Datasets:
Tasks:
Text Generation
Modalities:
Text
Sub-tasks:
language-modeling
Languages:
English
Size:
100K - 1M
License:
(*---------------------------------------------------------------------------*) | |
(* | |
File: mk_comp_unity.ml | |
Description: This file proves the unity compositionality theorems and | |
corrollaries valid. | |
Author: (c) Copyright 1989-2008 by Flemming Andersen | |
Date: December 1, 1989 | |
Last Update: December 30, 2007 | |
*) | |
(*---------------------------------------------------------------------------*) | |
(*---------------------------------------------------------------------------*) | |
(* | |
Theorems | |
*) | |
(*---------------------------------------------------------------------------*) | |
(* | |
Prove: | |
!p q FPr GPr. | |
(p UNLESS q) (APPEND FPr GPr) ==> (p UNLESS q) FPr /\ (p UNLESS q) GPr | |
*) | |
let COMP_UNLESS_thm1_lemma_1 = TAC_PROOF | |
(([], | |
(`!(p:'a->bool) q FPr GPr. | |
(p UNLESS q) (APPEND FPr GPr) ==> (p UNLESS q) FPr /\ (p UNLESS q) GPr`)), | |
REPEAT GEN_TAC THEN | |
SPEC_TAC ((`GPr:('a->'a)list`),(`GPr:('a->'a)list`)) THEN | |
SPEC_TAC ((`FPr:('a->'a)list`),(`FPr:('a->'a)list`)) THEN | |
LIST_INDUCT_TAC THENL | |
[ | |
REWRITE_TAC [UNLESS;APPEND] | |
; | |
REWRITE_TAC [APPEND] THEN | |
REWRITE_TAC [UNLESS] THEN | |
REPEAT STRIP_TAC THENL | |
[ | |
ASM_REWRITE_TAC [] | |
; | |
RES_TAC | |
; | |
RES_TAC]]);; | |
(* | |
Prove: | |
!p q FPr GPr. | |
(p UNLESS q) FPr /\ (p UNLESS q) GPr ==> (p UNLESS q) (APPEND FPr GPr) | |
*) | |
let COMP_UNLESS_thm1_lemma_2 = TAC_PROOF | |
(([], | |
(`!(p:'a->bool) q FPr GPr. | |
(p UNLESS q) FPr /\ (p UNLESS q) GPr ==> (p UNLESS q) (APPEND FPr GPr)`)), | |
REPEAT GEN_TAC THEN | |
SPEC_TAC ((`GPr:('a->'a)list`),(`GPr:('a->'a)list`)) THEN | |
SPEC_TAC ((`FPr:('a->'a)list`),(`FPr:('a->'a)list`)) THEN | |
LIST_INDUCT_TAC THENL | |
[ | |
REWRITE_TAC [UNLESS;APPEND] | |
; | |
REWRITE_TAC [APPEND] THEN | |
REWRITE_TAC [UNLESS] THEN | |
REPEAT STRIP_TAC THENL | |
[ | |
ASM_REWRITE_TAC [] | |
; | |
RES_TAC | |
]]);; | |
(* | |
Prove: | |
!p q FPr GPr. | |
(p UNLESS q) (APPEND FPr GPr) = (p UNLESS q) FPr /\ (p UNLESS q) GPr | |
*) | |
let COMP_UNLESS_thm1 = prove_thm | |
("COMP_UNLESS_thm1", | |
(`!(p:'a->bool) q FPr GPr. | |
(p UNLESS q) (APPEND FPr GPr) <=> (p UNLESS q) FPr /\ (p UNLESS q) GPr`), | |
REPEAT GEN_TAC THEN | |
STRIP_ASSUME_TAC (IMP_ANTISYM_RULE | |
(SPEC_ALL COMP_UNLESS_thm1_lemma_1) | |
(SPEC_ALL COMP_UNLESS_thm1_lemma_2)));; | |
(* | |
Prove: | |
!p q FPr GPr. | |
(p ENSURES q) (APPEND FPr GPr) ==> (p ENSURES q) FPr /\ (p UNLESS q) GPr \/ | |
(p ENSURES q) GPr /\ (p UNLESS q) FPr | |
*) | |
let COMP_ENSURES_thm1_lemma_1 = TAC_PROOF | |
(([], | |
(`!(p:'a->bool) q FPr GPr. | |
(p ENSURES q) (APPEND FPr GPr) ==> (p ENSURES q) FPr /\ (p UNLESS q) GPr \/ | |
(p ENSURES q) GPr /\ (p UNLESS q) FPr`)), | |
REPEAT GEN_TAC THEN | |
SPEC_TAC ((`GPr:('a->'a)list`),(`GPr:('a->'a)list`)) THEN | |
SPEC_TAC ((`FPr:('a->'a)list`),(`FPr:('a->'a)list`)) THEN | |
LIST_INDUCT_TAC THENL | |
[ | |
REWRITE_TAC [ENSURES;EXIST_TRANSITION;UNLESS;APPEND] | |
; | |
GEN_TAC THEN | |
REWRITE_TAC [ENSURES;EXIST_TRANSITION;UNLESS;APPEND] THEN | |
REPEAT STRIP_TAC THEN | |
ASM_REWRITE_TAC [] THENL | |
[ | |
DISJ1_TAC THEN | |
ASM_REWRITE_TAC [] THEN | |
ASM_REWRITE_TAC [GEN_ALL (SYM (SPEC_ALL COMP_UNLESS_thm1))] | |
; | |
ASSUME_TAC (UNDISCH_ALL (SPECL | |
[(`((p:'a->bool) UNLESS q)(APPEND t GPr)`); | |
(`((p:'a->bool) EXIST_TRANSITION q)(APPEND t GPr)`)] | |
AND_INTRO_THM)) THEN | |
UNDISCH_TAC (`((p:'a->bool) UNLESS q)(APPEND t GPr) /\ | |
(p EXIST_TRANSITION q)(APPEND t GPr)`) THEN | |
REWRITE_TAC [SPECL [(`q:'a->bool`); (`p:'a->bool`); | |
(`APPEND (t:('a->'a)list) GPr`)] | |
(GEN_ALL (SYM (SPEC_ALL ENSURES)))] THEN | |
DISCH_TAC THEN | |
RES_TAC THENL | |
[ | |
UNDISCH_TAC (`((p:'a->bool) ENSURES q) t`) THEN | |
REWRITE_TAC [ENSURES] THEN | |
STRIP_TAC THEN | |
ASM_REWRITE_TAC [] | |
; | |
UNDISCH_TAC (`((p:'a->bool) ENSURES q) GPr`) THEN | |
REWRITE_TAC [ENSURES] THEN | |
STRIP_TAC THEN | |
ASM_REWRITE_TAC [] | |
]]]);; | |
(* | |
Prove: | |
!p q FPr GPr. | |
(p ENSURES q) FPr /\ (p UNLESS q) GPr \/ | |
(p ENSURES q) GPr /\ (p UNLESS q) FPr ==> (p ENSURES q) (APPEND FPr GPr) | |
*) | |
let COMP_ENSURES_thm1_lemma_2 = TAC_PROOF | |
(([], | |
`!(p:'a->bool) q FPr GPr. | |
((p ENSURES q) FPr /\ (p UNLESS q) GPr \/ | |
(p ENSURES q) GPr /\ (p UNLESS q) FPr) | |
==> (p ENSURES q) (APPEND FPr GPr)`), | |
GEN_TAC THEN GEN_TAC THEN | |
LIST_INDUCT_TAC THEN | |
REWRITE_TAC [ENSURES;EXIST_TRANSITION;UNLESS;APPEND] THEN | |
REPEAT STRIP_TAC THEN | |
RES_TAC THEN | |
ASM_REWRITE_TAC [COMP_UNLESS_thm1;ENSURES;EXIST_TRANSITION; | |
UNLESS;APPEND] THEN | |
REWRITE_TAC [UNDISCH_ALL (ONCE_REWRITE_RULE [EXIST_TRANSITION_thm12] | |
(SPEC_ALL EXIST_TRANSITION_thm8))] THENL | |
[ | |
REWRITE_TAC | |
[ONCE_REWRITE_RULE [EXIST_TRANSITION_thm12] (UNDISCH_ALL (SPECL | |
[`p:'a->bool`;`q:'a->bool`;`t:('a->'a)list`;`GPr:('a->'a)list`] | |
EXIST_TRANSITION_thm8))] | |
; | |
REWRITE_TAC | |
[UNDISCH_ALL | |
(SPECL [`p:'a->bool`;`q:'a->bool`;`GPr:('a->'a)list`;`t:('a->'a)list`] | |
EXIST_TRANSITION_thm8)] | |
]);; | |
(* | |
Prove: | |
!p q FPr GPr. | |
(p ENSURES q) (APPEND FPr GPr) = (p ENSURES q) FPr /\ (p UNLESS q) GPr \/ | |
(p ENSURES q) GPr /\ (p UNLESS q) FPr | |
*) | |
let COMP_ENSURES_thm1 = prove_thm | |
("COMP_ENSURES_thm1", | |
(`!(p:'a->bool) q FPr GPr. | |
(p ENSURES q) (APPEND FPr GPr) <=> | |
((p ENSURES q) FPr /\ (p UNLESS q) GPr \/ | |
(p ENSURES q) GPr /\ (p UNLESS q) FPr)`), | |
REPEAT GEN_TAC THEN | |
STRIP_ASSUME_TAC (IMP_ANTISYM_RULE | |
(SPEC_ALL COMP_ENSURES_thm1_lemma_1) | |
(SPEC_ALL COMP_ENSURES_thm1_lemma_2)));; | |
(* | |
Prove: | |
|- !p q FPr GPr. | |
(p ENSURES q)FPr /\ (p UNLESS q)GPr ==> (p ENSURES q)(APPEND FPr GPr) | |
*) | |
let COMP_ENSURES_cor0 = prove_thm | |
("COMP_ENSURES_cor0", | |
(`!(p:'a->bool) q FPr GPr. | |
(p ENSURES q) FPr /\ (p UNLESS q) GPr | |
==> (p ENSURES q) (APPEND FPr GPr)`), | |
REPEAT STRIP_TAC THEN | |
ACCEPT_TAC (REWRITE_RULE | |
[ASSUME (`((p:'a->bool) ENSURES q)FPr`);ASSUME (`((p:'a->bool) UNLESS q)GPr`)] | |
(SPEC_ALL COMP_ENSURES_thm1)));; | |
(* | |
Prove: | |
|- !p q FPr GPr. | |
(p ENSURES q)GPr /\ (p UNLESS q)FPr ==> (p ENSURES q)(APPEND FPr GPr) | |
*) | |
let COMP_ENSURES_cor1 = prove_thm | |
("COMP_ENSURES_cor1", | |
(`!(p:'a->bool) q FPr GPr. | |
(p ENSURES q) GPr /\ (p UNLESS q) FPr | |
==> (p ENSURES q) (APPEND FPr GPr)`), | |
REPEAT STRIP_TAC THEN | |
ACCEPT_TAC (REWRITE_RULE | |
[ASSUME (`((p:'a->bool) ENSURES q)GPr`);ASSUME (`((p:'a->bool) UNLESS q)FPr`)] | |
(SPEC_ALL COMP_ENSURES_thm1)));; | |
(* | |
Prove: | |
!p q FPr GPr. | |
(p INVARIANT q) (APPEND FPr GPr) = | |
(p INVARIANT q) FPr /\ (p INVARIANT q) GPr | |
*) | |
let COMP_UNITY_cor0 = prove_thm | |
("COMP_UNITY_cor0", | |
(`!(p0:'a->bool) p FPr GPr. | |
(p INVARIANT (p0, APPEND FPr GPr)) = | |
(p INVARIANT (p0,FPr) /\ p INVARIANT (p0,GPr))`), | |
REWRITE_TAC [INVARIANT;STABLE;COMP_UNLESS_thm1] THEN | |
REPEAT GEN_TAC THEN EQ_TAC THEN REPEAT STRIP_TAC THEN | |
RES_TAC THEN ASM_REWRITE_TAC []);; | |
(* | |
Prove: | |
!p FPr GPr. | |
p STABLE (APPEND FPr GPr) = p STABLE FPr /\ p STABLE GPr | |
*) | |
let COMP_UNITY_cor1 = prove_thm | |
("COMP_UNITY_cor1", | |
(`!(p:'a->bool) FPr GPr. | |
(p STABLE (APPEND FPr GPr)) = (p STABLE FPr /\ p STABLE GPr)`), | |
REWRITE_TAC [STABLE;COMP_UNLESS_thm1]);; | |
(* | |
Prove: | |
!p q FPr GPr. | |
(p UNLESS q) FPr /\ p STABLE GPr ==>(p UNLESS q) (APPEND FPr GPr) | |
*) | |
let COMP_UNITY_cor2 = prove_thm | |
("COMP_UNITY_cor2", | |
(`!(p:'a->bool) q FPr GPr. | |
(p UNLESS q) FPr /\ p STABLE GPr ==>(p UNLESS q) (APPEND FPr GPr)`), | |
REWRITE_TAC [STABLE;COMP_UNLESS_thm1] THEN | |
REPEAT STRIP_TAC THENL | |
[ | |
ASM_REWRITE_TAC [] | |
; | |
UNDISCH_TAC (`((p:'a->bool) UNLESS False)GPr`) THEN | |
SPEC_TAC ((`GPr:('a->'a)list`),(`GPr:('a->'a)list`)) THEN | |
LIST_INDUCT_TAC THENL | |
[ | |
REWRITE_TAC [UNLESS] | |
; | |
REWRITE_TAC [UNLESS;UNLESS_STMT] THEN | |
CONV_TAC (DEPTH_CONV BETA_CONV) THEN | |
REPEAT STRIP_TAC THENL | |
[ | |
RES_TAC THEN | |
UNDISCH_TAC | |
(`~(False:'a->bool) s ==> (p:'a->bool)(h s) \/ False(h s)`) THEN | |
REWRITE_TAC [FALSE_def;NOT_CLAUSES;OR_INTRO_THM1] | |
; | |
RES_TAC]]]);; | |
(* | |
Prove: | |
!p0 p FPr GPr. | |
p INVARIANT (p0; FPr) /\ p STABLE GPr | |
==> p INVARIANT (p0; (APPEND FPr GPr)) | |
*) | |
let COMP_UNITY_cor3 = prove_thm | |
("COMP_UNITY_cor3", | |
(`!(p0:'a->bool) p FPr GPr. | |
p INVARIANT (p0, FPr) /\ p STABLE GPr ==> | |
p INVARIANT (p0, (APPEND FPr GPr))`), | |
REWRITE_TAC [INVARIANT;STABLE;COMP_UNLESS_thm1] THEN | |
REPEAT STRIP_TAC THENL | |
[ | |
RES_TAC | |
; | |
ASM_REWRITE_TAC [] | |
; | |
ASM_REWRITE_TAC []]);; | |
(* | |
Prove: | |
!p q FPr GPr. | |
(p ENSURES q) FPr /\ p STABLE GPr ==> (p ENSURES q) (APPEND FPr GPr) | |
*) | |
let COMP_UNITY_cor4 = prove_thm | |
("COMP_UNITY_cor4", | |
(`!(p:'a->bool) q FPr GPr. | |
(p ENSURES q) FPr /\ p STABLE GPr ==> (p ENSURES q) (APPEND FPr GPr)`), | |
REPEAT STRIP_TAC THEN | |
ASSUME_TAC (UNDISCH_ALL (SPECL | |
[(`p:'a->bool`);(`q:'a->bool`);(`FPr:('a->'a)list`)] ENSURES_cor2)) THEN | |
ASSUME_TAC (UNDISCH_ALL (SPECL | |
[(`((p:'a->bool) UNLESS q)FPr`);(`(p:'a->bool) STABLE GPr`)] | |
AND_INTRO_THM)) THEN | |
ASSUME_TAC (UNDISCH_ALL (SPECL | |
[(`p:'a->bool`);(`q:'a->bool`);(`FPr:('a->'a)list`);(`GPr:('a->'a)list`)] | |
COMP_UNITY_cor2)) THEN | |
REWRITE_TAC [ENSURES] THEN | |
ASM_REWRITE_TAC [] THEN | |
UNDISCH_TAC (`((p:'a->bool) ENSURES q)FPr`) THEN | |
REWRITE_TAC [ENSURES] THEN | |
STRIP_TAC THEN | |
UNDISCH_TAC (`((p:'a->bool) EXIST_TRANSITION q)FPr`) THEN | |
SPEC_TAC ((`FPr:('a->'a)list`),(`FPr:('a->'a)list`)) THEN | |
LIST_INDUCT_TAC THENL | |
[ | |
REWRITE_TAC [EXIST_TRANSITION] | |
; | |
REWRITE_TAC [APPEND;EXIST_TRANSITION] THEN | |
REPEAT STRIP_TAC THENL | |
[ | |
ASM_REWRITE_TAC [] | |
; | |
RES_TAC THEN | |
ASM_REWRITE_TAC []]]);; | |
(* | |
Prove: | |
!p q FPr GPr. (p UNLESS q)(APPEND FPr GPr) ==> (p UNLESS q) GPr | |
*) | |
let COMP_UNITY_cor5 = prove_thm | |
("COMP_UNITY_cor5", | |
(`!(p:'a->bool) q FPr GPr. (p UNLESS q)(APPEND FPr GPr) ==> (p UNLESS q) GPr`), | |
REWRITE_TAC [COMP_UNLESS_thm1] THEN | |
REPEAT STRIP_TAC);; | |
(* | |
Prove: | |
!p q FPr GPr. (p UNLESS q)(APPEND FPr GPr) ==> (p UNLESS q) FPr | |
*) | |
let COMP_UNITY_cor6 = prove_thm | |
("COMP_UNITY_cor6", | |
(`!(p:'a->bool) q FPr GPr. (p UNLESS q)(APPEND FPr GPr) ==> (p UNLESS q) FPr`), | |
REWRITE_TAC [COMP_UNLESS_thm1] THEN | |
REPEAT STRIP_TAC);; | |
(* | |
Prove: | |
!p q st FPr. (p UNLESS q)(CONS st FPr) ==> (p UNLESS q) FPr | |
*) | |
let COMP_UNITY_cor7 = prove_thm | |
("COMP_UNITY_cor7", | |
(`!(p:'a->bool) q st FPr. (p UNLESS q)(CONS st FPr) ==> (p UNLESS q) FPr`), | |
REWRITE_TAC [UNLESS] THEN | |
REPEAT STRIP_TAC);; | |
(* | |
Prove: | |
!p FPr GPr. | |
(p ENSURES (NotX p)) FPr ==> (p ENSURES (NotX p)) (APPEND FPr GPr) | |
*) | |
let COMP_UNITY_cor8 = prove_thm | |
("COMP_UNITY_cor8", | |
(`!(p:'a->bool) FPr GPr. | |
(p ENSURES (Not p)) FPr ==> (p ENSURES (Not p)) (APPEND FPr GPr)`), | |
GEN_TAC THEN | |
LIST_INDUCT_TAC THEN | |
REWRITE_TAC [APPEND;ENSURES;UNLESS;EXIST_TRANSITION] THEN | |
REPEAT STRIP_TAC THEN | |
RES_TAC THEN | |
ASM_REWRITE_TAC [UNLESS_thm2] THEN | |
REWRITE_TAC [UNDISCH_ALL (ONCE_REWRITE_RULE [EXIST_TRANSITION_thm12] (SPECL | |
[`p:'a->bool`;`Not (p:'a->bool)`;`t:('a->'a)list`;`GPr:('a->'a)list`] | |
EXIST_TRANSITION_thm8))]);; | |
(* | |
Prove: | |
!p q FPr GPr. | |
p STABLE FPr /\ (p UNLESS q) GPr ==> (p UNLESS q) (APPEND FPr GPr) | |
*) | |
let COMP_UNITY_cor9 = prove_thm | |
("COMP_UNITY_cor9", | |
(`!(p:'a->bool) q FPr GPr. | |
p STABLE FPr /\ (p UNLESS q) GPr ==> (p UNLESS q) (APPEND FPr GPr)`), | |
REWRITE_TAC [STABLE;COMP_UNLESS_thm1] THEN | |
REPEAT STRIP_TAC THENL | |
[ | |
UNDISCH_TAC (`((p:'a->bool) UNLESS False)FPr`) THEN | |
SPEC_TAC ((`FPr:('a->'a)list`),(`FPr:('a->'a)list`)) THEN | |
LIST_INDUCT_TAC THENL | |
[ | |
REWRITE_TAC [UNLESS] | |
; | |
REWRITE_TAC [UNLESS;UNLESS_STMT] THEN | |
BETA_TAC THEN | |
REPEAT STRIP_TAC THENL | |
[ | |
RES_TAC THEN | |
UNDISCH_TAC | |
(`~(False:'a->bool) s ==> (p:'a->bool)(h s) \/ False(h s)`) THEN | |
REWRITE_TAC [FALSE_def;NOT_CLAUSES;OR_INTRO_THM1] | |
; | |
RES_TAC | |
] | |
] | |
; | |
ASM_REWRITE_TAC [] | |
]);; | |
(* | |
Prove: | |
!p q FPr GPr. | |
(p UNLESS q) (APPEND FPr GPr) = (p UNLESS q) (APPEND GPr FPr) | |
*) | |
let COMP_UNITY_cor10 = prove_thm | |
("COMP_UNITY_cor10", | |
(`!(p:'a->bool) q FPr GPr. | |
(p UNLESS q) (APPEND FPr GPr) = (p UNLESS q) (APPEND GPr FPr)`), | |
REPEAT GEN_TAC THEN | |
REWRITE_TAC [COMP_UNLESS_thm1] THEN | |
EQ_TAC THEN | |
REPEAT STRIP_TAC THEN | |
ASM_REWRITE_TAC []);; | |
(* | |
Prove: | |
!p q FPr GPr. | |
(p ENSURES q) (APPEND FPr GPr) = (p ENSURES q) (APPEND GPr FPr) | |
*) | |
let COMP_UNITY_cor11 = prove_thm | |
("COMP_UNITY_cor11", | |
(`!(p:'a->bool) q FPr GPr. | |
(p ENSURES q) (APPEND FPr GPr) = (p ENSURES q) (APPEND GPr FPr)`), | |
REPEAT GEN_TAC THEN | |
REWRITE_TAC [COMP_ENSURES_thm1] THEN | |
EQ_TAC THEN REPEAT STRIP_TAC THEN ASM_REWRITE_TAC []);; | |
(* | |
Prove: | |
!p q FPr GPr. | |
(p LEADSTO q) (APPEND FPr GPr) = (p LEADSTO q) (APPEND GPr FPr) | |
*) | |
(* | |
|- (!p' q'. | |
((p' ENSURES q')(APPEND Pr1 Pr2) ==> (p' LEADSTO q')(APPEND Pr2 Pr1)) /\ | |
(!r. | |
(p' LEADSTO r)(APPEND Pr1 Pr2) /\ (p' LEADSTO r)(APPEND Pr2 Pr1) /\ | |
(r LEADSTO q')(APPEND Pr1 Pr2) /\ (r LEADSTO q')(APPEND Pr2 Pr1) ==> | |
(p' LEADSTO q')(APPEND Pr1 Pr2) ==> (p' LEADSTO q')(APPEND Pr2 Pr1)) /\ | |
(!P. | |
(!i. ((P i) LEADSTO q')(APPEND Pr1 Pr2)) /\ | |
(!i. ((P i) LEADSTO q')(APPEND Pr2 Pr1)) ==> | |
(($ExistsX P) LEADSTO q')(APPEND Pr1 Pr2) ==> | |
(($ExistsX P) LEADSTO q')(APPEND Pr2 Pr1))) | |
==> | |
(p LEADSTO q)(APPEND Pr1 Pr2) ==> (p LEADSTO q)(APPEND Pr2 Pr1) | |
*) | |
let COMP_UNITY_cor12_lemma00 = (BETA_RULE (SPECL | |
[(`\(p:'a->bool) q. (p LEADSTO q)(APPEND Pr2 Pr1)`); | |
(`p:'a->bool`);(`q:'a->bool`);(`APPEND (Pr1:('a->'a)list) Pr2`)] LEADSTO_thm37));; | |
let COMP_UNITY_cor12_lemma01 = TAC_PROOF | |
(([], | |
(`!(p':'a->bool) q' Pr1 Pr2. | |
(p' ENSURES q')(APPEND Pr1 Pr2) ==> (p' LEADSTO q')(APPEND Pr2 Pr1)`)), | |
REPEAT STRIP_TAC THEN | |
ASSUME_TAC (ONCE_REWRITE_RULE [COMP_UNITY_cor11] (ASSUME | |
(`((p':'a->bool) ENSURES q')(APPEND Pr1 Pr2)`))) THEN | |
IMP_RES_TAC LEADSTO_thm0);; | |
let COMP_UNITY_cor12_lemma02 = TAC_PROOF | |
(([], | |
(`!(p':'a->bool) q' Pr1 Pr2. | |
(!r. | |
(p' LEADSTO r)(APPEND Pr1 Pr2) /\ (p' LEADSTO r)(APPEND Pr2 Pr1) /\ | |
(r LEADSTO q')(APPEND Pr1 Pr2) /\ (r LEADSTO q')(APPEND Pr2 Pr1) | |
==> (p' LEADSTO q')(APPEND Pr2 Pr1))`)), | |
REPEAT STRIP_TAC THEN | |
IMP_RES_TAC LEADSTO_thm1);; | |
let COMP_UNITY_cor12_lemma03 = TAC_PROOF | |
(([], | |
(`!(p':'a->bool) q' Pr1 Pr2. | |
(!P:('a->bool)->bool. | |
(!p''. p'' In P ==> (p'' LEADSTO q')(APPEND Pr1 Pr2)) /\ | |
(!p''. p'' In P ==> (p'' LEADSTO q')(APPEND Pr2 Pr1)) | |
==> ((LUB P) LEADSTO q')(APPEND Pr2 Pr1))`)), | |
REPEAT STRIP_TAC THEN | |
IMP_RES_TAC LEADSTO_thm3a);; | |
(* | |
|- !p q Pr1 Pr2. | |
(p LEADSTO q)(APPEND Pr1 Pr2) ==> (p LEADSTO q)(APPEND Pr2 Pr1) | |
*) | |
let COMP_UNITY_cor12_lemma04 = (GEN_ALL (REWRITE_RULE | |
[COMP_UNITY_cor12_lemma01;COMP_UNITY_cor12_lemma02;COMP_UNITY_cor12_lemma03] | |
(SPEC_ALL COMP_UNITY_cor12_lemma00)));; | |
(* | |
|- !p q Pr1 Pr2. (p LEADSTO q)(APPEND Pr1 Pr2) = (p LEADSTO q)(APPEND Pr2 Pr1) | |
*) | |
let COMP_UNITY_cor12 = prove_thm | |
("COMP_UNITY_cor12", | |
(`!(p:'a->bool) q Pr1 Pr2. | |
(p LEADSTO q)(APPEND Pr1 Pr2) = (p LEADSTO q)(APPEND Pr2 Pr1)`), | |
REPEAT GEN_TAC THEN | |
EQ_TAC THEN REWRITE_TAC [COMP_UNITY_cor12_lemma04]);; | |
(* | |
|- !p FPr GPr. p STABLE (APPEND FPr GPr) = p STABLE (APPEND GPr FPr) | |
*) | |
let COMP_UNITY_cor13 = prove_thm | |
("COMP_UNITY_cor13", | |
(`!(p:'a->bool) FPr GPr. | |
(p STABLE (APPEND FPr GPr)) = (p STABLE (APPEND GPr FPr))`), | |
REPEAT GEN_TAC THEN | |
REWRITE_TAC [STABLE] THEN | |
EQ_TAC THEN | |
STRIP_TAC THEN | |
ONCE_REWRITE_TAC [COMP_UNITY_cor10] THEN | |
ASM_REWRITE_TAC []);; | |
(* | |
|- !p0 p FPr GPr. | |
p INVARIANT (p0, APPEND FPr GPr) = p INVARIANT (p0, APPEND GPr FPr) | |
*) | |
let COMP_UNITY_cor14 = prove_thm | |
("COMP_UNITY_cor14", | |
(`!(p0:'a->bool) p FPr GPr. | |
(p INVARIANT (p0, (APPEND FPr GPr))) | |
= | |
(p INVARIANT (p0, (APPEND GPr FPr)))`), | |
REPEAT GEN_TAC THEN | |
REWRITE_TAC [INVARIANT] THEN | |
EQ_TAC THEN | |
STRIP_TAC THEN | |
ONCE_REWRITE_TAC [COMP_UNITY_cor13] THEN | |
ASM_REWRITE_TAC []);; | |