ∈ l ∧ B βˆ‰ l
β‡’ Β¬Collinear A B C
TwoSidesTriangle1Intersection
|- βˆ€A B C Y.
Β¬Collinear A B C ∧ Collinear B C Y ∧ Collinear A C Y β‡’ Y = C
OriginInRay |- βˆ€ O Q. Β¬(Q = O) β‡’ O ∈ ray O Q
EndpointInRay |- βˆ€ O Q. Β¬(Q = O) β‡’ Q ∈ ray O Q
I1Uniqueness
|- βˆ€ X l m.
Line l ∧ Line m ∧ ¬(l = m) ∧ X ∈ l ∧ X ∈ m
β‡’ l ∩ m = {X}
EquivIntersection
|- βˆ€ A B X l m.
Line l ∧ Line m ∧ l ∩ m = {X} ∧
A ∈ m ━ X ∧ B ∈ m ━ X ∧ X βˆ‰ open (A,B)
β‡’ A,B same_side l
RayLine
|- βˆ€ O P l. Line l ∧ O ∈ l ∧ P ∈ l β‡’ ray O P βŠ‚ l
RaySameSide
|- βˆ€ l O A P.
Line l ∧ O ∈ l ∧ A βˆ‰ l ∧ P ∈ ray O A ━ O
β‡’ P βˆ‰ l ∧ P,A same_side l
IntervalRayEZ
|- βˆ€ A B C.
B ∈ open (A,C) β‡’ B ∈ ray A C ━ A ∧ C ∈ ray A B ━ A
NoncollinearityExtendsToLine
|- βˆ€ A O B X.
¬Collinear A O B ∧ Collinear O B X ∧ ¬(X = O)
β‡’ Β¬Collinear A O X
SameSideReflexive
|- βˆ€ l A. Line l ∧ A βˆ‰ l β‡’ A,A same_side l
SameSideSymmetric
|- βˆ€ l A B.
Line l ∧ A βˆ‰ l ∧ B βˆ‰ l ∧ A,B same_side l
β‡’ B,A same_side l
SameSideTransitive
|- βˆ€l A B C.
Line l ∧ A βˆ‰ l ∧ B βˆ‰ l ∧ C βˆ‰ l ∧
A,B same_side l ∧ B,C same_side l
β‡’ A,C same_side l
ConverseCrossbar
|- βˆ€ O A B G. Β¬Collinear A O B ∧ G ∈ open (A,B) β‡’ G ∈ int_angle A O B
InteriorUse
|- βˆ€ A O B P a b.
Line a ∧ O ∈ a ∧ A ∈ a ∧
Line b ∧ O ∈ b ∧ B ∈ b ∧
P ∈ int_angle A O B
β‡’ P βˆ‰ a ∧ P βˆ‰ b ∧ P,B same_side a ∧ P,A same_side b
InteriorEZHelp
|- βˆ€ A O B P.
P ∈ int_angle A O B
β‡’ Β¬(P = A) ∧ Β¬(P = O) ∧ Β¬(P = B) ∧ Β¬Collinear A O P
InteriorAngleSymmetry
|- βˆ€ A O B P. P ∈ int_angle A O B β‡’ P ∈ int_angle B O A
InteriorWellDefined
|- βˆ€ A O B X P.
P ∈ int_angle A O B ∧ X ∈ ray O B ━ O β‡’ P ∈ int_angle A O X
WholeRayInterior
|- βˆ€A O B X P.
X ∈ int_angle A O B ∧ P ∈ ray O X ━ O
β‡’ P ∈ int_angle A O B
AngleOrdering
|- βˆ€ O A P Q a.
Β¬(O = A) ∧ Line a ∧ O ∈ a ∧ A ∈ a ∧ P βˆ‰ a ∧ Q βˆ‰ a ∧
P,Q same_side a ∧ ¬Collinear P O Q
β‡’ P ∈ int_angle Q O A ∨ Q ∈ int_angle P O A
InteriorsDisjointSupplement
|- βˆ€A O B A'.
¬Collinear A O B ∧ O ∈ open (A,A')
β‡’ int_angle A O B ∩ int_angle B O A' = βˆ…
InteriorReflectionInterior
|- βˆ€ A O B D A'.
O ∈ open (A,A') ∧ D ∈ int_angle A O B β‡’ B ∈ int_angle D O A'
Crossbar_THM
|- βˆ€ O A B D.
D ∈ int_angle A O B
β‡’ βˆƒ G. G ∈ open (A,B) ∧ G ∈ ray O D ━ O
AlternateConverseCrossbar
|- βˆ€ O A B G. Collinear A G B ∧ G ∈ int_angle A O B β‡’ G ∈ open (A,B)
InteriorOpposite
|- βˆ€ A O B P p.
P ∈ int_angle A O B ∧ Line p ∧ O ∈ p ∧ P ∈ p
β‡’ Β¬(A,B same_side p)
IntervalTransitivity
|- βˆ€ O P Q R m.
Line m ∧ O ∈ m ∧
P ∈ m ━ O ∧ Q ∈ m ━ O ∧ R ∈ m ━ O ∧
O βˆ‰ open (P,Q) ∧ O βˆ‰ open (Q,R)
β‡’ O βˆ‰ open (P,R)
RayWellDefinedHalfway
|- βˆ€ O P Q. Β¬(Q = O) ∧ P ∈ ray O Q ━ O β‡’ ray O P βŠ‚ ray O Q
RayWellDefined
|- βˆ€ O P Q. Β¬(Q = O) ∧ P ∈ ray O Q ━ O β‡’ ray O P = ray O Q
OppositeRaysIntersect1pointHelp
|- βˆ€ A O B X.
O ∈ open (A,B) ∧ X ∈ ray O B ━ O
β‡’ X βˆ‰ ray O A ∧ O ∈ open (X,A)
OppositeRaysIntersect1point
|- βˆ€ A O B. O ∈ open (A,B) β‡’ ray O A ∩ ray O B = {O}
IntervalRay
|- βˆ€ A B C. B ∈ open (A,C) β‡’ ray A B = ray A C
Reverse4Order
|- βˆ€ A B C D. ordered A B C D β‡’ ordered D C B A
TransitivityBetweennessHelp
|- βˆ€ A B C D. B ∈ open (A,C) ∧ C ∈ open (B,D) β‡’ B ∈ open (A,D)
TransitivityBetweenness
|- βˆ€ A B C D. B ∈ open (A,C) ∧ C ∈ open (B,D) β‡’ ordered A B C D
IntervalsAreConvex
|- βˆ€ A B C. B ∈ open (A,C) β‡’ open (A,B) βŠ‚ open (A,C)
TransitivityBetweennessVariant
|- βˆ€ A X B C. X ∈ open (A,B) ∧ B ∈ open (A,C) β‡’ ordered A X B C
Interval2sides2aLineHelp
|- βˆ€ A B C X. B ∈ open (A,C) β‡’ X βˆ‰ open (A,B) ∨ X βˆ‰ open (B,C)
Interval2sides2aLine
|- βˆ€ A B C X.
Collinear A B C
β‡’ X βˆ‰ open (A,B) ∨ X βˆ‰ open (A,C) ∨ X βˆ‰ open (B,C)
TwosidesTriangle2aLine
|- βˆ€A B C Y l m.
Line l ∧ Β¬Collinear A B C ∧ A βˆ‰ l ∧ B βˆ‰ l ∧ C βˆ‰ l ∧
Line m ∧ A ∈ m ∧ C ∈ m ∧
Y ∈ l ∧ Y ∈ m ∧ ¬(A,B same_side l) ∧ ¬(B,C same_side l)
β‡’ A,C same_side l
LineUnionOf2Rays
|- βˆ€ A O B l.
Line l ∧ A ∈ l ∧ B ∈ l ∧ O ∈ open (A,B)
β‡’ l = ray O A βˆͺ ray O B
AtMost2Sides
|- βˆ€ A B C l.
Line l ∧ A βˆ‰ l ∧ B βˆ‰ l ∧ C βˆ‰ l
β‡’ A,B same_side l ∨ A,C same_side l ∨ B,C same_side l
FourPointsOrder
|- βˆ€ A B C X l.
Line l ∧ A ∈ l ∧ B ∈ l ∧ C ∈ l ∧ X ∈ l ∧ B ∈ open (A,C) ∧
¬(X = A) ∧ ¬(X = B) ∧ ¬(X = C)
β‡’ ordered X A B C ∨ ordered A X B C ∨ ordered A B X C ∨ ordered A B C X
HilbertAxiomRedundantByMoore
|- βˆ€ A B C D l.
Line l ∧ A ∈ l ∧ B ∈ l ∧ C ∈ l ∧ D ∈ l ∧
¬(A = B) ∧ ¬(A = C) ∧ ¬(A = D) ∧ ¬(B = C) ∧ ¬(B = D) ∧ ¬(C = D)
β‡’ ordered D A B C ∨ ordered A D B C ∨ ordered A B D C ∨
ordered A B C D ∨ ordered D A C B ∨ ordered A D C B ∨
ordered A C D B ∨ ordered A C B D ∨ ordered D C A B ∨
ordered C D A B ∨ ordered C A D B ∨ ordered C A B D
InteriorTransitivity
|- βˆ€A O B F G.
G ∈ int_angle A O B ∧ F ∈ int_angle A O G
β‡’ F ∈ int_angle A O B
HalfPlaneConvexNonempty
|- βˆ€l H A.
Line l ∧ A βˆ‰ l ∧ H = {X | X βˆ‰ l ∧ X,A same_side l}
β‡’ Β¬(H = βˆ…) ∧ H βŠ‚ complement l ∧ Convex H
PlaneSeparation
|- βˆ€ l. Line l
β‡’ βˆƒ H1 H2.
H1 ∩ H2 = βˆ… ∧ Β¬(H1 = βˆ…) ∧ Β¬(H2 = βˆ…) ∧
Convex H1 ∧ Convex H2 ∧ complement l = H1 βˆͺ H2 ∧
βˆ€ P Q. P ∈ H1 ∧ Q ∈ H2 β‡’ Β¬(P,Q same_side l)
TetralateralSymmetry
|- βˆ€ A B C D.
Tetralateral A B C D
β‡’ Tetralateral B C D A ∧ Tetralateral A B D C
EasyEmptyIntersectionsTetralateralHelp
|- βˆ€ A B C D. Tetralateral A B C D β‡’ open (A,B) ∩ open (B,C) = βˆ…
EasyEmptyIntersectionsTetralateral
|- βˆ€ A B C D.
Tetralateral A B C D
β‡’ open (A,B) ∩ open (B,C) = βˆ… ∧ open (B,C) ∩ open (C,D) = βˆ… ∧
open (C,D) ∩ open (D,A) = βˆ… ∧ open (D,A) ∩ open (A,B) = βˆ…
SegmentSameSideOppositeLine
|- βˆ€ A B C D a c.
Quadrilateral A B C D ∧
Line a ∧ A ∈ a ∧ B ∈ a ∧ Line c ∧ C ∈ c ∧ D ∈ c
β‡’ A,B same_side c ∨ C,D same_side a
ConvexImpliesQuad
|- βˆ€ A B C D.
Tetralateral A B C D ∧
C ∈ int_angle D A B ∧ D ∈ int_angle A B C
β‡’ Quadrilateral A B C D
DiagonalsIntersectImpliesConvexQuad
|- βˆ€ A B C D G.
¬Collinear B C D ∧ G ∈ open (A,C) ∧ G ∈ open (B,D)
β‡’ ConvexQuadrilateral A B C D
DoubleNotSimImpliesDiagonalsIntersect
|- βˆ€ A B C D l m.
Line l ∧ A ∈ l ∧ C ∈ l ∧
Line m ∧ B ∈ m ∧ D ∈ m ∧
Tetralateral A B C D ∧
¬(B,D same_side l) ∧ ¬(A,C same_side m)
β‡’ (βˆƒ G. G ∈ open (A,C) ∩ open (B,D)) ∧
ConvexQuadrilateral A B C D
ConvexQuadImpliesDiagonalsIntersect
|- βˆ€ A B C D l m.
Line l ∧ A ∈ l ∧ C ∈ l ∧
Line m ∧ B ∈ m ∧ D ∈ m ∧
ConvexQuadrilateral A B C D
β‡’ Β¬(B,D same_side l) ∧ Β¬(A,C same_side m) ∧
(βˆƒ G. G ∈ open (A,C) ∩ open (B,D)) ∧
Β¬Quadrilateral A B D C
FourChoicesTetralateralHelp
|- βˆ€ A B C D.
Tetralateral A B C D ∧ C ∈ int_angle D A B
β‡’ ConvexQuadrilateral A B C D ∨ C ∈ int_triangle D A B
InteriorTriangleSymmetry
|- βˆ€ A B C P. P ∈ int_triangle A B C β‡’ P ∈ int_triangle B C A
FourChoicesTetralateral
|- βˆ€ A B C D a.
Tetralateral A B C D ∧ Line a ∧ A ∈ a ∧ B ∈ a ∧
C,D same_side a
β‡’ ConvexQuadrilateral A B C D ∨ ConvexQuadrilateral A B D C ∨
D ∈ int_triangle A B C ∨ C ∈ int_triangle D A B
QuadrilateralSymmetry
|- βˆ€ A B C D.
Quadrilateral A B C D
β‡’ Quadrilateral B C D A ∧
Quadrilateral C D A B ∧
Quadrilateral D A B C
FiveChoicesQuadrilateral
|- βˆ€ A B C D l m.
Quadrilateral A B C D ∧
Line l ∧ A ∈ l ∧ C ∈ l ∧
Line m ∧ B ∈ m ∧ D ∈ m
β‡’ (ConvexQuadrilateral A B C D ∨
A ∈ int_triangle B C D ∨ B ∈ int_triangle C D A ∨
C ∈ int_triangle D A B ∨ D ∈ int_triangle A B C) ∧
(¬(B,D same_side l) ∨ ¬(A,C same_side m))
IntervalSymmetry |- βˆ€ A B. open (A,B) = open (B,A)
SegmentSymmetry |- βˆ€ A B. seg A B = seg B A
C1OppositeRay
|- βˆ€ O P s.
Segment s ∧ Β¬(O = P) β‡’ βˆƒ Q. P ∈ open (O,Q) ∧ seg P Q ≑ s
OrderedCongruentSegments
|- βˆ€ A B C D F.
Β¬(A = C) ∧ Β¬(D = F) ∧ seg A C ≑ seg D F ∧ B ∈ open (A,C)
β‡’ βˆƒ E. E ∈ open (D,F) ∧ seg A B ≑ seg D E
SegmentSubtraction
|- βˆ€ A B C A' B' C'.
B ∈ open (A,C) ∧ B' ∈ open (A',C') ∧
seg A B ≑ seg A' B' ∧ seg A C ≑ seg A' C'
β‡’ seg B C ≑ seg B' C'
SegmentOrderingUse
|- βˆ€A B s.
Segment s ∧ ¬(A = B) ∧ s <__ seg A B
β‡’ βˆƒ G. G ∈ open (A,B) ∧ s ≑ seg A G
SegmentTrichotomy1 |- βˆ€ s t. s <__ t β‡’ Β¬(s ≑ t)
SegmentTrichotomy2
|- βˆ€ s t u. s <__ t ∧ Segment u ∧ t ≑ u β‡’ s <__ u
SegmentOrderTransitivity
|- βˆ€ s t u. s <__ t ∧ t <__ u β‡’ s <__ u
SegmentTrichotomy
|- βˆ€ s t.
Segment s ∧ Segment t
β‡’ (s ≑ t ∨ s <__ t ∨ t <__ s) ∧
Β¬(s ≑ t ∧ s <__ t) ∧ Β¬(s ≑ t ∧ t <__ s) ∧ Β¬(s <__ t ∧ t <__ s)
C4Uniqueness
|- βˆ€ O A B P l.
Line l ∧ O ∈ l ∧ A ∈ l ∧ ¬(O = A) ∧
B βˆ‰ l ∧ P βˆ‰ l ∧ P,B same_side l ∧ ∑ A O P ≑ ∑ A O B
β‡’ ray O B = ray O P
AngleSymmetry |- βˆ€ A O B. ∑ A O B = ∑ B O A
TriangleCongSymmetry
|- βˆ€ A B C A' B' C'.
A,B,C β‰… A',B',C'
β‡’ A,C,B β‰… A',C',B' ∧ B,A,C β‰… B',A',C' ∧
B,C,A β‰… B',C',A' ∧ C,A,B β‰… C',A',B' ∧ C,B,A β‰… C',B',A'
SAS
|- βˆ€ A B C A' B' C'.
¬Collinear A B C ∧ ¬Collinear A' B' C' ∧
seg B A ≑ seg B' A' ∧ seg B C ≑ seg B' C' ∧
∑ A B C ≑ ∑ A' B' C'
β‡’ A,B,C β‰… A',B',C'
ASA
|- βˆ€ A B C A' B' C'.
¬Collinear A B C ∧ ¬Collinear A' B' C' ∧
seg A C ≑ seg A' C' ∧
∑ C A B ≑ ∑ C' A' B' ∧ ∑ B C A ≑ ∑ B' C' A'
β‡’ A,B,C β‰… A',B',C'
AngleSubtraction
|- βˆ€ A O B A' O' B' G G'.
G ∈ int_angle A O B ∧ G' ∈ int_angle A' O' B' ∧
∑ A O B ≑ ∑ A' O' B' ∧ ∑ A O G ≑ ∑ A' O' G'
β‡’ ∑ G O B ≑ ∑ G' O' B'
OrderedCongruentAngles
|- βˆ€ A O B A' O' B' G.
Β¬Collinear A' O' B' ∧ ∑ A O B ≑ ∑ A' O' B' ∧
G ∈ int_angle A O B
β‡’ βˆƒ G'. G' ∈ int_angle A' O' B' ∧ ∑ A O G ≑ ∑ A' O' G'
AngleAddition
|- βˆ€ A O B A' O' B' G G'.
G ∈ int_angle A O B ∧ G' ∈ int_angle A' O' B' ∧
∑ A O G ≑ ∑ A' O' G' ∧ ∑ G O B ≑ ∑ G' O' B' ∧
β‡’ ∑ A O B ≑ ∑ A' O' B'
AngleOrderingUse
|- βˆ€ A O B Ξ±.
Angle α ∧ ¬Collinear A O B ∧ α <_ang ∑ A O B
β‡’ (βˆƒ G. G ∈ int_angle A O B ∧ Ξ± ≑ ∑ A O G)
AngleTrichotomy1
|- βˆ€ Ξ± Ξ². Ξ± <_ang Ξ² β‡’ Β¬(Ξ± ≑ Ξ²)
AngleTrichotomy2
|- βˆ€ Ξ± Ξ² Ξ³.
Ξ± <_ang Ξ² ∧ Angle Ξ³ ∧ Ξ² ≑ Ξ³
β‡’ Ξ± <_ang Ξ³
AngleOrderTransitivity
|- βˆ€Ξ± Ξ² Ξ³.
α <_ang β ∧ β <_ang γ
β‡’ Ξ± <_ang Ξ³
AngleTrichotomy
|- βˆ€ Ξ± Ξ².
Angle α ∧ Angle β
β‡’ (Ξ± ≑ Ξ² ∨ Ξ± <_ang Ξ² ∨ Ξ² <_ang Ξ±) ∧
Β¬(Ξ± ≑ Ξ² ∧ Ξ± <_ang Ξ²) ∧
Β¬(Ξ± ≑ Ξ² ∧ Ξ² <_ang Ξ±) ∧
¬(α <_ang β ∧ β <_ang α)
SupplementExists
|- βˆ€ Ξ±. Angle Ξ± β‡’ βˆƒ Ξ±'. Ξ± suppl Ξ±'
SupplementImpliesAngle
|- βˆ€ Ξ± Ξ². Ξ± suppl Ξ² β‡’ Angle Ξ± ∧ Angle Ξ²
RightImpliesAngle |- βˆ€ Ξ±. Right Ξ± β‡’ Angle Ξ±
SupplementSymmetry
|- βˆ€ Ξ± Ξ². Ξ± suppl Ξ² β‡’ Ξ² suppl Ξ±
SupplementsCongAnglesCong
|- βˆ€ Ξ± Ξ² Ξ±' Ξ²'.
Ξ± suppl Ξ±' ∧ Ξ² suppl Ξ²' ∧ Ξ± ≑ Ξ²
β‡’ Ξ±' ≑ Ξ²'
SupplementUnique
|- βˆ€ Ξ± Ξ² Ξ²'.
Ξ± suppl Ξ² ∧ Ξ± suppl Ξ²' β‡’ Ξ² ≑ Ξ²'
CongRightImpliesRight
|- βˆ€ Ξ± Ξ².
Angle Ξ± ∧ Right Ξ² ∧ Ξ± ≑ Ξ² β‡’ Right Ξ±
RightAnglesCongruentHelp
|- βˆ€ A O B A' P a.
¬Collinear A O B ∧ O ∈ open (A,A')
Right (∑ A O B) ∧ Right (∑ A O P)
β‡’ P βˆ‰ int_angle A O B
RightAnglesCongruent
|- βˆ€ Ξ± Ξ². Right Ξ± ∧ Right Ξ² β‡’ Ξ± ≑ Ξ²
OppositeRightAnglesLinear
|- βˆ€ A B O H h.
¬Collinear A O H ∧ ¬Collinear H O B ∧
Right (∑ A O H) ∧ Right (∑ H O B) ∧
Line h ∧ O ∈ h ∧ H ∈ h ∧ ¬(A,B same_side h)
β‡’ O ∈ open (A,B)
RightImpliesSupplRight
|- βˆ€ A O B A'.
¬Collinear A O B ∧ O ∈ open (A,A') ∧ Right (∑ A O B)
β‡’ Right (∑ B O A')
IsoscelesCongBaseAngles
|- βˆ€ A B C.
Β¬Collinear A B C ∧ seg B A ≑ seg B C
β‡’ ∑ C A B ≑ ∑ A C B
C4withC1
|- βˆ€ Ξ± l O A Y P Q.
Angle α ∧ ¬(O = A) ∧ ¬(P = Q) ∧
Line l ∧ O ∈ l ∧ A ∈ l ∧ Y βˆ‰ l
β‡’ βˆƒ N. Β¬(O = N) ∧ N βˆ‰ l ∧ N,Y same_side l ∧
seg O N ≑ seg P Q ∧ ∑ A O N ≑ Ξ±
C4OppositeSide
|- βˆ€ Ξ± l O A Z P Q.
Angle α ∧ ¬(O = A) ∧ ¬(P = Q) ∧
Line l ∧ O ∈ l ∧ A ∈ l ∧ Z βˆ‰ l
β‡’ βˆƒ N. Β¬(O = N) ∧ N βˆ‰ l ∧ Β¬(Z,N same_side l) ∧
seg O N ≑ seg P Q ∧ ∑ A O N ≑ Ξ±
SSS
|- βˆ€ A B C A' B' C'.
¬Collinear A B C ∧ ¬Collinear A' B' C' ∧
seg A B ≑ seg A' B' ∧ seg A C ≑ seg A' C' ∧ seg B C ≑ seg B' C'
β‡’ A,B,C β‰… A',B',C'
AngleBisector
|- βˆ€ A B C.
Β¬Collinear B A C
β‡’ βˆƒ F. F ∈ int_angle B A C ∧ ∑ B A F ≑ ∑ F A C
EuclidPropositionI_6
|- βˆ€ A B C.
Β¬Collinear A B C ∧ ∑ B A C ≑ ∑ B C A
β‡’ seg B A ≑ seg B C
IsoscelesExists
|- βˆ€ A B. Β¬(A = B) β‡’ βˆƒ D. Β¬Collinear A D B ∧ seg D A ≑ seg D B
MidpointExists
|- βˆ€ A B. Β¬(A = B) β‡’ βˆƒ M. M ∈ open (A,B) ∧ seg A M ≑ seg M B
EuclidPropositionI_7short
|- βˆ€ A B C D a.
Β¬(A = B) ∧ Line a ∧ A ∈ a ∧ B ∈ a ∧ Β¬(C = D) ∧ C βˆ‰ a ∧ D βˆ‰ a ∧
C,D same_side a ∧ seg A C ≑ seg A D
β‡’ Β¬(seg B C ≑ seg B D)
EuclidPropI_7Help
|- βˆ€ A B C D a.
Β¬(A = B) ∧ Line a ∧ A ∈ a ∧ B ∈ a ∧ Β¬(C = D) ∧ C βˆ‰ a ∧ D βˆ‰ a ∧
C,D same_side a ∧ seg A C ≑ seg A D ∧
(C ∈ int_triangle D A B ∨ ConvexQuadrilateral A B C D)
β‡’ Β¬(seg B C ≑ seg B D)
EuclidPropositionI_7
|- βˆ€ A B C D a.
Β¬(A = B) ∧ Line a ∧ A ∈ a ∧ B ∈ a ∧ Β¬(C = D) ∧ C βˆ‰ a ∧ D βˆ‰ a ∧
C,D same_side a ∧ seg A C ≑ seg A D
β‡’ Β¬(seg B C ≑ seg B D)
EuclidPropositionI_11
|- βˆ€A B. Β¬(A = B) β‡’ βˆƒ F. Right (∑ A B F)
DropPerpendicularToLine
|- βˆ€ P l.
Line l ∧ P βˆ‰ l
β‡’ βˆƒ E Q. E ∈ l ∧ Q ∈ l ∧ Right (∑ P Q E)
EuclidPropositionI_14
|- βˆ€ A B C D l.
Line l ∧ A ∈ l ∧ B ∈ l ∧ ¬(A = B) ∧
C βˆ‰ l ∧ D βˆ‰ l ∧ Β¬(C,D same_side l) ∧
∑ C B A suppl ∑ A B D
β‡’ B ∈ open (C,D)
VerticalAnglesCong
|- βˆ€ A B O A' B'.
¬Collinear A O B ∧ O ∈ open (A,A') ∧ O ∈ open (B,B')
β‡’ ∑ B O A' ≑ ∑ B' O A
EuclidPropositionI_16
|- βˆ€ A B C D.
¬Collinear A B C ∧ C ∈ open (B,D)
β‡’ ∑ B A C <_ang ∑ D C A
ExteriorAngle
|- βˆ€ A B C D.
¬Collinear A B C ∧ C ∈ open (B,D)
β‡’ ∑ A B C <_ang ∑ A C D
EuclidPropositionI_17
|- βˆ€ A B C Ξ± Ξ² Ξ³.
¬Collinear A B C ∧ α = ∑ A B C ∧ β = ∑ B C A ∧ β suppl γ
β‡’ Ξ± <_ang Ξ³
EuclidPropositionI_18
|- βˆ€ A B C.
¬Collinear A B C ∧ seg A C <__ seg A B
β‡’ ∑ A B C <_ang ∑ B C A
EuclidPropositionI_19
|- βˆ€ A B C.
¬Collinear A B C ∧ ∑ A B C <_ang ∑ B C A
β‡’ seg A C <__ seg A B
EuclidPropositionI_20
|- βˆ€ A B C D.
Β¬Collinear A B C ∧ A ∈ open (B,D) ∧ seg A D ≑ seg A C
β‡’ seg B C <__ seg B D
EuclidPropositionI_21
|- βˆ€ A B C D.
¬Collinear A B C ∧ D ∈ int_triangle A B C
β‡’ ∑ A B C <_ang ∑ C D A
AngleTrichotomy3
|- βˆ€ Ξ± Ξ² Ξ³.
Ξ± <_ang Ξ² ∧ Angle Ξ³ ∧ Ξ³ ≑ Ξ±
β‡’ Ξ³ <_ang Ξ²
InteriorCircleConvexHelp
|- βˆ€ O A B C.
¬Collinear A O C ∧ B ∈ open (A,C) ∧
seg O A <__ seg O C ∨ seg O A ≑ seg O C
β‡’ seg O B <__ seg O C
InteriorCircleConvex
|- βˆ€ O R A B C.
¬(O = R) ∧ B ∈ open (A,C) ∧
A ∈ int_circle O R ∧ C ∈ int_circle O R
β‡’ B ∈ int_circle O R
SegmentTrichotomy3
|- βˆ€ s t u. s <__ t ∧ Segment u ∧ u ≑ s β‡’ u <__ t
EuclidPropositionI_24Help
|- βˆ€ O A C O' D F.
¬Collinear A O C ∧ ¬Collinear D O' F ∧
seg O' D ≑ seg O A ∧ seg O' F ≑ seg O C ∧
∑ D O' F <_ang ∑ A O C ∧
seg O A <__ seg O C ∨ seg O A ≑ seg O C
β‡’ seg D F <__ seg A C
EuclidPropositionI_24
|- βˆ€ O A C O' D F.
¬Collinear A O C ∧ ¬Collinear D O' F ∧
seg O' D ≑ seg O A ∧ seg O' F ≑ seg O C ∧
∑ D O' F <_ang ∑ A O C
β‡’ seg D F <__ seg A C
EuclidPropositionI_25
|- βˆ€ O A C O' D F.
¬Collinear A O C ∧ ¬Collinear D O' F ∧
seg O' D ≑ seg O A ∧ seg O' F ≑ seg O C ∧
seg D F <__ seg A C
β‡’ ∑ D O' F <_ang ∑ A O C
AAS
|- βˆ€ A B C A' B' C'.
¬Collinear A B C ∧ ¬Collinear A' B' C' ∧
∑ A B C ≑ ∑ A' B' C' ∧ ∑ B C A ≑ ∑ B' C' A' ∧
seg A B ≑ seg A' B'
β‡’ A,B,C β‰… A',B',C'
ParallelSymmetry |- βˆ€ l k. l βˆ₯ k β‡’ k βˆ₯ l
AlternateInteriorAngles
|- βˆ€ A B C E l m t.
Line l ∧ A ∈ l ∧ E ∈ l ∧
Line m ∧ B ∈ m ∧ C ∈ m ∧
Line t ∧ A ∈ t ∧ B ∈ t ∧
Β¬(A = E) ∧ Β¬(B = C) ∧ Β¬(A = B) ∧ E βˆ‰ t ∧ C βˆ‰ t ∧
Β¬(C,E same_side t) ∧ ∑ E A B ≑ ∑ C B A
β‡’ l βˆ₯ m
EuclidPropositionI_28
|- βˆ€ A B C D E F G H l m t.
Line l ∧ A ∈ l ∧ B ∈ l ∧ G ∈ l ∧
Line m ∧ C ∈ m ∧ D ∈ m ∧ H ∈ m ∧
Line t ∧ G ∈ t ∧ H ∈ t ∧ G βˆ‰ m ∧ H βˆ‰ l ∧
G ∈ open (A,B) ∧ H ∈ open (C,D) ∧
G ∈ open (E,H) ∧ H ∈ open (F,G) ∧ ¬(D,A same_side t) ∧
∑ E G B ≑ ∑ G H D ∨ ∑ B G H suppl ∑ G H D
β‡’ l βˆ₯ m
OppositeSidesCongImpliesParallelogram
|- βˆ€ A B C D.
Quadrilateral A B C D ∧
seg A B ≑ seg C D ∧ seg B C ≑ seg D A
β‡’ Parallelogram A B C D
OppositeAnglesCongImpliesParallelogramHelp
|- βˆ€ A B C D a c.
Quadrilateral A B C D ∧
∑ A B C ≑ ∑ C D A ∧ ∑ D A B ≑ ∑ B C D ∧
Line a ∧ A ∈ a ∧ B ∈ a ∧ Line c ∧ C ∈ c ∧ D ∈ c
β‡’ a βˆ₯ c
OppositeAnglesCongImpliesParallelogram
|- βˆ€ A B C D.
Quadrilateral A B C D ∧
∑ A B C ≑ ∑ C D A ∧ ∑ D A B ≑ ∑ B C D
β‡’ Parallelogram A B C D
P |- βˆ€ P l. Line l ∧ P βˆ‰ l β‡’ βˆƒ! m. Line m ∧ P ∈ m ∧ m βˆ₯ l
AMa |- βˆ€ Ξ±. Angle Ξ± β‡’ &0 < ΞΌ Ξ± ∧ ΞΌ Ξ± < &180
AMb |- βˆ€ Ξ±. Right Ξ± β‡’ ΞΌ Ξ± = &90
AMc |- βˆ€ Ξ± Ξ². Angle Ξ± ∧ Angle Ξ² ∧ Ξ± ≑ Ξ² β‡’ ΞΌ Ξ± = ΞΌ Ξ²
AMd |- βˆ€ A O B P. P ∈ int_angle A O B
β‡’ ΞΌ (∑ A O B) = ΞΌ (∑ A O P) + ΞΌ (∑ P O B)
ConverseAlternateInteriorAngles
|- βˆ€ A B C E l m t.
Line l ∧ A ∈ l ∧ E ∈ l ∧
Line m ∧ B ∈ m ∧ C ∈ m ∧
Line t ∧ A ∈ t ∧ B ∈ t ∧
Β¬(A = E) ∧ Β¬(B = C) ∧ Β¬(A = B) ∧ E βˆ‰ t ∧ C βˆ‰ t ∧
Β¬(C,E same_side t) ∧ l βˆ₯ m
β‡’ ∑ E A B ≑ ∑ C B A
HilbertTriangleSum
|- βˆ€ A B C.
Β¬Collinear A B C
β‡’ βˆƒ E F.
B ∈ open (E,F) ∧ C ∈ int_angle A B F ∧
∑ E B A ≑ ∑ C A B ∧ ∑ C B F ≑ ∑ B C A
EuclidPropositionI_13
|- βˆ€A O B A'.
¬Collinear A O B ∧ O ∈ open (A,A')
β‡’ ΞΌ (∑ A O B) + ΞΌ (∑ B O A') = &180
TriangleSum
|- βˆ€ A B C.
Β¬Collinear A B C
β‡’ ΞΌ (∑ A B C) + ΞΌ (∑ B C A) + ΞΌ (∑ C A B) = &180