Datasets:

Modalities:
Text
Languages:
English
Libraries:
Datasets
License:
Zhangir Azerbayev
make files
d2ed9e5
raw
history blame
2.7 kB
from datasets import load_dataset
import random
import itertools
from itertools import islice
import sys
import time
from tqdm import tqdm, trange
import re
import json
import ndjson
def batch_loader(seq, size):
"""
Iterator that takes in a list `seq` and returns
chunks of size `size` """
return [seq[pos:pos + size] for pos in range(0, len(seq), size)]
def parse_meta(instance):
instance["meta"] = json.loads(instance["meta"])
return instance
def filter_arxiv_text(instance):
keywords = ["\\part{", "\\chapter{", "\\section{", "\\section*{", "\\subsection{", "\\subsection*{", "\\subsubsection{",
"\\subsubsection*{", "\\paragraph{", "\\subparagraph{"]
return any(x in instance["text"] for x in keywords) and "gnuplot" not in instance["text"]
def process_arxiv_text(instance):
text = instance["text"]
rexp = re.compile(r"\\begin{bibdiv}.*?\\end{bibdiv}", re.DOTALL)
text = re.sub(rexp, "", instance["text"])
rexp = re.compile(r"\n{3,}", re.DOTALL)
text = re.sub(rexp, "\n\n\n", text)
instance["text"] = text
return instance
def main(split):
"""
`split` is `"train"` or `"validation"`
"""
arxiv = load_dataset("hoskinson-center/proof-pile", "arxiv")
print("PARSING ARXIV")
print("loading into memory...")
data_list = list(tqdm(arxiv[split]))
print("processing...")
data_list = list(filter(filter_arxiv_text, tqdm(data_list)))
data_list = list(map(process_arxiv_text, tqdm(data_list)))
data_list = list(map(parse_meta, tqdm(data_list)))
#open("arxiv_examples.txt", "w").write("\n".join(["#"*80 + "\n" + x["text"] for x in eval_list[:100]]))
keywords = ["formal", "books", "wiki", "stack-exchange", "math-dataset"]
print("LOADING REST OF DATA...")
data_rest = [load_dataset("hoskinson-center/proof-pile", x)[split] for x in keywords]
data_rest_list = list(itertools.chain.from_iterable(data_rest))
data_rest_list = list(map(parse_meta, tqdm(data_rest_list)))
data_list = data_list + data_rest_list
print("shuffling...")
random.shuffle(data_list)
if split=="train":
for i, batch in enumerate(batch_loader(data_list, 100_000)):
with open(f"proofpile_train_{i}.jsonl", "w") as f:
ndjson.dump(batch, f)
elif split=="validation":
cut_idx = len(data_list)//2
with open("proofpile_dev.jsonl", "w") as f:
ndjson.dump(data_list[:cut_idx], f)
with open("proofpile_test.jsonl", "w") as f:
ndjson.dump(data_list[cut_idx:], f)
print("COMPLETE")
if __name__=="__main__":
main("train")
main("validation")