Datasets:
Tasks:
Text Generation
Modalities:
Text
Sub-tasks:
language-modeling
Languages:
English
Size:
100K - 1M
License:
from dataclasses import dataclass, field, fields | |
from functools import lru_cache | |
from xml.etree import ElementTree | |
from datetime import datetime | |
from enum import Enum | |
import typing | |
from typing import List, Optional, Union | |
import os.path | |
from itertools import groupby | |
import dataclasses | |
from tqdm import tqdm | |
from bs4 import BeautifulSoup | |
import sys | |
from pathlib import Path | |
import tarfile | |
import random | |
import ndjson | |
import json | |
from utils import make_archive | |
""" | |
Author: E.W.Ayers | |
This code takes a dump of math overflow XML and produces | |
a structured set of questions with answers. | |
1. Get mathoverflow.net.7z file | |
2. Extract this to `DATA_DIR = 'data/mathoverflow.net'` | |
3. Run `questions()` and run it to get a dictionary of mathoverflow questions. | |
Each question has an `Answers` field that contains a list of answers for the given q. | |
""" | |
def batch_loader(seq, size): | |
""" | |
Iterator that takes in a list `seq` and returns | |
chunks of size `size` | |
""" | |
return [seq[pos : pos + size] for pos in range(0, len(seq), size)] | |
DOC_SEP = "<|endoftext|>" | |
# source: https://meta.stackexchange.com/questions/2677/database-schema-documentation-for-the-public-data-dump-and-sede | |
class PostType(Enum): | |
Question = 1 | |
Answer = 2 | |
OrphanedTagWiki = 3 | |
TagWikiExcerpt = 4 | |
TagWiki = 5 | |
ModeratorNomination = 6 | |
WikiPlaceholder = 7 | |
PrivilegeWiki = 8 | |
def is_optional(field): | |
return typing.get_origin(field) is Union and type(None) in typing.get_args(field) | |
def fromXML(cls, element): | |
out = {} | |
for field in fields(cls): | |
field_key = field.name | |
field_type = field.type | |
f = field.metadata.get("from_xml") | |
if f == "skip": | |
continue | |
attr_key = f["key"] if (f is not None and f["key"] is not None) else field_key | |
v = element.attrib.get(attr_key) | |
if v is None: | |
if field.default is not dataclasses.MISSING: | |
out[field_key] = field.default | |
elif field.default_factory is not dataclasses.MISSING: | |
out[field_key] = field.default_factory() # type: ignore | |
elif is_optional(field_type): | |
out[field_key] = None | |
else: | |
raise Exception(f"Missing field {attr_key}") | |
continue | |
if is_optional(field_type): | |
field_type = typing.get_args(field_type)[0] | |
if f is not None and f["fn"] is not None: | |
out[field_key] = f["fn"](v) | |
elif field_type is int: | |
out[field_key] = int(v) | |
elif field_type is str: | |
out[field_key] = str(v) | |
elif field_type is datetime: | |
out[field_key] = datetime.fromisoformat(v) | |
else: | |
raise Exception(f"Don't know how to decode {field_type}") | |
return cls(**out) | |
def use(fn, key=None): | |
return field(metadata={"from_xml": {"fn": fn, "key": key}}) | |
def skip(default): | |
return field(default=default, metadata={"from_xml": "skip"}) | |
def iter_rows(path): | |
for [_, element] in ElementTree.iterparse(path, events=["start"]): | |
if element.tag == "row": | |
yield element | |
DATA_DIR = "nothing" | |
class Comment: | |
Id: int | |
PostId: int | |
Score: int | |
Text: str | |
CreationDate: datetime | |
UserId: Optional[int] | |
# lru_cache() | |
def comments(): | |
path = os.path.join(DATA_DIR, "Comments.xml") | |
out = {} | |
for element in iter_rows(path): | |
x: Comment = fromXML(Comment, element) | |
out[x.Id] = x | |
print(f"Processed {len(out)} comments.") | |
return out | |
class Post: | |
Id: int | |
CreationDate: datetime | |
DeletionDate: Optional[datetime] | |
Score: int | |
Body: str # in html; need to parse out? | |
Title: Optional[str] | |
OwnerUserId: Optional[int] | |
ViewCount: Optional[int] | |
AcceptedAnswerId: Optional[int] | |
ParentId: Optional[int] | |
PostType: "PostType" = use(lambda x: PostType(int(x)), "PostTypeId") | |
Comments: List[Comment] = skip(None) | |
Answers: Optional[List["Post"]] = skip(None) | |
Tags: str = field(default="") | |
# @lru_cache() | |
def questions(): | |
path = os.path.join(DATA_DIR, "Posts.xml") | |
cs = {} | |
for k, c in groupby(comments().values(), lambda c: c.PostId): | |
x = list(c) | |
x.sort(key=lambda x: -x.Score) | |
cs[k] = x | |
qs = {} | |
answers = {} | |
for element in iter_rows(path): | |
post = fromXML(Post, element) | |
post.Comments = cs.get(post.Id, []) | |
if post.PostType is PostType.Question: | |
post.Answers = [] | |
qs[post.Id] = post | |
elif post.PostType is PostType.Answer: | |
answers[post.Id] = post | |
for qk, aa in groupby(answers.values(), lambda a: a.ParentId): | |
x = list(aa) | |
x.sort(key=lambda x: -x.Score) | |
qs[qk].Answers = x | |
print(f"Processed {len(qs)} questions with {len(answers)} answers.") | |
return qs | |
def strip_html(string): | |
soup = BeautifulSoup(string, "html.parser") | |
return soup.get_text() | |
def text_of_post(post): | |
text = "" | |
if post.Title: | |
text += "TITLE: " + post.Title | |
text += f"\nQUESTION [{post.Score} upvotes]: {strip_html(post.Body).strip()}" | |
commented = False | |
answered = False | |
for answer in post.Answers: | |
if answer.Score >= 2: | |
answered = True | |
text += ( | |
f"\n\nREPLY [{answer.Score} votes]: {strip_html(answer.Body).strip()}" | |
) | |
return text, post.Score, post.Id, answered | |
def get_and_format(url, save_dir): | |
VAL_RATE = 0.05 | |
Path(save_dir).mkdir(exist_ok=True, parents=True) | |
archive_path = os.path.join(save_dir, "archive.7z") | |
os.system(f"wget -O {archive_path} {url}") | |
global DATA_DIR | |
DATA_DIR = os.path.join(save_dir, "xml") | |
print(f"DATA DIR {DATA_DIR}") | |
os.system(f"7z e {archive_path} -o{DATA_DIR}") | |
print("parsing xml...") | |
qs = questions() | |
print("converting xml to text...") | |
qs_texts = [text_of_post(qs[key]) for key in tqdm(qs.keys())] | |
for post, score, eyed, answered in tqdm(qs_texts): | |
if score >= 5 and answered: | |
if random.random() > VAL_RATE: | |
shard_path = os.path.join(save_dir, "train.jsonl") | |
else: | |
shard_path = os.path.join(save_dir, "val.jsonl") | |
with open(shard_path, "a+") as f: | |
instance = { | |
"text": post, | |
"meta": { | |
"set_name": "stack_exchange", | |
"score": score, | |
"question_id": eyed, | |
}, | |
} | |
f.write(json.dumps(instance)) | |
f.write("\n") | |
os.system("gzip " + " ".join(os.path.join(save_dir, x) | |
for x in ("train.jsonl", "val.jsonl"))) | |
os.system(f"rm -r {DATA_DIR}") | |
os.remove(archive_path) | |
if __name__ == "__main__": | |
get_and_format( | |
"https://archive.org/download/stackexchange/mathoverflow.net.7z", | |
save_dir="stack-exchange/math_overflow", | |
) | |
get_and_format( | |
"https://archive.org/download/stackexchange/math.stackexchange.com.7z", | |
"stack-exchange/math_stack_exchange", | |
) | |
get_and_format( | |
"https://archive.org/download/stackexchange/physics.stackexchange.com.7z", | |
"stack-exchange/physics_stack_exchange", | |
) | |
get_and_format( | |
"https://archive.org/download/stackexchange/cstheory.stackexchange.com.7z", | |
"stack-exchange/cstheory_stack_exchange", | |
) | |
get_and_format( | |
"https://archive.org/download/stackexchange/datascience.stackexchange.com.7z", | |
"stack-exchange/datascience_stack_exchange", | |
) | |
get_and_format( | |
"https://archive.org/download/stackexchange/proofassistants.stackexchange.com.7z", | |
"stack-exchange/proofassistants_stack_exchange", | |
) | |