Datasets:
Tasks:
Text Generation
Modalities:
Text
Sub-tasks:
language-modeling
Languages:
English
Size:
100K - 1M
License:
import os | |
import sys | |
import json | |
import ndjson | |
from pathlib import Path | |
from fetch_mathoverflow import batch_loader | |
import random | |
from utils import make_archive | |
ARCHIVE_URL = "https://people.eecs.berkeley.edu/~hendrycks/MATH.tar" | |
SAVE_PATH = "math-dataset" | |
random.seed(20) | |
def main(): | |
VAL_RATE=5e-2 | |
Path(SAVE_PATH).mkdir(exist_ok=True) | |
archive_path = os.path.join(SAVE_PATH, "archive.tar") | |
os.system("wget -O " + archive_path + " " + ARCHIVE_URL) | |
os.system("tar -xf " + archive_path + " -C " + SAVE_PATH) | |
cat_dir = os.path.join(SAVE_PATH, "MATH/train") | |
for cat_name in os.listdir(cat_dir): | |
cat_path = os.path.join(cat_dir, cat_name) | |
if os.path.isdir(cat_path): | |
cat_texts = [] | |
for f in os.listdir(cat_path): | |
f_path = os.path.join(cat_path, f) | |
with open(f_path) as fle: | |
prob_json = json.load(fle) | |
text = "{\\bf Problem.} " + prob_json["problem"] + "\n" +\ | |
"{\\bf Level.} " + prob_json["level"] + "\n" +\ | |
"{\\bf Type.} " + prob_json["type"] + "\n" +\ | |
"{\\bf Solution.} " + prob_json["solution"] | |
cat_texts.append(text) | |
random.shuffle(cat_texts) | |
instances = [{"text": x.strip(), "meta": {"set_name": "MATH"}} for x in cat_texts] | |
split = int(VAL_RATE*len(instances)) | |
train = instances[split:] | |
val = instances[:split] | |
with open(os.path.join(SAVE_PATH, "train.jsonl"), "a+") as f: | |
f.write(ndjson.dumps(train)) | |
f.write("\n") | |
with open(os.path.join(SAVE_PATH, "val.jsonl"), "a+") as f: | |
f.write(ndjson.dumps(val)) | |
f.write("\n") | |
os.system("gzip " + os.path.join(SAVE_PATH, "train.jsonl")) | |
os.system("gzip " + os.path.join(SAVE_PATH, "val.jsonl")) | |
os.system("rm -r " + os.path.join(SAVE_PATH, "MATH")) | |
os.remove(archive_path) | |
if __name__=="__main__": | |
main() | |