Datasets:
Tasks:
Text Generation
Modalities:
Text
Sub-tasks:
language-modeling
Languages:
English
Size:
100K - 1M
License:
# Copyright 2020 The HuggingFace Datasets Authors and the current dataset script contributor. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
# TODO: Address all TODOs and remove all explanatory comments | |
"""TODO: Add a description here.""" | |
import csv | |
import json | |
import ndjson | |
import os | |
import sys # just for debugging, delete | |
import itertools | |
from itertools import islice | |
import datasets | |
# TODO: Add BibTeX citation | |
# Find for instance the citation on arxiv or on the dataset repo/website | |
_CITATION = """\ | |
@InProceedings{huggingface:dataset, | |
title = {A great new dataset}, | |
author={huggingface, Inc. | |
}, | |
year={2020} | |
} | |
""" | |
# TODO: Add description of the dataset here | |
# You can copy an official description | |
_DESCRIPTION = """\ | |
This new dataset is designed to solve this great NLP task and is crafted with a lot of care. | |
""" | |
# TODO: Add a link to an official homepage for the dataset here | |
_HOMEPAGE = "" | |
# TODO: Add the licence for the dataset here if you can find it | |
_LICENSE = "" | |
# TODO: Add link to the official dataset URLs here | |
# The HuggingFace Datasets library doesn't host the datasets but only points to the original files. | |
# This can be an arbitrary nested dict/list of URLs (see below in `_split_generators` method) | |
_URLS = { | |
"first_domain": "https://huggingface.co/great-new-dataset-first_domain.zip", | |
"second_domain": "https://huggingface.co/great-new-dataset-second_domain.zip", | |
} | |
# TODO: Name of the dataset usually match the script name with CamelCase instead of snake_case | |
class ProofPile(datasets.GeneratorBasedBuilder): | |
"""TODO: Short description of my dataset.""" | |
VERSION = datasets.Version("1.1.0") | |
# This is an example of a dataset with multiple configurations. | |
# If you don't want/need to define several sub-sets in your dataset, | |
# just remove the BUILDER_CONFIG_CLASS and the BUILDER_CONFIGS attributes. | |
# If you need to make complex sub-parts in the datasets with configurable options | |
# You can create your own builder configuration class to store attribute, inheriting from datasets.BuilderConfig | |
# BUILDER_CONFIG_CLASS = MyBuilderConfig | |
# You will be able to load one or the other configurations in the following list with | |
# data = datasets.load_dataset('my_dataset', 'first_domain') | |
# data = datasets.load_dataset('my_dataset', 'second_domain') | |
BUILDER_CONFIGS = [ | |
datasets.BuilderConfig(name="arxiv", version=VERSION, description="All of English arxiv.math up to 03/22"), | |
datasets.BuilderConfig(name="books", version=VERSION, description="Open source math textbooks"), | |
datasets.BuilderConfig(name="formal", version=VERSION, description="Formal math libraries"), | |
datasets.BuilderConfig(name="stack-exchange", version=VERSION, description="math overflow and math stack exchange"), | |
datasets.BuilderConfig(name="wiki", version=VERSION, description="wikipedia articles and proofwiki."), | |
datasets.BuilderConfig(name="math-dataset", version=VERSION, description="the MATH dataset."), | |
] | |
def _info(self): | |
# TODO: This method specifies the datasets.DatasetInfo object which contains informations and typings for the dataset | |
features = datasets.Features( | |
{ | |
"text": datasets.Value("string"), | |
"meta": datasets.Value("string") | |
# These are the features of your dataset like images, labels ... | |
} | |
) | |
return datasets.DatasetInfo( | |
# This is the description that will appear on the datasets page. | |
description=_DESCRIPTION, | |
# This defines the different columns of the dataset and their types | |
features=features, # Here we define them above because they are different between the two configurations | |
# If there's a common (input, target) tuple from the features, uncomment supervised_keys line below and | |
# specify them. They'll be used if as_supervised=True in builder.as_dataset. | |
# supervised_keys=("sentence", "label"), | |
# Homepage of the dataset for documentation | |
homepage=_HOMEPAGE, | |
# License for the dataset if available | |
license=_LICENSE, | |
# Citation for the dataset | |
citation=_CITATION, | |
) | |
def _split_generators(self, dl_manager): | |
# TODO: This method is tasked with downloading/extracting the data and defining the splits depending on the configuration | |
# If several configurations are possible (listed in BUILDER_CONFIGS), the configuration selected by the user is in self.config.name | |
# dl_manager is a datasets.download.DownloadManager that can be used to download and extract URLS | |
# It can accept any type or nested list/dict and will give back the same structure with the url replaced with path to local files. | |
# By default the archives will be extracted and a path to a cached folder where they are extracted is returned instead of the archive | |
self.archived_configs = ["arxiv", "wiki"] | |
self.jsonl_configs = ["stack-exchange", "math-dataset", "books", "formal"] | |
if self.config.name in self.archived_configs: | |
if self.config.name=="arxiv": | |
with open(dl_manager.download("splits.json")) as f: | |
split = json.load(f) | |
train_paths = split["arxiv-train"] | |
val_paths = split["arxiv-valid"] | |
if self.config.name=="stack-exchange": | |
train_paths = [os.path.join("./stack-exchange", x) for x in ["math_overflow.tar.gz", | |
"math_stack_exchange.tar.gz"]] | |
val_paths = [os.path.join("./stack-exchange", x) for x in ["math_overflow_val.tar.gz", | |
"math_stack_exchange_val.tar.gz"]] | |
if self.config.name=="math-dataset": | |
train_paths = ["math-dataset/train.tar.gz"] | |
val_paths = ["math-dataset/val.tar.gz"] | |
if self.config.name=="wiki": | |
train_paths = ["wiki/proofwiki.tar.gz", "wiki/wikipedia.tar.gz"] | |
val_paths = ["wiki/proofwiki_val.tar.gz"] | |
train_files = itertools.chain.from_iterable(dl_manager.iter_archive(dl_manager.download(x)) for x in train_paths) | |
val_files = itertools.chain.from_iterable(dl_manager.iter_archive(dl_manager.download(x)) for x in val_paths) | |
return [ | |
datasets.SplitGenerator( | |
name=datasets.Split.TRAIN, | |
# These kwargs will be passed to _generate_examples | |
gen_kwargs={ | |
"data_files": train_files, | |
}, | |
), | |
datasets.SplitGenerator( | |
name=datasets.Split.VALIDATION, | |
# These kwargs will be passed to _generate_examples | |
gen_kwargs={ | |
"data_files": val_files, | |
}, | |
), | |
] | |
elif self.config.name in self.jsonl_configs: | |
if self.config.name=="stack-exchange": | |
exchanges = ["math_overflow", "math_stack_exchange", "cstheory_stack_exchange", | |
"physics_stack_exchange", "proofassistants_stack_exchange"] | |
train_paths = [os.path.join("./stack-exchange", x, "train.jsonl.gz") for x in exchanges] | |
val_paths = [os.path.join("./stack-exchange", x, "val.jsonl.gz") for x in exchanges] | |
elif self.config.name=="math-dataset": | |
train_paths = ["./math-dataset/train.jsonl.gz"] | |
val_paths = ["./math-dataset/val.jsonl.gz"] | |
elif self.config.name=="books": | |
books = ["cam", "cring", "hott", "napkin", "stacks", "stein", "trench"] | |
train_paths = [os.path.join("./books", x + "_train.jsonl.gz") for x in books] | |
val_paths = [os.path.join("./books", x+"_val.jsonl.gz") for x in books] | |
elif self.config.name=="formal": | |
libs = ["afp", "coq", "hol", "lean", "mizar", "setmm"] | |
train_paths = [os.path.join("./formal", x + "_train.jsonl.gz") for x in libs] | |
val_paths = [os.path.join("./formal", x + "_val.jsonl.gz") for x in libs] | |
train_files = itertools.chain.from_iterable([dl_manager.download_and_extract(x)] for x in train_paths) | |
val_files = itertools.chain.from_iterable([dl_manager.download_and_extract(x)] for x in val_paths) | |
return [ | |
datasets.SplitGenerator( | |
name=datasets.Split.TRAIN, | |
# These kwargs will be passed to _generate_examples | |
gen_kwargs={ | |
"data_files": train_files, | |
}, | |
), | |
datasets.SplitGenerator( | |
name=datasets.Split.VALIDATION, | |
# These kwargs will be passed to _generate_examples | |
gen_kwargs={ | |
"data_files": val_files, | |
}, | |
), | |
] | |
else: | |
with open(dl_manager.download("splits.json")) as f: | |
splits = json.load(f) | |
return [ | |
datasets.SplitGenerator( | |
name=datasets.Split.TRAIN, | |
# These kwargs will be passed to _generate_examples | |
gen_kwargs={ | |
"data_files": [dl_manager.download(x) for x in splits[self.config.name + "-train"]], | |
}, | |
), | |
datasets.SplitGenerator( | |
name=datasets.Split.VALIDATION, | |
# These kwargs will be passed to _generate_examples | |
gen_kwargs={ | |
"data_files": [dl_manager.download(x) for x in splits[self.config.name + "-valid"]], | |
}, | |
), | |
] | |
# method parameters are unpacked from `gen_kwargs` as given in `_split_generators` | |
def _generate_examples(self, data_files): | |
# TODO: This method handles input defined in _split_generators to yield (key, example) tuples from the dataset. | |
# The `key` is for legacy reasons (tfds) and is not important in itself, but must be unique for each example. | |
key = 0 | |
if self.config.name in self.archived_configs: | |
for name, obj in data_files: | |
text = obj.read().decode() | |
# Yields examples as (key, example) tuples | |
yield key, { | |
"text": text, | |
"meta": json.dumps({ | |
"config": self.config.name, | |
"file": name, | |
}) | |
} | |
key += 1 | |
elif self.config.name in self.jsonl_configs: | |
key = 0 | |
for name in data_files: | |
with open(name) as f: | |
instances = ndjson.load(f) | |
for instance in instances: | |
yield key, {"text": instance["text"], | |
"meta": json.dumps(instance["meta"])} | |
key += 1 | |
else: | |
for name in data_files: | |
with open(name, encoding="utf-8") as f: | |
text = f.read() | |
# Yields examples as (key, example) tuples | |
yield key, { | |
"text": text, | |
"meta": json.dumps({ | |
"config": self.config.name, | |
"file": name, | |
}) | |
} | |
key += 1 | |