Datasets:
Tasks:
Text Generation
Modalities:
Text
Sub-tasks:
language-modeling
Languages:
English
Size:
100K - 1M
License:
ocaml | |
#use "hol.ml";; | |
#load "unix.cma";; | |
loadt "miz3/miz3.ml";; | |
reset_miz3 0;; | |
verbose := true;; | |
report_timing := true;; | |
Theorem/Proof templates: | |
let = theorem `; | |
proof | |
qed; | |
`;; | |
interactive_goal `; | |
`;; | |
interactive_proof `; | |
`;; | |
interactive_proof `; | |
`;; | |
interactive_proof `; | |
`;; | |
interactive_proof `; | |
`;; | |
interactive_proof `; | |
`;; | |
β |- β a l. a β l β Β¬(a β l) | |
Interval_DEF |- β A B X. open (A,B) = {X | Between A X B} | |
Collinear_DEF | |
|- β A B C. Collinear A B C β β l. Line l β§ A β l β§ B β l β§ C β l | |
SameSide_DEF | |
|- β l A B. A,B same_side l β Line l β§ Β¬ β X. X β l β§ X β open (A,B) | |
Ray_DEF |- β A B. ray A B = | |
{X | Β¬(A = B) β§ Collinear A B X β§ A β open (X,B)} | |
Ordered_DEF | |
|- β A C B D. | |
ordered A B C D β | |
B β open (A,C) β§ B β open (A,D) β§ C β open (A,D) β§ C β open (B,D) | |
InteriorAngle_DEF |- β A O B. | |
int_angle A O B = | |
{P | Β¬Collinear A O B β§ | |
β a b. | |
Line a β§ O β a β§ A β a β§ | |
Line b β§ O β b β§ B β b β§ | |
P β a β§ P β b β§ | |
P,B same_side a β§ P,A same_side b} | |
InteriorTriangle_DEF | |
|- β A B C. | |
int_triangle A B C = | |
{P | P β int_angle A B C β§ | |
P β int_angle B C A β§ | |
P β int_angle C A B} | |
Tetralateral_DEF | |
|- β C D A B. | |
Tetralateral A B C D β | |
Β¬(A = B) β§ Β¬(A = C) β§ Β¬(A = D) β§ Β¬(B = C) β§ Β¬(B = D) β§ Β¬(C = D) β§ | |
Β¬Collinear A B C β§ Β¬Collinear B C D β§ Β¬Collinear C D A β§ Β¬Collinear D A B | |
Quadrilateral_DEF | |
|- β B C D A. | |
Quadrilateral A B C D β | |
Tetralateral A B C D β§ | |
open (A,B) β© open (C,D) = β β§ | |
open (B,C) β© open (D,A) = β | |
ConvexQuad_DEF | |
|- β D A B C. | |
ConvexQuadrilateral A B C D β | |
Quadrilateral A B C D β§ | |
A β int_angle B C D β§ | |
B β int_angle C D A β§ | |
C β int_angle D A B β§ | |
D β int_angle A B C | |
Segment_DEF |- β A B. seg A B = {A, B} βͺ open (A,B) | |
SEGMENT |- β s. Segment s β β A B. s = seg A B β§ Β¬(A = B) | |
SegmentOrdering_DEF | |
|- β t s. | |
s <__ t β | |
Segment s β§ | |
β C D X. t = seg C D β§ X β open (C,D) β§ s β‘ seg C X | |
Angle_DEF |- β A O B. β‘ A O B = ray O A βͺ ray O B | |
ANGLE | |
|- β Ξ±. Angle Ξ± β β A O B. Ξ± = β‘ A O B β§ Β¬Collinear A O B | |
AngleOrdering_DEF | |
|- β Ξ² Ξ±. | |
Ξ± <_ang Ξ² β | |
Angle Ξ± β§ | |
β A O B G. | |
Β¬Collinear A O B β§ Ξ² = β‘ A O B β§ | |
G β int_angle A O B β§ Ξ± β‘ β‘ A O G | |
RAY |- β r. Ray r β β O A. Β¬(O = A) β§ r = ray O A | |
TriangleCong_DEF | |
|- β A B C A' B' C'. | |
A,B,C β A',B',C' β | |
Β¬Collinear A B C β§ Β¬Collinear A' B' C' β§ | |
seg A B β‘ seg A' B' β§ | |
seg A C β‘ seg A' C' β§ | |
seg B C β‘ seg B' C' β§ | |
β‘ A B C β‘ β‘ A' B' C' β§ | |
β‘ B C A β‘ β‘ B' C' A' β§ | |
β‘ C A B β‘ β‘ C' A' B' | |
SupplementaryAngles_DEF | |
|- βΞ± Ξ². | |
Ξ± suppl Ξ² β | |
β A O B A'. | |
Β¬Collinear A O B β§ O β open (A,A') β§ | |
Ξ± = β‘ A O B β§ Ξ² = β‘ B O A' | |
RightAngle_DEF | |
|- βΞ±. Right Ξ± β β Ξ². Ξ± suppl Ξ² β§ Ξ± β‘ Ξ² | |
PlaneComplement_DEF | |
|- β Ξ±. complement Ξ± = {P | P β Ξ±} | |
CONVEX | |
|- βΞ±. Convex Ξ± β | |
β A B. A β Ξ± β§ B β Ξ± β open (A,B) β Ξ± | |
PARALLEL | |
|- β l k. l β₯ k β Line l β§ Line k β§ l β© k = β | |
Parallelogram_DEF | |
|- β A B C D. | |
Parallelogram A B C D β | |
Quadrilateral A B C D β§ | |
β a b c d. | |
Line a β§ A β a β§ B β a β§ Line b β§ B β b β§ C β b β§ | |
Line c β§ C β c β§ D β d β§ Line d β§ D β d β§ A β d β§ | |
a β₯ c β§ b β₯ d | |
InteriorCircle_DEF | |
|- β O R. int_circle O R = {P | Β¬(O = R) β§ (P = O β¨ seg O P <__ seg O R)} | |
I1 |- β A B. Β¬(A = B) β (β! l. Line l β§ A β l β§ B β l) | |
I2 |- β l. Line l β (β A B. A β l β§ B β l β§ Β¬(A = B)) | |
I3 |- β A B C. Β¬(A = B) β§ Β¬(A = C) β§ Β¬(B = C) β§ Β¬Collinear A B C | |
B1 |- β A B C. | |
Between A B C | |
β Β¬(A = B) β§ Β¬(A = C) β§ Β¬(B = C) β§ | |
Between C B A β§ Collinear A B C | |
B2 |- β A B. Β¬(A = B) β βC. Between A B C | |
B3 |- β A B C. | |
Β¬(A = B) β§ Β¬(A = C) β§ Β¬(B = C) β§ Collinear A B C | |
β (Between A B C β¨ Between B C A β¨ Between C A B) β§ | |
Β¬(Between A B C β§ Between B C A) β§ | |
Β¬(Between A B C β§ Between C A B) β§ | |
Β¬(Between B C A β§ Between C A B) | |
B4 |- β l A B C. | |
Line l β§ | |
Β¬Collinear A B C β§ | |
A β l β§ B β l β§ C β l β§ | |
(βX. X β l β§ Between A X C) | |
β (β Y. Y β l β§ Between A Y B) β¨ | |
(β Y. Y β l β§ Between B Y C) | |
C1 |- β s O Z. | |
Segment s β§ Β¬(O = Z) | |
β β! P. P β ray O Z β O β§ seg O P β‘ s | |
C2Reflexive |- Segment s β s β‘ s | |
C2Symmetric |- Segment s β§ Segment t β§ s β‘ t β t β‘ s | |
C2Transitive | |
|- Segment s β§ Segment t β§ Segment u β§ s β‘ t β§ t β‘ u β s β‘ u | |
C3 |- β A B C A' B' C'. | |
B β open (A,C) β§ B' β open (A',C') β§ | |
seg A B β‘ seg A' B' β§ seg B C β‘ seg B' C' | |
β seg A C β‘ seg A' C' | |
C4 |- β Ξ± O A l Y. | |
Angle Ξ± β§ Β¬(O = A) β§ Line l β§ O β l β§ A β l β§ Y β l | |
β β! r. Ray r β§ β B. Β¬(O = B) β§ r = ray O B β§ | |
B β l β§ B,Y same_side l β§ β‘ A O B β‘ Ξ± | |
C5Reflexive |- Angle Ξ± β Ξ± β‘ Ξ± | |
C5Symmetric | |
|- Angle Ξ± β§ Angle Ξ² β§ Ξ± β‘ Ξ² β Ξ² β‘ Ξ± | |
C5Transitive | |
|- Angle Ξ± β§ Angle Ξ² β§ Angle Ξ³ β§ Ξ± β‘ Ξ² β§ Ξ² β‘ Ξ³ | |
β Ξ± β‘ Ξ³ | |
C6 |- βA B C A' B' C'. | |
Β¬Collinear A B C β§ Β¬Collinear A' B' C' β§ | |
seg B A β‘ seg B' A' β§ seg B C β‘ seg B' C' β§ | |
β‘ A B C β‘ β‘ A' B' C' | |
β β‘ B C A β‘ β‘ B' C' A' | |
IN_Interval |- β A B X. X β open (A,B) β Between A X B | |
IN_Ray |- β A B X. | |
X β ray A B β Β¬(A = B) β§ Collinear A B X β§ A β open (X,B) | |
IN_InteriorAngle |- βA O B P. | |
P β int_angle A O B β Β¬Collinear A O B β§ β a b. | |
Line a β§ O β a β§ A β a β§ Line b β§ O β b β§ B β b β§ | |
P β a β§ P β b β§ P,B same_side a β§ P,A same_side b | |
IN_InteriorTriangle | |
|- βA B C P. | |
P β int_triangle A B C β | |
P β int_angle A B C β§ P β int_angle B C A β§ P β int_angle C A B | |
IN_PlaneComplement | |
|- βΞ± P. P β complement Ξ± β P β Ξ± | |
IN_InteriorCircle | |
|- β O R P. | |
P β int_circle O R β Β¬(O = R) β§ (P = O β¨ seg O P <__ seg O R) | |
B1' |- β A B C. | |
B β open (A,C) | |
β Β¬(A = B) β§ Β¬(A = C) β§ Β¬(B = C) β§ | |
B β open (C,A) β§ Collinear A B C | |
B2' |- β A B. Β¬(A = B) β (β C. B β open (A,C)) | |
B3' |- β A B C. | |
Β¬(A = B) β§ Β¬(A = C) β§ Β¬(B = C) β§ Collinear A B C | |
β (B β open (A,C) β¨ C β open (B,A) β¨ A β open (C,B)) β§ | |
Β¬(B β open (A,C) β§ C β open (B,A)) β§ | |
Β¬(B β open (A,C) β§ A β open (C,B)) β§ | |
Β¬(C β open (B,A) β§ A β open (C,B)) | |
B4' |- β l A B C. | |
Line l β§ Β¬Collinear A B C β§ A β l β§ B β l β§ C β l β§ | |
(β X. X β l β§ X β open (A,C)) | |
β (β Y. Y β l β§ Y β open (A,B)) β¨ | |
(β Y. Y β l β§ Y β open (B,C)) | |
B4'' |- β l A B C. | |
Line l β§ Β¬Collinear A B C β§ A β l β§ B β l β§ C β l β§ | |
A,B same_side l β§ B,C same_side l | |
β A,C same_side l | |
DisjointOneNotOther | |
|- β l m. (βx. x β m β x β l) β l β© m = β | |
EquivIntersectionHelp | |
|- β e x l m. | |
(l β© m = {x} β¨ m β© l = {x}) β§ e β m β x β e β l | |
CollinearSymmetry | |
|- β A B C. | |
Collinear A B C | |
β Collinear A C B β§ Collinear B A C β§ | |
Collinear B C A β§ Collinear C A B β§ Collinear C B A | |
ExistsNewPointOnLine | |
|- β P l. Line l β§ P β l β β Q. Q β l β§ Β¬(P = Q) | |
ExistsPointOffLine |- β l. Line l β β Q. Q β l | |
BetweenLinear | |
|- β A B C m. | |
Line m β§ A β m β§ C β m β§ | |
B β open (A,C) β¨ C β open (B,A) β¨ A β open (C,B) | |
β B β m | |
CollinearLinear | |
|- β A B C m. | |
Line m β§ A β m β§ C β m β§ Β¬(A = C) β§ | |
Collinear A B C β¨ Collinear B C A β¨ Collinear C A B | |
β B β m | |
NonCollinearImpliesDistinct | |
|- β A B C. Β¬Collinear A B C β Β¬(A = B) β§ Β¬(A = C) β§ Β¬(B = C) | |
NonCollinearRaa | |
|- βA B C l. | |
Β¬(A = C) β§ Line l β§ A β l β§ C β l β§ B β l | |
β Β¬Collinear A B C | |
TwoSidesTriangle1Intersection | |
|- βA B C Y. | |
Β¬Collinear A B C β§ Collinear B C Y β§ Collinear A C Y β Y = C | |
OriginInRay |- β O Q. Β¬(Q = O) β O β ray O Q | |
EndpointInRay |- β O Q. Β¬(Q = O) β Q β ray O Q | |
I1Uniqueness | |
|- β X l m. | |
Line l β§ Line m β§ Β¬(l = m) β§ X β l β§ X β m | |
β l β© m = {X} | |
EquivIntersection | |
|- β A B X l m. | |
Line l β§ Line m β§ l β© m = {X} β§ | |
A β m β X β§ B β m β X β§ X β open (A,B) | |
β A,B same_side l | |
RayLine | |
|- β O P l. Line l β§ O β l β§ P β l β ray O P β l | |
RaySameSide | |
|- β l O A P. | |
Line l β§ O β l β§ A β l β§ P β ray O A β O | |
β P β l β§ P,A same_side l | |
IntervalRayEZ | |
|- β A B C. | |
B β open (A,C) β B β ray A C β A β§ C β ray A B β A | |
NoncollinearityExtendsToLine | |
|- β A O B X. | |
Β¬Collinear A O B β§ Collinear O B X β§ Β¬(X = O) | |
β Β¬Collinear A O X | |
SameSideReflexive | |
|- β l A. Line l β§ A β l β A,A same_side l | |
SameSideSymmetric | |
|- β l A B. | |
Line l β§ A β l β§ B β l β§ A,B same_side l | |
β B,A same_side l | |
SameSideTransitive | |
|- βl A B C. | |
Line l β§ A β l β§ B β l β§ C β l β§ | |
A,B same_side l β§ B,C same_side l | |
β A,C same_side l | |
ConverseCrossbar | |
|- β O A B G. Β¬Collinear A O B β§ G β open (A,B) β G β int_angle A O B | |
InteriorUse | |
|- β A O B P a b. | |
Line a β§ O β a β§ A β a β§ | |
Line b β§ O β b β§ B β b β§ | |
P β int_angle A O B | |
β P β a β§ P β b β§ P,B same_side a β§ P,A same_side b | |
InteriorEZHelp | |
|- β A O B P. | |
P β int_angle A O B | |
β Β¬(P = A) β§ Β¬(P = O) β§ Β¬(P = B) β§ Β¬Collinear A O P | |
InteriorAngleSymmetry | |
|- β A O B P. P β int_angle A O B β P β int_angle B O A | |
InteriorWellDefined | |
|- β A O B X P. | |
P β int_angle A O B β§ X β ray O B β O β P β int_angle A O X | |
WholeRayInterior | |
|- βA O B X P. | |
X β int_angle A O B β§ P β ray O X β O | |
β P β int_angle A O B | |
AngleOrdering | |
|- β O A P Q a. | |
Β¬(O = A) β§ Line a β§ O β a β§ A β a β§ P β a β§ Q β a β§ | |
P,Q same_side a β§ Β¬Collinear P O Q | |
β P β int_angle Q O A β¨ Q β int_angle P O A | |
InteriorsDisjointSupplement | |
|- βA O B A'. | |
Β¬Collinear A O B β§ O β open (A,A') | |
β int_angle A O B β© int_angle B O A' = β | |
InteriorReflectionInterior | |
|- β A O B D A'. | |
O β open (A,A') β§ D β int_angle A O B β B β int_angle D O A' | |
Crossbar_THM | |
|- β O A B D. | |
D β int_angle A O B | |
β β G. G β open (A,B) β§ G β ray O D β O | |
AlternateConverseCrossbar | |
|- β O A B G. Collinear A G B β§ G β int_angle A O B β G β open (A,B) | |
InteriorOpposite | |
|- β A O B P p. | |
P β int_angle A O B β§ Line p β§ O β p β§ P β p | |
β Β¬(A,B same_side p) | |
IntervalTransitivity | |
|- β O P Q R m. | |
Line m β§ O β m β§ | |
P β m β O β§ Q β m β O β§ R β m β O β§ | |
O β open (P,Q) β§ O β open (Q,R) | |
β O β open (P,R) | |
RayWellDefinedHalfway | |
|- β O P Q. Β¬(Q = O) β§ P β ray O Q β O β ray O P β ray O Q | |
RayWellDefined | |
|- β O P Q. Β¬(Q = O) β§ P β ray O Q β O β ray O P = ray O Q | |
OppositeRaysIntersect1pointHelp | |
|- β A O B X. | |
O β open (A,B) β§ X β ray O B β O | |
β X β ray O A β§ O β open (X,A) | |
OppositeRaysIntersect1point | |
|- β A O B. O β open (A,B) β ray O A β© ray O B = {O} | |
IntervalRay | |
|- β A B C. B β open (A,C) β ray A B = ray A C | |
Reverse4Order | |
|- β A B C D. ordered A B C D β ordered D C B A | |
TransitivityBetweennessHelp | |
|- β A B C D. B β open (A,C) β§ C β open (B,D) β B β open (A,D) | |
TransitivityBetweenness | |
|- β A B C D. B β open (A,C) β§ C β open (B,D) β ordered A B C D | |
IntervalsAreConvex | |
|- β A B C. B β open (A,C) β open (A,B) β open (A,C) | |
TransitivityBetweennessVariant | |
|- β A X B C. X β open (A,B) β§ B β open (A,C) β ordered A X B C | |
Interval2sides2aLineHelp | |
|- β A B C X. B β open (A,C) β X β open (A,B) β¨ X β open (B,C) | |
Interval2sides2aLine | |
|- β A B C X. | |
Collinear A B C | |
β X β open (A,B) β¨ X β open (A,C) β¨ X β open (B,C) | |
TwosidesTriangle2aLine | |
|- βA B C Y l m. | |
Line l β§ Β¬Collinear A B C β§ A β l β§ B β l β§ C β l β§ | |
Line m β§ A β m β§ C β m β§ | |
Y β l β§ Y β m β§ Β¬(A,B same_side l) β§ Β¬(B,C same_side l) | |
β A,C same_side l | |
LineUnionOf2Rays | |
|- β A O B l. | |
Line l β§ A β l β§ B β l β§ O β open (A,B) | |
β l = ray O A βͺ ray O B | |
AtMost2Sides | |
|- β A B C l. | |
Line l β§ A β l β§ B β l β§ C β l | |
β A,B same_side l β¨ A,C same_side l β¨ B,C same_side l | |
FourPointsOrder | |
|- β A B C X l. | |
Line l β§ A β l β§ B β l β§ C β l β§ X β l β§ B β open (A,C) β§ | |
Β¬(X = A) β§ Β¬(X = B) β§ Β¬(X = C) | |
β ordered X A B C β¨ ordered A X B C β¨ ordered A B X C β¨ ordered A B C X | |
HilbertAxiomRedundantByMoore | |
|- β A B C D l. | |
Line l β§ A β l β§ B β l β§ C β l β§ D β l β§ | |
Β¬(A = B) β§ Β¬(A = C) β§ Β¬(A = D) β§ Β¬(B = C) β§ Β¬(B = D) β§ Β¬(C = D) | |
β ordered D A B C β¨ ordered A D B C β¨ ordered A B D C β¨ | |
ordered A B C D β¨ ordered D A C B β¨ ordered A D C B β¨ | |
ordered A C D B β¨ ordered A C B D β¨ ordered D C A B β¨ | |
ordered C D A B β¨ ordered C A D B β¨ ordered C A B D | |
InteriorTransitivity | |
|- βA O B F G. | |
G β int_angle A O B β§ F β int_angle A O G | |
β F β int_angle A O B | |
HalfPlaneConvexNonempty | |
|- βl H A. | |
Line l β§ A β l β§ H = {X | X β l β§ X,A same_side l} | |
β Β¬(H = β ) β§ H β complement l β§ Convex H | |
PlaneSeparation | |
|- β l. Line l | |
β β H1 H2. | |
H1 β© H2 = β β§ Β¬(H1 = β ) β§ Β¬(H2 = β ) β§ | |
Convex H1 β§ Convex H2 β§ complement l = H1 βͺ H2 β§ | |
β P Q. P β H1 β§ Q β H2 β Β¬(P,Q same_side l) | |
TetralateralSymmetry | |
|- β A B C D. | |
Tetralateral A B C D | |
β Tetralateral B C D A β§ Tetralateral A B D C | |
EasyEmptyIntersectionsTetralateralHelp | |
|- β A B C D. Tetralateral A B C D β open (A,B) β© open (B,C) = β | |
EasyEmptyIntersectionsTetralateral | |
|- β A B C D. | |
Tetralateral A B C D | |
β open (A,B) β© open (B,C) = β β§ open (B,C) β© open (C,D) = β β§ | |
open (C,D) β© open (D,A) = β β§ open (D,A) β© open (A,B) = β | |
SegmentSameSideOppositeLine | |
|- β A B C D a c. | |
Quadrilateral A B C D β§ | |
Line a β§ A β a β§ B β a β§ Line c β§ C β c β§ D β c | |
β A,B same_side c β¨ C,D same_side a | |
ConvexImpliesQuad | |
|- β A B C D. | |
Tetralateral A B C D β§ | |
C β int_angle D A B β§ D β int_angle A B C | |
β Quadrilateral A B C D | |
DiagonalsIntersectImpliesConvexQuad | |
|- β A B C D G. | |
Β¬Collinear B C D β§ G β open (A,C) β§ G β open (B,D) | |
β ConvexQuadrilateral A B C D | |
DoubleNotSimImpliesDiagonalsIntersect | |
|- β A B C D l m. | |
Line l β§ A β l β§ C β l β§ | |
Line m β§ B β m β§ D β m β§ | |
Tetralateral A B C D β§ | |
Β¬(B,D same_side l) β§ Β¬(A,C same_side m) | |
β (β G. G β open (A,C) β© open (B,D)) β§ | |
ConvexQuadrilateral A B C D | |
ConvexQuadImpliesDiagonalsIntersect | |
|- β A B C D l m. | |
Line l β§ A β l β§ C β l β§ | |
Line m β§ B β m β§ D β m β§ | |
ConvexQuadrilateral A B C D | |
β Β¬(B,D same_side l) β§ Β¬(A,C same_side m) β§ | |
(β G. G β open (A,C) β© open (B,D)) β§ | |
Β¬Quadrilateral A B D C | |
FourChoicesTetralateralHelp | |
|- β A B C D. | |
Tetralateral A B C D β§ C β int_angle D A B | |
β ConvexQuadrilateral A B C D β¨ C β int_triangle D A B | |
InteriorTriangleSymmetry | |
|- β A B C P. P β int_triangle A B C β P β int_triangle B C A | |
FourChoicesTetralateral | |
|- β A B C D a. | |
Tetralateral A B C D β§ Line a β§ A β a β§ B β a β§ | |
C,D same_side a | |
β ConvexQuadrilateral A B C D β¨ ConvexQuadrilateral A B D C β¨ | |
D β int_triangle A B C β¨ C β int_triangle D A B | |
QuadrilateralSymmetry | |
|- β A B C D. | |
Quadrilateral A B C D | |
β Quadrilateral B C D A β§ | |
Quadrilateral C D A B β§ | |
Quadrilateral D A B C | |
FiveChoicesQuadrilateral | |
|- β A B C D l m. | |
Quadrilateral A B C D β§ | |
Line l β§ A β l β§ C β l β§ | |
Line m β§ B β m β§ D β m | |
β (ConvexQuadrilateral A B C D β¨ | |
A β int_triangle B C D β¨ B β int_triangle C D A β¨ | |
C β int_triangle D A B β¨ D β int_triangle A B C) β§ | |
(Β¬(B,D same_side l) β¨ Β¬(A,C same_side m)) | |
IntervalSymmetry |- β A B. open (A,B) = open (B,A) | |
SegmentSymmetry |- β A B. seg A B = seg B A | |
C1OppositeRay | |
|- β O P s. | |
Segment s β§ Β¬(O = P) β β Q. P β open (O,Q) β§ seg P Q β‘ s | |
OrderedCongruentSegments | |
|- β A B C D F. | |
Β¬(A = C) β§ Β¬(D = F) β§ seg A C β‘ seg D F β§ B β open (A,C) | |
β β E. E β open (D,F) β§ seg A B β‘ seg D E | |
SegmentSubtraction | |
|- β A B C A' B' C'. | |
B β open (A,C) β§ B' β open (A',C') β§ | |
seg A B β‘ seg A' B' β§ seg A C β‘ seg A' C' | |
β seg B C β‘ seg B' C' | |
SegmentOrderingUse | |
|- βA B s. | |
Segment s β§ Β¬(A = B) β§ s <__ seg A B | |
β β G. G β open (A,B) β§ s β‘ seg A G | |
SegmentTrichotomy1 |- β s t. s <__ t β Β¬(s β‘ t) | |
SegmentTrichotomy2 | |
|- β s t u. s <__ t β§ Segment u β§ t β‘ u β s <__ u | |
SegmentOrderTransitivity | |
|- β s t u. s <__ t β§ t <__ u β s <__ u | |
SegmentTrichotomy | |
|- β s t. | |
Segment s β§ Segment t | |
β (s β‘ t β¨ s <__ t β¨ t <__ s) β§ | |
Β¬(s β‘ t β§ s <__ t) β§ Β¬(s β‘ t β§ t <__ s) β§ Β¬(s <__ t β§ t <__ s) | |
C4Uniqueness | |
|- β O A B P l. | |
Line l β§ O β l β§ A β l β§ Β¬(O = A) β§ | |
B β l β§ P β l β§ P,B same_side l β§ β‘ A O P β‘ β‘ A O B | |
β ray O B = ray O P | |
AngleSymmetry |- β A O B. β‘ A O B = β‘ B O A | |
TriangleCongSymmetry | |
|- β A B C A' B' C'. | |
A,B,C β A',B',C' | |
β A,C,B β A',C',B' β§ B,A,C β B',A',C' β§ | |
B,C,A β B',C',A' β§ C,A,B β C',A',B' β§ C,B,A β C',B',A' | |
SAS | |
|- β A B C A' B' C'. | |
Β¬Collinear A B C β§ Β¬Collinear A' B' C' β§ | |
seg B A β‘ seg B' A' β§ seg B C β‘ seg B' C' β§ | |
β‘ A B C β‘ β‘ A' B' C' | |
β A,B,C β A',B',C' | |
ASA | |
|- β A B C A' B' C'. | |
Β¬Collinear A B C β§ Β¬Collinear A' B' C' β§ | |
seg A C β‘ seg A' C' β§ | |
β‘ C A B β‘ β‘ C' A' B' β§ β‘ B C A β‘ β‘ B' C' A' | |
β A,B,C β A',B',C' | |
AngleSubtraction | |
|- β A O B A' O' B' G G'. | |
G β int_angle A O B β§ G' β int_angle A' O' B' β§ | |
β‘ A O B β‘ β‘ A' O' B' β§ β‘ A O G β‘ β‘ A' O' G' | |
β β‘ G O B β‘ β‘ G' O' B' | |
OrderedCongruentAngles | |
|- β A O B A' O' B' G. | |
Β¬Collinear A' O' B' β§ β‘ A O B β‘ β‘ A' O' B' β§ | |
G β int_angle A O B | |
β β G'. G' β int_angle A' O' B' β§ β‘ A O G β‘ β‘ A' O' G' | |
AngleAddition | |
|- β A O B A' O' B' G G'. | |
G β int_angle A O B β§ G' β int_angle A' O' B' β§ | |
β‘ A O G β‘ β‘ A' O' G' β§ β‘ G O B β‘ β‘ G' O' B' β§ | |
β β‘ A O B β‘ β‘ A' O' B' | |
AngleOrderingUse | |
|- β A O B Ξ±. | |
Angle Ξ± β§ Β¬Collinear A O B β§ Ξ± <_ang β‘ A O B | |
β (β G. G β int_angle A O B β§ Ξ± β‘ β‘ A O G) | |
AngleTrichotomy1 | |
|- β Ξ± Ξ². Ξ± <_ang Ξ² β Β¬(Ξ± β‘ Ξ²) | |
AngleTrichotomy2 | |
|- β Ξ± Ξ² Ξ³. | |
Ξ± <_ang Ξ² β§ Angle Ξ³ β§ Ξ² β‘ Ξ³ | |
β Ξ± <_ang Ξ³ | |
AngleOrderTransitivity | |
|- βΞ± Ξ² Ξ³. | |
Ξ± <_ang Ξ² β§ Ξ² <_ang Ξ³ | |
β Ξ± <_ang Ξ³ | |
AngleTrichotomy | |
|- β Ξ± Ξ². | |
Angle Ξ± β§ Angle Ξ² | |
β (Ξ± β‘ Ξ² β¨ Ξ± <_ang Ξ² β¨ Ξ² <_ang Ξ±) β§ | |
Β¬(Ξ± β‘ Ξ² β§ Ξ± <_ang Ξ²) β§ | |
Β¬(Ξ± β‘ Ξ² β§ Ξ² <_ang Ξ±) β§ | |
Β¬(Ξ± <_ang Ξ² β§ Ξ² <_ang Ξ±) | |
SupplementExists | |
|- β Ξ±. Angle Ξ± β β Ξ±'. Ξ± suppl Ξ±' | |
SupplementImpliesAngle | |
|- β Ξ± Ξ². Ξ± suppl Ξ² β Angle Ξ± β§ Angle Ξ² | |
RightImpliesAngle |- β Ξ±. Right Ξ± β Angle Ξ± | |
SupplementSymmetry | |
|- β Ξ± Ξ². Ξ± suppl Ξ² β Ξ² suppl Ξ± | |
SupplementsCongAnglesCong | |
|- β Ξ± Ξ² Ξ±' Ξ²'. | |
Ξ± suppl Ξ±' β§ Ξ² suppl Ξ²' β§ Ξ± β‘ Ξ² | |
β Ξ±' β‘ Ξ²' | |
SupplementUnique | |
|- β Ξ± Ξ² Ξ²'. | |
Ξ± suppl Ξ² β§ Ξ± suppl Ξ²' β Ξ² β‘ Ξ²' | |
CongRightImpliesRight | |
|- β Ξ± Ξ². | |
Angle Ξ± β§ Right Ξ² β§ Ξ± β‘ Ξ² β Right Ξ± | |
RightAnglesCongruentHelp | |
|- β A O B A' P a. | |
Β¬Collinear A O B β§ O β open (A,A') | |
Right (β‘ A O B) β§ Right (β‘ A O P) | |
β P β int_angle A O B | |
RightAnglesCongruent | |
|- β Ξ± Ξ². Right Ξ± β§ Right Ξ² β Ξ± β‘ Ξ² | |
OppositeRightAnglesLinear | |
|- β A B O H h. | |
Β¬Collinear A O H β§ Β¬Collinear H O B β§ | |
Right (β‘ A O H) β§ Right (β‘ H O B) β§ | |
Line h β§ O β h β§ H β h β§ Β¬(A,B same_side h) | |
β O β open (A,B) | |
RightImpliesSupplRight | |
|- β A O B A'. | |
Β¬Collinear A O B β§ O β open (A,A') β§ Right (β‘ A O B) | |
β Right (β‘ B O A') | |
IsoscelesCongBaseAngles | |
|- β A B C. | |
Β¬Collinear A B C β§ seg B A β‘ seg B C | |
β β‘ C A B β‘ β‘ A C B | |
C4withC1 | |
|- β Ξ± l O A Y P Q. | |
Angle Ξ± β§ Β¬(O = A) β§ Β¬(P = Q) β§ | |
Line l β§ O β l β§ A β l β§ Y β l | |
β β N. Β¬(O = N) β§ N β l β§ N,Y same_side l β§ | |
seg O N β‘ seg P Q β§ β‘ A O N β‘ Ξ± | |
C4OppositeSide | |
|- β Ξ± l O A Z P Q. | |
Angle Ξ± β§ Β¬(O = A) β§ Β¬(P = Q) β§ | |
Line l β§ O β l β§ A β l β§ Z β l | |
β β N. Β¬(O = N) β§ N β l β§ Β¬(Z,N same_side l) β§ | |
seg O N β‘ seg P Q β§ β‘ A O N β‘ Ξ± | |
SSS | |
|- β A B C A' B' C'. | |
Β¬Collinear A B C β§ Β¬Collinear A' B' C' β§ | |
seg A B β‘ seg A' B' β§ seg A C β‘ seg A' C' β§ seg B C β‘ seg B' C' | |
β A,B,C β A',B',C' | |
AngleBisector | |
|- β A B C. | |
Β¬Collinear B A C | |
β β F. F β int_angle B A C β§ β‘ B A F β‘ β‘ F A C | |
EuclidPropositionI_6 | |
|- β A B C. | |
Β¬Collinear A B C β§ β‘ B A C β‘ β‘ B C A | |
β seg B A β‘ seg B C | |
IsoscelesExists | |
|- β A B. Β¬(A = B) β β D. Β¬Collinear A D B β§ seg D A β‘ seg D B | |
MidpointExists | |
|- β A B. Β¬(A = B) β β M. M β open (A,B) β§ seg A M β‘ seg M B | |
EuclidPropositionI_7short | |
|- β A B C D a. | |
Β¬(A = B) β§ Line a β§ A β a β§ B β a β§ Β¬(C = D) β§ C β a β§ D β a β§ | |
C,D same_side a β§ seg A C β‘ seg A D | |
β Β¬(seg B C β‘ seg B D) | |
EuclidPropI_7Help | |
|- β A B C D a. | |
Β¬(A = B) β§ Line a β§ A β a β§ B β a β§ Β¬(C = D) β§ C β a β§ D β a β§ | |
C,D same_side a β§ seg A C β‘ seg A D β§ | |
(C β int_triangle D A B β¨ ConvexQuadrilateral A B C D) | |
β Β¬(seg B C β‘ seg B D) | |
EuclidPropositionI_7 | |
|- β A B C D a. | |
Β¬(A = B) β§ Line a β§ A β a β§ B β a β§ Β¬(C = D) β§ C β a β§ D β a β§ | |
C,D same_side a β§ seg A C β‘ seg A D | |
β Β¬(seg B C β‘ seg B D) | |
EuclidPropositionI_11 | |
|- βA B. Β¬(A = B) β β F. Right (β‘ A B F) | |
DropPerpendicularToLine | |
|- β P l. | |
Line l β§ P β l | |
β β E Q. E β l β§ Q β l β§ Right (β‘ P Q E) | |
EuclidPropositionI_14 | |
|- β A B C D l. | |
Line l β§ A β l β§ B β l β§ Β¬(A = B) β§ | |
C β l β§ D β l β§ Β¬(C,D same_side l) β§ | |
β‘ C B A suppl β‘ A B D | |
β B β open (C,D) | |
VerticalAnglesCong | |
|- β A B O A' B'. | |
Β¬Collinear A O B β§ O β open (A,A') β§ O β open (B,B') | |
β β‘ B O A' β‘ β‘ B' O A | |
EuclidPropositionI_16 | |
|- β A B C D. | |
Β¬Collinear A B C β§ C β open (B,D) | |
β β‘ B A C <_ang β‘ D C A | |
ExteriorAngle | |
|- β A B C D. | |
Β¬Collinear A B C β§ C β open (B,D) | |
β β‘ A B C <_ang β‘ A C D | |
EuclidPropositionI_17 | |
|- β A B C Ξ± Ξ² Ξ³. | |
Β¬Collinear A B C β§ Ξ± = β‘ A B C β§ Ξ² = β‘ B C A β§ Ξ² suppl Ξ³ | |
β Ξ± <_ang Ξ³ | |
EuclidPropositionI_18 | |
|- β A B C. | |
Β¬Collinear A B C β§ seg A C <__ seg A B | |
β β‘ A B C <_ang β‘ B C A | |
EuclidPropositionI_19 | |
|- β A B C. | |
Β¬Collinear A B C β§ β‘ A B C <_ang β‘ B C A | |
β seg A C <__ seg A B | |
EuclidPropositionI_20 | |
|- β A B C D. | |
Β¬Collinear A B C β§ A β open (B,D) β§ seg A D β‘ seg A C | |
β seg B C <__ seg B D | |
EuclidPropositionI_21 | |
|- β A B C D. | |
Β¬Collinear A B C β§ D β int_triangle A B C | |
β β‘ A B C <_ang β‘ C D A | |
AngleTrichotomy3 | |
|- β Ξ± Ξ² Ξ³. | |
Ξ± <_ang Ξ² β§ Angle Ξ³ β§ Ξ³ β‘ Ξ± | |
β Ξ³ <_ang Ξ² | |
InteriorCircleConvexHelp | |
|- β O A B C. | |
Β¬Collinear A O C β§ B β open (A,C) β§ | |
seg O A <__ seg O C β¨ seg O A β‘ seg O C | |
β seg O B <__ seg O C | |
InteriorCircleConvex | |
|- β O R A B C. | |
Β¬(O = R) β§ B β open (A,C) β§ | |
A β int_circle O R β§ C β int_circle O R | |
β B β int_circle O R | |
SegmentTrichotomy3 | |
|- β s t u. s <__ t β§ Segment u β§ u β‘ s β u <__ t | |
EuclidPropositionI_24Help | |
|- β O A C O' D F. | |
Β¬Collinear A O C β§ Β¬Collinear D O' F β§ | |
seg O' D β‘ seg O A β§ seg O' F β‘ seg O C β§ | |
β‘ D O' F <_ang β‘ A O C β§ | |
seg O A <__ seg O C β¨ seg O A β‘ seg O C | |
β seg D F <__ seg A C | |
EuclidPropositionI_24 | |
|- β O A C O' D F. | |
Β¬Collinear A O C β§ Β¬Collinear D O' F β§ | |
seg O' D β‘ seg O A β§ seg O' F β‘ seg O C β§ | |
β‘ D O' F <_ang β‘ A O C | |
β seg D F <__ seg A C | |
EuclidPropositionI_25 | |
|- β O A C O' D F. | |
Β¬Collinear A O C β§ Β¬Collinear D O' F β§ | |
seg O' D β‘ seg O A β§ seg O' F β‘ seg O C β§ | |
seg D F <__ seg A C | |
β β‘ D O' F <_ang β‘ A O C | |
AAS | |
|- β A B C A' B' C'. | |
Β¬Collinear A B C β§ Β¬Collinear A' B' C' β§ | |
β‘ A B C β‘ β‘ A' B' C' β§ β‘ B C A β‘ β‘ B' C' A' β§ | |
seg A B β‘ seg A' B' | |
β A,B,C β A',B',C' | |
ParallelSymmetry |- β l k. l β₯ k β k β₯ l | |
AlternateInteriorAngles | |
|- β A B C E l m t. | |
Line l β§ A β l β§ E β l β§ | |
Line m β§ B β m β§ C β m β§ | |
Line t β§ A β t β§ B β t β§ | |
Β¬(A = E) β§ Β¬(B = C) β§ Β¬(A = B) β§ E β t β§ C β t β§ | |
Β¬(C,E same_side t) β§ β‘ E A B β‘ β‘ C B A | |
β l β₯ m | |
EuclidPropositionI_28 | |
|- β A B C D E F G H l m t. | |
Line l β§ A β l β§ B β l β§ G β l β§ | |
Line m β§ C β m β§ D β m β§ H β m β§ | |
Line t β§ G β t β§ H β t β§ G β m β§ H β l β§ | |
G β open (A,B) β§ H β open (C,D) β§ | |
G β open (E,H) β§ H β open (F,G) β§ Β¬(D,A same_side t) β§ | |
β‘ E G B β‘ β‘ G H D β¨ β‘ B G H suppl β‘ G H D | |
β l β₯ m | |
OppositeSidesCongImpliesParallelogram | |
|- β A B C D. | |
Quadrilateral A B C D β§ | |
seg A B β‘ seg C D β§ seg B C β‘ seg D A | |
β Parallelogram A B C D | |
OppositeAnglesCongImpliesParallelogramHelp | |
|- β A B C D a c. | |
Quadrilateral A B C D β§ | |
β‘ A B C β‘ β‘ C D A β§ β‘ D A B β‘ β‘ B C D β§ | |
Line a β§ A β a β§ B β a β§ Line c β§ C β c β§ D β c | |
β a β₯ c | |
OppositeAnglesCongImpliesParallelogram | |
|- β A B C D. | |
Quadrilateral A B C D β§ | |
β‘ A B C β‘ β‘ C D A β§ β‘ D A B β‘ β‘ B C D | |
β Parallelogram A B C D | |
P |- β P l. Line l β§ P β l β β! m. Line m β§ P β m β§ m β₯ l | |
AMa |- β Ξ±. Angle Ξ± β &0 < ΞΌ Ξ± β§ ΞΌ Ξ± < &180 | |
AMb |- β Ξ±. Right Ξ± β ΞΌ Ξ± = &90 | |
AMc |- β Ξ± Ξ². Angle Ξ± β§ Angle Ξ² β§ Ξ± β‘ Ξ² β ΞΌ Ξ± = ΞΌ Ξ² | |
AMd |- β A O B P. P β int_angle A O B | |
β ΞΌ (β‘ A O B) = ΞΌ (β‘ A O P) + ΞΌ (β‘ P O B) | |
ConverseAlternateInteriorAngles | |
|- β A B C E l m t. | |
Line l β§ A β l β§ E β l β§ | |
Line m β§ B β m β§ C β m β§ | |
Line t β§ A β t β§ B β t β§ | |
Β¬(A = E) β§ Β¬(B = C) β§ Β¬(A = B) β§ E β t β§ C β t β§ | |
Β¬(C,E same_side t) β§ l β₯ m | |
β β‘ E A B β‘ β‘ C B A | |
HilbertTriangleSum | |
|- β A B C. | |
Β¬Collinear A B C | |
β β E F. | |
B β open (E,F) β§ C β int_angle A B F β§ | |
β‘ E B A β‘ β‘ C A B β§ β‘ C B F β‘ β‘ B C A | |
EuclidPropositionI_13 | |
|- βA O B A'. | |
Β¬Collinear A O B β§ O β open (A,A') | |
β ΞΌ (β‘ A O B) + ΞΌ (β‘ B O A') = &180 | |
TriangleSum | |
|- β A B C. | |
Β¬Collinear A B C | |
β ΞΌ (β‘ A B C) + ΞΌ (β‘ B C A) + ΞΌ (β‘ C A B) = &180 | |