Datasets:
Tasks:
Text Generation
Modalities:
Text
Sub-tasks:
language-modeling
Languages:
English
Size:
100K - 1M
License:
\documentclass{article} | |
\usepackage[T1]{fontenc} | |
\usepackage{textcomp} | |
\renewcommand{\rmdefault}{ptm} | |
\usepackage[scaled=0.92]{helvet} | |
\usepackage[psamsfonts]{amsfonts} | |
\usepackage{amsmath, amsbsy,verbatim} | |
\usepackage[dvips, bookmarks, colorlinks=true, plainpages = false, | |
citecolor = blue, urlcolor = blue, filecolor = blue]{hyperref} | |
\newtheorem{corollary}{Corollary} | |
\newtheorem{definition}{Definition} | |
\newtheorem{lemma}{Lemma} | |
\newtheorem{theorem}{Theorem} | |
\newtheorem{example}{Example} | |
\newcommand{\proof}{\noindent{\sc\bf Proof}\quad } | |
\def\endproof{{\hfill \vbox{\hrule\hbox{% | |
\vrule height1.3ex\hskip0.8ex\vrule}\hrule }}\par} | |
\newcommand{\bbox}{\phantom{1}\hfill{\rule{6pt}{6pt}}} | |
\newcommand{\pd}[2]{\frac{\partial{#1}}{\partial{#2}}} | |
\newcommand{\dst}{\displaystyle} | |
\newcommand{\place}{\bigskip\hrule\bigskip\noindent} | |
\newcommand{\set}[2]{\left\{#1\, \big|\, #2\right\}} | |
\newcommand{\exer}[1]{\par\noindent{\bf $#1$}.} | |
\newcommand{\boxit}[1]{\bigskip\noindent{\bf | |
#1}\\\vskip-6pt\hskip-\parindent} | |
\newcounter{lcal} | |
\newenvironment{alist}{\begin{list}{\bf (\alph{lcal})} | |
{\topsep 0pt\partopsep 0pt\labelwidth 14pt | |
\labelsep 8pt\leftmargin 22pt\itemsep 0pt | |
\usecounter{lcal}}}{\end{list}} | |
\newcounter{exercise} | |
\newenvironment{exerciselist}{\begin{list}{\bf \arabic{exercise}.} | |
{\topsep 10pt\partopsep 0pt\labelwidth 16pt | |
\labelsep 12pt\leftmargin 28pt | |
\itemsep 8pt\usecounter{exercise}}}{\end{list}} | |
\begin{document} | |
\thispagestyle{empty} | |
\bf | |
\begin{center} | |
{\Huge FUNCTIONS DEFINED BY\\ \medskip IMPROPER INTEGRALS} | |
\vspace{.5in} | |
\huge | |
\bigskip | |
\vspace{.75in} | |
\bf\huge | |
\href{http://ramanujan.math.trinity.edu/wtrench/index.shtml} | |
{William F. Trench} | |
\medskip | |
\\\large | |
Andrew G. Cowles Distinguished Professor Emeritus\\ | |
Department of Mathematics\\ | |
Trinity University \\ | |
San Antonio, Texas, USA\\ | |
\href{mailto:{wtrench@trinity.edu}} | |
{wtrench@trinity.edu} | |
\large | |
\vspace*{.75in} | |
\end{center} | |
\rm | |
\noindent | |
This is a supplement to the author's | |
\href{http://ramanujan.math.trinity.edu/wtrench/texts/TRENCH_REAL_ANALYSIS.PDF} | |
{\large Introduction to Real Analysis}. | |
It has been judged to meet the evaluation criteria set by the | |
Editorial Board | |
of the American Institute of Mathematics in connection with the Institute's | |
\href{http://www.aimath.org/textbooks/} | |
{Open | |
Textbook Initiative}. | |
It may be copied, modified, redistributed, translated, and | |
built upon subject to the Creative | |
Commons | |
\href{http://creativecommons.org/licenses/by-nc-sa/3.0/deed.en_G} | |
{Attribution-NonCommercial-ShareAlike 3.0 Unported License}. | |
A complete instructor's solution manual is available by email to | |
\href{mailto:wtrench@trinity.edu} | |
{wtrench@trinity.edu}, | |
subject to verification of the requestor's | |
faculty status. | |
\newpage | |
\rm | |
\section{Foreword} \label{section:foreword} | |
This is a revised version of Section~7.5 of my \emph{Advanced Calculus} | |
(Harper \& Row, 1978). | |
It is a supplement to my textbook | |
\href{http://ramanujan.math.trinity.edu/wtrench/texts/TRENCH_REAL_ANALYSIS.PDF} | |
{\emph{Introduction to Real Analysis}}, which | |
is referenced several times here. | |
You | |
should review Section~3.4 (Improper Integrals) of that book before | |
reading this document. | |
\section{Introduction}\label{section:introduction} | |
In Section~7.2 (pp. 462--484) | |
we considered functions of the form | |
$$ | |
F(y)=\int_{a}^{b}f(x,y)\,dx, \quad c \le y \le d. | |
$$ | |
We saw that if $f$ is continuous on | |
$[a,b]\times | |
[c,d]$, then | |
$F$ is continuous on $[c,d]$ (Exercise~7.2.3, p.~481) and that | |
we can reverse the order of integration in | |
$$ | |
\int_{c}^{d}F(y)\,dy=\int_{c}^{d}\left(\int_{a}^{b}f(x,y)\,dx\right)\,dy | |
$$ | |
to evaluate it as | |
$$ | |
\int_{c}^{d}F(y)\,dy=\int_{a}^{b}\left(\int_{c}^{d}f(x,y)\,dy\right)\,dx | |
$$ | |
(Corollary~7.2.3, p.~466). | |
Here is another important property of $F$. | |
\begin{theorem} \label{theorem:1} | |
If $f$ and $f_{y}$ are continuous on $[a,b]\times [c,d],$ | |
then | |
\begin{equation} \label{eq:1} | |
F(y)=\int_{a}^{b}f(x,y)\,dx, \quad c \le y \le d, | |
\end{equation} | |
is continuously differentiable on $[c,d]$ and $F'(y)$ can be obtained | |
by differentiating \eqref{eq:1} | |
under the | |
integral sign with respect to $y;$ that is, | |
\begin{equation} \label{eq:2} | |
F'(y)=\int_{a}^{b}f_{y}(x,y)\,dx, \quad c \le y \le d. | |
\end{equation} | |
Here $F'(a)$ and $f_{y}(x,a)$ are derivatives | |
from the right and $F'(b)$ and $f_{y}(x,b)$ are | |
derivatives from the left$.$ | |
\end{theorem} | |
\proof | |
If $y$ and $y+\Delta y$ are in $[c,d]$ and $\Delta y\ne0$, then | |
\begin{equation} \label{eq:3} | |
\frac{F(y+\Delta y)-F(y)}{\Delta y}= | |
\int_{a}^{b}\frac{f(x,y+\Delta y)-f(x,y)}{\Delta y}\,dx. | |
\end{equation} | |
From the mean value theorem (Theorem~2.3.11, p.~83), if | |
$x\in[a,b]$ and $y$, $y+\Delta y\in[c,d]$, there is a | |
$y(x)$ between $y$ and $y+\Delta y$ such that | |
$$ | |
f(x,y+\Delta y)-f(x,y)=f_{y}(x,y)\Delta y= | |
f_{y}(x,y(x))\Delta y+(f_{y}(x,y(x)-f_{y}(x,y))\Delta y. | |
$$ | |
From this and \eqref{eq:3}, | |
\begin{equation} \label{eq:4} | |
\left|\frac{F(y+\Delta y)-F(y)}{\Delta | |
y}-\int_{a}^{b}f_{y}(x,y)\,dx\right| | |
\le \int_{a}^{b} |f_{y}(x,y(x))-f_{y}(x,y)|\,dx. | |
\end{equation} | |
Now suppose $\epsilon>0$. Since $f_{y}$ is uniformly continuous | |
on the compact set $[a,b]\times [c,d]$ | |
(Corollary~5.2.14, p.~314) and $y(x)$ is between $y$ and $y+\Delta y$, | |
there is a $\delta>0$ such that if $|\Delta|<\delta$ then | |
$$ | |
|f_{y}(x,y)-f_{y}(x,y(x))|<\epsilon,\quad | |
(x,y)\in[a,b]\times [c,d]. | |
$$ | |
This and \eqref{eq:4} imply that | |
$$ | |
\left|\frac{F(y+\Delta y-F(y))}{\Delta | |
y}-\int_{a}^{b}f_{y}(x,y)\,dx\right|<\epsilon(b-a) | |
$$ | |
if $y$ and $y+\Delta y$ are in $[c,d]$ and $0<|\Delta y|<\delta$. | |
This implies \eqref{eq:2}. Since | |
the integral in \eqref{eq:2} is continuous | |
on $[c,d]$ (Exercise~7.2.3, p.~481, with $f$ replaced by $f_{y}$), $F'$ | |
is continuous on | |
$[c,d]$. | |
\endproof | |
\begin{example} \label{example:1} \rm | |
Since | |
$$ | |
f(x,y)=\cos xy\text{\quad and\quad} f_{y}(x,y)=-x\sin xy | |
$$ | |
are continuous for all $(x,y)$, | |
Theorem~\ref{theorem:1} implies that if | |
\begin{equation} \label{eq:5} | |
F(y)=\int_{0}^{\pi} \cos xy\,dx,\quad -\infty<y<\infty, | |
\end{equation} | |
then | |
\begin{equation} \label{eq:6} | |
F'(y)=-\int_{0}^{\pi}x\sin xy\,dx,\quad -\infty<y<\infty. | |
\end{equation} | |
(In applying Theorem~\ref{theorem:1} for a specific value | |
of $y$, we take | |
$R=[0,\pi]\times [-\rho,\rho]$, where $\rho>|y|$.) This provides a | |
convenient way to evaluate the integral in \eqref{eq:6}: | |
integrating the right side of \eqref{eq:5} with respect to $x$ yields | |
$$ | |
F(y)=\frac{\sin xy}{y}\bigg|_{x=0}^{\pi}=\frac{\sin\pi y}{y}, \quad | |
y\ne0. | |
$$ | |
Differentiating this and using \eqref{eq:6} yields | |
$$ | |
\int_{0}^{\pi}x\sin xy\,dx =\frac{\sin \pi y}{y^{2}}- | |
\frac{\pi\cos \pi y}{y}, \quad y\ne0. | |
$$ | |
To verify this, use integration by parts. \bbox | |
\end{example} | |
We will study the continuity, | |
differentiability, and integrability of | |
$$ | |
F(y)=\int_{a}^{b}f(x,y)\,dx,\quad y\in S, | |
$$ | |
where $S$ is an interval or a union of intervals, | |
and $F$ is a convergent improper integral for each $y\in S$. | |
If the domain of $f$ is $[a,b)\times S$ where | |
$-\infty<a< b\le \infty$, | |
we say that $F$ is \emph{pointwise convergent on $S$} or simply | |
\emph{convergent on $S$}, and write | |
\begin{equation} \label{eq:7} | |
\int_{a}^{b}f(x,y)\,dx=\lim_{r\to b-}\int_{a}^{r}f(x,y)\,dx | |
\end{equation} | |
if, | |
for each $y\in S$ and every | |
$\epsilon>0$, there is an $r=r_{0}(y)$ (which also depends on $\epsilon$) | |
such that | |
\begin{equation} \label{eq:8} | |
\left|F(y)-\int_{a}^{r}f(x,y)\,dx\right|= | |
\left|\int_{r}^{b}f(x,y)\,dx\right|< \epsilon, | |
\quad r_{0}(y)\le y<b. | |
\end{equation} | |
If the domain of $f$ is $(a,b]\times S$ where $-\infty\le a<b<\infty$, | |
we replace \eqref{eq:7} by | |
$$ | |
\int_{a}^{b}f(x,y)\,dx=\lim_{r\to a+}\int_{r}^{b}f(x,y)\,dx | |
$$ | |
and \eqref{eq:8} by | |
$$ | |
\left|F(y)-\int_{r}^{b}f(x,y)\,dx\right|= | |
\left|\int_{a}^{r}f(x,y)\,dx\right|< \epsilon, | |
\quad a<r\le r_{0}(y). | |
$$ | |
In general, pointwise convergence of $F$ for all $y\in S$ does not imply | |
that $F$ is continuous or integrable on $[c,d]$, and the additional | |
assumptions that $f_{y}$ is continuous and $\int_{a}^{b}f_{y}(x,y)\,dx$ | |
converges do not imply \eqref{eq:2}. | |
\begin{example} \label{example:2} \rm | |
The function | |
$$ | |
f(x,y)=ye^{-|y|x} | |
$$ | |
is continuous on $[0,\infty)\times (-\infty,\infty)$ and | |
$$ | |
F(y)=\int_{0}^{\infty}f(x,y)\,dx =\int_{0}^{\infty}ye^{-|y|x}\,dx | |
$$ | |
converges for all $y$, with | |
$$ | |
F(y)= | |
\begin{cases} | |
-1& y<0,\\ | |
\phantom{-}0&y=0,\\ | |
\phantom{-}1&y>0;\\ | |
\end{cases} | |
$$ | |
therefore, $F$ is discontinuous at $y=0$. | |
\end{example} | |
\begin{example} \label{example:3} \rm | |
The function | |
$$ | |
f(x,y)=y^{3}e^{-y^{2}x} | |
$$ | |
is continuous on $[0,\infty)\times (-\infty,\infty)$. | |
Let | |
$$ | |
F(y)=\int_{0}^{\infty}f(x,y)\,dx= | |
\int_{0}^{\infty}y^{3}e^{-y^{2}x}\,dx =y,\quad -\infty<y<\infty. | |
$$ | |
Then | |
$$ | |
F'(y)=1, \quad -\infty<y<\infty. | |
$$ | |
However, | |
$$ | |
\int_{0}^{\infty}\pd{}{y}(y^{3}e^{-y^{2}x})\,dx | |
=\int_{0}^{\infty}(3y^{2}-2y^{4}x)e^{-y^{2}x}\,dx= | |
\begin{cases} | |
1,& y\ne0,\\ | |
0,& y=0, | |
\end{cases} | |
$$ | |
so | |
$$ | |
F'(y)\ne\int_{0}^{\infty}\pd{f(x,y)}{y}\,dx\text{\quad if\quad}y=0. | |
$$ | |
\end{example} | |
\section{Preparation} \label{section:preparation} | |
We begin with two useful convergence criteria for improper integrals | |
that do not involve a parameter. | |
Consistent with the definition on p.~152, we say that $f$ is locally | |
integrable on | |
an interval $I$ if it is integrable on every finite closed subinterval of | |
$I$. | |
\begin{theorem}[ | |
\href{http://www-history.mcs.st-and.ac.uk/Biographies/Cauchy.html} | |
{Cauchy} | |
Criterion for Convergence of an Improper | |
Integral I] | |
\label{theorem:2} | |
Suppose $g$ is | |
locally integrable on $[a,b)$ and denote | |
$$ | |
G(r)=\int_{a}^{r}g(x)\,dx,\quad a\le r<b. | |
$$ | |
Then the improper integral $\int_{a}^{b}g(x)\,dx$ converges if and only | |
if$,$ for each | |
$\epsilon >0,$ there is an $r_{0}\in[a,b)$ such that | |
\begin{equation} \label{eq:9} | |
|G(r)-G(r_{1})|<\epsilon,\quad r_{0}\le r,r_{1}<b. | |
\end{equation} | |
\end{theorem} | |
\proof For necessity, suppose $\int_{a}^{b}g(x)\,dx=L$. By definition, | |
this means that for each $\epsilon>0$ there is an $r_{0}\in [a,b)$ | |
such that | |
$$ | |
|G(r)-L|<\frac{\epsilon}{2} | |
\text{\quad and\quad} | |
|G(r_{1})-L|<\frac{\epsilon}{2},\quad | |
r_{0}\le r,r_{1}<b. | |
$$ | |
Therefore | |
\begin{eqnarray*} | |
|G(r)-G(r_{1})|&=&|(G(r)-L)-(G(r_{1})-L)|\\ | |
&\le& |G(r)-L|+|G(r_{1})-L|< | |
\epsilon,\quad r_{0}\le r,r_{1}<b. | |
\end{eqnarray*} | |
For sufficiency, \eqref{eq:9} implies that | |
$$ | |
|G(r)|= |G(r_{1})+(G(r)-G(r_{1}))|< |G(r_{1})|+|G(r)-G(r_{1})|\le | |
|G(r_{1})|+\epsilon, | |
$$ | |
$r_{0}\le r\le r_{1}<b$. Since $G$ is also bounded on the | |
compact set | |
$[a,r_{0}]$ (Theorem~5.2.11, p.~313), $G$ is bounded on $[a,b)$. Therefore | |
the monotonic functions | |
$$ | |
\overline{G}(r)=\sup\set{G(r_{1})}{r\le r_{1}<b} \text{\quad and\quad} | |
\underline{G}(r)=\inf\set{G(r_{1})}{r\le r_{1}<b} | |
$$ | |
are well defined on $[a,b)$, and | |
$$ | |
\lim_{r\to b-}\overline{G}(r)=\overline{L} | |
\text{\quad and\quad} | |
\lim_{r\to b-}\underline{G}(r)=\underline{L} | |
$$ | |
both exist and are finite (Theorem~2.1.11, p.~47). | |
From \eqref{eq:9}, | |
\begin{eqnarray*} | |
|G(r)-G(r_{1})|&=&|(G(r)-G(r_{0}))-(G(r_{1})-G(r_{0}))|\\ | |
&\le &|G(r)-G(r_{0})|+|G(r_{1})-G(r_{0})|< 2\epsilon, | |
\end{eqnarray*} | |
so | |
$$ | |
\overline{G}(r)-\underline{G}(r)\le 2\epsilon, \quad r_{0}\le r, r_{1}<b. | |
$$ | |
Since | |
$\epsilon$ is an arbitrary positive number, this implies that | |
$$ | |
\lim_{r\to b-}(\overline{G}(r)-\underline{G}(r))=0, | |
$$ | |
so | |
$\overline{L}=\underline{L}$. Let $L=\overline{L}=\underline{L}$. | |
Since | |
$$ | |
\underline{G}(r)\le G(r)\le \overline{G}(r), | |
$$ | |
it follows that $\lim_{r\to b-} G(r)=L$. \endproof | |
We leave the proof of the following theorem to you | |
(Exercise~\ref{exer:2}). | |
\begin{theorem}[Cauchy Criterion for Convergence of an Improper | |
Integral II] | |
\label{theorem:3} | |
Suppose $g$ is | |
locally integrable on $(a,b]$ and denote | |
$$ | |
G(r)=\int_{r}^{b}g(x)\,dx,\quad a\le r<b. | |
$$ | |
Then the improper integral $\int_{a}^{b}g(x)\,dx$ converges if and only | |
if$,$ for each | |
$\epsilon >0,$ there is an $r_{0}\in(a,b]$ such that | |
$$ | |
|G(r)-G(r_{1})|<\epsilon,\quad a<r,r_{1}\le r_{0}. | |
$$ | |
\end{theorem} | |
To see why we associate Theorems~\ref{theorem:2} and~\ref{theorem:3} with | |
Cauchy, compare them with Theorem~4.3.5 (p.~204) | |
\section{Uniform convergence of improper integrals}\label{section:uniform} | |
\medskip | |
Henceforth we deal with functions $f=f(x,y)$ with domains | |
$I\times S$, where $S$ is an interval or a union of intervals and $I$ is | |
of one of the following forms: | |
\begin{itemize} | |
\item $[a,b)$ with $-\infty<a<b\le \infty$; | |
\item $(a,b]$ with $-\infty\le a<b< \infty$; | |
\item $(a,b)$ with $-\infty\le a\le b\le \infty$. | |
\end{itemize} | |
In all cases it is to be understood that $f$ is locally integrable with | |
respect to $x$ on $I$. | |
When we say that the | |
improper integral $\int_{a}^{b}f(x,y)\,dx$ has a stated property ``on | |
S'' we mean that it has the property for every $y\in S$. | |
\begin{definition} \label{definition:1} | |
If the improper integral | |
\begin{equation} \label{eq:10} | |
\int_{a}^{b}f(x,y)\,dx=\lim_{r\to b-}\int_{a}^{r}f(x,y)\,dx | |
\end{equation} | |
converges on $S,$ it | |
is said to converge | |
uniformly $($or be uniformly convergent$)$ on $S$ if$,$ for each | |
$\epsilon>0,$ there is an | |
$r_{0} \in [a,b)$ | |
such that | |
$$ | |
\left|\int_{a}^{b}f(x,y)\,dx-\int_{a}^{r}f(x,y)\,dx\right| | |
< \epsilon,\quad y\in S, \quad r_{0}\le r<b, | |
$$ | |
or$,$ equivalently$,$ | |
\begin{equation} \label{eq:11} | |
\left|\int_{r}^{b}f(x,y)\,dx\right|< \epsilon, \quad | |
y\in S,\quad r_{0}\le r<b. | |
\end{equation} | |
\end{definition} | |
The crucial difference between pointwise and uniform convergence is that | |
$r_{0}(y)$ in \eqref{eq:8} may depend upon the particular value of $y$, | |
while the | |
$r_{0}$ in \eqref{eq:11} does not: one choice must work for all $y\in S$. | |
Thus, uniform convergence | |
implies pointwise convergence, but pointwise convergence does not imply | |
uniform convergence. | |
\begin{theorem}{\bf$($Cauchy Criterion for Uniform Convergence I$)$} | |
\label{theorem:4} | |
The improper integral in \eqref{eq:10} | |
converges uniformly on $S$ if and only if$,$ for each $\epsilon>0,$ there | |
is an | |
$r_{0} \in [a,b)$ such that | |
\begin{equation} \label{eq:12} | |
\left|\int_{r}^{r_{1}}f(x,y)\,dx\right|< \epsilon, \quad y\in S,\quad | |
r_{0}\le r,r_{1}<b. | |
\end{equation} | |
\end{theorem} | |
\proof Suppose $\int_{a}^{b} f(x,y)\,dx$ converges uniformly on | |
$S$ and $\epsilon>0$. | |
From Definition~\ref{definition:1}, | |
there is an | |
$r_{0}\in [a,b)$ such that | |
\begin{equation} \label{eq:13} | |
\left|\int_{r}^{b}f(x,y)\,dx\right| <\frac{\epsilon}{2} | |
\text{\, and\,} | |
\left|\int_{r_{1}}^{b}f(x,y)\,dx\right| | |
<\frac{\epsilon}{2} ,\quad y\in S, \quad r_{0}\le r,r_{1}<b. | |
\end{equation} | |
Since | |
$$ | |
\int_{r}^{r_{1}}f(x,y)\,dx= | |
\int_{r}^{b}f(x,y)\,dx- | |
\int_{r_{1}}^{b}f(x,y)\,dx, | |
$$ | |
\eqref{eq:13} and the triangle inequality imply | |
\eqref{eq:12}. | |
For the converse, denote | |
$$ | |
F(y)=\int_{a}^{r}f(x,y)\,dx. | |
$$ | |
Since \eqref{eq:12} implies that | |
\begin{equation} \label{eq:14} | |
|F(r,y)-F(r_{1},y)|< \epsilon,\quad y\in S, \quad | |
r_{0}\le r, r_{1}<b, | |
\end{equation} | |
Theorem~\ref{theorem:2} with $G(r)=F(r,y)$ ($y$ fixed | |
but arbitrary in $S$) implies that $\int_{a}^{b} f(x,y)\,dx$ | |
converges pointwise for $y\in S$. | |
Therefore, if $\epsilon>0$ | |
then, for each $y\in S$, | |
there is an $r_{0}(y) \in [a,b)$ such that | |
\begin{equation} \label{eq:15} | |
\left|\int_{r}^{b}f(x,y)\,dx\right|< \epsilon, \quad y\in S,\quad | |
r_{0}(y)\le r< b. | |
\end{equation} | |
For each $y\in S$, choose $r_{1}(y)\ge \max[{r_{0}(y),r_{0}}]$. (Recall | |
\eqref{eq:14}). Then | |
$$ | |
\int_{r}^{b}f(x,y)\,dx = | |
\int_{r}^{r_{1}(y)}f(x,y)\,dx+ | |
\int_{r_{1}(y)}^{b}f(x,y)\,dx, \quad | |
$$ | |
so \eqref{eq:12}, \eqref{eq:15}, and the triangle inequality imply | |
that | |
$$ | |
\left|\int_{r}^{b} f(x,y)\,dx\right|< 2\epsilon, \quad y\in S, \quad | |
r_{0}\le r<b. | |
$$ | |
\endproof | |
In practice, we don't explicitly exhibit $r_{0}$ for each given | |
$\epsilon$. | |
It suffices to obtain estimates that clearly imply its existence. | |
\begin{example} \label{example:4} \rm | |
For the improper integral of Example~\ref{example:2}, | |
$$ | |
\left|\int_{r}^{\infty}f(x,y)\,dx\right|= | |
\int_{r}^{\infty} |y|e^{-|y|x}=e^{-r|y|}, \quad y\ne0. | |
$$ | |
If $|y| \ge \rho$, then | |
$$ | |
\left|\int_{r}^{\infty}f(x,y)\,dx\right| \le e^{-r\rho}, | |
$$ | |
so $\int_{0}^{\infty}f(x,y)\,dx$ converges uniformly on | |
$(-\infty,\rho]\cup[\rho,\infty)$ if $\rho>0$; however, it does not | |
converge uniformly on any neighborhood of $y=0$, since, for any | |
$r>0$, | |
$e^{-r|y|}>\frac{1}{2}$ if $|y|$ is sufficiently small. | |
\end{example} | |
\begin{definition} \label{definition:2} | |
If the improper integral | |
$$ | |
\int_{a}^{b}f(x,y)\,dx=\lim_{r\to a+}\int_{r}^{b}f(x,y)\,dx | |
$$ | |
converges on $S,$ it | |
is said to converge | |
uniformly $($or be uniformly convergent$)$ on $S$ if$,$ for each | |
$\epsilon>0,$ there is an | |
$r_{0} \in (a,b]$ | |
such that | |
$$ | |
\left|\int_{a}^{b}f(x,y)\,dx-\int_{r}^{b}f(x,y)\,dx\right| | |
<\epsilon, \quad y\in S,\quad | |
a<r\le r_{0}, | |
$$ | |
or$,$ equivalently$,$ | |
$$ | |
\left|\int_{a}^{r} f(x,y)\,dx\right|< \epsilon, \quad y\in S,\quad | |
a<r\le r_{0}. | |
$$ | |
\end{definition} | |
We leave proof of the following theorem to you (Exercise~\ref{exer:3}). | |
\begin{theorem}{\bf $($Cauchy Criterion for Uniform Convergence II$)$} | |
\label{theorem:5} | |
The improper integral | |
$$ | |
\int_{a}^{b}f(x,y)\,dx =\lim_{r\to a+}\int_{r}^{b}f(x,y)\,dx | |
$$ | |
converges uniformly on $S$ if and only if$,$ | |
for each $\epsilon>0,$ there is | |
an $r_{0}\in (a,b]$ such that | |
$$ | |
\left|\int_{r_{1}}^{r}f(x,y)\,dx\right|< \epsilon,\quad | |
y\in S,\quad a <r,r_{1}\le r_{0}. | |
$$ | |
\end{theorem} | |
We need one more definition, as follows. | |
\begin{definition} \label{definition:3} | |
Let $f=f(x,y)$ be defined on $(a,b) \times S,$ where $-\infty\le a<b\le | |
\infty.$ Suppose $f$ is locally integrable on | |
$(a,b)$ for all $y\in S$ and let | |
$c$ be an arbitrary point in $(a,b).$ | |
Then | |
$\int_{a}^{b}f(x,y)\,dx$ is said to converge | |
uniformly on $S$ if $\int_{a}^{c}f(x,y)\,dx$ and | |
$\int_{c}^{b}f(x,y)\,dx$ both converge uniformly on $S.$ | |
\end{definition} | |
We leave it to you | |
(Exercise~\ref{exer:4}) to show that this definition is independent | |
of $c$; that is, if | |
$\int_{a}^{c}f(x,y)\,dx$ and | |
$\int_{c}^{b}f(x,y)\,dx$ both converge uniformly on $S$ for | |
some | |
$c\in(a,b)$, then they both converge uniformly on $S$ for every | |
$c \in (a,b)$. | |
We also leave it you (Exercise~\ref{exer:5}) to show that if | |
$f$ is bounded | |
on $[a,b]\times [c,d]$ and $\int_{a}^{b}f(x,y)\,dx$ | |
exists as a proper integral for each $y\in [c,d]$, then it converges | |
uniformly on $[c,d]$ according to all three | |
Definitions~\ref{definition:1}--\ref{definition:3}. | |
\begin{example} \label{example:5} \rm | |
Consider the improper integral | |
$$ | |
F(y)=\int_{0}^{\infty}x^{-1/2}e^{-xy}\,dx, | |
$$ | |
which diverges | |
if $y\le 0$ (verify). Definition~\ref{definition:3} | |
applies if $y>0$, so we consider the improper | |
integrals | |
$$ | |
F_{1}(y)=\int_{0}^{1}x^{-1/2}e^{-xy}\,dx | |
\text{\quad and\quad} | |
F_{2}(y)=\int_{1}^{\infty}x^{-1/2}e^{-xy}\,dx | |
$$ | |
separately. Moreover, we could just as well define | |
\begin{equation}\label{eq:16} | |
F_{1}(y)=\int_{0}^{c}x^{-1/2}e^{-xy}\,dx | |
\text{\quad and\quad} | |
F_{2}(y)=\int_{c}^{\infty}x^{-1/2}e^{-xy}\,dx, | |
\end{equation} | |
where $c$ is any positive number. | |
Definition~\ref{definition:2} applies to $F_{1}$. | |
If $0<r_{1}<r$ and $y\ge 0$, then | |
$$ | |
\left|\int_{r}^{r_{1}}x^{-1/2}e^{-xy}\,dx\right| < | |
\int_{r_{1}}^{r}x^{-1/2}\,dx<2r^{1/2}, | |
$$ | |
so $F_{1}(y)$ converges for uniformly on $[0,\infty)$. | |
Definition~\ref{definition:1} applies to $F_{2}$. Since | |
$$ | |
\left|\int_{r}^{r_{1}}x^{-1/2}e^{-xy}\,dx\right| < r^{-1/2} | |
\int_{r}^{\infty}e^{-xy}\,dx = \frac{e^{-ry}}{yr^{1/2}}, | |
$$ | |
$F_{2}(y)$ converges uniformly on $[\rho,\infty)$ if | |
$\rho>0$. It does not converge uniformly on | |
$(0,\rho)$, since the change of variable $u=xy$ yields | |
$$ | |
\int_{r}^{r_{1}}x^{-1/2}e^{-xy}\,dx=y^{-1/2} | |
\int_{ry}^{r_{1}y}u^{-1/2}e^{-u}\,du, | |
$$ | |
which, for any fixed $r>0$, can be made arbitrarily large | |
by taking $y$ sufficiently small and $r=1/y$. Therefore we | |
conclude that $F(y)$ converges uniformly on $[\rho,\infty)$ | |
if $\rho>0.$ | |
Note that that the constant $c$ in \eqref{eq:16} plays no role in this | |
argument. | |
\end{example} | |
\begin{example} \label{example:6} \rm | |
Suppose we take | |
\begin{equation} \label{eq:17} | |
\int_{0}^{\infty}\frac{\sin u}{u}\,du =\frac{\pi}{2} | |
\end{equation} | |
as given (Exercise~\ref{exer:31}{\bf(b)}). Substituting $u=xy$ with $y>0$ | |
yields | |
\begin{equation} \label{eq:18} | |
\int_{0}^{\infty}\frac{\sin xy}{x}\,dx=\frac{\pi}{2},\quad y>0. | |
\end{equation} | |
What about uniform convergence? | |
Since $(\sin xy)/x$ is continuous at $x=0$, Definition~\ref{definition:1} | |
and Theorem~\ref{theorem:4} apply here. | |
If $0<r<r_{1}$ and $y>0$, then | |
$$ | |
\int_{r}^{r_{1}}\frac{\sin xy}{x}\,dx=-\frac{1}{y} | |
\left(\frac{\cos xy}{x}\biggr|_{r}^{r_{1}}+ | |
\int_{r}^{r_{1}}\frac{\cos xy}{x^{2}}\,dx\right), | |
\text{\, so\quad} | |
\left|\int_{r}^{r_{1}}\frac{\sin xy}{x}\,dx\right|<\frac{3}{ry}. | |
$$ | |
Therefore \eqref{eq:18} converges uniformly on | |
$[\rho,\infty)$ if $\rho>0$. On the other hand, from \eqref{eq:17}, | |
there is a $\delta>0$ such that | |
$$ | |
\int_{u_{0}}^{\infty}\frac{\sin u}{u}\,du>\frac{\pi}{4}, \quad | |
0 \le u_{0}<\delta. | |
$$ | |
This and \eqref{eq:18} imply that | |
$$ | |
\int_{r}^{\infty}\frac{\sin xy}{x}\,dx=\int_{yr}^{\infty}\frac{\sin | |
u}{u}\,du | |
>\frac{\pi}{4} | |
$$ | |
for any $r>0$ if $0 <y<\delta/r$. Hence, \eqref{eq:18} | |
does not converge uniformly on any interval $(0,\rho]$ with $\rho>0$. | |
\end{example} | |
\section{ Absolutely Uniformly Convergent Improper | |
Integrals}\label{section:absolutely} | |
\begin{definition}{\bf$($Absolute Uniform Convergence I$)$} | |
\label{definition:4} | |
The improper integral | |
$$ | |
\int_{a}^{b}f(x,y)\,dx=\lim_{r\to b-}\int_{a}^{r}f(x,y)\,dx | |
$$ | |
is said to converge absolutely uniformly on $S$ if the improper | |
integral | |
$$ | |
\int_{a}^{b}|f(x,y)|\,dx=\lim_{r\to b-}\int_{a}^{r}|f(x,y)|\,dx | |
$$ | |
converges uniformly on $S$; that is, | |
if, for each $\epsilon>0$, | |
there is an $r_{0}\in [a,b)$ such that | |
$$ | |
\left|\int_{a}^{b}|f(x,y)|\,dx-\int_{a}^{r}|f(x,y)|\,dx\right| | |
<\epsilon, \quad y\in S,\quad | |
r_{0}<r<b. | |
$$ | |
\end{definition} | |
To see that this definition makes sense, recall that if $f$ is | |
locally integrable on $[a,b)$ for all $y$ in $S$, then so is $|f|$ | |
(Theorem~3.4.9, p.~161). | |
Theorem~\ref{theorem:4} with $f$ replaced by $|f|$ implies that | |
$\int_{a}^{b}f(x,y)\,dx$ converges absolutely uniformly on | |
$S$ if and only if, for each | |
$\epsilon>0$, there is an $r_{0}\in [a,b)$ such that | |
$$ | |
\int_{r}^{r_{1}}|f(x,y)|\,dx<\epsilon,\quad y\in S,\quad | |
r_{0}\le r<r_{1}<b . | |
$$ | |
Since | |
$$ | |
\left|\int_{r}^{r_{1}}f(x,y)\,dx\right| \le | |
\int_{r}^{r_{1}}|f(x,y)|\,dx, | |
$$ | |
Theorem~\ref{theorem:4} implies that if $\int_{a}^{b}f(x,y)\,dx$ | |
converges absolutely uniformly on $S$ then it converges | |
uniformly on $S$. | |
\begin{theorem} \label{theorem:6} | |
{\bf$($ | |
\href{http://www-history.mcs.st-and.ac.uk/Biographies/Weierstrass.html} | |
{Weierstrass}'s | |
Test for Absolute Uniform Convergence I$)$} | |
Suppose $M=M(x)$ is nonnegative on $[a,b),$ | |
$\int_{a}^{b}M(x)\,dx<\infty,$ and | |
\begin{equation} \label{eq:19} | |
|f(x,y)| \le M(x), \quad y\in S,\quad | |
a\le x<b. | |
\end{equation} | |
Then $\int_{a}^{b}f(x,y)\,dx$ | |
converges absolutely uniformly on $S.$ | |
\end{theorem} | |
\proof | |
Denote $\int_{a}^{b}M(x)\,dx=L<\infty$. By definition, | |
for each $\epsilon>0$ there is an $r_{0}\in [a,b)$ such that | |
$$ | |
L-\epsilon < \int_{a}^{r}M(x)\,dx \le L,\quad | |
r_{0}<r<b. | |
$$ | |
Therefore, if $r_{0}< r\le r_{1},$ then | |
$$ | |
0\le \int_{r}^{r_{1}}M(x)\,dx=\left(\int_{a}^{r_{1}}M(x)\,dx | |
-L\right)- | |
\left(\int_{a}^{r}M(x)\,dx -L\right)<\epsilon | |
$$ | |
This and \eqref{eq:19} imply that | |
$$ | |
\int_{r}^{r_{1}}|f(x,y)|\,dx\le | |
\int_{r}^{r_{1}} M(x)\,dx <\epsilon,\quad y\in S, \quad | |
a\le r_{0}<r<r_{1}<b. | |
$$ | |
Now Theorem~\ref{theorem:4} | |
implies the stated conclusion. \endproof | |
\begin{example} \label{example:7} \rm | |
Suppose $g=g(x,y)$ is locally integrable on | |
$[0,\infty)$ for all $y\in S$ | |
and, for some $a_{0}\ge 0$, there are constants $K$ and $p_{0}$ such that | |
$$ | |
|g(x,y)| \le Ke^{p_{0}x},\quad y\in S, \quad x\ge a_{0}. | |
$$ | |
If $p>p_{0}$ and $r\ge a_{0}$, then | |
\begin{eqnarray*} | |
\int_{r}^{\infty}e^{-px} |g(x,y)|\,dx &=& | |
\int_{r}^{\infty} e^{-(p-p_{0})x}e^{-p_{0}x}|g(x,y)|\,dx\\ | |
&\le& K\int_{r}^{\infty} e^{-(p-p_{0})x}\,dx= \frac{K | |
e^{-(p-p_{0})r}}{p-p_{0}}, | |
\end{eqnarray*} | |
so | |
$\int_{0}^{\infty}e^{-px} g(x,y)\,dx $ | |
converges absolutely on $S$. | |
For example, since | |
$$ | |
|x^{\alpha}\sin xy|<e^{p_{0}x}\text{\quad and \quad} | |
|x^{\alpha}\cos xy|<e^{p_{0}x} | |
$$ | |
for $x$ sufficiently large if $p_{0}>0$, Theorem~\ref{theorem:4} | |
implies that | |
$\int_{0}^{\infty}e^{-px}x^{\alpha}\sin xy\,dx$ | |
and | |
$\int_{0}^{\infty}e^{-px}x^{\alpha}\cos xy\,dx$ | |
converge absolutely uniformly on $(-\infty,\infty)$ if $p>0$ | |
and $\alpha~\ge~0$. As a matter of fact, $\int_{0}^{\infty}e^{-px}x^{\alpha}\sin xy\,dx$ | |
converges absolutely on $(-\infty,\infty)$ if $p>0$ and | |
$\alpha>-1$. (Why?) | |
\end{example} | |
\begin{definition}{\bf$($Absolute Uniform Convergence II$)$} | |
\label{definition:5} | |
The improper integral | |
$$ | |
\int_{a}^{b}f(x,y)\,dx=\lim_{r\to a+}\int_{r}^{b}f(x,y)\,dx | |
$$ | |
is said to converge absolutely uniformly on $S$ if the improper | |
integral | |
$$ | |
\int_{a}^{b}|f(x,y)|\,dx=\lim_{r\to a+}\int_{r}^{b}|f(x,y)|\,dx | |
$$ | |
converges uniformly on $S$; that is, | |
if, for each $\epsilon>0$, | |
there is an $r_{0}\in (a,b]$ such that | |
$$ | |
\left|\int_{a}^{b}|f(x,y)|\,dx-\int_{r}^{b}|f(x,y)|\,dx\right| | |
<\epsilon, \quad y\in S, \quad a<r<r_{0}\le b. | |
$$ | |
\end{definition} | |
We leave it to you (Exercise~\ref{exer:7}) to prove the following theorem. | |
\begin{theorem} \label{theorem:7} | |
{\bf$($Weierstrass's Test for Absolute Uniform Convergence II$)$} | |
Suppose $M=M(x)$ is nonnegative on $(a,b],$ $\int_{a}^{b}M(x)\,dx<\infty,$ | |
and | |
$$ | |
|f(x,y)| \le M(x), \quad y\in S, \quad x\in (a,b]. | |
$$ | |
Then $\int_{a}^{b}f(x,y)\,dx$ converges absolutely uniformly on $S$. | |
\end{theorem} | |
\begin{example} \label{example:8} \rm | |
If $g=g(x,y)$ is locally integrable on $(0,1]$ for all $y\in S$ | |
and | |
$$ | |
|g(x,y)| \le Ax^{-\beta}, \quad 0<x \le x_{0}, | |
$$ | |
for each $y \in S$, then | |
$$ | |
\int_{0}^{1} x^{\alpha}g(x,y)\,dx | |
$$ | |
converges absolutely uniformly on $S$ if $\alpha>\beta-1$. To | |
see this, note that if $0<r< r_{1}\le x_{0}$, then | |
$$ | |
\int_{r_{1}}^{r}x^{\alpha}|g(x,y)|\,dx \le A\int_{r_{1}}^{r} | |
x^{\alpha-\beta}\,dx= | |
\frac{Ax^{\alpha-\beta+1}}{\alpha-\beta+1}\biggr|_{r_{1}}^{r}< | |
\frac{Ar^{\alpha-\beta+1}}{\alpha-\beta+1}. | |
$$ | |
Applying this with $\beta=0$ shows that | |
$$ | |
F(y)=\int_{0}^{1} x^{\alpha}\cos xy\,dx | |
$$ | |
converges absolutely uniformly on $(-\infty,\infty)$ if $\alpha>-1$ | |
and | |
$$ | |
G(y)=\int_{0}^{1}x^{\alpha}\sin xy \,dx | |
$$ | |
converges absolutely uniformly on $(-\infty,\infty)$ if | |
$\alpha>-2$. | |
\end{example} | |
By recalling Theorem~4.4.15 (p.~246), | |
you can see why we associate Theorems~\ref{theorem:6} and | |
\ref{theorem:7} | |
with Weierstrass. | |
\section{Dirichlet's Tests} \label{section:dirichlet} | |
Weierstrass's test is useful and important, but it has a basic | |
shortcoming: | |
it applies only to absolutely uniformly convergent improper integrals. | |
The next theorem applies in some cases | |
where $\int_{a}^{b}f(x,y)\,dx$ converges uniformly on $S$, | |
but | |
$\int_{a}^{b}|f(x,y)|\,dx$ does not. | |
\begin{theorem} \label{theorem:8} | |
$(${\bf | |
\href{http://www-history.mcs.st-and.ac.uk/Biographies/Dirichlet.html} | |
{Dirichlet}'s | |
Test for Uniform Convergence I}$)$ | |
If $g,$ $g_{x},$ and $h$ are continuous on $[a,b)\times S,$ then | |
$$ | |
\int_{a}^{b}g(x,y)h(x,y)\,dx | |
$$ | |
converges uniformly on $S$ if the following | |
conditions are satisfied$:$ | |
\begin{alist} | |
\item % a | |
$\dst{\lim_{x\to b-}\left\{\sup_{y\in S}|g(x,y)|\right\}=0};$ | |
\item % b | |
There is a constant $M$ such that | |
$$ | |
\sup_{y\in S}\left|\int_{a}^{x}h(u,y)\,du\right|< M, \quad | |
a\le x<b; | |
$$ | |
\item % c | |
$\int_{a}^{b}|g_{x}(x,y)|\,dx$ converges uniformly on $S.$ | |
\end{alist} | |
\end{theorem} | |
\proof | |
If | |
\begin{equation} \label{eq:20} | |
H(x,y)=\int_{a}^{x}h(u,y)\,du, | |
\end{equation} | |
then integration by parts yields | |
\begin{eqnarray} | |
\int_{r}^{r_{1}}g(x,y)h(x,y)\,dx&=&\int_{r}^{r_{1}}g(x,y)H_{x}(x,y)\,dx | |
\nonumber\\ | |
&=&g(r_{1},y)H(r_{1},y)-g(r,y)H(r,y)\label{eq:21}\\ | |
&&-\int_{r}^{r_{1}}g_{x}(x,y)H(x,y)\,dx. | |
\nonumber | |
\end{eqnarray} | |
Since assumption {\bf(b)} and \eqref{eq:20} imply that | |
$|H(x,y)|\le M,$ $(x,y)\in (a,b]\times S$, | |
Eqn.~\eqref{eq:21} implies that | |
\begin{equation} \label{eq:22} | |
\left|\int_{r}^{r_{1}}g(x,y)h(x,y)\,dx\right|< | |
M\left(2\sup_{x\ge | |
r}|g(x,y)|+\int_{r}^{r_{1}}|g_{x}(x,y)|\,dx\right) | |
\end{equation} | |
on $[r,r_{1}]\times S$. | |
Now suppose $\epsilon>0$. From assumption {\bf (a)}, there is an | |
$r_{0} \in [a,b)$ such that $|g(x,y)|<\epsilon$ on $S$ if | |
$r_{0}\le x <b$. | |
From assumption {\bf(c)} and Theorem~\ref{theorem:6}, there is an | |
$s_{0}\in | |
[a,b)$ such that | |
$$ | |
\int_{r}^{r_{1}}|g_{x}(x,y)|\,dx<\epsilon, \quad y\in S, \quad | |
s_{0}<r<r_{1}<b. | |
$$ | |
Therefore | |
\eqref{eq:22} implies that | |
$$ | |
\left|\int_{r}^{r_{1}}g(x,y)h(x,y)\right| < 3M\epsilon, \quad y\in S, \quad | |
\max(r_{0},s_{0})<r<r_{1}<b. | |
$$ | |
Now Theorem~\ref{theorem:4} implies the stated conclusion. | |
\endproof | |
The statement of this theorem is complicated, but applying it isn't; | |
just look for a factorization $f=gh$, where $h$ has a bounded | |
antderivative | |
on $[a,b)$ and $g$ is ``small'' near $b$. Then integrate by | |
parts and hope that something nice happens. A similar comment applies | |
to Theorem~9, which follows. | |
\begin{example} \label{example:9} \rm | |
Let | |
$$ | |
I(y)=\int_{0}^{\infty}\frac{\cos xy}{x+y}\,dx,\quad y>0. | |
$$ | |
The obvious inequality | |
$$ | |
\left|\frac{\cos xy}{x+y}\right|\le \frac{1}{x+y} | |
$$ | |
is useless here, since | |
$$ | |
\int_{0}^{\infty}\frac{dx}{x+y}=\infty. | |
$$ | |
However, integration by parts yields | |
\begin{eqnarray*} | |
\int_{r}^{r_{1}}\frac{\cos xy}{x+y}\,dx | |
&=& \frac{\sin xy}{y(x+y)}\biggr|_{r}^{r_{1}}+ | |
\int_{r}^{r_{1}}\frac{\sin xy}{y(x+y)^{2}}\,dx\\ | |
&=&\frac{\sin r_{1}y}{y(r_{1}+y)}-\frac{\sin ry}{y(r+y)} | |
+\int_{r}^{r_{1}}\frac{\sin xy}{y(x+y)^{2}}\,dx. | |
\end{eqnarray*} | |
Therefore, if $0< r<r_{1}$, then | |
\begin{eqnarray*} | |
\left|\int_{r}^{r_{1}}\frac{\cos xy}{x+y}\,dx\right|< | |
\frac{1}{y}\left(\frac{2}{r+y}+\int_{r}^{\infty}\frac{1}{(x+y)^{2}}\right) | |
\le \frac{3}{y(r+y)^{2}}\le \frac{3}{\rho(r+\rho)} | |
\end{eqnarray*} | |
if $y\ge \rho>0$. Now Theorem~\ref{theorem:4} implies that $I(y)$ | |
converges uniformly on $[\rho,\infty)$ if $\rho>0$. | |
\end{example} | |
We leave the proof of the following theorem to you (Exercise~\ref{exer:10}). | |
\begin{theorem} \label{theorem:9} | |
$(${\bf Dirichlet's Test for Uniform Convergence II}$)$ | |
If $g,$ $g_{x},$ and $h$ are continuous on $(a,b]\times S,$ then | |
$$ | |
\int_{a}^{b}g(x,y)h(x,y)\,dx | |
$$ | |
converges uniformly on $S$ if the following | |
conditions are satisfied$:$ | |
\begin{alist} | |
\item % a | |
$\dst{\lim_{x\to a+}\left\{\sup_{y\in S}|g(x,y)|\right\}=0};$ | |
\item % b | |
There is a constant $M$ such that | |
$$ | |
\sup_{y\in S}\left|\int_{x}^{b}h(u,y)\,du\right| \le M, \quad | |
a< x\le b; | |
$$ | |
\item % c | |
$\int_{a}^{b}|g_{x}(x,y)|\,dx$ converges uniformly on $S$. | |
\end{alist} | |
\end{theorem} | |
By recalling Theorems~3.4.10 (p.~163), 4.3.20 (p.~217), and 4.4.16 | |
(p.~248), you can see why we associate Theorems~\ref{theorem:8} and | |
\ref{theorem:9} | |
with Dirichlet. | |
\section{Consequences of uniform convergence}\label{section:consequences} | |
\begin{theorem} \label{theorem:10} | |
If $f=f(x,y)$ is continuous on either $[a,b)\times [c,d]$ or | |
$(a,b]\times [c,d]$ and | |
\begin{equation} \label{eq:23} | |
F(y)=\int_{a}^{b}f(x,y)\,dx | |
\end{equation} | |
converges uniformly on $[c,d],$ then $F$ is continuous on | |
$[c,d].$ Moreover$,$ | |
\begin{equation} \label{eq:24} | |
\int_{c}^{d}\left(\int_{a}^{b}f(x,y)\,dx\right)\,dy | |
=\int_{a}^{b}\left(\int_{c}^{d}f(x,y)\,dy\right)\,dx. | |
\end{equation} | |
\end{theorem} | |
\proof We will assume that $f$ is continuous on $(a,b]\times [c,d]$. | |
You can consider the other case (Exercise~\ref{exer:14}). | |
We will first show that $F$ in \eqref{eq:23} is continuous on $[c,d]$. | |
Since $F$ converges uniformly on $[c,d]$, | |
Definition~\ref{definition:1} | |
(specifically, \eqref{eq:11}) | |
implies that if $\epsilon>0$, there is an | |
$r \in [a,b)$ such that | |
$$ | |
\left|\int_{r}^{b}f(x,y)\,dx\right|< \epsilon, \quad c \le y \le d. | |
$$ | |
Therefore, if $c\le y, y_{0}\le d]$, then | |
\begin{eqnarray*} | |
|F(y)-F(y_{0})|&=& | |
\left|\int_{a}^{b}f(x,y)\,dx-\int_{a}^{b}f(x,y_{0})\,dx\right|\\ | |
&\le&\left|\int_{a}^{r}[f(x,y)-f(x,y_{0})]\,dx\right|+ | |
\left|\int_{r}^{b}f(x,y)\,dx\right|\\ | |
&&+\left|\int_{r}^{b}f(x,y_{0})\,dx\right|, | |
\end{eqnarray*} | |
so | |
\begin{equation}\label{eq:25} | |
|F(y)-F(y_{0})| | |
\le \int_{a}^{r}|f(x,y)-f(x,y_{0})|\,dx +2\epsilon. | |
\end{equation} | |
Since $f$ is uniformly continuous on the compact set $[a,r]\times [c,d]$ | |
(Corollary~5.2.14, p.~314), there is a | |
$\delta>0$ such that | |
$$ | |
|f(x,y)-f(x,y_{0})|<\epsilon | |
$$ | |
if $(x,y)$ and $(x,y_{0})$ are in $[a,r]\times [c,d]$ and | |
$|y-y_{0}|<\delta$. This and \eqref{eq:25} imply that | |
$$ | |
|F(y)-F(y_{0})|<(r-a)\epsilon +2\epsilon<(b-a+2)\epsilon | |
$$ | |
if $y$ and $y_{0}$ are in $[c,d]$ and $|y-y_{0}|<\delta$. Therefore $F$ | |
is continuous on $[c,d]$, so the integral on left side of | |
\eqref{eq:24} exists. Denote | |
\begin{equation} \label{eq:26} | |
I= | |
\int_{c}^{d}\left(\int_{a}^{b}f(x,y)\,dx\right)\,dy. | |
\end{equation} | |
We will | |
show that the improper | |
integral on the right side of \eqref{eq:24} converges to $I$. To | |
this end, denote | |
$$ | |
I(r)= | |
\int_{a}^{r}\left(\int_{c}^{d}f(x,y)\,dy\right)\,dx. | |
$$ | |
Since we can reverse the order of integration of the | |
continuous function $f$ over the rectangle $[a,r]\times [c,d]$ | |
(Corollary~7.2.2, p.~466), | |
$$ | |
I(r)=\int_{c}^{d}\left(\int_{a}^{r}f(x,y)\,dx\right)\,dy. | |
$$ | |
From this and \eqref{eq:26}, | |
$$ | |
I-I(r)=\int_{c}^{d}\left(\int_{r}^{b}f(x,y)\,dx\right)\,dy. | |
$$ | |
Now suppose $\epsilon>0$. Since $\int_{a}^{b}f(x,y)\,dx$ converges | |
uniformly on $[c,d]$, there is an $r_{0}\in (a,b]$ such that | |
$$ | |
\left|\int_{r}^{b}f(x,y)\,dx\right|<\epsilon, \quad | |
r_{0}<r<b, | |
$$ | |
so $|I-I(r)|<(d-c)\epsilon$ if $r_{0}<r<b$. Hence, | |
$$ | |
\lim_{r\to b-}\int_{a}^{r}\left(\int_{c}^{d}f(x,y)\,dy\right)\,dx= | |
\int_{c}^{d}\left(\int_{a}^{b}f(x,y)\,dx\right)\,dy, | |
$$ | |
which completes the proof of \eqref{eq:24}. \endproof | |
\begin{example} \label{example:10} \rm | |
It is straightforward to verify that | |
$$ | |
\int_{0}^{\infty}e^{-xy}\,dx=\frac{1}{y}, \quad y>0, | |
$$ | |
and the convergence is uniform on $[\rho,\infty)$ if | |
$\rho>0$. Therefore Theorem~\ref{theorem:10} implies that | |
if $0<y_{1}<y_{2}$, then | |
\begin{eqnarray*} | |
\int_{y_{1}}^{y_{2}}\frac{\,dy}{y}&=& | |
\int_{y_{1}}^{y_{2}}\left( \int_{0}^{\infty}e^{-xy}\,dx\right)\,dy | |
=\int_{0}^{\infty}\left(\int_{y_{1}}^{y_{2}}e^{-xy}\,dy\right)\,dy \\ | |
&=&\int_{0}^{\infty}\frac{e^{-xy_{1}}-e^{-xy_{2}}}{x}\,dx. | |
\end{eqnarray*} | |
Since | |
$$ | |
\int_{y_{1}}^{y_{2}}\frac{dy}{y}= | |
\log\frac{y_{2}}{y_{1}}, \quad y_{2} \ge y_{1}>0, | |
$$ | |
it follows that | |
$$ | |
\int_{0}^{\infty}\frac{e^{-xy_{1}}-e^{-xy_{2}}}{x}\,dx= | |
\log\frac{y_{2}}{y_{1}}, \quad y_{2} \ge y_{1}>0. | |
$$ | |
\end{example} | |
\begin{example} \label{example:11} \rm | |
From Example~\ref{example:6}, | |
$$ | |
\int_{0}^{\infty}\frac{\sin xy}{x}\,dx=\frac{\pi}{2}, \quad y>0, | |
$$ | |
and the convergence is uniform on $[\rho,\infty)$ if $\rho>0$. Therefore, | |
Theorem~\ref{theorem:10} implies that if $0<y_{1}<y_{2}$, then | |
\begin{eqnarray} | |
\frac{\pi}{2}(y_{2}-y_{1}) | |
&=&\int_{y_{1}}^{y_{2}}\left(\int_{0}^{\infty}\frac{\sin | |
xy}{x}\,dx\right)\,dy | |
=\int_{0}^{\infty}\left(\int_{y_{1}}^{y_{2}}\frac{\sin | |
xy}{x}\,dy\right)\,dx | |
\nonumber\\ | |
&=&\int_{0}^{\infty}\frac{\cos xy_{1}-\cos xy_{2}}{x^{2}} \,dx. | |
\label{eq:27} | |
\end{eqnarray} | |
The last integral converges uniformly on $(-\infty,\infty)$ | |
(Exercise 10{\bf(h)}), and is therefore continuous with respect to | |
$y_{1}$ on $(-\infty,\infty)$, by | |
Theorem~\ref{theorem:10}; in particular, | |
we can let $y_{1}\to0+$ in \eqref{eq:27} and replace $y_{2}$ | |
by $y$ to obtain | |
$$ | |
\int_{0}^{\infty} \frac{1-\cos xy}{x^{2}}\,dx=\frac{\pi y}{2}, \quad y | |
\ge 0. | |
$$ | |
\end{example} | |
The next theorem is analogous to Theorem~4.4.20 (p.~252). | |
\begin{theorem} \label{theorem:11} | |
Let $f$ and $f_{y}$ be continuous on either | |
$[a,b)\times [c,d]$ or $(a,b]\times [c,d].$ Suppose that | |
the improper integral | |
$$ | |
F(y)=\int_{a}^{b}f(x,y)\,dx | |
$$ | |
converges for some $y_{0} \in [c,d]$ and | |
$$ | |
G(y)=\int_{a}^{b}f_{y}(x,y)\,dx | |
$$ | |
converges uniformly on $[c,d].$ Then $F$ converges | |
uniformly on $[c,d]$ and is given explicitly by | |
$$ | |
F(y)=F(y_{0})+\int_{y_{0}}^{y} G(t)\,dt,\quad c\le y\le d. | |
$$ | |
Moreover, $F$ is continuously differentiable on $[c,d]$; specifically, | |
\begin{equation} \label{eq:28} | |
F'(y)=G(y), \quad c \le y \le d, | |
\end{equation} | |
where $F'(c)$ and $f_{y}(x,c)$ are derivatives | |
from the right, and $F'(d)$ and $f_{y}(x,d)$ are | |
derivatives from the left$.$ | |
\end{theorem} | |
\proof We will assume that $f$ and $f_{y}$ are continuous | |
on $[a,b)\times [c,d]$. You can consider the other case | |
(Exercise~\ref{exer:15}). | |
Let | |
$$ | |
F_{r}(y)=\int_{a}^{r}f(x,y)\,dx, \quad a\le r<b, \quad c \le y \le d. | |
$$ | |
Since $f$ and $f_{y}$ are continuous on $[a,r]\times [c,d]$, | |
Theorem~\ref{theorem:1} implies that | |
$$ | |
F_{r}'(y)=\int_{a}^{r}f_{y}(x,y)\,dx, \quad c \le y \le d. | |
$$ | |
Then | |
\begin{eqnarray*} | |
F_{r}(y)&=&F_{r}(y_{0})+\int_{y_{0}}^{y}\left( | |
\int_{a}^{r}f_{y}(x,t)\,dx\right)\,dt\\ | |
&=&F(y_{0})+\int_{y_{0}}^{y}G(t)\,dt \\&&+(F_{r}(y_{0})-F(y_{0})) | |
-\int_{y_{0}}^{y}\left(\int_{r}^{b}f_{y}(x,t)\,dx\right)\,dt, | |
\quad c \le y \le d. | |
\end{eqnarray*} | |
Therefore, | |
\begin{eqnarray} | |
\left|F_{r}(y)-F(y_{0})-\int_{y_{0}}^{y}G(t)\,dt\right|& \le & | |
|F_{r}(y_{0})-F(y_{0})|\nonumber\\ | |
&&+\left|\int_{y_{0}}^{y} | |
\int_{r}^{b}f_{y}(x,t)\,dx\right|\,dt. | |
\label{eq:29} | |
\end{eqnarray} | |
Now suppose $\epsilon>0$. Since we have assumed that | |
$\lim_{r\to b-}F_{r}(y_{0})=F(y_{0})$ exists, | |
there is an $r_{0}$ | |
in $(a,b)$ such that | |
$$ | |
|F_{r}(y_{0})-F(y_{0})|<\epsilon,\quad r_{0}<r<b. | |
$$ | |
Since we have assumed that $G(y)$ converges for | |
$y\in[c,d]$, there is an $r_{1} \in [a,b)$ such that | |
$$ | |
\left|\int_{r}^{b}f_{y}(x,t)\,dx\right|<\epsilon, \quad | |
t\in[c,d], \quad | |
r_{1}\le r<b. | |
$$ | |
Therefore, \eqref{eq:29} yields | |
$$ | |
\left|F_{r}(y)-F(y_{0})-\int_{y_{0}}^{y}G(t)\,dt\right|< | |
\epsilon(1+|y-y_{0}|) \le \epsilon(1+d-c) | |
$$ | |
if $\max(r_{0},r_{1}) \le r <b$ and $t\in [c,d]$. Therefore $F(y)$ | |
converges uniformly on $[c,d]$ and | |
$$ | |
F(y)=F(y_{0})+\int_{y_{0}}^{y}G(t)\,dt, \quad c \le y \le d. | |
$$ | |
Since $G$ is continuous on $[c,d]$ by | |
Theorem~\ref{theorem:10}, \eqref{eq:28} | |
follows from differentiating this (Theorem~3.3.11, p.~141). \endproof | |
\begin{example} \label{example:12} \rm | |
Let | |
$$ | |
I(y)=\int_{0}^{\infty}e^{-yx^{2}}\,dx, \quad y>0. | |
$$ | |
Since | |
$$ | |
\int_{0}^{r}e^{-yx^{2}}\,dx=\frac{1}{\sqrt{y}} | |
\int_{0}^{r\sqrt{y}} e^{-t^{2}}\,dt, | |
$$ | |
it follows that | |
$$ | |
I(y)=\frac{1}{\sqrt{y}}\int_{0}^{\infty}e^{-t^{2}}\,dt, | |
$$ | |
and the convergence is uniform on $[\rho,\infty)$ if $\rho>0$ | |
(Exercise~\ref{exer:8}{\bf(i)}). | |
To evaluate the last integral, denote | |
$J(\rho)=\int_{0}^{\rho}e^{-t^{2}}\,dt$; | |
then | |
$$ | |
J^{2}(\rho)=\left(\int_{0}^{\rho}e^{-u^{2}}\,du\right) | |
\left(\int_{0}^{\rho}e^{-v^{2}}\,dv\right) | |
=\int_{0}^{\rho}\int_{0}^{\rho}e^{-(u^{2}+v^{2})}\,du\,dv. | |
$$ | |
Transforming to polar coordinates $r=r\cos\theta$, $v=r\sin\theta$ | |
yields | |
$$ | |
J^{2}(\rho)=\int_{0}^{\pi/2}\int_{0}^{\rho} re^{-r^{2}}\,dr\,d\theta | |
=\frac{\pi(1-e^{-\rho^{2}})}{4}, | |
\text{\quad so\quad} | |
J(\rho)=\frac{\sqrt{\pi(1-e^{-\rho^{2}})}}{2}. | |
$$ | |
Therefore | |
$$ | |
\int_{0}^{\infty}e^{-t^{2}}\,dt=\lim_{\rho\to\infty}J(\rho)= | |
\frac{\sqrt{\pi}}{2}\text{\quad and\quad} | |
\int_{0}^{\infty}e^{-yx^{2}}\,dx= \frac{1}{2}\sqrt{\frac{\pi}{y}}, | |
\quad y>0. | |
$$ | |
Differentiating this $n$ times with respect to | |
$y$ yields | |
$$ | |
\int_{0}^{\infty}x^{2n}e^{-yx^{2}}\,dx= | |
\frac{1\cdot3\cdots(2n-1)\sqrt{\pi}}{2^{n}y^{n+1/2}}\quad y>0,\quad | |
n=1,2,3, \dots, | |
$$ | |
where Theorem~\ref{theorem:11} justifies the differentiation for every | |
$n$, since all these integrals | |
converge uniformly on $[\rho,\infty)$ if | |
$\rho>0$ (Exercise~\ref{exer:8}(i)). | |
\end{example} | |
Some advice for applying this theorem: Be sure to check first | |
that $F(y_{0})=\int_{a}^{b}f(x,y_{0})\,dx$ converges for at least one value | |
of | |
$y$. If so, differentiate $\int_{a}^{b}f(x,y)\,dx$ formally to obtain | |
$\int_{a}^{b}f_{y}(x,y)\,dx$. Then $F'(y)=\int_{a}^{b}f_{y}(x,y)\,dx$ | |
if $y$ is in some interval on which this improper integral converges | |
uniformly. | |
\place % | |
\section{Applications to Laplace transforms} \label{section:laplace} | |
\medskip | |
The | |
\href{http://www-history.mcs.st-and.ac.uk/Biographies/Laplace.html} | |
{\emph{Laplace}} | |
\emph{transform} of a function $f$ locally integrable | |
on $[0,\infty)$ is | |
$$ | |
F(s)=\int_{0}^{\infty}e^{-sx}f(x)\,dx | |
$$ | |
for all $s$ such that integral converges. Laplace | |
transforms are widely applied in mathematics, particularly in solving | |
differential equations. | |
We leave it to you to prove the following theorem (Exercise~\ref{exer:26}). | |
\begin{theorem} \label{theorem:12} | |
Suppose $f$ is locally integrable on $[0,\infty)$ and | |
$|f(x)|\le M e^{s_{0}x}$ for sufficiently large $x$. | |
Then the Laplace | |
transform of $F$ converges uniformly on $[s_{1},\infty)$ if $s_{1}>s_{0}$. | |
\end{theorem} | |
\begin{theorem} \label{theorem:13} | |
If $f$ is continuous on $[0,\infty)$ and | |
$H(x)=\int_{0}^{\infty}e^{-s_{0}u}f(u)\,du$ | |
is bounded on $[0,\infty),$ then the Laplace transform of $f$ | |
converges uniformly on $[s_{1},\infty)$ if $s_{1}>s_{0}.$ | |
\end{theorem} | |
\proof If $0\le r\le r_{1}$, | |
$$ | |
\int_{r}^{r_{1}}e^{-sx}f(x)\,dx | |
=\int_{r}^{r_{1}}e^{-(s-s_{0})x}e^{-s_{0}x}f(x)\,dt | |
=\int_{r}^{r_{1}}e^{-(s-s_{0})t}H'(x)\,dt. | |
$$ | |
Integration by parts yields | |
$$ | |
\int_{r}^{r_{1}}e^{-sx}f(x)\,dt=e^{-(s-s_{0})x}H(x)\biggr|_{r}^{r_{1}} | |
+(s-s_{0})\int_{r}^{r_{1}}e^{-(s-s_{0})x} H(x)\,dx. | |
$$ | |
Therefore, if $|H(x)|\le M$, then | |
\begin{eqnarray*} | |
\left|\int_{r}^{r_{1}}e^{-sx}f(x)\,dx\right|&\le& | |
M\left|e^{-(s-s_{0})r_{1}} | |
+e^{-(s-s_{0})r} +(s-s_{0})\int_{r}^{r_{1}}e^{-(s-s_{0})x}\,dx\right|\\ | |
&\le &3Me^{-(s-s_{0})r}\le 3Me^{-(s_{1}-s_{0})r},\quad s\ge s_{1}. | |
\end{eqnarray*} | |
Now Theorem~\ref{theorem:4} implies that $F(s)$ converges uniformly | |
on $[s_{1},\infty)$. | |
The following theorem draws a considerably stonger conclusion from | |
the same assumptions. | |
\begin{theorem} \label{theorem:14} | |
If $f$ is continuous on $[0,\infty)$ and | |
$$ | |
H(x)=\int_{0}^{x}e^{-s_{0}u}f(u)\,du | |
$$ | |
is bounded on $[0,\infty),$ then the Laplace transform of $f$ | |
is infinitely differentiable on $(s_{0},\infty),$ with | |
\begin{equation} \label{eq:30} | |
F^{(n)}(s)=(-1)^{n}\int_{0}^{\infty} e^{-sx} x^{n}f(x)\,dx; | |
\end{equation} | |
that is, the $n$-th derivative of the Laplace transform of $f(x)$ is the | |
Laplace transform of $(-1)^{n}x^{n}f(x)$. | |
\end{theorem} | |
\proof | |
First we will | |
show that the integrals | |
$$ | |
I_{n}(s)=\int_{0}^{\infty}e^{-sx}x^{n}f(x)\,dx,\quad n=0,1,2, \dots | |
$$ | |
all converge uniformly on $[s_{1},\infty)$ if | |
$s_{1}>s_{0}$. If $0<r<r_{1}$, then | |
$$ | |
\int_{r}^{r_{1}}e^{-sx}x^{n}f(x)\,dx= | |
\int_{r}^{r_{1}}e^{-(s-s_{0})x}e^{-s_{0}x}x^{n}f(x)\,dx | |
=\int_{r}^{r_{1}}e^{-(s-s_{0})x}x^{n}H'(x)\,dx. | |
$$ | |
Integrating by parts yields | |
\begin{eqnarray*} | |
\int_{r}^{r_{1}}e^{-sx}x^{n}f(x)\,dx | |
&=&r_{1}^{n}e^{-(s-s_{0})r_{1}}H(r)-r^{n}e^{-(s-s_{0})r}H(r)\\ | |
&&-\int_{r}^{r_{1}}H(x)\left(e^{-(s-s_{0})x}x^{n}\right)'\,dx, | |
\end{eqnarray*} | |
where $'$ indicates differentiation with respect to $x$. Therefore, if | |
$|H(x)|\le M\le \infty$ on $[0,\infty)$, then | |
$$ | |
\left|\int_{r}^{r_{1}}e^{-sx}x^{n}f(x)\,dx\right|\le | |
M\left(e^{-(s-s_{0})r}r^{n}+e^{-(s-s_{0})r}r^{n} | |
+\int_{r}^{\infty}|(e^{-(s-s_{0})x})x^{n})'|\,dx\right). | |
$$ | |
Therefore, since $e^{-(s-s_{0})r}r^{n}$ decreases monotonically on | |
$(n,\infty)$ if $s>s_{0}$ | |
(check!), | |
$$ | |
\left|\int_{r}^{r_{1}}e^{-sx}x^{n}f(x)\,dx\right|<3Me^{-(s-s_{0})r}r^{n},\quad | |
n<r<r_{1}, | |
$$ | |
so Theorem~\ref{theorem:4} implies that $I_{n}(s)$ converges | |
uniformly $[s_{1},\infty)$ if $s_{1}>s_{0}$. Now | |
Theorem~\ref{theorem:11} implies | |
that $F_{n+1}=-F_{n}'$, and an easy induction proof yields \eqref{eq:30} | |
(Exercise~\ref{exer:25}). | |
\endproof | |
\begin{example} \label{example:13} \rm | |
Here we apply Theorem~\ref{theorem:12} with $f(x)=\cos ax$ ($a\ne0$) and | |
$s_{0}=0$. Since | |
$$ | |
\int_{0}^{x}\cos au\,du=\frac{\sin ax}{a} | |
$$ | |
is bounded on $(0,\infty)$, Theorem~\ref{theorem:12} implies that | |
$$ | |
F(s)=\int_{0}^{\infty}e^{-sx}\cos ax\,dx | |
$$ | |
converges and | |
\begin{equation} \label{eq:31} | |
F^{(n)}(s)=(-1)^{n}\int_{0}^{\infty}e^{-sx}x^{n}\cos ax\,dx, \quad s>0. | |
\end{equation} | |
(Note that this is also true if $a=0$.) Elementary integration | |
yields | |
$$ | |
F(s)=\frac{s}{s^{2}+a^{2}}. | |
$$ | |
Hence, from \eqref{eq:31}, | |
$$ | |
\int_{0}^{\infty}e^{-sx}x^{n}\cos ax=(-1)^{n}\frac{d^n}{ds^n} | |
\frac{s}{s^{2}+a^{2}}, \quad n=0,1, \dots. | |
$$ | |
\end{example} | |
\newpage | |
\section{Exercises} | |
\begin{exerciselist} | |
\item\label{exer:1} | |
Suppose $g$ and $h$ are differentiable on $[a,b]$, with | |
$$ | |
a \le g(y) \le b \text{\quad and\quad} a \le h(y) \le b, \quad | |
c \le y \le d. | |
$$ | |
Let $f$ and $f_{y}$ be continuous on $[a,b]\times [c,d]$. Derive | |
\emph{Liebniz's rule}: | |
\begin{eqnarray*} | |
\frac{d}{dy}\int_{g(y)}^{h(y)}f(x,y)\,dx | |
&=&f(h(y),y)h'(y)-f(g(y),y)g'(y)\\&&+\int_{g(y)}^{h(y)}f_{y}(x,y)\,dx. | |
\end{eqnarray*} | |
(Hint: Define $H(y,u,v)=\int_{u}^{v}f(x,y)\,dx$ and use the chain | |
rule.) | |
\item\label{exer:2} | |
Adapt the proof of Theorem~\ref{theorem:2} to prove | |
Theorem~\ref{theorem:3}. | |
\item\label{exer:3} | |
Adapt the proof of Theorem~\ref{theorem:4} to prove | |
Theorem~\ref{theorem:5}. | |
\item\label{exer:4} | |
Show that Definition~\ref{definition:3} is independent | |
of $c$; that is, if | |
$\int_{a}^{c}f(x,y)\,dx$ and | |
$\int_{c}^{b}f(x,y)\,dx$ both converge uniformly on $S$ for | |
some | |
$c\in (a,b)$, then they both converge uniformly on $S$ | |
and every | |
$c\in | |
(a,b)$. | |
\item\label{exer:5} | |
\begin{alist} | |
\item % a | |
Show that if $f$ is bounded on $[a,b]\times [c,d]$ and | |
$\int_{a}^{b}f(x,y)\,dx$ exists as a proper integral for each | |
$y\in [c,d]$, then it converges uniformly on $[c,d]$ | |
according to all of | |
Definition~\ref{definition:1}--\ref{definition:3}. | |
\item % b | |
Give an example to show that the boundedness of $f$ is essential | |
in {\bf(a)}. | |
\end{alist} | |
\item\label{exer:6} | |
Working directly from Definition~\ref{definition:1}, discuss uniform | |
convergence of the following integrals: | |
\begin{tabular}{ll} | |
{\bf(a)} | |
$\dst{\int_{0}^{\infty}\frac{dx}{1+y^{2}x^{2}}\,dx}$ & | |
{\bf(b)} $\dst{\int_{0}^{\infty}e^{-xy}x^{2}\,dx}$ \\ \\ | |
{\bf(c)} $\dst{\int_{0}^{\infty}x^{2n}e^{-yx^{2}}\,dx}$ & | |
{\bf(d)} $\dst{\int_{0}^{\infty}\sin xy^{2}\,dx}$ \\\\ | |
{\bf(e)} $\dst{\int_{0}^{\infty}(3y^{2}-2xy)e^{-y^{2}x}\,dx}$ & | |
{\bf(f)} $\dst{\int_{0}^{\infty}(2xy-y^{2}x^{2})e^{-xy}\,dx}$ | |
\end{tabular} | |
\item\label{exer:7} | |
Adapt the proof of Theorem~\ref{theorem:6} to prove | |
Theorem~\ref{theorem:7}. | |
\item\label{exer:8} | |
Use Weierstrass's test to show that the integral converges uniformly | |
on $S:$ | |
\begin{alist} | |
\item % a | |
$\dst{\int_{0}^{\infty}e^{-xy}\sin x\,dx}$,\quad | |
$S=[\rho,\infty)$,\quad $\rho>0$ | |
\item % b | |
$\dst{\int_{0}^{\infty}\dst{\frac{\sin x}{x^{y}}}\,dx}$,\quad | |
$S=[c,d]$, \quad $1<c<d<2$ | |
\item % c | |
$\dst{\int_{1}^{\infty}e^{-px}\dst{\frac{\sin xy}{x}}\,dx}$,\quad | |
$p>0$,\quad | |
$S=(-\infty,\infty)$ | |
\item % d | |
$\dst{\int_{0}^{1}\frac{e^{xy}}{(1-x)^{y}}}\,dx$, \quad | |
$S=(-\infty,b)$,\quad $b<1$ | |
\item % e | |
$\dst{\int_{-\infty}^{\infty}\frac{\cos xy}{1+x^{2}y^{2}}}\,dx$,\quad | |
$S=(-\infty,-\rho]\cup[\rho,\infty)$,\quad $\rho>0$. | |
\item % f | |
$\dst{\int_{1}^{\infty}e^{-x/y}\,dx}$,\quad | |
$S=[\rho,\infty)$,\quad $\rho>0$ | |
\item % g | |
$\dst{\int_{-\infty}^{\infty}e^{xy}e^{-x^{2}}\,dx}$,\quad | |
$S=[-\rho,\rho]$,\quad $\rho>0$ | |
\item % h | |
$\dst{\int_{0}^{\infty}\frac{\cos xy-\cos ax}{x^{2}}\,dx}$,\quad | |
$S=(-\infty,\infty)$ | |
\item % i | |
$\dst{\int_{0}^{\infty}x^{2n}e^{-yx^{2}}\,dx}$,\quad | |
$S=[\rho,\infty)$,\quad $\rho>0$, \quad $n=0$, $1$, $2$,\dots | |
\end{alist} | |
\item\label{exer:9} | |
\begin{alist} | |
\item % a | |
Show that | |
$$ | |
\Gamma(y)=\int_{0}^{\infty} x^{y-1}e^{-x}\,dx | |
$$ | |
converges if $y>0$, and uniformly on $[c,d]$ if $0<c<d<\infty$. | |
\item % b | |
Use integration by parts to show that | |
$$ | |
\Gamma(y)=\frac{\Gamma(y+1)}{y},\quad y \ge 0, | |
$$ | |
and then show by induction that | |
$$ | |
\Gamma(y)=\frac{\Gamma(y+n)}{y(y+1)\cdots(y+n-1)}, \quad y>0, \quad | |
n=1,2,3, \dots. | |
$$ | |
How can this be used to define $\Gamma(y)$ in a natural way for all | |
$y\ne0$, $-1$, $-2$, \dots? (This function is called the \emph{gamma | |
function}.) | |
\item % c | |
Show that $\Gamma(n+1)=n!$ if $n$ is a positive integer. | |
\item % d | |
Show that | |
$$ | |
\int_{0}^{\infty}e^{-st}t^{\alpha}\,dt =s^{-\alpha-1}\Gamma(\alpha+1), \quad | |
\alpha>-1, \quad s>0. | |
$$ | |
\end{alist} | |
\item\label{exer:10} | |
Show that Theorem~\ref{theorem:8} remains valid with | |
assumption {\bf(c)} replaced | |
by the assumption that $|g_{x}(x,y)|$ is monotonic with respect to $x$ | |
for all $y\in S$. | |
\item\label{exer:11} | |
Adapt the proof of Theorem~\ref{theorem:8} to prove | |
Theorem~\ref{theorem:9}. | |
\item\label{exer:12} | |
Use Dirichlet's test to show | |
that the following | |
integrals converge uniformly on $S=[\rho,\infty)$ if $\rho>0$: | |
\begin{tabular}{ll} | |
{\bf(a)} $\dst{\int_{1}^{\infty}\frac{\sin xy}{x^{y}}\,dx}$& | |
{\bf(b)} $\dst{\int_{2}^{\infty}\frac{\sin xy}{\log x}\,dx}$\\\\ | |
{\bf(c)} $\dst{\int_{0}^{\infty}\frac{\cos xy}{x+y^{2}}\,dx}$& | |
{\bf(d)} $\dst{\int_{1}^{\infty}\frac{\sin xy}{1+xy}\,dx}$ | |
\end{tabular} | |
\item\label{exer:13} | |
Suppose $g,$ $g_{x}$ and $h$ are continuous on $[a,b)\times | |
S,$ and denote $H(x,y)=\int_{a}^{x}h(u,y)\,du,$ $a\le x<b.$ Suppose also | |
that | |
$$ | |
\lim_{x\to b-} \left\{\sup_{y\in S}|g(x,y)H(x,y)|\right\}=0 | |
\text{\quad and \quad}\int_{a}^{b}g_{x}(x,y)H(x,y)\,dx | |
$$ | |
converges uniformly on $S.$ Show | |
that $\int_{a}^{b}g(x,y)h(x,y)\,dx$ converges uniformly on $S$. | |
\item\label{exer:14} | |
Prove Theorem~\ref{theorem:10} for the case where $f=f(x,y)$ | |
is continuous on $(a,b]\times [c,d]$. | |
\item\label{exer:15} | |
Prove Theorem~\ref{theorem:11} for the case where $f=f(x,y)$ | |
is continuous on $(a,b]\times [c,d]$. | |
\item\label{exer:16} | |
Show that | |
$$ | |
C(y)=\int_{-\infty}^{\infty}f(x)\cos xy\,dx | |
\text{\quad and\quad} | |
S(y)=\int_{-\infty}^{\infty}f(x)\sin xy\,dx | |
$$ | |
are continuous on $(-\infty,\infty)$ if | |
$$ | |
\int_{-\infty}^{\infty}|f(x)|\,dx<\infty. | |
$$ | |
\item\label{exer:17} | |
Suppose $f$ is continuously differentiable on $[a,\infty)$, | |
$\lim_{x\to\infty}f(x)=0$, and | |
$$ | |
\int_{a}^{\infty}|f'(x)|\,dx<\infty. | |
$$ | |
Show that the functions | |
$$ | |
C(y)=\int_{a}^{\infty}f(x)\cos xy\,dx | |
\text{\quad and\quad} | |
S(y)=\int_{a}^{\infty}f(x)\sin xy\,dx | |
$$ | |
are continuous for all $y\ne0$. Give an example showing that they need | |
not be continuous at $y=0$. | |
\item\label{exer:18} | |
Evaluate $F(y)$ and use Theorem~\ref{theorem:11} to | |
evaluate $I$: | |
\begin{alist} | |
\item % a | |
$F(y)=\dst{\int_{0}^{\infty}\frac{dx}{1+y^{2}x^{2}}}$, | |
$y\ne0$;\quad | |
$I=\dst{\int_{0}^{\infty}\frac{\tan^{-1}ax-\tan^{-1}bx}{x}\,dx}$,\quad | |
$a$, $b>0$ | |
\item % b | |
$F(y)=\dst{\int_{0}^{\infty}x^{y}\,dx}$, | |
$y>-1$;\quad | |
$I=\dst{\int_{0}^{\infty}\frac{x^{a}-x^{b}}{\log x}\,dx}$, | |
\quad $a$, $b>-1$ | |
\item % c | |
$F(y)=\dst{\int_{0}^{\infty}e^{-xy}\cos x\,dx}$,\quad | |
$y>0$ | |
$I=\dst{\int_{0}^{\infty}\frac{e^{-ax}-e^{-bx}}{x}\cos x\,dx}$,\quad | |
$a$, $b>0$ | |
\item % d | |
$F(y)=\dst{\int_{0}^{\infty}e^{-xy}\sin x\,dx}$, \quad | |
$y>0$ | |
$I=\dst{\int_{0}^{\infty}\frac{e^{-ax}-e^{-bx}}{x}\sin x\,dx}$, | |
\quad $a$, $b>0$ | |
\item % e | |
$F(y)=\dst{\int_{0}^{\infty}e^{-x}\sin xy\,dx}$;\, | |
$I=\dst{\int_{0}^{\infty}e^{-x}\dst\frac{1-\cos ax}{x}}\,dx$ | |
\item % f | |
$F(y)=\dst{\int_{0}^{\infty}e^{-x}\cos xy\,dx}$;\, | |
$I=\dst{\int_{0}^{\infty}e^{-x}\dst\frac{\sin ax}{x}}\,dx$ | |
\end{alist} | |
\item\label{exer:19} | |
Use Theorem~\ref{theorem:11} to evaluate: | |
\begin{alist} | |
\item % a | |
$\dst{\int_{0}^{1}(\log x)^{n}x^{y}\,dx}$, \quad $y>-1$,\quad $n=0$, $1$, | |
$2$,\dots . | |
\item % b | |
$\dst{\int_{0}^{\infty}\dst{\frac{dx}{(x^{2}+y)^{n+1}}}\,dx}$,\quad | |
$y>0$,\quad | |
$n=0$, | |
$1$, $2$, \dots. | |
\item % c | |
$\dst{\int_{0}^{\infty}x^{2n+1}e^{-yx^{2}}\,dx}$, \quad $y>0$, \quad | |
$n=0$, | |
$1$, | |
$2$,\dots. | |
\item % e | |
$\dst{\int_{0}^{\infty}xy^{x}\,dx}$, \quad $0<y<1$. | |
\end{alist} | |
\item\label{exer:20} | |
\begin{alist} | |
\item % a | |
Use Theorem~\ref{theorem:11} and integration by parts | |
to show that | |
$$ | |
F(y)=\int_{0}^{\infty}e^{-x^{2}}\cos 2xy\,dx | |
$$ | |
satisfies | |
$$ | |
F'+2y F=0. | |
$$ | |
\item % b | |
Use part {\bf(a)} to show that | |
$$ | |
F(y)=\frac{\sqrt{\pi}}{2} e^{-y^{2}}. | |
$$ | |
\end{alist} | |
\item\label{exer:21} | |
Show that | |
$$ | |
\int_{0}^{\infty}e^{-x^{2}}\sin 2xy\,dx =e^{-y^{2}}\int_{0}^{y} | |
e^{u^{2}}\,du. | |
$$ | |
(Hint: See Exercise~~\ref{exer:20}.) | |
\item\label{exer:22} | |
State a condition implying that | |
$$ | |
C(y)=\int_{a}^{\infty}f(x)\cos xy\,dx | |
\text{\quad and\quad} | |
S(y)=\int_{a}^{\infty}f(x)\sin xy\,dx | |
$$ | |
are $n$ times differentiable on for all $y\ne0$. | |
(Your condition should imply the hypotheses of Exercise~\ref{exer:16}.) | |
\item\label{exer:23} | |
Suppose $f$ is continuously differentiable on $[a,\infty)$, | |
$$ | |
\int_{a}^{\infty}|(x^{k}f(x))'|\,dx<\infty,\quad 0\le k\le n, | |
$$ | |
and $\lim_{x\to\infty}x^{n}f(x)=0$. Show that if | |
$$ | |
C(y)=\int_{a}^{\infty}f(x)\cos xy\,dx | |
\text{\quad and\quad} | |
S(y)=\int_{a}^{\infty}f(x)\sin xy\,dx, | |
$$ | |
then | |
$$ | |
C^{(k)}(y)=\int_{a}^{\infty}x^{k}f(x)\cos xy\,dx | |
\text{\quad and\quad} | |
S^{(k)}(y)=\int_{a}^{\infty}x^{k}f(x)\sin xy\,dx, | |
$$ | |
$0\le k\le n$. | |
\item\label{exer:24} | |
Differentiating | |
$$ | |
F(y)=\int_{1}^{\infty}\cos\frac{y}{x}\,dx | |
$$ | |
under the integral sign yields | |
$$ | |
-\int_{1}^{\infty}\frac{1}{x}\sin\frac{y}{x}\,dx, | |
$$ | |
which converges uniformly on any finite interval. | |
(Why?) Does this imply that $F$ is differentiable for all $y$? | |
\item\label{exer:25} | |
Show that Theorem~\ref{theorem:11} and induction imply | |
Eq.~\eqref{eq:30}. | |
\item\label{exer:26} | |
Prove Theorem~\ref{theorem:12}. | |
\item\label{exer:27} Show that if $F(s)=\int_{0}^{\infty}e^{-sx}f(x)\,dx$ | |
converges for $s=s_{0}$, then it converges uniformly on $[s_{0},\infty)$. | |
(What's the difference between this and Theorem~\ref{theorem:13}?) | |
\item\label{exer:28} | |
Prove: If $f$ is continuous on $[0,\infty)$ and | |
$\int_{0}^{\infty}e^{-s_{0}x}f(x)\,dx$ converges, then | |
$$ | |
\lim_{s\to s_{0}+}\int_{0}^{\infty}e^{-sx}f(x)\,dx= | |
\int_{0}^{\infty}e^{-s_{0}x}f(x)\,dx. | |
$$ | |
(Hint: See the proof of Theorem~4.5.12, p.~273.) | |
\item\label{exer:29} Under the assumptions of Exercise~\ref{exer:28}, | |
show that | |
$$ | |
\lim_{s\to s_{0}+}\int_{r}^{\infty}e^{-sx}f(x)\,dx= | |
\int_{r}^{\infty}e^{-s_{0}x}f(x)\,dx,\quad r>0. | |
$$ | |
\item\label{exer:30} | |
Suppose $f$ is continuous on $[0,\infty)$ and | |
$$ | |
F(s)=\int_{0}^{\infty}e^{-sx}f(x)\,dx | |
$$ | |
converges for $s = s_{0}$. Show that $\lim_{s\to\infty}F(s)=0$. | |
(Hint: Integrate by parts.) | |
\item\label{exer:31} | |
\begin{alist} | |
\item % a | |
Starting from the result of | |
Exercise~\ref{exer:18}{\bf(d)}, let $b\to\infty$ | |
and invoke Exercise~\ref{exer:30} to evaluate | |
$$ | |
\int_{0}^{\infty}e^{-ax} \frac{\sin x}{x}\,dx, \quad a>0. | |
$$ | |
\item % b | |
Use {\bf(a)} and Exercise~\ref{exer:28} to show | |
that | |
$$ | |
\int_{0}^{\infty} \frac{\sin x}{x}\,dx =\frac{\pi}{2}. | |
$$ | |
\end{alist} | |
\item\label{exer:32} | |
\begin{alist} | |
\item % a | |
Suppose $f$ is continuously differentiable on $[0,\infty)$ and | |
$$ | |
|f(x)| \le Me^{s_{0}x}, \quad 0\le x\le \infty. | |
$$ | |
Show that | |
$$ | |
G(s)=\int_{0}^{\infty} e^{-sx}f'(x)\,dx | |
$$ | |
converges uniformly on $[s_{1},\infty)$ if $s_{1}>s_{0}$. | |
(Hint: Integrate by parts.) | |
\item % b | |
Show from part {\bf(a)} that | |
$$ | |
G(s)=\int_{0}^{\infty} e^{-sx}xe^{x^{2}}\sin e^{x^{2}}\,dx | |
$$ | |
converges uniformly on $[\rho,\infty)$ if $\rho>0$. (Notice | |
that | |
this does not follow from Theorem~\ref{theorem:6} or \ref{theorem:8}.) | |
\end{alist} | |
\item\label{exer:33} | |
Suppose $f$ is continuous on $[0,\infty)$, | |
$$ | |
\lim_{x\to0+}\frac{f(x)}{x} | |
$$ | |
exists, and | |
$$ | |
F(s)=\int_{0}^{\infty}e^{-sx}f(x)\,dx | |
$$ | |
converges for $s=s_{0}$. Show that | |
$$ | |
\int_{s_{0}}^{\infty}F(u)\,du=\int_{0}^{\infty}e^{-s_{0}x}\frac{f(x)}{x}\,dx. | |
$$ | |
\end{exerciselist} | |
\newpage | |
\bigskip | |
\section{Answers to selected exercises}\label{section:answers} | |
\bigskip | |
\noindent | |
{\bf\ref{exer:5}. (b)} If $f(x,y)=1/y$ for $y\ne0$ and $f(x,0)=1$, then | |
$\int_{a}^{b}f(x,y)\,dx$ does not converge uniformly on | |
$[0,d]$ for any $d>0$. | |
\bigskip | |
\noindent | |
{\bf\ref{exer:6}.} | |
{\bf(a)}, {\bf(d)}, and {\bf(e)} converge uniformly on | |
$(-\infty,\rho]\cup[\rho,\infty)$ if $\rho>0$;\, {\bf(b)}, {\bf(c)}, | |
and {\bf(f)} converge uniformly on $[\rho,\infty)$ if | |
$\rho>0$. | |
\bigskip | |
\noindent | |
{\bf\ref{exer:17}.} | |
Let $C(y)=\dst{\int_{1}^{\infty}\frac{\cos xy}{x}\,dx}$ and | |
$S(y)=\dst{\int_{1}^{\infty}\frac{\sin xy}{x}\,dx}$. Then | |
$C(0)=\infty$ and $S(0)=0$, while $S(y)=\pi/2$ if $y\ne0$. | |
\bigskip | |
\noindent | |
{\bf\ref{exer:18}.} | |
{\bf(a)} | |
$F(y)=\dst{\frac{\pi}{2|y|}}$;\quad $I=\dst{\frac{\pi}{2}\log\frac{a}{b}}$ | |
\quad | |
{\bf(b)} $F(y)=\dst{\frac{1}{y+1}}$;\quad $I=\dst{\log\frac{a+1}{b+1}}$ | |
\bigskip | |
{\bf(c)} | |
$F(y)=\dst{\frac{y}{y^{2}+1}}$;\quad | |
$I=\dst{\frac{1}{2}\,\frac{b^{2}+1}{a^{2}+1}}$ | |
{\bf(d)} | |
$F(y)=\dst{\frac{1}{y^{2}+1}}$;\quad $I=\tan^{-1}b-\tan^{-1}a$ | |
{\bf(e)} | |
$F(y)=\dst{\frac{y}{y^{2}+1}}$;\quad $I=\dst{\frac{1}{2}}\log(1+a^{2})$ | |
{\bf(f)} | |
$F(y)=\dst{\frac{1}{y^{2}+1}}$;\quad $I=\tan^{-1}a$ | |
\bigskip | |
\noindent | |
{\bf\ref{exer:19}.} | |
{\bf(a)} $(-1)^{n}n!(y+1)^{-n-1}$ \quad | |
{\bf(b)} $\pi2^{-2n-1}\dst{\binom{2n}{n}}y^{-n-1/2}$ | |
{\bf(c)} $\dst{\frac{n!}{2y^{n+1}}}$ $(\log y)^{-2}$ | |
{\bf(d)} $\dst{\frac{1}{(\log x)^{2}}}$ | |
\noindent | |
{\bf\ref{exer:22}.} | |
$\dst{\int_{-\infty}^{\infty}|x^{n}f(x)|\,dx<\infty}$ | |
\bigskip | |
\noindent | |
{\bf\ref{exer:24}.} | |
No; the integral defining $F$ diverges for all $y$. | |
\bigskip | |
\noindent | |
{\bf\ref{exer:31}.} | |
{\bf(a)}\, $\dst{\frac{\pi}{2}}-\tan^{-1}a$ | |
\end{document} | |
\newpage | |
\setlength{\parindent}{0pt} | |
\centerline{\large Beginning of manual} | |
{\bf 1.} | |
If | |
$H(y,u,v)=\dst{\int_{u}^{v}f(x,y)\,dx}$ | |
then | |
$$ | |
H_{u}(y,u,v)=-f(u,y), | |
\quad H_{v}(y,u,v)=f(v,y), | |
$$ | |
and, by Theorem~1, | |
$H_{y}(u,v,y) =\dst{\int_{u}^{v}f_{y}(x,y)\,dx}$. | |
If | |
$$ | |
F(y)=H(y,g(y),h(y))=\int_{g(y)}^{h(y)}f(x,y)\,dx, | |
$$ | |
then | |
\begin{eqnarray*} | |
F'(y)&=&H_{v}(y, g(y),h(y))h'(y)+H_{u}(y,g(y),h(y))g'(y)+ | |
H_{y}(y,g(y),h(y))\\ | |
&=& f(h(y),y)h'(y)-f(g(y),y)g'(y) | |
+\int_{g(y)}^{h(y)} f_{y}(x,y)\,dx. | |
\end{eqnarray*} | |
\medskip | |
{\bf 2.} | |
{\bf Theorem 3 (Cauchy Criterion for Convergence of an Improper | |
Integral II)} \it | |
Suppose $g$ is | |
integrable on every finite closed subinterval of $(a,b]$ and denote | |
$$ | |
G(r)=\int_{r}^{b}g(x)\,dx,\quad a< r\le b. | |
$$ | |
Then the improper integral $\int_{a}^{b}g(x)\,dx$ converges if and only | |
if$,$ for each | |
$\epsilon >0,$ there is an $r_{0}\in(a,b]$ such that | |
\begin{equation}\tag{A} | |
|G(r)-G(r_{1})|\le\epsilon,\quad a<r,r_{1}\le r_{0}. | |
\end{equation} \rm | |
\proof For necessity, suppose $\int_{a}^{b}g(x)\,dx=L$. By definition, | |
this means that for each $\epsilon>0$ there is an $r_{0}\in (a,b]$ | |
such that | |
$$ | |
|G(r)-L|<\frac{\epsilon}{2} | |
\text{\quad and\quad} | |
|G(r_{1})-L|<\frac{\epsilon}{2}, \quad | |
a< r,r_{1}\le r_{0}. | |
$$ | |
Therefore, | |
\begin{eqnarray*} | |
|G(r)-G(r_{1})|&=&|(G(r)-L)-(G(r_{1})-L)|\\ | |
&\le& |G(r)-L|+|G(r_{1})-L|\le | |
\epsilon,\quad | |
a< r,r_{1}\le r_{0}. | |
\end{eqnarray*} | |
For sufficiency, (A) implies that | |
$$ | |
|G(r)|= |G(r_{1})+(G(r)-G(r_{1}))|\le |G(r_{1})|+|G(r)-G(r_{1})|\le | |
|G(r_{1})|+\epsilon, | |
$$ | |
$a< r_{1}\le r_{0}$. Since $G$ is also bounded on the | |
compact set | |
$[r_{0},b]$ (Theorem~5.2.11, p.~313), $G$ is bounded on $(a,b]$. | |
Therefore the monotonic functions | |
$$ | |
\overline{G}(r)=\sup\set{G(r_{1})}{a<r_{1}\le r} \text{\quad and\quad} | |
\underline{G}(r)=\inf\set{G(r_{1})}{a<r_{1}\le r} | |
$$ | |
are well defined on $(a,b]$, and | |
$$ | |
\lim_{r\to a+}\overline{G}(r)=\overline{L} | |
\text{\quad and\quad} | |
\lim_{r\to a+}\underline{G}(r)=\underline{L} | |
$$ | |
both exist and are finite (Theorem~2.1.11, p.~47). | |
From (A), | |
\begin{eqnarray*} | |
|G(r)-G(r_{1})|&=&|(G(r)-G(r_{0}))-(G(r_{1})-G(r_{0}))|\\ | |
&\le &|G(r)-G(r_{0})|+|G(r_{1})-G(r_{0})|\le 2\epsilon, | |
\end{eqnarray*} | |
so | |
$\overline{G}(r)-\underline{G}(r)\le 2\epsilon$. | |
Since | |
$\epsilon$ is an arbitrary positive number, this implies that | |
$$ | |
\lim_{r\to a+}(\overline{G}(r)-\underline{G}(r))=0, | |
$$ | |
so $\overline{L}=\underline{L}$. Let $L=\overline{L}=\underline{L}$. | |
Since | |
$$ | |
\underline{G}(r)\le G(r)\le \overline{G}(r), | |
$$ | |
it follows that $\lim_{r\to a+} G(r)=L$. | |
\medskip | |
{\bf 3.} | |
{\bf Theorem~5 $($Cauchy Criterion for Uniform | |
Convergence II$)$} \it | |
The improper integral | |
$$ | |
\int_{a}^{b}f(x,y)\,dx =\lim_{r\to a+}\int_{r}^{b}f(x,y)\,dx | |
$$ | |
converges uniformly on $S$ if and only if$,$ | |
for each $\epsilon>0,$ there is | |
an $r_{0}\in (a,b]$ such that | |
\begin{equation}\tag{A} | |
\left|\int_{r_{1}}^{r}f(x,y)\,dx\right|< \epsilon, \quad y\in S, | |
\quad a <r,r_{1}\le r_{0}. | |
\end{equation} | |
\rm | |
\proof Suppose $\int_{a}^{b} f(x,y)\,dx$ converges uniformly on | |
$S$ and $\epsilon>0$. | |
From Definition~2, | |
there is an | |
$r_{0}\in (a,b]$ such that | |
\begin{equation} \tag{B} | |
\left|\int_{a}^{r}f(x,y)\,dx\right| <\frac{\epsilon}{2} | |
\text{\quad and\quad} | |
\left|\int_{a}^{r_{1}}f(x,y)\,dx\right| | |
<\frac{\epsilon}{2},\, y\in S, \, a< r,r_{1}\le r_{0}. | |
\end{equation} | |
Since | |
$$ | |
\int_{r_{1}}^{r}f(x,y)\,dx= | |
\int_{r_{1}}^{b}f(x,y)\,dx- | |
\int_{r}^{b}f(x,y)\,dx | |
$$ | |
(B) and the triangle inequality imply (A). | |
For the converse, denote | |
$$ | |
F(y)=\int_{r}^{b}f(x,y)\,dx. | |
$$ | |
Since (A) implies that | |
$$ | |
|F(r,y)-F(r_{1},y)|\le \epsilon, \quad y\in S, \quad | |
a< r, r_{1}\le r_{0}, | |
$$ | |
Theorem~2 with $G(r)=F(r,y)$ ($y$ fixed | |
but arbitrary in $S$) implies that $\int_{a}^{b} f(x,y)\,dx$ | |
converges pointwise for $y\in S$. | |
Therefore, if $\epsilon>0$ | |
then, for each $y\in S$, | |
there is an $r_{0}(y) \in (a,b]$ such that | |
\begin{equation} \tag{C} | |
\left|\int_{a}^{r}f(x,y)\,dx\right|\le \epsilon, | |
\quad y\in S,\quad | |
a<r\le r_{0}(y). | |
\end{equation} | |
For each $y\in S$, choose $r_{1}(y)\le \min[{r_{0}(y),r_{0}}]$. Then | |
$$ | |
\int_{a}^{r}f(x,y)\,dx = | |
\int_{a}^{r_{1}(y)}f(x,y)\,dx+ | |
\int_{r_{1}(y)}^{r}f(x,y)\,dx, \quad | |
$$ | |
so (A), (C), and the triangle inequality imply | |
that | |
$$ | |
\left|\int_{a}^{r} f(x,y)\,dx\right|\le 2\epsilon,\quad y\in S,\quad a<r\le | |
r_{0} | |
$$ | |
\medskip | |
{\bf 4.} | |
From Definition~3, $\int_{a}^{b}f(x,y)\,dx$ | |
converges uniformly on $S$ if and only if | |
$\int_{a}^{c}f(x,y)\,dx$ and $\int_{c}^{b}f(x,y)\,dx$ both converge | |
uniformly on $S$, where $c\in(a,b)$. | |
From Theorems~4 and Theorem~5, this is true if and only if, for any | |
$\epsilon>0$ there are points $r_{0}$ and $s_{0}$ in $(a,b)$ such that | |
$$ | |
\left|\int_{r}^{r_{1}}f(x,y)\,dx\right|\le \epsilon,\quad y\in S,\quad | |
r_{0}\le r,r_{1}<b | |
$$ | |
and | |
$$ | |
\left|\int_{s_{1}}^{s}f(x,y)\,dx\right|\le \epsilon,\quad y\in S,\quad | |
a< s,s_{1}<s_{0}. | |
$$ | |
These conditions are independent of $c$. | |
\medskip | |
{\bf 5. (a)} | |
If $|f(x,y)|\le M$ on $[a,b]\times [c,d]$ then | |
$$ | |
\left|\int_{r_{1}}^{r_{2}}f(x,y)\,dx\right|\le M|r_{2}-r_{1}| | |
$$ | |
so the Cauchy convergence theorems imply the conclusion. | |
\medskip | |
{\bf (b)} Define | |
$f=f(x,y)$ on $[0,1]\times [0,1]$ by | |
$$ | |
f(x,y)= \begin{cases}\dst\frac{1}{y} &\text{if\quad} 0<y\le 1,\\ | |
1&\text{if\quad} y=0. | |
\end{cases} | |
$$ | |
Then | |
$$ | |
\int_{r_{1}}^{r_{2}}f(x,y)\,dx= \begin{cases}\dst\frac{r_{2}-r_{1}}{y} | |
&\text{if\quad} | |
0<y\le 1,\\ | |
r_{2}-r_{1}&\text{if\quad} y=0. | |
\end{cases} | |
$$ | |
Therefore $f$ does not satisfy the requirements of Cauchy's convergence | |
theorems. | |
\medskip | |
{\bf 6.} | |
In all parts | |
$I(y)$ denotes the given integral. | |
\medskip {\bf(a)} | |
$I(0)=\infty$. If $y\ne0$ let | |
$u=xy$; then | |
$I(y)=\dst{\frac{1}{y}\int_{0}^{\infty}\frac{du}{1+u^{2}}}$. | |
If $\rho>0$ and $\epsilon >0$, choose $r$ so that | |
$\dst{\int_{r}^{\infty}\frac{du}{1+u^{2}}}< \rho\epsilon$. | |
Then | |
$\dst{\frac{1}{|y|}\int_{r}^{\infty}\frac{du}{1+u^{2}}}<\epsilon$ if | |
$|y|\ge | |
\rho$, so $I(y)$ converges uniformly on | |
$(-\infty, \rho]\bigcup [\rho,\infty)$ if $\rho>0$. | |
\medskip {\bf(b)} | |
$I(y)=\infty$ if $y\le0$. If $y>0$ | |
let $u=xy$; then | |
$I(y)=\dst{\frac{1}{y^{3}}\int_{0}^{\infty}e^{-u}u^{2}\,du}$. | |
If $\rho>0$ and $\epsilon >0$, choose $r$ so that | |
$\dst{\int_{r}^{\infty}e^{-u}u^{2}\,du}<\rho^{3}\epsilon$. | |
Then | |
$\dst{\frac{1}{y^{3}}\int_{r}^{\infty}e^{-u}u^{2}\,du}<\epsilon$ if $y\ge | |
\rho$, so $I(y)$ converges uniformly on | |
$[\rho,\infty)$ if $\rho>0$. | |
\medskip {\bf(c)} | |
$I(y)=\infty$ if $y\le0$. If $y>0$ let $u=xy^{1/2}$; then | |
$I(y)=\dst{y^{-n-1/2}\int_{0}^{\infty}u^{2n}e^{-u}\,du}$. | |
If $\rho>0$ and $\epsilon >0$, we can choose $r$ so that | |
$\dst{\int_{r}^{\infty}u^{2n}e^{-u}\,du}<\epsilon | |
\rho^{n+1/2}$. Then | |
$y^{-n-1/2}\dst{\int_{r}^{\infty}u^{2n}e^{-u}\,du}<\epsilon$ if $y\ge | |
\rho$, | |
so $I(y)$ converges uniformly on | |
$S=[\rho,\infty)$ if $\rho>0$. | |
\medskip {\bf(d)} | |
Since $I(-y)=-I(y)$, it suffices to assume that $y>0$. If $u=yx^{2}$ then | |
$I(y)=\dst{\frac{1}{2\sqrt{y}}\int_{0}^{\infty}\frac{\sin | |
u\,du}{\sqrt{u}}}$. From Example 3.4.14 (p.~162), this integral | |
converges conditionally. | |
If $\rho>0$ and $\epsilon >0$, we can choose $r$ so that | |
$\dst{\left|\int_{r}^{\infty}\frac{\sin | |
u\,du}{\sqrt{u}}\right|}<2\epsilon\sqrt{\rho}$, so | |
$I(y)$ converges uniformly on | |
$(-\infty,-\rho]\bigcup[\rho,\infty)$ if $\rho>0.$ | |
\medskip {\bf(e)} | |
If $u=y^{2}x$ then | |
$\dst{I(y)=3\int_{0}^{\infty}e^{-u}\,du | |
-\frac{2}{y^{3}}\int_{0}^{\infty} ue^{-u}\,du}$. | |
If $\rho>0$, we can choose $r$ so that | |
$\dst{3\int_{r}^{\infty}e^{-u}\,du<\frac{\epsilon}{2}}$ | |
and | |
$\dst{\int_{r}^{\rho}ue^{-u}\,du<\frac{\rho^{3}\epsilon}{2}}$. | |
Then | |
$$ | |
\left|3\int_{r}^{\infty}e^{-u}\,du | |
-\frac{3}{y^{3}}\int_{r}^{\infty} ue^{-u}\,du\right|<\epsilon | |
\text{\quad if\quad} |y|\ge \rho, | |
$$ | |
so $I(y)$ converges uniformly on | |
$(-\infty, \rho]\bigcup [\rho,\infty)$ if $\rho>0$. | |
\medskip {\bf(f)} | |
$I(y)=-\infty$ if $y\le0$. If $y>0$, let $u=xy$; then | |
$I(y)=\dst{\frac{1}{y}\int_{0}^{\infty}(2u-u^{2})e^{-u}\,du}$. | |
If $\rho>0$ and $\epsilon >0$, we can choose $r$ so that | |
$\dst{\int_{r}^{\infty}|2u-u^{2}|e^{-u}\,du}<\epsilon \rho$, | |
so $I(y)$ converges uniformly on | |
$S=[\rho,\infty)$ if $\rho>0$. | |
\medskip | |
{\bf 7.} | |
{\bf Theorem~7 $($Weierstrass's Test for Absolute Uniform Convergence | |
II$)$} Suppose $f=f(x,y)$ is locally integrable | |
$(a,b]$ and, for some $b_{0}\in (a,b],$ | |
\begin{equation}\tag{A} | |
|f(x,y)| \le M(x), \: | |
y\in S, \: x\in (a,b_{0}], | |
\end{equation} | |
where | |
$$ | |
\int_{a}^{b_{0}}M(x)\,dx<\infty. | |
$$ | |
Then $\int_{a}^{b}f(x,y)\,dx$ converges absolutely uniformly on $S.$ | |
\proof | |
Denote $\int_{a}^{b_{0}}M(x)\,dx=L<\infty$. By definition, | |
for each $\epsilon>0$ there is an $r_{0}\in (a,b_{0}]$ such that | |
$$ | |
L-\epsilon \le \int_{r}^{b_{0}}M(x)\,dx \le L,\quad | |
a<r\le r_{0}. | |
$$ | |
Therefore, if $a<r_{1}< r\le r_{0}$, then | |
$$ | |
0\le \int_{r_{1}}^{r}M(x)\,dx=\left(\int_{r_{1}}^{b_{0}}M(x)\,dx | |
-L\right)- | |
\left(\int_{r}^{b_{0}}M(x)\,dx -L\right)<\epsilon. | |
$$ | |
This and (A) imply that | |
$$ | |
\int_{r_{1}}^{r}|f(x,y)|\,dx\le | |
\int_{r_{1}}^{r} M(x)\,dx <\epsilon, \: y\in S,\: | |
a<r_{1}\le r_{0}\le b. | |
$$ | |
Now Theorem~5 | |
implies the stated conclusion. | |
\medskip | |
{\bf 8. (a)} | |
$|e^{-xy}\sin x|\le e^{-\rho x}$ if $y\ge\rho$ and | |
$\int_{\rho}^{\infty}e^{-\rho x}\,dx<\infty$. | |
\medskip | |
{\bf(b)} | |
$\dst{\int_{0}^{\infty}\frac{\sin x\,dx}{x^{y}}}=I_{1}(y)+I_{2}(y)$, | |
where | |
$$ | |
I_{1}(y)=\int_{0}^{1}\frac{\sin x\,dx}{x^{y}} | |
\text{\quad and\quad} | |
I_{2}(y)=\int_{1}^{\infty}\frac{\sin x\,dx}{x^{y}} | |
$$ | |
are both improper integrals. | |
Since | |
$$ | |
\sin x= x-\left(\frac{x^{3}}{3!}-\frac{x^{5}}{5!}\right) | |
-\left(\frac{x^{7}}{7!}-\frac{x^{9}}{9!}\right)+ \cdots <x,\quad 0\le x | |
\le 1. | |
$$ | |
If $0\le 1$ and $y\le d\le 2$, then | |
$$ | |
\left|\frac{\sin x}{x^{y}}\right|\le x^{1-y}\le x^{1-d} \text{\:so\:} | |
\int_{0}^{1}x^{-1+y}\,dx<\int_{0}^{1}x^{-1+d}\,dx=\frac{1}{2-d} | |
$$ | |
so $I_{1}(y)$ converges absolutely uniformly on $S$. | |
Since $c>1$, | |
$$ | |
\frac{|\sin x|}{x^{y}}\le x^{-c} \text{\quad and\quad} | |
\int_{1}^{\infty}x^{-c} \,dx=\frac{1}{c-1}\text{\quad if \quad} | |
$$ | |
$I_{2}(y)$ converges absolutely uniformly on $S$. | |
\medskip | |
{\bf (c)} | |
If $x\ge 1$ then | |
$\dst{e^{-px}\left|\frac{\sin xy}{x}\right|\le e^{-px}}$ for all $y$ and | |
$\dst{\int_{1}^{\infty}e^{-px}\,dx<\infty}$, since $p>0$. | |
\medskip {\bf(d)} | |
$\dst{\frac{e^{xy}}{(1-x)^{y}}}\le \dst{\frac{e^{b}}{(1-x)^{b}}}$, if | |
$0\le | |
x<1$ and $ y\le b$, and $\dst{\int_{0}^{1}(1-x)^{-b}\,dx}<\infty$ if | |
$b<1$. | |
\medskip {\bf(e)} | |
If $|y|\ge \rho>0$ then $\dst{\left|\frac{\cos xy}{1+x^{2}y^{2}}\right|\le | |
\frac{1}{1+\rho^{2}x^{2}}}$ for all $x$, and | |
$\dst{\int_{0}^{\infty}\frac{dx}{1+\rho^{2}x^{2}}}<\infty$. | |
\medskip {\bf(f)} | |
If $y\ge \rho>0$ then $e^{-x/y}\le e^{-x/\rho}$ and | |
$\dst{\int_{0}^{\infty}e^{-x/\rho}\,dx<\infty}$. | |
\medskip {\bf(g)} | |
If $|y|\le \rho$ then $e^{xy}e^{-x^{2}}\le e^{x\rho}e^{-x^{2}}$ and | |
$\dst{\int_{-\infty}^{\infty}e^{x\rho}e^{-x^{2}}\,dx}<\infty$. | |
\medskip {\bf(h)} | |
If $|x|\ge 1$ then $|\cos xy-\cos ax|\le 2$ and | |
$\dst{\int_{1}^{\infty}\frac{2\,dx}{x^{2}}}<\infty$. | |
\medskip \noindent {\bf(i)} | |
If $y\ge \rho>0$ then $e^{-yx^{2}}\le e^{-\rho x^{2}}$ and | |
$\dst{\int_{0}^{\infty} x^{2n}e^{-\rho x^{2}}\,dx<\infty}$. | |
\medskip | |
{\bf 9. (a)} | |
If $0<x<1$ then $|x^{y-1}e^{-x}|<x^{c-1}$. Therefore, since | |
$\dst{\int_{0}^{1}x^{c-1}\,dx}<\infty$ if $c>0$, | |
$\int_{0}^{1}x^{y-1}e^{-x}\,dx$ | |
converges uniformly on $[c,\infty)$ if $c>0$, by Theorem~7. If $x>1$ then | |
$|x^{y-1}e^{-x}|\le x^{d-1}e^{-x}$ if $y\le d$. Therefore, since | |
$\dst{\int_{1}^{\infty}x^{d-1}e^{-x}}\,dx<\infty$, | |
$\dst{\int_{1}^{\infty}x^{y-1}e^{-x}}\,dx$ converges uniformly on | |
$(-\infty,d]$ for every $d$, | |
by Theorem~6. Hence, $\dst{\int_{0}^{\infty}x^{y-1}e^{-x}\,dx}$ | |
converges uniformly on $[c,d]$ if $c>0$. | |
\medskip | |
{\bf (b)} | |
If $y>0$ then | |
\begin{equation} | |
\Gamma(y)=\int_{0}^{\infty}x^{y-1}e^{-x}\,dx | |
=\frac{x^{y}e^{-x}}{y}\biggr|_{0}^{\infty}+ | |
\frac{1}{y}\int_{0}^{\infty}x^{y}e^{-x}\,dx | |
=\frac{\Gamma(y+1)}{y}. | |
\tag{A} | |
\end{equation} | |
Therefore | |
\begin{equation} | |
\Gamma(y)=\frac{\Gamma(y+n)}{y(y+1)\cdots (y+n-1)} | |
\tag{B} | |
\end{equation} | |
is true when $n=1$. Now suppose it is true for given positive integer $n$, | |
and replace $y$ by $y+n$ in (A): | |
$$ | |
\Gamma(y+n)=\frac{\Gamma(y+n+1)}{y+n}. | |
$$ | |
Substituting this into (B) yields | |
$$ | |
\Gamma(y)=\frac{\Gamma(y+n+1)}{y(y+1)\cdots (y+n)}, | |
$$ | |
which completes the induction. | |
If $-n <y<-n+1$ with $n\le 1$ then $0<y+n<1$ and we can compute | |
$\Gamma(y+n)$ from the definition in part {\bf (a)}: | |
$$ | |
\Gamma(y+n)=\int_{0}^{\infty}x^{y+n-1}e^{-x}\,dx. | |
$$ | |
Then we can define $\Gamma(y)$ by (B). | |
\medskip | |
{\bf(c)} | |
The assertion is true if $n=1$, since | |
$$ | |
\Gamma(2)=\int_{0}^{\infty}xe^{-x}\,dx = | |
-xe^{-x}\biggr|_{0}^{\infty}+\int_{0}^{\infty} e^{-x}\,dx = 1. | |
$$ | |
If $\Gamma(n+1)=n!$ for some $n\ge 1$, then | |
\begin{eqnarray*} | |
\Gamma(n+2)&=&\int_{0}^{\infty}x^{n+1}e^{-x}\,dx= -e^{-x} | |
x^{n+1}\biggr|_{0}^{\infty}+(n+1) | |
\int_{0}^{\infty}x^{n+1}e^{-x}\,dx\\ | |
&=&(n+1)\Gamma(n+1)=(n+1)n!=(n+1)!, | |
\end{eqnarray*} | |
which completes the induction proof. | |
\medskip | |
{\bf (d)} | |
The change of variable $x=st$ yields | |
$$ | |
\int_{0}^{\infty}e^{-st}t^{\alpha}\,dt=\frac{1}{s^{\alpha+1}} | |
\int_{0}^{\infty}x^{\alpha}e^{-x}\,dx=\frac{1}{s^{\alpha+1}} | |
\Gamma(\alpha+1), | |
$$ | |
from the definition of the Gamma function. | |
\medskip | |
\medskip | |
{\bf 10.} | |
Since $|g_{x}(x,y)|$ is monotonic with respect to $x$, | |
\begin{equation}\tag{A} | |
\int_{r}^{r_{1}}|g_{x}(x,y)|\,dx=|g(r_{1},y)-g(r,y)|,\quad a\le r<r_{1}<b. | |
\end{equation} | |
From Assumption {\bf(a)} of Theorem~8, if $\epsilon>0$ there is an | |
$r_{0}\in | |
[a,b)$ such that | |
$$ | |
|g(s,y)|\le \epsilon,\quad y\in S,\quad r_{0}\le s<b. | |
$$ | |
Therefore, (A) implies that | |
$$ | |
\int_{r}^{r_{1}}|g_{x}(x,y)\,dx\le 2\epsilon,\quad y\in S,\quad r_{0}\le r\le | |
r_{1}<b. | |
$$ | |
Now Theorem~4 implies that $\int_{a}^{b}|g(x,y)|\,dx$ converges uniformly | |
on $S$, which is assumption {\bf(c)} of Theorem~8. | |
\medskip | |
{\bf 11.} | |
{\bf Theorem~9 $($Dirichlet's Test for Uniform Convergence II}$)$ | |
If $g,$ $g_{x},$ and $h$ are continuous on $(a,b]\times S$ then | |
$$ | |
\int_{a}^{b}g(x,y)h(x,y)\,dx | |
$$ | |
converges uniformly on $S$ if the following | |
conditions are satisfied$:$ | |
\begin{alist} | |
\item % a | |
$\dst{\lim_{x\to a+}\left\{\sup_{y\in S}|g(x,y)|\right\}=0};$ | |
\item % b | |
There is a constant $M$ such that | |
$$ | |
\sup_{y\in S}\left|\int_{x}^{b}h(u,y)\,du\right| \le M, \quad | |
a< x\le b; | |
$$ | |
\item % c | |
$\int_{a}^{b}|g_{x}(x,y)|\,dx$ converges uniformly on $S$. | |
\end{alist} \rm | |
\medskip | |
\proof | |
If | |
\begin{equation} \tag{A} | |
H(x,y)=\int_{x}^{b}h(u,y)\,du | |
\end{equation} | |
then integration by parts yields | |
\begin{eqnarray*} | |
\int_{r_{1}}^{r}g(x,y)h(x,y)\,dx&=&-\int_{r_{1}}^{r}g(x,y)H_{x}(x,y)\,dx | |
\\ | |
&=&-g(r,y)H(r,y)+g(r_{1},y)H(r_{1},y)\\ | |
&&+\int_{r_{1}}^{r}g_{x}(x,y)H(x,y)\,dx. | |
\end{eqnarray*} | |
Therefore, | |
since assumption {\bf(b)} and (A) imply that | |
$|H(x,y)|\le M$, $(x,y)\in (a,b]\times S$, | |
\begin{equation}\tag{B} | |
\left|\int_{r_{1}}^{r}g(x,y)h(x,y)\,dx\right|\le | |
M\left(2\sup_{a<x\le r} | |
|g(x,y)|+\int_{r_{1}}^{r}|g_{x}(x,y)|\,dx\right) | |
\end{equation} | |
on $[r_{1},r]\times S$. | |
Now suppose $\epsilon>0$. From assumption {\bf (a)}, there is an | |
$r_{0} \in [a,b)$ such that $|g(x,y)|<\epsilon$ on $S$ if | |
$a< x \le r_{0} \le b$. | |
From assumption {\bf(c)} and Theorem~5, there is an | |
$s_{0}\in | |
(a,b]$ such that | |
$$ | |
\int_{r_{1}}^{r}|g_{x}(x,y)|\,dx<\epsilon,\quad | |
y\in S,\quad | |
a<r_{1}<r\le s_{0}. | |
$$ | |
Therefore | |
(B) implies that | |
$$ | |
\left|\int_{r_{1}}^{r}g(x,y)h(x,y)\right| < 3M\epsilon,\quad y\in S,\quad | |
a<r_{1}<r\min(r_{0},s_{0}) | |
$$ | |
Now Theorem~5 implies the stated conclusion. | |
\medskip | |
{\bf 12. (a)} | |
Denote | |
$F(y)=\dst{\int_{1}^{\infty}\frac{\sin xy}{x^{y}}}$ | |
and, with $1\le r< r_{1}$, | |
\begin{eqnarray*} | |
F(r,r_{1},y)=\int_{r}^{r_{1}}\frac{\sin xy}{x^{y}}\,dx &=& | |
-\frac{\cos xy}{yx^{y}}\biggr|_{r}^{r_{1}}- | |
\int_{r}^{r_{1}}\frac{\cos xy}{x^{y+1}}\,dx\\ | |
&=& | |
\frac{\cos r y}{yr^{y}}-\frac{\cos r_{1}y}{yr_{1}^{y}}- | |
\int_{r}^{r_{1}}\frac{\cos xy}{x^{y+1}}\,dx. | |
\end{eqnarray*} | |
Therefore | |
$$ | |
|F(r,r_{1},y)|\le | |
\frac{2}{yr^{y}}+\int_{r}^{r_{1}}x^{-y-1}\,dx<\frac{3}{yr^{y}}, \quad | |
r,y>0. | |
$$ | |
Now Theorem~4 implies that $F(y)$ converges uniformly | |
on $[\rho,\infty)$ if $\rho>0$. | |
\medskip | |
{\bf (b)} | |
Denote | |
$F(y)=\dst{\int_{2}^{\infty}\frac{\sin xy}{\log x}\,dx}$ | |
and, with $2\le r< r_{1}$, | |
$$ | |
F(r,r_{1},y)=\int_{r}^{r_{1}}\frac{\sin xy}{\log x}\,dx | |
=-\frac{\cos xy}{y\log x}\biggr|_{r}^{r_{1}}- | |
\frac{1}{y}\int_{r}^{r_{1}}\frac{\cos xy}{x(\log x)^{2}}\,dx. | |
$$ | |
Therefore | |
$$ | |
|F(r,r_{1},y)|\le \frac{1}{y}\left|\frac{2}{\log r}+\int_{r}^{r_{1}} | |
\frac{dx}{x(\log x)^{2}}\right|\le \frac{3}{y\log r}. | |
$$ | |
Now Theorem~4 implies that $F(y)$ converges uniformly | |
on $[\rho,\infty)$ if $\rho>0$. | |
\medskip | |
{\bf (c)} | |
Denote | |
$F(y)=\dst{\int_{0}^{\infty}\frac{\cos xy}{x+y^{2}}}$, | |
and, with $0<r<r_{1}$, | |
$$ | |
F(r,r_{1},y)=\int_{r}^{r_{1}}\frac{\cos xy}{x+y^{2}}\,dx= | |
\frac{1}{y}\left(\frac{\sin xy}{x+y^{2}}\biggr|_{r}^{r_{1}} | |
+\int_{r}^{r_{1}}\frac{\sin xy}{(x+y^{2})^{2}}\,dx\right), | |
$$ | |
so | |
$$ | |
|F(r,r_{1},y)|\le \frac{3}{y(r+y^{2})}. | |
$$ | |
Now Theorem~4 implies that $F(y)$ converges uniformly | |
on $[\rho,\infty)$ if $\rho>0$. | |
\medskip | |
{\bf (d)} | |
Denote | |
$F(y)=\dst{\int_{0}^{\infty}\frac{\sin xy}{1+xy}}$, | |
and, with $0<r<r_{1}$, | |
$$ | |
F(r,r_{1},y)=\int_{r}^{r_{1}}\frac{\sin xy}{1+xy}\,dx= | |
-\frac{\cos xy}{y(1+xy)}\biggr|_{r}^{r_{1}}-\int_{r}^{r_{1}} | |
\frac{\cos xy}{y^{2}(1+xy)^{2}}\,dx, | |
$$ | |
so | |
$$ | |
|F(r,r_{1},y)|\le \frac{3}{y(1+ry)}. | |
$$ | |
Now Theorem~4 implies that $F(y)$ converges uniformly | |
on $[\rho,\infty)$ if $\rho>0$. | |
\medskip | |
{\bf 13.} | |
Integration by parts yields | |
\begin{eqnarray*} | |
\int_{r}^{r_{1}}g(x,y)h(x,y)\,dx&=&\int_{r}^{r_{1}}g(x,y)H_{x}(x,y)\,dx\\ | |
&=&g(r_{1},y)H(r_{1},y)-g(r,y)H(r,y)\\ | |
&&-\int_{r}^{r_{1}}g_{x}(x,y)H(x,y)\,dx, | |
\end{eqnarray*} | |
so | |
$$ | |
\left|\int_{r}^{r_{1}}g(x,y)h(x,y)\,dx\right|\le | |
2\sup_{x\ge r}\left\{\left\{\sup_{y\in S}|g(x,y)H(x,y)|\right\}\right\}+ | |
\left|\int_{r}^{r_{1}}g_{x}(x,y)H(x,y)\,dx\right|. | |
$$ | |
Now suppose $\epsilon\ge 0$. From our first assmption, there is an | |
$s_{0}\in [a,b)$ such that | |
$$ | |
\sup_{x\ge r}\left\{\left\{\sup_{y\in | |
S}|g(x,y)H(x,y)|\right\}\right\}<\epsilon, \quad s_{0}\le r<b. | |
$$ | |
Since $\int_{a}^{b}g_{x}(x,y)H(x,y)\,dx$ | |
converges uniformly on $S$, Theorem~4 implies that there is an $r_{0}\in | |
[a,b)$ such that | |
$$ | |
\left|\int_{r}^{r_{1}}g_{x}(x,y)H(x,y)\,dx\right|\le \epsilon, \quad y\in S, | |
\quad r_{0}\le r<r_{1}<b. | |
$$ | |
Therefore, | |
$$ | |
\left|\int_{r}^{r_{1}}g(x,y)h(x,y)\,dx\right|\le 2\epsilon, \quad y\in S, \quad | |
\max(r_{0},s_{0})\le r<r_{1}<b. | |
$$ | |
Now Theorem~4 implies that $\int_{a}^{b}g_{x}(x,y)h(x,y)\,dx$ | |
converges uniformly on $S$. | |
\medskip | |
{\bf 14. Theorem 10} \it | |
If $f=f(x,y)$ is continuous on | |
$(a,b]\times [c,d]$ and | |
\begin{equation} \tag{A} | |
F(y)=\int_{a}^{b}f(x,y)\,dx | |
\end{equation} | |
converges uniformly on $[c,d],$ then $F$ is continuous on | |
$[c,d].$ Moreover$,$ | |
\begin{equation} \tag{B} | |
\int_{c}^{d}\left(\int_{a}^{b}f(x,y)\,dx\right)\,dy | |
=\int_{a}^{b}\left(\int_{c}^{d}f(x,y)\,dy\right)\,dx. | |
\end{equation} \rm | |
We will first show that $F$ in (A) is continuous on $[c,d]$. | |
Since $F$ converges uniformly on $[c,d]$, | |
Definition~1 | |
implies that if $\epsilon>0$, there is an | |
$r \in (a,b]$ such that | |
$$ | |
\left|\int_{a}^{r}f(x,y)\,dx\right|\le \epsilon, \quad c \le y \le d. | |
$$ | |
Therefore, if $y$ and $y_{0}$ are in $[c,d]$, then | |
\begin{eqnarray*} | |
|F(y)-F(y_{0})|&=& | |
\left|\int_{a}^{b}f(x,y)\,dx-\int_{a}^{b}f(x,y_{0})\,dx\right|\\ | |
&\le&\left|\int_{r}^{b}[f(x,y)-f(x,y_{0})]\,dx\right|+ | |
\left|\int_{a}^{r}f(x,y)\,dx\right|\\ | |
&&+\left|\int_{a}^{r}f(x,y_{0})\,dx\right|\\ | |
\end{eqnarray*} | |
so | |
\begin{equation}\tag{C} | |
|F(y)-F(y_{0})| | |
\le \int_{r}^{b}|f(x,y)-f(x,y_{0})|\,dx +2\epsilon. | |
\end{equation} | |
Since $f$ is uniformly continuous on the compact set $[r,b]\times [c,d]$ | |
(Corollary~5.2.14, p.~314), there is a | |
$\delta>0$ such that | |
$$ | |
|f(x,y)-f(x,y_{0})|<\epsilon | |
$$ | |
if $(x,y)$ and $(x,y_{0})$ are in $[r,b]\times [c,d]$ and | |
$|y-y_{0}|<\delta$. This and (C) imply that | |
$$ | |
|F(y)-F(y_{0})|<(r-a)\epsilon +2\epsilon<(b-a+2)\epsilon | |
$$ | |
if $y$ and $y_{0}$ are in $[c,d]$ and $|y-y_{0}|<\delta$. Therefore $F$ | |
is continuous on $[c,d]$, so the integral on left side of | |
(B) exists. Denote | |
\begin{equation}\tag{D} | |
I= | |
\int_{c}^{d}\left(\int_{a}^{b}f(x,y)\,dx\right)\,dy. | |
\end{equation} | |
We will | |
show that the improper | |
integral on the right side of (B) converges to $I$. To | |
this end, denote | |
$$ | |
I(r)= | |
\int_{r}^{b}\left(\int_{c}^{d}f(x,y)\,dy\right)\,dx. | |
$$ | |
Since we can reverse the order of integration of the | |
continuous function $f$ over the rectangle $[r,b]\times [c,d]$ | |
(Corollary~7.2.2, p.~466), | |
$$ | |
I(r)=\int_{c}^{d}\left(\int_{r}^{b}f(x,y)\,dx\right)\,dy. | |
$$ | |
From this and (D), | |
$$ | |
I-I(r)=\int_{c}^{d}\left(\int_{a}^{r}f(x,y)\,dx\right)\,dy. | |
$$ | |
Now suppose $\epsilon>0$. Since $\int_{a}^{b}f(x,y)\,dx$ converges | |
uniformly on $[c,d]$, there is an $r_{0}\in (a,b]$ such that | |
$$ | |
\left|\int_{a}^{r}f(x,y)\,dx\right|<\epsilon, \quad | |
a<r<r_{0}, | |
%### | |
$$ | |
so $|I-I(r)|<(d-c)\epsilon$, $a<r<r_{0}$. Hence, | |
$$ | |
\lim_{r\to a+}\int_{r}^{b}\left(\int_{c}^{d}f(x,y)\,dy\right)\,dx= | |
\int_{c}^{d}\left(\int_{a}^{b}f(x,y)\,dx\right)\,dy, | |
$$ | |
which completes the proof of (B). | |
\medskip | |
{\bf 15. Theorem~11} \it | |
Let $f$ and $f_{y}$ be continuous on | |
$(a,b]\times [c,d],$ and suppose that | |
$$ | |
F(y)=\int_{a}^{b}f(x,y)\,dx | |
$$ | |
converges for some $y_{0} \in [c,d]$ and | |
$$ | |
G(y)=\int_{a}^{b}f_{y}(x,y)\,dx | |
$$ | |
converges uniformly on $[c,d].$ Then $F$ converges | |
uniformly on $[c,d]$ and is given explicitly by | |
$$ | |
F(y)=F(y_{0})+\int_{y_{0}}^{y} G(t)\,dt,\quad c\le y\le d. | |
$$ | |
Moreover, $F$ is continuously differentiable on $[c,d]$ and | |
\begin{equation} \tag{A} | |
F'(y)=G(y), \quad c \le y \le d, | |
\end{equation} | |
where $F'(c)$ and $f_{y}(x,c)$ are derivatives | |
from the right, and $F'(d)$ and $f_{y}(x,d)$ are | |
derivatives from the left$.$ \rm | |
\proof Let | |
$$ | |
F_{r}(y)=\int_{r}^{b}f(x,y)\,dx, \quad a\le r<b,\quad c \le y \le d. | |
$$ | |
Since $f$ and $f_{y}$ are continuous on $[r,b]\times [c,d]$, | |
Theorem~1 implies that | |
$$ | |
F_{r}'(y)=\int_{r}^{b}f_{y}(x,y)\,dx, \quad c \le y \le d. | |
$$ | |
Therefore | |
\begin{eqnarray*} | |
F_{r}(y)&=&F_{r}(y_{0})+\int_{y_{0}}^{y}\left( | |
\int_{r}^{b}f_{y}(x,t)\,dx\right)\,dt\\ | |
&=&F(y_{0})+\int_{y_{0}}^{y}G(t)\,dt \\&&+(F_{r}(y_{0})-F(y_{0})) | |
-\int_{y_{0}}^{y}\left(\int_{a}^{r}f_{y}(x,t)\,dx\right)\,dt, | |
\quad c \le y \le d. | |
\end{eqnarray*} | |
Therefore, | |
\begin{equation}\tag{B} | |
\left|F_{r}(y)-F(y_{0})-\int_{y_{0}}^{y}G(t)\,dt\right| \le | |
|F_{r}(y_{0})-F(y_{0})| | |
+\left|\int_{y_{0}}^{y} | |
\int_{a}^{r}f_{y}(x,t)\,dx\right|\,dt. | |
\end{equation} | |
Now suppose $\epsilon>0$. Since we have assumed that | |
$\lim_{r\to a+}F_{r}(y_{0})=F(y_{0})$ exists, | |
there is an $r_{0}$ | |
in $(a,b)$ such that | |
$$ | |
|F_{r}(y_{0})-F(y_{0})|<\epsilon,\quad a<r< r_{0}. | |
$$ | |
Since we have assumed that $G(y)$ converges for | |
$y\in[c,d]$, there is an $r_{1} \in (a,b]$ such that | |
$$ | |
\left|\int_{a}^{b}f_{y}(x,t)\,dx\right|<\epsilon, \quad | |
t\in[c,d], \quad | |
a<r\le r_{1}. | |
$$ | |
Therefore, (B) yields | |
$$ | |
\left|F_{r}(y)-F(y_{0})-\int_{y_{0}}^{y}G(t)\,dt\right|< | |
\epsilon(1+|y-y_{0}|) \le \epsilon(1+d-c) | |
$$ | |
if $a<r<\min(r_{0},r_{1})$ and $t\in[c,d]$. Therefore | |
$F(y)$ converges uniformly on $[c,d]$ and | |
$$ | |
F(y)=F(y_{0})+\int_{y_{0}}^{y}G(t)\,dt, \quad c \le y \le d. | |
$$ | |
Since $G$ is continuous on $[c,d]$ by | |
Theorem~10, (A) | |
follows from differentiating this (Theorem~3.3.11, p.~141). | |
\medskip | |
{\bf 16.} | |
Since | |
$$ | |
|f(x)\cos xy|\le |f(x)|,\quad | |
|f(x)\sin xy|\le |f(x)|,\text{\quad and\quad} | |
\int_{-\infty}^{\infty} |f(x)|\,dx<\infty, | |
$$ | |
Theorems~6 and 7 imply that $\int_{-\infty}^{\infty}f(x)\cos xy\,dx$ | |
and $\int_{-\infty}^{\infty}f(x) \sin xy\,dx$ converge uniformly | |
on $(-\infty,\infty)$, so Theorem~10 implies that $C(y)$ | |
and $S(y)$ are continuous on $(-\infty,\infty)$. | |
\medskip | |
{\bf 17.} | |
If $y\ne0$, integrating by parts yields | |
\begin{eqnarray*} | |
C(y)&=&f(x)\frac{\sin xy}{y}\biggr|_{a}^{\infty}-\frac{1}{y} | |
\int_{a}^{\infty}f'(x)\sin xy \,dx\\ | |
&=&-f(a)\frac{\sin ay}{y} | |
-\frac{1}{y}\int_{a}^{\infty}f'(x)\sin xy \,dx | |
\end{eqnarray*} | |
and | |
\begin{eqnarray*} | |
S(y)&=&-f(x)\frac{\cos xy}{y}\biggr|_{a}^{\infty}+\frac{1}{y} | |
\int_{a}^{\infty}f'(x)\cos xy \,dx \\ | |
&=&f(a)\frac{\cos ay}{y}+ | |
\frac{1}{y}\int_{a}^{\infty}f'(x)\cos xy \,dx, | |
\end{eqnarray*} | |
since $\lim_{x\to\infty} f(x)=0$. From Exercise \ref{exer:17} with | |
$f$ replaced by | |
$f'$, | |
$\int_{1}^{\infty}f'(x)\cos xy \,dx$ and | |
$\int_{1}^{\infty}f'(x)\cos xy\,dx$ | |
are continuous on $(-\infty,\infty)$. Therefore $C(y)$ and $S(y)$ are | |
continuous on $(-\infty,0)\cup(0,\infty)$. | |
To see that $C$ and $S$ are not necessarily continuous at $y=0$, let | |
$a=1$ and | |
$f(x)=1/x$, so | |
$$ | |
\lim_{x\to\infty}f(x)=0\text{\quad and\quad} | |
\int_{1}^{\infty}|f'(x)|=\int_{1}^{\infty}\frac{dx}{x^{2}}=1. | |
$$ | |
Then | |
$$ | |
C(y)=\lim_{r\to\infty}\int_{1}^{r}\frac{\cos xy}{x}\,dx | |
\text{\quad and\quad} | |
S(y)=\lim_{r\to\infty}\int_{1}^{r}\frac{\sin xy}{x}\,dx,\quad y\ne0. | |
$$ | |
If $y>0$ make the change of variable $u=xy$ to see that | |
$$ | |
C(y)=\lim_{r\to\infty}\int_{y}^{ry}\frac{\cos u}{u}\,du= | |
\int_{y}^{\infty}\frac{\cos u}{u}\,du | |
$$ | |
and | |
$$ | |
S(y)=\lim_{r\to\infty}\int_{y}^{ry}\frac{\sin u}{u}\,du. | |
S(y)=\int_{y}^{\infty}\frac{\sin u}{u}\,du. | |
$$ | |
Therefore $\lim_{y\to 0+}C(y)=\infty$, so $C$ is not continuous at $y=0$. | |
Since $S(0)=0$ | |
and | |
$\lim_{y\to 0+}S(y)= | |
\dst{\int_{0}^{\infty}\frac{\sin u}{u}\,du}\ne 0$, $S$ is not continuous | |
at | |
$y=0$. | |
\medskip | |
{\bf 18. (a)} | |
The integral diverges if $y=0$. If $y\ne0$ substitute | |
$u=|y|x$ to obtain | |
\begin{equation} | |
F(y)=\int_{0}^{\infty}\frac{dx}{1+x^{2}y^{2}}= | |
\frac{1}{|y|}\int_{0}^{\infty}\frac{du}{1+u^{2}} | |
=\frac{1}{|y|}\tan^{-1}u\biggr|_{0}^{\infty}=\frac{\pi}{2|y|}, | |
\tag{A} | |
\end{equation} | |
so $F(y)$ converges for all $y\ne0$. | |
To test for uniform convergence, | |
suppose $|y|>0$ and $0<r<r_{1}$. Then | |
$$ | |
\int_{r}^{r_{1}}\frac{dx}{1+x^{2}y^{2}} | |
=\frac{1}{|y|}\int_{r|y|}^{r_{1}|y|} \frac{du}{1+u^{2}} | |
<\frac{1}{\rho}\int_{r\rho}^{\infty}\frac{du}{1+u^{2}} | |
$$ | |
if $|y|\ge \rho$. If $\epsilon>0$ there is an $\alpha>0$ such that | |
$\dst{\frac{1}{\rho}\int_{\alpha}^{\infty}\frac{du}{1+u^{2}}}<\epsilon$. | |
Therefore $\dst{\int_{r}^{r_{1}}\frac{dx}{1+x^{2}y^{2}}}<\epsilon$ if | |
$\alpha/\rho<r<r_{1}$. Now Theorem~4 implies that $F(y)$ converges | |
uniformly on $(-\infty,-\rho]\cup[\rho,\infty)$ if $\rho>0$. | |
\medskip | |
To evaluate | |
$$ | |
I=\dst{\int_{0}^{\infty}\frac{\tan^{-1}ax-\tan^{-1}bx}{x}\,dx}, | |
$$ | |
we note that | |
$$ | |
\frac{\tan^{-1}ax-\tan^{-1}bx}{x}=\int_{b}^{a}\frac{dy}{1+x^{2}y^{2}}. | |
$$ | |
Therefore | |
$$ | |
I=\int_{0}^{\infty}\,dx \int_{b}^{a}\frac{dy}{1+x^{2}y^{2}} | |
=\int_{b}^{a}\,dy\int_{0}^{\infty}\frac{dx}{1+x^{2}y^{2}} | |
=\frac{\pi}{2}\int_{b}^{a}\frac{dy}{y}=\frac{\pi}{2}\log\frac{a}{b}, | |
$$ | |
where the second equality is valid because of the uniform convergence | |
of $F(y)$ on the closed interval with endpoints $a$ and $b$, and the | |
third equality follows from (A). | |
\medskip | |
{\bf (b)} | |
$F(y)$ is a proper integral if $y\ge 0$ and it diverges if $y\le -1$. | |
If $-1<y<0$, then | |
\begin{equation} | |
F(y)=\int_{0}^{1}x^{y}\,dx=\frac{x^{y+1}}{y+1}\biggr|_{0}^{1}=\frac{1}{y+1} | |
\tag{A} | |
\end{equation} | |
is convergent. | |
Since | |
$$ | |
\int_{0}^{r}x^{y}\,dx=\frac{x^{y+1}}{y+1}\biggr|_{0}^{r}= | |
\frac{r^{y+1}}{y+1}. | |
$$ | |
and | |
$$ | |
\frac{\partial}{\partial y}\left (\frac{r^{y+1}}{y+1}\right) | |
=\frac{r^{y+1}}{y+1}\left(\log r-\frac{1}{y+1}\right)<0 | |
\text{\quad if \quad} 0<r\le 1 | |
\text{\quad and\quad} y>-1, | |
$$ | |
it follows that | |
$$ | |
\left|\int_{0}^{r}x^{y}\,dx\right|\le \frac{r^{\rho+1}}{\rho +1} | |
\text{\quad if\quad} 0<r\le 1\text{\quad and\quad} -1<\rho\le y. | |
$$ | |
Therefore, Theorem~5 implies that $F(y)$ converges uniformly on | |
$[\rho,\infty)$ if $\rho>-1$. | |
\medskip | |
Now Theorem~11 implies that | |
$$ | |
I=\dst{\int_{0}^{1}\frac{x^{a}-x^{b}}{\log x}\,dx} | |
= \int_{0}^{1}\,dx \int_{b}^{a}x^{y}\,dy | |
=\int_{b}^{a}\,dy\int_{0}^{1}x^{y}\,dx | |
=\int_{b}^{a}\frac{dy}{y+1}=\log\frac{a+1}{b+1}. | |
$$ | |
\medskip | |
{\bf (c)} | |
$\dst{F(y)=\int_{0}^{\infty} e^{-yx}\cos x \,dx=\frac{y}{y^{2}+1}}$. | |
Since | |
$$ | |
\left|\int_{r}^{\infty}e^{-yx} \cos x\,dx\right|\le | |
\int_{r}^{\infty}e^{-xy}\,dx=\frac{e^{-yr}}{y}, | |
$$ | |
Theorem~4 (or Theorem~6) implies that $F(y)$ converges uniformly on | |
$[\rho,\infty)$ if $\rho>0$. | |
Therefore, Theorem implies that if $a$, $b>0$ then | |
\begin{eqnarray*} | |
I&=&\int_{0}^{\infty}\frac{e^{-ax}-e^{-bx}}{x}\cos x\,dx | |
=\int_{0}^{\infty}\cos x\,dx\int_{a}^{b}e^{-yx}\,dy \\ | |
&=&\int_{a}^{b} \,dy\int_{0}^{\infty}e^{-yx}\cos x\,dx | |
=\int_{a}^{b}\frac{y}{y^{2}+1}\,dy=\frac{1}{2}\log\frac{b^{2}+1}{a^{2}+1}. | |
\end{eqnarray*} | |
\medskip | |
{\bf (d)} | |
$\dst{F(y)=\int_{0}^{\infty} e^{-yx}\sin x \,dx=\frac{1}{y^{2}+1}}$. | |
Since | |
$$ | |
\left|\int_{r}^{\infty}e^{-yx} \sin x\,dx\right|\le | |
\int_{r}^{\infty}e^{-yx}\,dx=\frac{e^{-yr}}{y}, | |
$$ | |
Theorem~4 (or Theorem~6) implies that $F(y)$ | |
converges uniformly | |
on every $[\rho,\infty)$ if $\rho>0$. | |
Therefore, if $a$, $b>0$ then Theorem~11 implies that | |
\begin{eqnarray*} | |
I&=&\int_{0}^{\infty}\frac{e^{-ax}-e^{-bx}}{x}\sin x\,dx | |
=\int_{0}^{\infty}\sin x\,dx\int_{a}^{b}e^{-yx}\,dy \\ | |
&=&\int_{a}^{b} \,dy\int_{0}^{\infty}e^{-yx}\sin x\,dx | |
=\int_{a}^{b}\frac{1}{y^{2}+1}\,dy=\tan^{-1}b-\tan^{-1}a. | |
\end{eqnarray*} | |
\medskip | |
{\bf(e)} | |
$\dst{F(y)=\int_{0}^{\infty} e^{-x}\sin xy \,dx=\frac{y}{y^{2}+1}}$. | |
Since | |
$$ | |
\left|\int_{r}^{\infty}e^{-x} \sin xy\,dx\right|\le | |
\int_{r}^{\infty}e^{-x}\,dx=e^{-r}, | |
$$ | |
Theorem~4 (or Theorem~6) implies that $F(y)$ converges uniformly | |
on $[\rho,\infty)$ if $\rho>0$. Therefore Theorem~11 implies that | |
\begin{eqnarray*} | |
I&=&\int_{0}^{\infty}e^{-x}\frac{1-\cos ax}{x}\,dx | |
=\int_{0}^{\infty}e^{-x}\,dx\int_{0}^{a}\sin xy\,dy\\ | |
&=&\int_{0}^{a}\,dy\int_{0}^{\infty}e^{-x}\sin xy\,dx | |
=\int_{0}^{a} \frac{y}{y^{2}+1}\,dy=\frac{1}{2}\log(1+a^{2}). | |
\end{eqnarray*} | |
\medskip | |
{\bf(f)} | |
$\dst{F(y)=\int_{0}^{\infty} e^{-x}\cos xy \,dx=\frac{1}{y^{2}+1}}$. | |
Since | |
$$ | |
\left|\int_{r}^{\infty}e^{-x} \cos xy\,dx\right|\le | |
\int_{r}^{\infty}e^{-x}\,dx=e^{-r}, | |
$$ | |
Theorem~4 (or Theorem~6) implies that $F(y)$ converges uniformly | |
on $[\rho,\infty)$ if $\rho>0$. Therefore Theorem~11 implies that | |
\begin{eqnarray*} | |
I&=&\int_{0}^{\infty}e^{-x}\sin ax\,dx | |
=\int_{0}^{\infty}e^{-x}\,dx\int_{0}^{a}\cos xy\,dy\\ | |
&=&\int_{0}^{a}\,dy\int_{0}^{\infty}e^{-x}\cos xy\,dx | |
=\int_{0}^{a} \frac{1}{y^{2}+1}\,dy=\tan^{-1}a. | |
\end{eqnarray*} | |
\medskip | |
{\bf 19. (a)} | |
We start with | |
\begin{equation} | |
F(y)=\int_{0}^{1} x^{y}\,dx =\frac{1}{y+1}\quad y>-1. | |
\tag{A} | |
\end{equation} | |
Formally differentiating this yields | |
\begin{equation} | |
F^{(n)}(y)=\int_{0}^{1}(\log x)^{n} x^{y}\,dx | |
=\frac{(-1)^{n}n!}{(y+1)^{n+1}},\quad y>-1. | |
\tag{B} | |
\end{equation} | |
To justify this we will show by induction that the improper integrals | |
$$ | |
I_{n}(y)=\int_{0}^{1}(\log x)^{n} x^{y}\,dx,\quad n=0,1,2, | |
\dots | |
$$ | |
converge uniformly on $[\rho,\infty)$ if $\rho>-1$. We begin with $n=0$:. | |
$$ | |
\int_{0}^{r}x^{y}\,dx = | |
\frac{x^{y+1}}{y+1}\biggr|_{r_{1}}^{r}=\frac{r^{y+1}}{y+1}\le | |
\frac{r^{y+1}}{\rho+1},\quad -1<\rho\le y. | |
$$ | |
so $I_{0}(y)=F(y)$ converges uniformly on $[\rho,\infty)$ if $\rho>-1$. | |
Now suppose that $I_{n}(y)$ converges uniformly on $[\rho,\infty)$. | |
Integrating by parts yields | |
\begin{eqnarray*} | |
\int_{r_{1}}^{r}(\log x)^{n+1}x^{y}\,dx&=& | |
\frac{r^{y+1}(\log r)^{n+1}-r_{1}^{y+1}(\log r_{1})^{n+1}} | |
{y+1}\\ &&-\frac{n+1}{y+1} | |
\int_{r_{1}}^{r}(\log x)^{n}x^{y}\,dx, \quad -1<y<\infty. | |
\end{eqnarray*} | |
Letting $r_{1}\to 0$ yields | |
\begin{equation}\tag{C} | |
\int_{0}^{r}(\log x)^{n+1} x^{y}\,dx =\frac{r^{y+1}(\log r)^{n+1}}{y+1} | |
-\frac{n+1}{y+1}\int_{0}^{r}(\log x)^{n}x^{y}\,dx. | |
\end{equation} | |
Since the integral on the right converges, it follows that the integral | |
on the left converges; in fact | |
$$ | |
\int_{0}^{1}(\log x)^{n+1}x^{y}\,dx= | |
-\frac{n+1}{y+1} | |
\int_{0}^{1}(\log x)^{n}x^{y}\,dx. | |
$$ | |
We must still show that the integral on the left converges uniformly on | |
$[\rho,\infty)$ if \\$\rho>-1$. To this end, note from (C) that | |
\begin{equation}\tag{D} | |
\left|\int_{0}^{r}(\log x)^{n+1} x^{y}\,dx\right| \le | |
\left|\frac{r^{\rho+1}(\log r)^{n+1}}{\rho+1}\right| | |
+\frac{n+1}{\rho+1}\left|\int_{0}^{r}(\log x)^{n}x^{y}\,dx\right| | |
\end{equation} | |
if $y\ge \rho$, | |
Now suppose $\epsilon>0$. Since $\dst{\lim_{r\to0+}r^{\rho+1}(\log | |
r)^{n+1}=0}$, there is an $r_{1}\in (0,1)$ such that | |
$$ | |
\left|\frac{r^{\rho+1}(\log r)^{n+1}}{\rho+1}\right| \le \frac{\epsilon}{2} | |
\text{\quad if \quad} 0<r<r_{1}. | |
$$ | |
Since $\int_{0}^{r}(\log x)^{n}x^{y}\,dx$ is uniformly convergent | |
(by our induction assumption), there is $r_{2}\in (0,1)$ such that | |
$$ | |
\frac{n+1}{\rho+1}\left|\int_{0}^{r}(\log x)^{n}x^{y}\,dx\right|\le | |
\frac{\epsilon}{2},\quad y\ge \rho, | |
$$ | |
Now (D) implies that | |
$$ | |
\left|\int_{0}^{r}(\log x)^{n+1} x^{y}\,dx\right|\epsilon,\quad | |
y\in [\rho,\infty),\quad 0<r<\min(r_{1},r_{2}). | |
$$ | |
This, Theorem~11, and an easy induction argument imply (B). | |
\medskip | |
{\bf (b)} | |
Substituting $x=u\sqrt{y}$ yields | |
\begin{equation} | |
F(y)=\int_{0}^{\infty}\frac{dx}{x^{2}+y}=\frac{1}{\sqrt{y}}\int_{0}^{\infty} | |
\frac{du}{u^{2}+1} | |
=\frac{\pi}{2\sqrt{y}},\quad y>0. | |
\tag{A} | |
\end{equation} | |
Formally differentiating this yields yields | |
\begin{eqnarray*} | |
\int_{0}^{\infty}\frac{dx}{(x^{2}+y)^{n+1}} | |
&=&\frac{\pi}{2n+1}1\cdot 3\cdots(2n-1)y^{-n-1/2} | |
=\frac{\pi}{2^{2n+1}}\frac{(2n)!}{n!}y^{-n-1/2}\\ | |
&=&\frac{\pi}{2^{2n+1}}\binom{2n}{n}y^{-n-1/2},\quad y>0. | |
\end{eqnarray*} | |
Theorem~11 implies that | |
the formal differentiation is legitimate, since, if $y\ge 0$ | |
and $r>0$, then | |
$$ | |
\int_{r}^{\infty}\frac{dx}{(x^{2}+y)^{n+1}}\le | |
\int_{r}^{\infty}x^{-2n-2}dx=\frac{r^{-2n-1}}{(2n-1)}; | |
$$ | |
hence, | |
the improper integrals | |
$\dst{\int_{0}^{\infty}\frac{dx}{(x^{2}+y)^{n+1}}}$, | |
$n=0$, $1$, $2$, \dots | |
converge uniformly on $[0,\infty)$. | |
\medskip | |
{\bf (c)} | |
Denote $I_{n}(y)=\dst{\int_{0}^{\infty}x^{2n+1}e^{-yx^{2}}\,dx}$. Then | |
$$ | |
I_{0}(y)=\int_{0}^{\infty}xe^{-yx^{2}}= | |
\frac{1}{2}\int_{0}^{\infty}2xe^{-yx^{2}}\,dx | |
=-\frac{1}{2y}e^{-yx^{2}}\biggr|_{0}^{\infty}=\frac{1}{2y}. | |
$$ | |
Since | |
$$ | |
\int_{r}^{\infty}x^{2n+1}e^{-yx^{2}} \,dx\le | |
\int_{r}^{\infty}x^{2n+1}e^{-\rho x^{2}} \,dx\text{\quad if\quad} | |
0<\rho\le r, | |
$$ | |
if $n\ge 0$, we can differentiate $I_{n}$ formally with respect to | |
$y\in (0,\infty)$ to obtain | |
$$ | |
I_{n}(y)=(-1)^{n}I_{0}^{(n)}=\frac{n!}{2y^{n+1}}. | |
$$ | |
{\bf (d)} | |
Denote | |
\begin{eqnarray*} | |
I(y)&=&\int_{0}^{\infty}y^{x}\,dx =\int_{0}^{\infty}e^{x\log y}\,dx | |
=\frac{1}{\log y}\int_{0}^{\infty}(\log y) y^{x}\,dx \\ | |
&=&\frac{y^{x}}{\log y}\biggr|_{0}^{\infty}=-\frac{1}{\log y}\quad | |
0<y<1. | |
\end{eqnarray*} | |
Formally differentiating this yields | |
$I'(y)=\dst{\int_{0}^{\infty}xy^{x-1}\,dx}$. | |
There are two improper integrals here: | |
$J_{1}(y)=\dst{\int_{0}^{1}xy^{x-1}\,dx}$ and | |
$J_{2}(y)=\dst{\int_{1}^{\infty}xy^{x-1}\,dx}$. | |
If $r<1$ then | |
$$ | |
\int_{0}^{r}xy^{x-1}\,dx=\frac{1}{y}\int_{0}^{r}xy^{x}\,dx | |
\le \frac{1}{y}\int_{0}^{r}x\,dx=\frac{r^{2}}{2y}\le | |
\frac{r^{2}}{2\rho_{1}}, \quad | |
0<\rho_{1}\le y\le 1. | |
$$ | |
Therefore $J_{1}(y)$ converges uniformly on $[\rho_{1},1]$. | |
If $x>r>1$ and $\rho_{2}<1$ then | |
$$ | |
\int_{r}^{\infty}xy^{x-1}\,dx<\int_{r}^{\infty}x\rho_{2}^{x-1}\,dx | |
=\frac{1}{\rho_{2}}\int_{r}^{\infty}x\rho_{2}^{x}\,dx, | |
$$ | |
Since | |
$$ | |
\lim_{x\to\infty}\frac{1}{\rho_{2}}\int_{r}^{\infty}x\rho_{2}^{x}\,dx =0 | |
$$ | |
Theorem~7 implies that $J_{2}(y)$ converges uniformly on $[0,\rho_{2}]$. | |
Therefore, if $0<\rho_{1}<\rho_{2}<1$ then | |
$\dst{\int_{0}^{\infty}xy^{x-1}}$ | |
converges uniformly on $[\rho_{1},\rho_{2}]$. Now Theorem~11 implies that | |
\begin{equation}\tag{A} | |
I'(y)=\int_{0}^{\infty}xy^{x-1}\,dx,\quad 0<y<1. | |
\end{equation} | |
However, since | |
$I(y)=-\dst{\frac{1}{\log y}}$, we know that | |
$I'(y)=\dst{\frac{1}{y(\log y)^{2}}}$. This and (A) imply that | |
$\dst{\int_{0}^{\infty}xy^{x}\,dx}=\dst{\frac{1}{(\log x)^{2}}}$. | |
\medskip | |
{\bf 20.} | |
Here $F(y)=\dst{\int_{0}^{\infty} e^{-x^{2}}\cos 2xy\,dx}$, so | |
Theorem~11 implies that | |
\begin{equation} | |
F'(y)=-2\int_{0}^{\infty}xe^{-x^{2}}\sin 2xy\,dx, | |
\tag{A} | |
\end{equation} | |
since the integral on the right converges uniformly on $(-\infty,\infty)$, | |
by Theorem~6. | |
Integration by parts yields | |
\begin{eqnarray*} | |
F(y)&=& | |
=\frac{1}{2y}\int_{0}^{\infty}e^{-x^{2}}(2y\cos 2xy)\,dx\\ | |
&=&\frac{1}{2y}\left(e^{-x^{2}}\sin 2xy\,dx\biggr|_{0}^{\infty} | |
+2\int_{0}^{\infty}xe^{-x^{2}}\sin 2xy\,dx\right) \\ | |
&=&\frac{1}{y} | |
\int_{0}^{\infty}xe^{-x^{2}}\sin 2xy\,dx | |
=-\frac{1}{2y} F'(y). | |
\end{eqnarray*} | |
From this and (A), $F'(y)+2yF(y)=0$, so $\dst{\frac{F'(y)}{F(y)}}=-2y$, | |
$\log F(y)=-y^{2}+\log F(0)$, and $F(y)=F(0)e^{-y^{2}}$. | |
Since | |
$F(0)=\dst{\int_{0}^{\infty}e^{-x^{2}}\,dx}=\dst{\frac{\sqrt{\pi}}{2}}$ | |
(Example~12), | |
$F(y)=\dst{\frac{\sqrt{\pi}}{2}}e^{-y^{2}}$. | |
\medskip | |
{\bf 21.} | |
Here $F(y)=\dst{\int_{0}^{\infty} e^{-x^{2}}\sin 2xy\,dx}$, so | |
Theorem~11 implies that | |
\begin{equation} | |
F'(y)=2\int_{0}^{\infty}xe^{-x^{2}}\cos 2xy\,dx, | |
\tag{A} | |
\end{equation} | |
since the integral on the right converges uniformly on $(-\infty,\infty)$. | |
Integrating this by parts yields | |
\begin{eqnarray*} | |
F'(y) | |
&=&-e^{-x^{2}}\cos 2xy\biggr|_{0}^{\infty}- | |
2y\int_{0}^{\infty} e^{-x^{2}}\sin 2xy\,dx \\ | |
&=&1-2y F(y), | |
\end{eqnarray*} | |
so $F'(y)+2yF(y)=1$, | |
$e^{y^{2}}F'(y)+2e^{y^{2}}yF(y)=e^{y^{2}}$, and | |
$\dst{\left(e^{y^{2}}F(y)\right)'=e^{y^{2}}}$. | |
Therefore, since $F(0)=0$, | |
$F(y)=\dst{e^{-y^{2}}\int_{0}^{y}e^{u^{2}}\,du}$. | |
{\bf 22.} | |
Theorems~6 and 11 imply that $S$ and $C$ are $n$ times continuously | |
differentiable on $(-\infty,\infty)$ if | |
$\dst{\int_{-\infty}^{\infty}|x^{n}f(x)|\,dx<\infty}$. | |
\medskip | |
{\bf 23.} | |
We will show first that | |
$$ | |
C_{k}(y)=\int_{a}^{\infty} x^{k}f(x) \cos xy \,dx | |
\text{\: and\:} | |
S_{k}(y)=\int_{a}^{\infty}x^{k}f(x)\sin xy\,dx,\: 0\le k\le n, | |
$$ | |
converge uniformly on | |
$U_{\rho}=(-\infty,-\rho]\cup[\rho,\infty)$ if $\rho>0$. | |
Note that if $\lim_{x\to\infty} x^{n}f(x)=0$, then | |
$\lim_{x\to\infty} x^{k}f(x)=0$, $k=0$, $1$, $2$,\dots $n$. | |
If $0\le k\le n$, then | |
\begin{equation} | |
\tag{A} | |
\int_{r}^{r_{1}}x^{k}f(x)\cos xy\,dx= | |
\frac{1}{y}\left[x^{k}f(x)\sin xy\biggr|_{r}^{r_{1}}- | |
\int_{r}^{r_{1}}(x^{k}f(x))'\sin xy\,dx\right]. | |
\end{equation} | |
Henceforth $k$ is fixed. | |
Our assumptions imply that | |
if $\rho>0$ and $\epsilon>0$ then there is an $r_{0}\in [a,\infty)$ such | |
that | |
$$ | |
\int_{r_{0}}^{\infty}|(x^{k}f(x))'|\,dx<\rho\epsilon | |
\text{\quad and \quad} |x^{k}f(x)|<\rho\epsilon,\quad x\ge r_{0}. | |
$$ | |
Therefore (A) implies that | |
$$ | |
\left|\int_{r}^{r_{1}}x^{k}f(x)\cos xy\,dx\right|<3\epsilon,\quad | |
r_{0}\le r<r_{1},\: y\in (-\infty,-\rho]\cup[\rho,\infty). | |
$$ | |
Now Theorem~4 implies that $C_{0}$, $C_{1}$,\dots, $C_{k}$ converge | |
uniformly on $(-\infty,-\rho]\cup[\rho,\infty)$. Since every $y\ne0$ | |
is in such an interval, Theorem~11 now implies that that if $y\ne 0$ | |
then | |
$$ | |
C^{(k)}(y)=\int_{a}^{\infty}x^{k}f(x)\sin xy\,dx,\quad | |
0\le k\le n. | |
$$ | |
A similar argument applies to $S$, $S'$,\dots $S^{(n)}$. | |
\medskip | |
{\bf 24.} | |
Let $I(y;r,r_{1})=\dst{\int_{r}^{r_{1}}\frac{1}{x}\sin\frac{y}{x}\,dx}$. | |
Assume for the moment that $y\ge 0$. | |
Substituting $u=y/x$ yields | |
$$ | |
I(y;r,r_{1})=\int_{y/r_{1}}^{y/r}\left(\frac{u}{y}\right)\sin u | |
\left(-\frac{y}{u^{2}}\right)\,du = | |
\int_{y/r_{1}}^{y/r}\frac{\sin u}{u}\,du. | |
$$ | |
Therefore, since $\dst{\left|\frac{\sin u}{u}\right|}\le 1$ for all $u$, | |
$|I(y;r,r_{1})|\le y/r$,\quad $1\le r\le r_{1}$. In fact, since | |
$I(-y;r,r_{1})=-I(y;r,r_{1})$, we can write $|I(y;r,r_{1})\le |y|/r$, | |
\quad $1\le r\le r_{1}$. Therefore, Theorem~4 implies that | |
$\dst{\int_{1}^{\infty}\frac{1}{x}\sin\frac{y}{x}\,dx}$ converges | |
uniformly on every finite interval. | |
Now | |
denote $F_{r}(y)=\dst{\int_{1}^{r}\cos\frac{y}{x}\,dx}$. | |
substituting $u=y/x$ yields | |
$F_{r}(y)=y\dst{\int_{y/r}^{y}\frac{\cos u}{u^{2}}\,du}$, | |
so $\lim_{r\to\infty}F_{r}(y)=\infty$ for all $y\ge 0$. Since | |
$F_{r}(-y)=F_{r}(y)$, it follows that $\lim_{r\to\infty}F_{r}(y)=\infty$ | |
for all $y$, so the answer to the question is ``no.'' | |
\medskip | |
{\bf 25.} | |
Let $P_{n}$ be the induction assumption | |
$$ | |
F^{(n)}(s)=(-1)^{n}\int_{0}^{\infty}e^{-sx}x^{n}f(x)\,dx,\quad s>s_{0}, | |
$$ | |
which is true by the definition of $F$ for $n=0$. If $P_{n}$ is true, then | |
Theorems~11 and 13 imply that | |
\begin{eqnarray*} | |
F^{(n+1)}(s)&=&(-1)^{n}\frac{d}{ds} | |
\int_{0}^{\infty}e^{-sx}x^{n}f(x)\,dx=(-1)^{n} | |
\int_{0}^{\infty}\frac{d}{ds}\left(e^{-sx}x^{n}f(x)\right)\,dx\\ | |
&=&(-1)^{n+1}\int_{0}^{\infty}e^{-sx}x^{n+1}f(x)\,dx, | |
\end{eqnarray*} | |
so $P_{n}$ implies $P_{n+1}$, which completes the induction proof. | |
\medskip | |
{\bf 26.} | |
Let $G(x)=\dst{\int_{0}^{x}e^{-s_{0}t}f(t)\,dt}$. If $s>s_{0}$ then | |
\begin{equation}\tag{A} | |
F(s)=\int_{0}^{\infty}e^{-sx}f(x)\,dx | |
=\int_{0}^{\infty}e^{-(s-s_{0})x}G'(x)\,dx | |
=(s-s_{0})\int_{0}^{\infty}e^{-(s-s_{0})x}G(x)\,dx | |
\end{equation} | |
(integration by parts). Since | |
$\dst{(s-s_{0})\int_{0}^{\infty}e^{-(s-s_{0})x}\,dx=1}$, (A) implies that | |
\begin{equation}\tag{B} | |
F(s)-F(s_{0})=(s-s_{0})\int_{0}^{\infty}e^{-(s-s_{0})x}(G(x)-F(s_{0}))\,dx. | |
\end{equation} | |
Now suppose $\epsilon>0$. | |
Since | |
$F(s_{0})=\dst{\int_{0}^{\infty}e^{-s_{0}t} | |
f(t)\,dt}=\lim_{t\to\infty}G(x)$, there is an $r$ such that | |
$|G(x)-F(s_{0})|<\epsilon$ if $x\ge r$; hence, from (B), then | |
\begin{eqnarray*} | |
|F(s)-F(s_{0})|&\le& (s-s_{0})\int_{0}^{r}e^{-(s-s_{0})x} | |
|G(x)-F(s_{0})|+\epsilon(s-s_{0})\int_{r}^{\infty} | |
e^{-(s-s_{0})x}\,dx\\ | |
&<& | |
(s-s_{0})\int_{0}^{r}e^{-(s-s_{0})x} | |
|G(x)-F(s_{0})|+\epsilon. | |
\end{eqnarray*} | |
Since $r$ is fixed, we can let $s\to s_{0}^{+}$ to conclude that | |
$\limsup_{s\to s_{0}+}|F(s)-F(s_{0})|\le \epsilon$, which implies that | |
$\lim_{s\to S_{0}+}F(s)=F(s_{0})$. | |
\medskip | |
{\bf 26.} | |
If $s\ge s_{1}>s_{0}$ then | |
$$ | |
|e^{-sx}f(x)|= |e^{-(s-s_{0})x}e^{s_{0}x}f(x)|\le M e^{-(s-s_{0})x} | |
\le M e^{-(s_{1}-s_{0})x}. | |
$$ | |
Since | |
$$ | |
\int_{0}^{\infty}Me^{-(s_{1}-s_{0})x}\,dx=\frac{M}{s_{1}-s_{0}}<\infty, | |
$$ | |
Theorem~6 implies the stated conclusion. | |
\medskip | |
{\bf 27.} | |
In Theorem~13 we assumed only that $\int_{0}^{x}e^{-s_{0}u}f(u)\,du$ | |
is bounded; here we are assuming that | |
$\int_{0}^{\infty}e^{-s_{0}u}f(u)\,du$ is convergent. | |
\medskip | |
Let | |
$$ | |
G(x)=\int_{x}^{\infty}e^{-s_{0}t}f(t)\,dt | |
\text{\quad and\quad} H(x)=\sup\set{|G(t)|}{t\ge x}. | |
$$ | |
Then | |
\begin{equation}\tag{A} | |
|G(x)|\le H(x)\text{\quad and \quad} | |
\lim_{x\to\infty}G(x)=\lim_{x\to\infty}H(x)=0, | |
\end{equation} | |
since $\int_{0}^{\infty}e^{-s_{0}x}f(x)\,dx$ converges. | |
Since $f$ is continuous on $[0,\infty)$, | |
$G'(x)=-e^{-s_{0}x}f(x)$. Integration by parts yields | |
\begin{eqnarray*} | |
\int_{r}^{\infty}e^{-sx}f(x)\,dx&=& | |
\int_{r}^{\infty}e^{-(s-s_{0})x}(e^{-s_{0}x}f(x))\,dx | |
=-\int_{0}^{\infty}e^{-(s-s_{0})x}G'(x)\,dx\\ | |
&=&-e^{-(s-s_{0})x}G(x)\biggr|_{r}^{\infty} | |
+(s-s_{0})\int_{r}^{\infty}e^{-(s-s_{0})x}G(x)\,dx\\ | |
&=&e^{-(s-s_{0})r}G(r)+(s-s_{0})\int_{r}^{\infty}e^{-(s-s_{0})x}G(x)\,dx,\quad s\ge s_{0}. | |
\end{eqnarray*} | |
Therefore | |
\begin{eqnarray*} | |
\left|\int_{r}^{\infty}e^{-sx}f(x)\,dx\right|&\le& | |
|G(r)|e^{-(s-s_{0})r}+H(r)(s-s_{0})\int_{r}^{\infty}e^{-(s-s_{0})x}\,dx\\ | |
&=&(G(r)+H(r))e^{-(s-s_{0})r}\le 2H(r)e^{-(s-s_{0})}, \quad s\ge s_{0}, | |
\end{eqnarray*} | |
so (A) implies that $F(s)$ converges uniformly on $[s_{0},\infty)$. | |
\medskip | |
{\bf 28.} | |
From Theorem~13, | |
$F(s)=\dst{\int_{0}^{\infty}e^{-sx}f(x)\, dx}$ converges for all $s>s_{0}$. | |
Denote $G(x)=\dst{\int_{0}^{x}e^{-s_{0}t}f(t)\,dt}$, $x\ge 0$. Then | |
\begin{eqnarray*} | |
F(s)&=&\int_{0}^{\infty}e^{-(s-s_{0})x}e^{-s_{0}x}f(x)\,dx= | |
\int_{0}^{\infty}e^{-(s-s_{0})x}G'(x)\,dx \\ | |
&=&(s-s_{0})\int_{0}^{\infty}e^{-(s-s_{0})x}G(x)\,dx | |
\end{eqnarray*} | |
(integration by parts). Since | |
$\dst{(s-s_{0})\int_{0}^{\infty}e^{-(s-s_{0})x}\,dx}=1$, | |
$$ | |
F(s)-F(s_{0})=\int_{0}^{\infty}e^{-(s-s_{0})x}(G(x)-F(s_{0}))\,dx | |
$$ | |
If $\epsilon>0$ there is an $R$ such that $|G(x)-F(s_{0})|<\epsilon$ if | |
$x\ge R$. Therefore, if $s>s_{0}$ then | |
\begin{eqnarray*} | |
|F(s)-F(s_{0})|&<& | |
(s-s_{0})\int_{0}^{R}e^{-(s-s_{0})x}|G(x)-F(s_{0})|\,dx+\epsilon\\ | |
&<&(s-s_{0})\int_{0}^{R}|G(x)-F(s_{0})|\,dx+\epsilon. | |
\end{eqnarray*} | |
Hence | |
$\limsup_{s\to s_{0}+}|F(s)-F(s_{0})|\le \epsilon$. Since $\epsilon$ | |
is arbitrary, this implies that \\ $\lim_{s\to s_{0}+}|F(s)-F(s_{0})|=0$. | |
\medskip | |
{\bf 29.} | |
The assumptions of Exercise~28 imply that | |
$\int_{r}^{\infty}e^{-s_{0}x}f(x)\,dx$ converges for every $r>0$. Since | |
$$ | |
\int_{r}^{\infty}e^{-s_{0}x}f(x)\,dx=\int_{0}^{\infty}e^{-s(r+x)}f(x+r)\,dx | |
=e^{-sr}\int_{0}^{\infty}e^{-sx}f(x+r)\,dx, | |
$$ | |
we can apply the result of Exercise~30 with $f(x)$ replaced by $f(x+r)$, to | |
conclude that | |
\begin{eqnarray*} | |
\lim_{s\to s_{0}+}\int_{r}^{\infty}e^{-sx}f(x)\,dx&=& | |
e^{-s_{0}r}\int_{0}^{\infty}e^{-s_{0}x}f(x+r)\,dx\\ | |
&=&\int_{0}^{\infty}e^{-s_{0}(x+r)}f(x+r)\,dx\\ | |
&=&\int_{r}^{\infty}e^{-s_{0}x}f(x)\,dx. | |
\end{eqnarray*} | |
\medskip | |
{\bf 30.} | |
If $G(x)=\dst{\int_{0}^{x}e^{-s_{0}t}f(t)\,dt}$, then $|G(x)|\le M$ | |
on $[0,\infty)$ for some $M$. If $\epsilon>0$, there is an $r>0$ such that | |
\begin{equation}\tag{A} | |
\int_{0}^{r}e^{-s_{0}x}|f(x)|\,dx <\epsilon. | |
\end{equation} | |
If $s>s_{0}$, then | |
\begin{eqnarray*} | |
\int_{r}^{\infty}e^{-sx}f(x)\,dx&=&\int_{r}^{\infty}e^{-(s-s_{0})x}G'(x)\,dx \\ | |
&=&e^{-(s-s_{0})x}G(x)\biggr|_{r}^{\infty} | |
+(s-s_{0})\int_{r}^{\infty}G(x)e^{-(s-s_{0})x}\,dx\\ | |
&=&-e^{-(s-s_{0})r}G(r) | |
+(s-s_{0})\int_{r}^{\infty}G(x)e^{-(s-s_{0})x}\,dx. | |
\end{eqnarray*} | |
Therefore, since $|G(x)|\le M$, | |
\begin{eqnarray*} | |
\left|\int_{r}^{\infty}e^{-sx}f(x)\,dx\right| | |
&\le&Me^{-(s-s_{0})r}+M(s-s_{0})\int_{r}^{\infty}e^{-(s-s_{0})x}\,dx\\ | |
&=&M\left(e^{-(s-s_{0})r}-e^{-(s-s_{0})x}\biggr|_{r}^{\infty}\right) | |
=2Me^{-(s-s_{0})r}. | |
\end{eqnarray*} | |
This and (A) imply that | |
$$ | |
\left|\int_{0}^{\infty}e^{-sx}f(x)\,dx\right|\le | |
\epsilon+2Me^{-(s-s_{0})r}. | |
$$ | |
Therefore, | |
$$ | |
\limsup_{s\to\infty} \left|\int_{0}^{\infty}e^{-sx}f(x)\,dx\right|\le | |
\epsilon. | |
$$ | |
Since $\epsilon$ is arbitrary, this implies that | |
$$ | |
\limsup_{s\to\infty}\int_{0}^{\infty}e^{-sx}f(x)\,dx=0, | |
$$ | |
\medskip | |
{\bf 31. (a)} | |
From Exercise~18{\bf(d)}, | |
$\dst{\int_{0}^{\infty}\frac{e^{-ax}-e^{-bx}}{x}\sin x\,dx} | |
=\tan^{-1}b-\tan^{-1}a.$ From Exercise~30, letting $b\to\infty$ yields | |
$$ | |
\int_{0}^{\infty}e^{-ax}\frac{\sin x}{x}\,dx= | |
\frac{\pi}{2}-\tan^{-1}a, | |
\text{\quad so \bf{(b)}\quad} | |
\int_{0}^{\infty}\frac{\sin x}{x}\,dx=\frac{\pi}{2}. | |
$$ | |
\medskip | |
{\bf 32. (a)} | |
Integrating by parts yields | |
\begin{equation}\tag{A} | |
\int_{0}^{r}e^{-sx}f'(x)\,dt | |
=e^{-sr}f(r)-f(0) | |
+\int_{0}^{r}se^{-sx}f(x)\,dx. | |
\end{equation} | |
Suppose $s\ge s_{1}>s_{0}$. | |
Since $|f(x)|\le Me^{s_{0}x}$, $e^{-sr}|f(r)|\le Me^{-(s_{1}-s_{0})r}$. | |
Therefore | |
$e^{-sr}f(r)=0$ converges uniformly to zero on | |
$[s_{1},\infty)$. Since | |
\begin{eqnarray*} | |
\left|\int_{r}^{\infty}se^{-sx}f(x)\,dx \right|&\le& | |
M|s|\int_{r}^{\infty}e^{-(s-s_{0})x}\,dx\le | |
\frac{M|s|e^{-(s_{1}-s_{0})r}}{s-s_{0}}\\ | |
&\le&\frac{M(s-s_{0}+|s_{0}|)e^{-(s_{1}-s_{0})r}}{s-s_{0}} | |
\le M\left(1+\frac{|s_{0}|}{s_{1}-s_{0}}\right)e^{-(s_{1}-s_{0})r}, | |
\end{eqnarray*} | |
it follows that | |
$\dst{\int_{r}^{\infty}se^{-sx}f(x)\,dx}$ converges to zero | |
uniformly on $[s_{1},\infty)$. Since this implies that | |
$\dst{\int_{0}^{r}se^{-sx}f(x)\,dx}$ converges uniformly on | |
$[s_{1},\infty)$, | |
(A) implies that | |
$G(s)$ converges uniformly on $[s_{1},\infty)$. | |
\medskip | |
{\bf(b)} | |
In this case let $f'(x)=xe^{x^{2}}\sin e^{x^{2}}$, | |
so $f(x)=-\dst{\frac{1}{2}}\cos e^{x^{2}}$. Since $|\cos e^{x^{2}}|\le 1$ | |
for all $x$, the hypotheses stated in (a) hold with $s_{0}=0$. Therefore | |
$G(s)$ converges uniformly on $[\rho,\infty)$ if $\rho>0$. | |
\medskip | |
{\bf 33.} | |
We will first show that | |
$\dst{\int_{0}^{\infty}e^{-s_{0}x}\frac{f(x)}{x}\,dx}$ converges. | |
Denote $G(x)=\dst{\int_{0}^{x}e^{-s_{0}t}f(t)\,dt}$. Since $F(s_{0})$ | |
is convergent; say $|G(x)|\le M$, $0\le x<\infty$. | |
If $0<r<r_{1}$ then | |
$$ | |
\int_{r}^{r_{1}}e^{-s_{0}x}\frac{f(x)}{x}\,dx= | |
\int_{r}^{r_{1}}\frac{G'(x)}{x}\,dx | |
=\frac{G(r)}{r}-\frac{G(r_{1})}{r_{1}}-\int_{r}^{r_{1}}\frac{G(x)}{x^{2}}\,dx. | |
$$ | |
Therefore | |
$$ | |
\left|\int_{r}^{r_{1}}e^{-s_{0}x}\frac{f(x)}{x}\,dx\right|\le | |
\frac{3M}{\rho},\quad \rho<r<r_{1} | |
$$ | |
so Theorem~2 implies that | |
$H(s)=\dst{\int_{0}^{\infty}e^{-st}\frac{f(x)}{x}\,dx}$ | |
converge when $s=s_{0}$. Therefore Exercise~27 implies that it converges | |
uniformly on | |
$[s_{0},\infty)$, | |
Therefore Theorem~10 implies that | |
\begin{eqnarray*} | |
\int_{s_{0}}^{s}F(u)\,du &=&\int_{s_{0}}^{s}\left(\int_{0}^{\infty} | |
e^{-ux}f(x)\,dx\right)\,du | |
=\int_{0}^{\infty}\left(\int_{s_{0}}^{s}e^{-ux}\,du\right)f(x)\,dx\\ | |
&=&\int_{0}^{\infty}\left(e^{-s_{0}x}-e^{-sx}\right)\frac{f(x)}{x}\,dx | |
\end{eqnarray*} | |
From Exercise~30 (with $f(x)$ replaced by $f(x)/x$), | |
$\dst{\lim_{s\to\infty}\int_{0}^{\infty}e^{-sx}\frac{f(x)}{x}\,dx}=0$, | |
which implies the stated conclusion. | |
\end{document} | |