Datasets:
Tasks:
Text Generation
Modalities:
Text
Sub-tasks:
language-modeling
Languages:
English
Size:
100K - 1M
License:
(*---------------------------------------------------------------------------*) | |
(* | |
File: mk_unity_prog.sml | |
Description: | |
A back-end definition for the HOL-UNITY compiler programming language. | |
===================================================================== | |
This file introduces general definitions for describing a program | |
in HOL-UNITY. | |
Author: (c) Copyright 1992-2008 | |
by Flemming Andersen & Kim Dam Petersen | |
Date: August 3, 1992 | |
Updated: May 4, 1995 | |
Updated: March 22, 2006 | |
Last Update: December 30, 2007 | |
The functions below are based on the following representations: | |
type 'loc = ``program variable location'' | |
type 'val = ``program value'' | |
type state = ('loc -> 'val) ``program state'' | |
type t xpr = state -> t ``expression of type t'' | |
type t asg = t -> state -> state -> state ``assignment of type t'' | |
type t var = (t xpr, t asg) ``variable of type t'' | |
type atom = state -> state ``atomic (singleton action)'' | |
type par = state -> state -> state ``parallel action'' | |
type int = atom list ``interleaved action (program)'' | |
type seq = var -> num -> (int list # num)``sequential action'' | |
Description of type representation: (Added: March 22, 2006) | |
----------------------------------------------------------- | |
'loc is an atomic (location) value that identifies a variable. | |
Composite variables, such as arrays and lists has a | |
single identifier. Assignment to a composite part is | |
considered an assignment to the complete variable, that | |
doesn't change the non-assigned parts of the variable. | |
'val is a generic value type of all variables. | |
It is constructed as a union of the types of the | |
variables in the program. Each program will for each type | |
of variable define a pair of functions to respectively | |
encode and decode values of the type of the variable into | |
and from the generic type 'val. | |
state is a state that associates each variable (identified by it's | |
'loc location) with it's current value (encoded in the | |
generic type 'val of value). | |
A state represents the values of every variable at a | |
given moment. | |
A state is implemented as a map from variable locations | |
('loc) to the generic value ('val) of the applied | |
variable location. | |
----- | |
xpr 'val xpr - generic typed expression. | |
t xpr is an expression of some (decoded) type t. | |
An expression represents a state dependent value, ie. a | |
value that depends on the values of variables. | |
An expression is implemented as map from a state (in | |
which the value is to be interpreted) to the value of the | |
expression in that state. | |
t asg is a assignment to a variable of type t. | |
An assignment represents the change in state due to | |
assignment of some variable to a value. An assignment is | |
implemented as a map from the value to be assigned, the | |
original state and a previous state to the final state. | |
The need for two parameter states: original and previous | |
is due to the fact that assignment Consider the | |
(high-level) assignment: | |
INITIALLY | |
a[0] = 0 /\ a[1] = 1 | |
ASSIGN | |
a[a[0]], a[a[1]] := 1, 0 | |
The right-hand-side expression, and the left-hand-side | |
index expression should be evaluated in the original | |
state. | |
The parallel assignments of: | |
a[a[0]], a[a[1]] := 1, 0 | |
must be "transformed" into a single assignment of a: | |
a := a[a[i] => 1, a[j] => 0] | |
If more variables are to be assigned we get: | |
i, j, a := 1, 0, a[a[i] => 1, a[j] => 0] | |
A parallel assignment is evaluated in sequence; it is | |
transformed into: | |
[ i := <1> ] ; [ j := <0> ] ; [ a := <a[a[i] => 1, a[j] => 0> ] | |
It should be obvious that the expression in <>-braces has | |
to be evaluated in the original state of the parallel | |
assignment, whereas the sequential assignments has to be | |
evaluated in the state that is the result of the previous | |
assignment. This explains the need for two state | |
parameters. | |
** To Be Changed ** | |
t var is a variable of type t. | |
A variable is represented by a pair that allow read- and | |
write- access to the variable. | |
** To Be Changed ** | |
atom is an atomic action. | |
An atomic action represents the state change associated | |
with a single variable assignments. An atomic action is | |
implemented as a function, that given an initial state | |
returns the state after executing the atomic action. ** | |
To Be Changed ** | |
par is a parallel action. | |
A parallel action represents the state change associated | |
with multiple atomic actions, ex. | |
(a[0] := a[1]) || (a[1] := a[0]). | |
A parallel action is implemented as a function of an | |
original- and previous state, that return a next | |
state. The use of original- and previous state is | |
explained above under section "t asg". | |
** To Be Changed ** | |
int is an interleaved action. | |
An interleaved action represents the semantic of an | |
interleaved action. An interleaved action is implemented | |
as a funtion that given an initial state returns the | |
state after evaluating the interleaved action. | |
seq is a sequential action. | |
A sequential action is a sequence of interleaved | |
actions. Each interleaved action is identified with a | |
numeric label. A sequential action is represented as a | |
function that takes a program counter variable location, | |
a NUM -encode and -decode function and an initial label | |
for the action and returns a pair with a list of | |
interleaved actions that implements the individual | |
actions to be executed in sequence and a numeric label | |
that represents the end of the sequential action. This | |
label is used as initial label for an optional sequential | |
action that is compositionally added to the current. | |
Example: val s1 : seq = `` Computer generated seq ''; | |
val s2 : seq = `` Computer generated seq ''; | |
val s1s2 : seq = fn pc => mk => ds => l0 => | |
let val (lst1, l1) = s1 pc mk ds l0 in | |
let val (lst2, l2) = s2 pc mk ds l1 in | |
(APPEND lst1 lst2, l2) | |
[Flemming, May 1995: | |
Whereas we leave it for now due to the otherwize need for | |
updating the compiler, assignment COULD BE CHANGED to the | |
alternative below...] | |
An alternative way of implementing multiple parallel | |
assignment exists: | |
1. Introduce a parallel variable assignment operator, | |
which takes a list of locations and a list of evaluated | |
generic typed expressions and performs the | |
assignment. There will no problems with side-effects, | |
due to the fact that all values has been evaluated. | |
define | |
ParAsg ([]: 'loc list) ([] : 'val list) (s : state) : state = s | |
| ParAsg (loc::locs) (val :: vals) = | |
ParAsg locs vals (fn l => (l == loc) ? val | s l)) | |
| ParAsg _ _ = raise "ParAsg: location and value list differ in length"; | |
The new type of ParAsg becomes: | |
ParAsg : 'loc list -> 'val list -> state -> state | |
If we redefine the type asg we get | |
ParAsg : 'loc list -> 'val list -> asg | |
2. Introduce a list evaluation operator: | |
define | |
EvalList ([] : (state -> 'val) list) (s : state) : 'val list = [] | |
| EvalList (genExp :: genExps) s = (genExp s) :: EvalList genExps s; | |
3. Compile a source parallel assignment into two lists: | |
locs of the variables being assigned, and exps of | |
component transformed expressions using decoded | |
types. This process is part of the exisiting compiler. | |
4. Prepend each expression in exps with the proper encode | |
function This produces a list genExps where every | |
element is a generic typed expression. | |
5. The final representaion can now be expressed as: | |
... | |
val locs_123 : 'loc list = [ ``Generated by compiler'' ] | |
val genExps_123 : 'val list = [ ``Generated by compiler'' ] | |
val parAsg_123 : asg = (ParAsg locs_123) o (EvalList genExps_123) | |
... | |
a) A consequence of this is that VAR parameters should be | |
represented by their 'loc location. | |
b) A variable component can not be used as argument for a | |
VAR parameter, but still be used for a value parameter. | |
c) The assignment and update funtion will be deprecated. | |
d) The write part of a variable pair has to be replaced | |
with it's 'loc location. | |
e) The representation of an atomic action should be changed | |
such that it is based on the variable locations and the | |
assigned expressions. (How do we handle components???) | |
*) | |
(*---------------------------------------------------------------------------*) | |
let NUM = `:num`;; | |
let BOOL = `:bool`;; | |
let VAR_TP = (fun s -> mk_vartype("'"^s));; | |
let LST = (fun t -> mk_type("list",[t]));; | |
let PRD = (fun (l,r) -> mk_type("prod",[l;r]));; | |
let FUN = (fun (l,r) -> mk_type("fun",[l;r]));; | |
let rec FNC = | |
function (l,[]) -> l | |
| (l,(r::rs)) -> FUN(l,FNC(r,rs));; | |
let LOC = VAR_TP"loc";; | |
let VAL = VAR_TP"val";; | |
let STA = FUN(LOC,VAL);; | |
let ACT = FUN(STA,STA);; | |
let INT = LST(ACT);; | |
let XPR = (fun t -> FUN(STA,t));; | |
let ASG = (fun t -> FNC(XPR t,[STA; STA; STA]));; | |
let VAR = (fun t -> PRD(XPR t, ASG t));; | |
let PAR = FNC(STA,[STA; STA]);; | |
let SEQ = FUN(LOC, FUN(FUN(NUM,VAL), FUN(FUN(VAL,NUM), FUN(NUM, PRD(INT,NUM)))));; | |
(*---------------------------------------------------------------------------*) | |
(* | |
Defining Variable extraction functions | |
*) | |
(*---------------------------------------------------------------------------*) | |
let t = mk_vartype"'t";; | |
let v = mk_var("v", VAR t);; | |
new_type_abbrev("stype", | |
`:'loc->'val`);; | |
new_type_abbrev("vtype", | |
`:(stype->'t)#((stype->'t)->stype->stype->stype)`);; | |
new_type_abbrev("vindex_type", | |
`:(stype->'i->'t)#((stype->'i->'t)->stype->stype->stype)`);; | |
new_type_abbrev("vpair_type", | |
`:(stype->'a#'b)#((stype->'a#'b)->stype->stype->stype)`);; | |
new_type_abbrev("seq_type", | |
`:'loc->(num->'val)->('val->num)->num->(stype->stype)list#num`);; | |
(* | |
* Extraction expression of a variable | |
*) | |
let VAR_EXP = new_definition (`VAR_EXP (v:vtype) = FST v`);; | |
(* | |
* Extraction assignment of a variable | |
*) | |
let VAR_ASG = new_definition (`VAR_ASG (v:vtype) = SND v`);; | |
(*---------------------------------------------------------------------------*) | |
(* | |
Location to variable translator functions | |
*) | |
(*---------------------------------------------------------------------------*) | |
let loc = mk_var("loc",LOC);; | |
let s = mk_var("s", STA);; | |
let s0 = mk_var("s0", STA);; | |
let ds = mk_var("ds", FUN(VAL,t));; | |
let mk = mk_var("mk", FUN(t,VAL));; | |
let e = mk_var("e", XPR t);; | |
(* | |
* Translate a location to an expression | |
*) | |
let LOC_EXP = new_definition | |
(`LOC_EXP loc (ds:'val->'t) (s:stype) = ds (s loc)`);; | |
(* | |
* Translate a location to an assignment | |
*) | |
let LOC_ASG = new_definition | |
(`LOC_ASG loc (mk:'t->'val) (e:stype->'t) | |
(s0:stype) (s:stype) l = | |
(if (l = loc) then (mk (e s0)) else (s l))`);; | |
(* | |
* Translate a location to a variable pair | |
*) | |
let LOC_VAR = new_definition | |
(`LOC_VAR (loc:'loc) (mk:'t->'val) (ds:'val->'t) = | |
(LOC_EXP loc ds, LOC_ASG loc mk)`);; | |
(*---------------------------------------------------------------------------*) | |
(* | |
Array (index) functions | |
*) | |
(*---------------------------------------------------------------------------*) | |
(* | |
* Generate index expression | |
* | |
* IndexExp [(i,v),...] a | |
*) | |
let INDEX_EXP = new_definition | |
(`(INDEX_EXP (a:stype->('i->'t)) (i:stype->'i) (s:stype) = | |
(a s) (i s))`);; | |
(* | |
* Generate updated index expression (index, exp and array are frozen) | |
* | |
* UpdIndex [(i,v),...] a | |
*) | |
let UPD_INDEX = new_definition | |
(`(UPD_INDEX (i:'i) (c:'t) (a:'i->'t) j = (if (j = i) then c else (a j)))`);; | |
(* | |
* Generate updated index expression (index and exp are frozen) | |
* | |
* UPD_INDEX_XPR [(i,v),...] a | |
*) | |
let UPD_INDEX_EXP = new_definition | |
(`(UPD_INDEX_EXP (i:'i) (c:'t) (a:stype->'i->'t) (s:stype) = | |
UPD_INDEX i c (a s))`);; | |
(* | |
* Assignment part from Index of a variable | |
*) | |
let VAR_INDEX_ASG = new_definition | |
(`VAR_INDEX_ASG | |
(i:stype->'i) (v:vindex_type) | |
(e:stype->'t) (s0:stype) (s:stype) = | |
VAR_ASG v (UPD_INDEX_EXP (i s0) (e s0) (VAR_EXP v)) s0 s`);; | |
(* | |
* Expression part from Index of a variable | |
*) | |
let VAR_INDEX_EXP = new_definition | |
(`VAR_INDEX_EXP | |
(i:stype->'i) (v:vindex_type) (s:stype) = | |
(VAR_EXP v s) (i s)`);; | |
(* | |
* Index variable | |
*) | |
let VAR_INDEXVAR = new_definition | |
(`VAR_INDEXVAR (i:stype->'i) (v:vindex_type) = | |
(VAR_INDEX_EXP i v, VAR_INDEX_ASG i v)`);; | |
(*---------------------------------------------------------------------------*) | |
(* | |
List functions (not complete) | |
*) | |
(*---------------------------------------------------------------------------*) | |
(* | |
* List of expressions | |
*) | |
let LIST_EXP_term = | |
(`(LIST_EXP [] (s:stype) = []) /\ | |
(LIST_EXP (CONS (e:stype->'t) t) s = (CONS (e s) (LIST_EXP t s)))`);; | |
let LIST_EXP = new_recursive_definition list_RECURSION LIST_EXP_term;; | |
(*---------------------------------------------------------------------------*) | |
(* | |
Record (pair,fst,snd) functions | |
*) | |
(*---------------------------------------------------------------------------*) | |
(* | |
* State abstracted FST and SND | |
*) | |
let s_FST = new_definition | |
(`s_FST (e:'sta->('a # 'b)) s = FST (e s)`);; | |
let s_SND = new_definition | |
(`s_SND (e:'sta->('a # 'b)) s = SND (e s)`);; | |
(* | |
* Update PAIR | |
*) | |
let UPD_FST = new_definition | |
(`UPD_FST (c:'a) (p:'sta->('a#'b)) s = (c, SND(p s))`);; | |
let UPD_SND = new_definition | |
(`UPD_SND (c:'b) (p:'sta->('a#'b)) s = (FST(p s),c)`);; | |
(* | |
* Assignment to FST and SND | |
*) | |
let VAR_FST_ASG = new_definition | |
(`VAR_FST_ASG (v:vpair_type) (e:stype->'a) (s0:stype) (s:stype) = | |
VAR_ASG v (UPD_FST (e s0) (VAR_EXP v)) s0 s`);; | |
let VAR_SND_ASG = new_definition | |
(`VAR_SND_ASG (v:vpair_type) (e:stype->'b) (s0:stype) (s:stype) = | |
VAR_ASG v (UPD_SND (e s0) (VAR_EXP v)) s0 s`);; | |
(* | |
* Variables of FST and SND | |
*) | |
let FST_VAR = new_definition | |
(`FST_VAR (v:vpair_type) = (s_FST (VAR_EXP v), VAR_FST_ASG v)`);; | |
let SND_VAR = new_definition | |
(`SND_VAR (v:vpair_type) = (s_SND (VAR_EXP v), VAR_SND_ASG v)`);; | |
(*---------------------------------------------------------------------------*) | |
(* | |
Parallel actions | |
*) | |
(*---------------------------------------------------------------------------*) | |
(* | |
* Execute two parallel actions simultaneously | |
*) | |
let PAR_PAR = new_definition | |
(`(PAR_PAR (p1:stype->stype->stype) | |
(p2:stype->stype->stype) | |
(s0:stype) (s:stype) = | |
p2 s0 (p1 s0 s))`);; | |
(* | |
* Execute a list of parallel actions | |
*) | |
let LIST_PAR_term = | |
(`(LIST_PAR [] (s0:stype) (s:stype) = s) /\ | |
(LIST_PAR (CONS (h:stype->stype->stype) t) s0 s = LIST_PAR t s0 (h s0 s))`);; | |
let LIST_PAR = new_recursive_definition list_RECURSION LIST_PAR_term;; | |
(* | |
* Translate a parallel action into an atomic action | |
*) | |
let PAR_ATOM = new_definition | |
(`PAR_ATOM (p:stype->stype->stype) (s:stype) = p s s`);; | |
(* | |
* Guard a parallel action | |
*) | |
let WHEN_PAR = new_definition | |
(`WHEN_PAR (p:stype->stype->stype) g | |
(s0:stype) (s:stype) = | |
(if (g s0) then (p s0 s) else s)`);; | |
(* | |
* Conditional parallel action | |
*) | |
let IF_PAR = new_definition | |
(`IF_PAR (p1:stype->stype->stype) | |
(p2:stype->stype->stype) g | |
(s0:stype) (s:stype) = | |
(if (g s0) then (p1 s0 s) else (p2 s0 s))`);; | |
(* | |
* Identity parallel action | |
*) | |
let ID_PAR = new_definition (`ID_PAR (s0:stype) (s:stype) = s`);; | |
(* | |
* Iterated parallel assignment | |
*) | |
let ITER_PAR0_term = | |
(`(ITER_PAR0 (low:num) 0 (f:num->bool) | |
(fi:num->stype->stype->stype) = ID_PAR) /\ | |
(ITER_PAR0 low (SUC n) f fi = | |
(if (f low) then PAR_PAR (fi low) (ITER_PAR0 (SUC low) n f fi) | |
else (ITER_PAR0 (SUC low) n f fi)))`);; | |
let ITER_PAR0 = new_recursive_definition num_RECURSION ITER_PAR0_term;; | |
let ITER_PAR = new_definition | |
(`ITER_PAR low high (f:num->bool) | |
(fi:num->stype->stype->stype) = | |
(ITER_PAR0 low ((1+high)-low) f fi)`);; | |
(*---------------------------------------------------------------------------*) | |
(* | |
Atomic actions | |
*) | |
(*---------------------------------------------------------------------------*) | |
(* | |
* Translate a parallel action into an atomic action | |
*) | |
(* | |
K and S are removed from HOL Light. | |
I and o are defined in trivia.ml | |
So I introduce K myself | |
*) | |
let K_DEF = new_definition (`K x y = x`);; | |
let ASG_ACT = new_definition | |
(`ASG_ACT (par:stype->stype->stype) | |
(pc:'loc) (mk:num->'val) (ds:'val->num) (l0:num) = | |
PAR_ATOM | |
(WHEN_PAR (LIST_PAR [par; LOC_ASG pc mk (K (SUC l0))]) | |
(LOC_EXP pc ds =* (K l0)))`);; | |
(* | |
* Test atomic action | |
*) | |
let TST_ACT = new_definition | |
(`TST_ACT (g:stype->bool) | |
(l:num) (pc:'loc) (mk:num->'val) (ds:'val->num) (l0:num) = | |
(PAR_ATOM (WHEN_PAR (LOC_ASG pc mk ((g =>* K(SUC l0)) (K l))) | |
(LOC_EXP pc ds =* K l0)))`);; | |
(* | |
* Goto atomic action | |
*) | |
let GTO_ACT = new_definition | |
(`GTO_ACT (l:num) (pc:'loc) (mk:num->'val) (ds:'val->num) (l0:num) = | |
PAR_ATOM (WHEN_PAR (LOC_ASG pc mk (K l)) | |
(LOC_EXP pc ds =* K l0))`);; | |
(*---------------------------------------------------------------------------*) | |
(* | |
Sequential actions | |
*) | |
(*---------------------------------------------------------------------------*) | |
(* | |
* Translate parallel to sequential action | |
*) | |
let PAR_SEQ = new_definition | |
(`PAR_SEQ (par:stype->stype->stype) | |
(pc:'loc) (mk:num->'val) (ds:'val->num) (l0:num) = | |
([ASG_ACT par pc mk ds l0], SUC l0)`);; | |
(* | |
* Identity sequential action | |
*) | |
let ID_SEQ = new_definition | |
(`ID_SEQ (pc:'loc) (mk:num->'val) (ds:'val->num) (l0:num) = | |
([], l0)`);; | |
(* | |
* Execute two sequential actions in a row | |
*) | |
let SEQ_SEQ = new_definition | |
(`SEQ_SEQ (s1:seq_type) (s2:seq_type) | |
(pc:'loc) (mk:num->'val) (ds:'val->num) (l0:num) = | |
let b1 = s1 pc mk ds l0 in | |
let b2 = s2 pc mk ds (SND b1) in | |
(APPEND (FST b1) (FST b2), (SND b2))`);; | |
(* | |
* Iterated sequential actions | |
*) | |
let ITER_SEQ0_term = | |
(`(ITER_SEQ0 (low:num) 0 (f:num->bool) (fi:num->seq_type) = ID_SEQ) /\ | |
(ITER_SEQ0 low (SUC n) f fi = | |
(if (f low) then (SEQ_SEQ (fi low) (ITER_SEQ0 (SUC low) n f fi)) | |
else (ITER_SEQ0 (SUC low) n f fi)))`);; | |
let ITER_SEQ0 = new_recursive_definition num_RECURSION ITER_SEQ0_term;; | |
let ITER_SEQ = new_definition | |
(`ITER_SEQ low high (f:num->bool) (fi:num->seq_type) = | |
ITER_SEQ0 low ((1+high)-low) f fi`);; | |
(* | |
* List of sequential actions | |
*) | |
let LIST_SEQ_term = | |
(`(LIST_SEQ [] (pc:'loc) (mk:num->'val) (ds:'val->num) (l0:num) = ([], l0)) /\ | |
(LIST_SEQ (CONS (sa:seq_type) sas) pc mk ds l0 = | |
let b1 = sa pc mk ds l0 in | |
let bs = LIST_SEQ sas pc mk ds (SND b1) in | |
(APPEND (FST b1) (FST bs), (SND bs)))`);; | |
let LIST_SEQ = new_recursive_definition list_RECURSION LIST_SEQ_term;; | |
(* | |
* Conditional sequential actions | |
*) | |
let IF1_SEQ = new_definition | |
(`(IF1_SEQ (g:stype->bool) | |
(sa:seq_type) (pc:'loc) (mk:num->'val) (ds:'val->num) (l0:num) = | |
let b1 = sa pc mk ds (SUC l0) in | |
let a1 = TST_ACT g (SND b1) pc mk ds l0 in | |
(CONS a1 (FST b1), (SND b1)))`);; | |
(* | |
* Conditional (else) sequential actions | |
*) | |
let IF2_SEQ = new_definition | |
(`(IF2_SEQ (g:stype->bool) (sa1:seq_type) (sa2:seq_type) | |
(pc:'loc) (mk:num->'val) (ds:'val->num) (l0:num) = | |
let b1 = sa1 pc mk ds (SUC l0) in | |
let b2 = sa2 pc mk ds (SUC (SND b1)) in | |
let a1 = TST_ACT g (SUC (SND b1)) pc mk ds l0 in | |
let a2 = GTO_ACT (SND b2) pc mk ds (SND b1) in | |
(APPEND (CONS a1 (FST b1)) | |
(CONS a2 (FST b2)), (SND b2)))`);; | |
(* | |
* While loop sequential actions | |
*) | |
let WHL_SEQ = new_definition | |
(`(WHL_SEQ (g:stype->bool) (sa:seq_type) | |
(pc:'loc) (mk:num->'val) (ds:'val->num) (l0:num) = | |
let b1 = sa pc mk ds (SUC l0) in | |
let a1 = TST_ACT g (SUC (SND b1)) pc mk ds l0 in | |
let a2 = GTO_ACT l0 pc mk ds (SND b1) in | |
(APPEND (CONS a1 (FST b1)) [a2], (SUC(SND b1))))`);; | |
(*---------------------------------------------------------------------------*) | |
(* | |
Interleaved actions | |
*) | |
(*---------------------------------------------------------------------------*) | |
(* | |
* Translate a parallel action into an interleaved action | |
*) | |
let PAR_INT = new_definition | |
(`PAR_INT (par:stype->stype->stype) = [PAR_ATOM par]`);; | |
(* | |
* Composition of two interleaved actions | |
*) | |
let INT_INT = new_definition | |
(`INT_INT (i1:(stype->stype)list) i2 = APPEND i1 i2`);; | |
(* | |
* Translate a list of interleaved action into a single interleaved action | |
*) | |
let LIST_INT_term = | |
(`(LIST_INT [] = ([]:(stype->stype)list)) /\ | |
(LIST_INT (CONS (h:(stype->stype)list) t) = | |
(APPEND h (LIST_INT t)))`);; | |
let LIST_INT = new_recursive_definition list_RECURSION LIST_INT_term;; | |
(* | |
* Translate a parallel action into an interleaved action | |
*) | |
let ID_INT = new_definition | |
(`ID_INT = ([]:(stype->stype)list)`);; | |
(*######################################################################## | |
# # | |
# Iterated interleaving # | |
# # | |
# << i : 1 <= i <= N :: Pr[i] >> # | |
# # | |
# is defined as: # | |
# # | |
# IteratedINTerleaving low n Pr[.] --> # | |
# Pr[low] [] ... [] Pr[low+n-1] # | |
# # | |
########################################################################*) | |
(* | |
* Iterated interleaved assignment | |
*) | |
let ITER_INT0_term = | |
(`(ITER_INT0 (low:num) 0 (f:num->bool) (fi:num->(stype->stype)list) = ID_INT) /\ | |
(ITER_INT0 low (SUC n) f fi = | |
(if (f low) then (INT_INT (fi low) (ITER_INT0 (SUC low) n f fi)) | |
else (ITER_INT0 (SUC low) n f fi)))`);; | |
let ITER_INT0 = new_recursive_definition num_RECURSION ITER_INT0_term;; | |
let ITER_INT = new_definition | |
(`ITER_INT low high (f:num->bool) (fi:num->(stype->stype)list) = | |
ITER_INT0 low ((1+high)-low) f fi`);; | |
(*####################################################################### | |
# # | |
# Absolute and relative Label predicates # | |
# # | |
# AT,AFTER : At first, first following action # | |
# IN : Inside action # | |
# BEFORE,FOLLOW : Strictly before,following action # | |
# # | |
########################################################################*) | |
let AT_LBL = new_definition | |
(`AT_LBL ds pc (label:num#num) = | |
(LOC_EXP pc ds:stype->num) =* K (FST label)`);; | |
let AFTER_LBL = new_definition | |
(`AFTER_LBL ds pc (label:num#num) = | |
(LOC_EXP pc ds:stype->num) =* K (SND label)`);; | |
let BEFORE_LBL = new_definition | |
(`BEFORE_LBL ds pc (label:num#num) = | |
(LOC_EXP pc ds:stype->num) <* K (FST label)`);; | |
let INSIDE_LBL = new_definition | |
(`INSIDE_LBL ds pc (label:num#num) = | |
((LOC_EXP pc ds:stype->num) >=* K (FST label)) /\* | |
((LOC_EXP pc ds:stype->num) <* K (SND label))`);; | |
let FOLLOW_LBL = new_definition | |
(`FOLLOW_LBL ds pc (label:num#num) = | |
(LOC_EXP pc ds:stype->num) >=* K (SND label)`);; | |
(* Absolute label handler *) | |
let AT_ABS = new_definition | |
(`AT_ABS (pc:stype->num) (l:num) (u:num) = (pc =* K l)`);; | |
let AT_REL = new_definition | |
(`AT_REL (pc:(stype->num)#((stype->num)->stype->stype->stype)) | |
(label:(num#num)) = | |
VAR_EXP pc =* K (FST label)`);; | |
let AFTER_ABS = new_definition | |
(`AFTER_ABS (pc:stype->num) (l:num) (u:num) = (pc =* K u)`);; | |
let AFTER_REL = new_definition | |
(`AFTER_REL (pc:(stype->num)#((stype->num)->stype->stype->stype)) | |
(label:(num#num)) = | |
VAR_EXP pc =* K (SND label)`);; | |
let BEFORE_ABS = new_definition | |
(`BeforeAbs (pc:stype->num) (l:num) (u:num) = (pc <* K l)`);; | |
let BEFORE_REL = new_definition | |
(`BEFORE_REL (pc:(stype->num)#((stype->num)->stype->stype->stype)) | |
(label:(num#num)) = | |
VAR_EXP pc <* K (FST label)`);; | |
let INSIDE_ABS = new_definition | |
(`INSIDE_ABS (pc:stype->num) (l:num) (u:num) = | |
(pc >=* K l) /\* (pc <* K u)`);; | |
let INSIDE_REL = new_definition | |
(`INSIDE_REL (pc:(stype->num)#((stype->num)->stype->stype->stype)) | |
(label:(num#num)) = | |
(VAR_EXP pc >=* K (FST label)) /\* | |
(VAR_EXP pc <* K (SND label))`);; | |
let FOLLOW_ABS = new_definition | |
(`FollowAbs (pc:stype->num) (l:num) (u:num) = (pc >=* K l)`);; | |
let FOLLOW_REL = new_definition | |
(`FOLLOW_REL (pc:(stype->num)#((stype->num)->stype->stype->stype)) | |
(label:(num#num)) = | |
VAR_EXP pc >=* K (SND label)`);; | |
(*######################################################################## | |
# # | |
# Restricted UNLESS # | |
# # | |
# (p UNLESS{valid} q) Pr # | |
# # | |
# is defined as: # | |
# # | |
# RESTRICTED_UNLESS valid p q Pr = # | |
# {p /\ valid /\ ~q)} Pr {p \/ q} # | |
# # | |
########################################################################*) | |
let RESTRICTED_UNLESS_STMT = new_definition | |
(`RESTRICTED_UNLESS_STMT v p q st = | |
(!s:'state. p s /\ v s /\ ~(q s) ==> p (st s) \/ q (st s))`);; | |
let RESTRICTED_UNLESS_term = | |
(`(RESTRICTED_UNLESS (v:'state->bool) p q [] = T) /\ | |
(RESTRICTED_UNLESS (v:'state->bool) p q (CONS st Pr) = | |
(RESTRICTED_UNLESS_STMT v p q st /\ RESTRICTED_UNLESS v p q Pr))`);; | |
let RESTRICTED_UNLESS = | |
new_recursive_definition list_RECURSION RESTRICTED_UNLESS_term;; | |
(*####################################################################### | |
# # | |
# RESTRICTED STABLE # | |
# # | |
# (p STABLE{valid} q) Pr # | |
# # | |
# is defined as: # | |
# # | |
# RESTRICTED_STABLE valid p q Pr = # | |
# {p /\ valid} Pr {p} # | |
# # | |
########################################################################*) | |
let RESTRICTED_STABLE_STMT = new_definition | |
(`RESTRICTED_STABLE_STMT v p st = | |
(!s:'state. p s /\ v s ==> p (st s))`);; | |
let RESTRICTED_STABLE_term = | |
(`(RESTRICTED_STABLE (v:'state->bool) p [] = T) /\ | |
(RESTRICTED_STABLE (v:'state->bool) p (CONS st Pr) = | |
(RESTRICTED_STABLE_STMT v p st /\ RESTRICTED_STABLE v p Pr))`);; | |
let RESTRICTED_STABLE = | |
new_recursive_definition list_RECURSION RESTRICTED_STABLE_term;; | |
(*######################################################################## | |
# # | |
# RESTRICTED EXISTS_TRANSITION # | |
# # | |
# (p EXISTS_TRANSITION{valid} q) Pr # | |
# # | |
# is defined as: # | |
# # | |
# RESTRICTED_EXISTS_TRANSITION valid p q Pr = # | |
# ?st In Pr. {p /\ valid /\ ~q} Pr {q} # | |
# # | |
########################################################################*) | |
let RESTRICTED_EXISTS_TRANSITION_STMT = new_definition | |
(`RESTRICTED_EXISTS_TRANSITION_STMT v p q st = | |
(!s:'state. p s /\ v s /\ ~(q s) ==> q (st s))`);; | |
let RESTRICTED_EXISTS_TRANSITION_term = | |
(`(RESTRICTED_EXISTS_TRANSITION (v:'state->bool) p q [] = F) /\ | |
(RESTRICTED_EXISTS_TRANSITION (v:'state->bool) p q (CONS st Pr) = | |
(RESTRICTED_EXISTS_TRANSITION_STMT v p q st \/ | |
RESTRICTED_EXISTS_TRANSITION v p q Pr))`);; | |
let RESTRICTED_EXISTS_TRANSITION = | |
new_recursive_definition list_RECURSION RESTRICTED_EXISTS_TRANSITION_term;; | |
(*######################################################################## | |
# # | |
# RESTRICTED ENSURES # | |
# # | |
# (p ENSURES{valid} q) Pr # | |
# # | |
# is defined as: # | |
# # | |
# RESTRICTED_ENSURES valid p q Pr = # | |
# RESTRICTED_UNLESS valid p q Pr /\ # | |
# RESTRICTED_EXISTS_TRANSITION valid p q Pr # | |
# # | |
########################################################################*) | |
let RESTRICTED_ENSURES = new_definition | |
(`RESTRICTED_ENSURES (v:'state->bool) p q Pr = | |
(RESTRICTED_UNLESS v p q Pr /\ | |
RESTRICTED_EXISTS_TRANSITION v p q Pr)`);; | |
(*######################################################################## | |
# # | |
# RESTRICTED LEADSTO # | |
# # | |
# (p LEADSTO{valid} q) Pr # | |
# # | |
# is defined as: # | |
# # | |
# RESTRICTED_LEADSTO valid p q Pr = # | |
# (p /\ valid p) LEADSTO q Pr /\ # | |
# # | |
########################################################################*) | |
let RESTRICTED_LEADSTO = new_definition | |
(`RESTRICTED_LEADSTO (v:'state->bool) p q Pr = | |
(((p /\* v) LEADSTO q) Pr)`);; | |
(*######################################################################## | |
# # | |
# Valid # | |
# # | |
# Valid p # | |
# # | |
# is defined as: # | |
# # | |
# Valid p = # | |
# !s. p s # | |
# # | |
########################################################################*) | |
let VALID = new_definition | |
(`VALID (p:'state->bool) = !s. p s`);; | |
let TRIPLE_term = | |
(`(TRIPLE (p:'state->bool) q [] = T) /\ | |
(TRIPLE p q (CONS (st:'state->'state) Pr) = | |
((!s. p s ==> q(st s)) /\ TRIPLE p q Pr))`);; | |
let RESTRICTED_TRIPLE = | |
new_recursive_definition list_RECURSION TRIPLE_term;; | |
(*######################################################################## | |
# # | |
# SUMMA lwb len filter body = # | |
# Body(lwb) + ... Body(i) ... + Body(lwb+len-1) , when filter(i)# | |
# # | |
# SUMMA lwb 0 f b = 0 # | |
# SUMMA lwb (SUC n) f b = (f lwb => b lwb | 0) + SUMMA lwb n f b # | |
# # | |
########################################################################*) | |
let SUMMA0_term = | |
(`(SUMMA0 lwb 0 f b = 0) /\ | |
(SUMMA0 lwb (SUC n) f b = | |
((if (f lwb) then (b lwb) else 0) + (SUMMA0 (SUC lwb) n f b)))`);; | |
let SUMMA0 = new_recursive_definition num_RECURSION SUMMA0_term;; | |
let SUMMA = new_definition | |
(`SUMMA lwb upb f b = SUMMA0 lwb ((1 + upb)-lwb) f b`);; | |
let SUMMA_S = new_definition | |
(`SUMMA_S lwb upb f b (s:'state) = | |
SUMMA (lwb s) (upb s) (\i. f i s) (\i. b i s)`);; | |
(*######################################################################## | |
# # | |
# MULTA lwb len filter body = # | |
# Body(lwb) * ... Body(i) ... * Body(lwb+len-1) , when filter(i)# | |
# # | |
# MULTA lwb 0 f b = 1 # | |
# MULTA lwb (SUC n) f b = (f lwb => b lwb | 1) * MULTA lwb n f b # | |
# # | |
########################################################################*) | |
let MULTA0_term = | |
(`(MULTA0 lwb 0 f b = 1) /\ | |
(MULTA0 lwb (SUC n) f b = | |
((if (f lwb) then (b lwb) else 1) * (MULTA0 (SUC lwb) n f b)))`);; | |
let MULTA0 = new_recursive_definition num_RECURSION MULTA0_term;; | |
let MULTA = new_definition | |
(`MULTA lwb upb f b = MULTA0 lwb ((1 + upb)-lwb) f b`);; | |
let MULTA_S = new_definition | |
(`MULTA_S lwb upb f b (s:'state) = | |
MULTA (lwb s) (upb s) (\i. f i s) (\i. b i s)`);; | |
(*######################################################################## | |
# # | |
# CONJA lwb len filter body = # | |
# Body(lwb) & ... Body(i) ... & Body(lwb+len-1) , when filter(i)# | |
# # | |
# CONJA lwb 0 f b = T # | |
# CONJA lwb (SUC n) f b = (f lwb => b lwb | 1) & CONJA lwb n f b # | |
# # | |
########################################################################*) | |
let CONJA0_term = | |
(`(CONJA0 lwb 0 f b = T) /\ | |
(CONJA0 lwb (SUC n) f b = | |
((if (f lwb) then (b lwb) else T) /\ (CONJA0 (SUC lwb) n f b)))`);; | |
let CONJA0 = new_recursive_definition num_RECURSION CONJA0_term;; | |
let CONJA = new_definition | |
(`CONJA lwb upb f b = CONJA0 lwb ((1 + upb)-lwb) f b`);; | |
let CONJA_S = new_definition | |
(`CONJA_S lwb upb f b (s:'state) = | |
CONJA (lwb s) (upb s) (\i. f i s) (\i. b i s)`);; | |
(*######################################################################## | |
# # | |
# DISJA lwb len filter body = # | |
# Body(lwb) | ... Body(i) ... | Body(lwb+len-1) , when filter(i)# | |
# # | |
# DISJA lwb 0 f b = F # | |
# DISJA lwb (SUC n) f b = (f lwb => b lwb | 1) | DISJA lwb n f b # | |
# # | |
########################################################################*) | |
let DISJA0_term = | |
(`(DISJA0 lwb 0 f b = F) /\ | |
(DISJA0 lwb (SUC n) f b = | |
((if (f lwb) then (b lwb) else F) \/ (DISJA0 (SUC lwb) n f b)))`);; | |
let DISJA0 = new_recursive_definition num_RECURSION DISJA0_term;; | |
let DISJA = new_definition | |
(`DISJA lwb upb f b = DISJA0 lwb ((1 + upb)-lwb) f b`);; | |
let DISJA_S = new_definition | |
(`DISJA_S lwb upb f b (s:'state) = | |
DISJA (lwb s) (upb s) (\i. f i s) (\i. b i s)`);; | |
(*---------------------------------------------------------------------------*) | |
(* | |
Miscellaneous | |
*) | |
(*---------------------------------------------------------------------------*) | |
(* | |
* Test for list membership | |
*) | |
let MEMBER_term = | |
(`(MEMBER (x:'a) [] = F) /\ | |
(MEMBER x (CONS h t) = ((x=h) \/ (MEMBER x t)))`);; | |
let MEMBER = new_recursive_definition list_RECURSION MEMBER_term;; | |
(* | |
* Test for unique elements in list | |
*) | |
let UNIQUE_term = | |
(`(UNIQUE [] = T) /\ | |
(UNIQUE (CONS (h:'a) t) = ((~(MEMBER h t)) /\ UNIQUE t))`);; | |
let UNIQUE = new_recursive_definition list_RECURSION UNIQUE_term;; | |