Datasets:
Tasks:
Text Generation
Modalities:
Text
Sub-tasks:
language-modeling
Languages:
English
Size:
100K - 1M
License:
Zhangir Azerbayev
commited on
Commit
•
4365a98
1
Parent(s):
a581ece
squashed?
Browse filesThis view is limited to 50 files because it contains too many changes.
See raw diff
- .gitattributes +1 -0
- fetch_books_and_formal.py +15 -1
- fetch_mathoverflow.py +23 -5
- formal/afp/ADS_Functor/ADS_Construction.thy +1281 -0
- formal/afp/ADS_Functor/Canton_Transaction_Tree.thy +518 -0
- formal/afp/ADS_Functor/Generic_ADS_Construction.thy +469 -0
- formal/afp/ADS_Functor/Inclusion_Proof_Construction.thy +430 -0
- formal/afp/ADS_Functor/Merkle_Interface.thy +299 -0
- formal/afp/ADS_Functor/document/root.tex +78 -0
- formal/afp/AI_Planning_Languages_Semantics/Error_Monad_Add.thy +52 -0
- formal/afp/AI_Planning_Languages_Semantics/Lifschitz_Consistency.thy +416 -0
- formal/afp/AI_Planning_Languages_Semantics/Option_Monad_Add.thy +101 -0
- formal/afp/AI_Planning_Languages_Semantics/PDDL_STRIPS_Checker.thy +406 -0
- formal/afp/AI_Planning_Languages_Semantics/PDDL_STRIPS_Semantics.thy +969 -0
- formal/afp/AI_Planning_Languages_Semantics/SASP_Checker.thy +348 -0
- formal/afp/AI_Planning_Languages_Semantics/SASP_Semantics.thy +228 -0
- formal/afp/AI_Planning_Languages_Semantics/document/root.tex +72 -0
- formal/afp/AODV/All.thy +16 -0
- formal/afp/AODV/Aodv.thy +535 -0
- formal/afp/AODV/Aodv_Basic.thy +44 -0
- formal/afp/AODV/Aodv_Data.thy +990 -0
- formal/afp/AODV/Aodv_Loop_Freedom.thy +369 -0
- formal/afp/AODV/Aodv_Message.thy +74 -0
- formal/afp/AODV/Aodv_Predicates.thy +136 -0
- formal/afp/AODV/Fresher.thy +798 -0
- formal/afp/AODV/Global_Invariants.thy +1151 -0
- formal/afp/AODV/Loop_Freedom.thy +123 -0
- formal/afp/AODV/OAodv.thy +47 -0
- formal/afp/AODV/Quality_Increases.thy +456 -0
- formal/afp/AODV/Seq_Invariants.thy +643 -0
- formal/afp/AODV/document/root.tex +70 -0
- formal/afp/AODV/variants/a_norreqid/A_Aodv.thy +532 -0
- formal/afp/AODV/variants/a_norreqid/A_Aodv_Data.thy +986 -0
- formal/afp/AODV/variants/a_norreqid/A_Aodv_Loop_Freedom.thy +369 -0
- formal/afp/AODV/variants/a_norreqid/A_Aodv_Message.thy +75 -0
- formal/afp/AODV/variants/a_norreqid/A_Aodv_Predicates.thy +137 -0
- formal/afp/AODV/variants/a_norreqid/A_Fresher.thy +799 -0
- formal/afp/AODV/variants/a_norreqid/A_Global_Invariants.thy +1159 -0
- formal/afp/AODV/variants/a_norreqid/A_Loop_Freedom.thy +123 -0
- formal/afp/AODV/variants/a_norreqid/A_Norreqid.thy +25 -0
- formal/afp/AODV/variants/a_norreqid/A_OAodv.thy +47 -0
- formal/afp/AODV/variants/a_norreqid/A_Quality_Increases.thy +457 -0
- formal/afp/AODV/variants/a_norreqid/A_Seq_Invariants.thy +643 -0
- formal/afp/AODV/variants/b_fwdrreps/B_Aodv.thy +532 -0
- formal/afp/AODV/variants/b_fwdrreps/B_Aodv_Data.thy +990 -0
- formal/afp/AODV/variants/b_fwdrreps/B_Aodv_Loop_Freedom.thy +369 -0
- formal/afp/AODV/variants/b_fwdrreps/B_Aodv_Message.thy +74 -0
- formal/afp/AODV/variants/b_fwdrreps/B_Aodv_Predicates.thy +136 -0
- formal/afp/AODV/variants/b_fwdrreps/B_Fresher.thy +799 -0
- formal/afp/AODV/variants/b_fwdrreps/B_Fwdrreps.thy +33 -0
.gitattributes
CHANGED
@@ -49,3 +49,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
49 |
*.jpg filter=lfs diff=lfs merge=lfs -text
|
50 |
*.jpeg filter=lfs diff=lfs merge=lfs -text
|
51 |
*.webp filter=lfs diff=lfs merge=lfs -text
|
|
|
|
49 |
*.jpg filter=lfs diff=lfs merge=lfs -text
|
50 |
*.jpeg filter=lfs diff=lfs merge=lfs -text
|
51 |
*.webp filter=lfs diff=lfs merge=lfs -text
|
52 |
+
formal/setmm/set.mm filter=lfs diff=lfs merge=lfs -text
|
fetch_books_and_formal.py
CHANGED
@@ -17,6 +17,18 @@ PROOFWIKI_URL = (
|
|
17 |
"https://zenodo.org/record/4902289/files/naturalproofs_proofwiki.json?download=1"
|
18 |
)
|
19 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
20 |
|
21 |
def _get_dir_from_repo(author, repo, sha, repo_dir, save_path, creds):
|
22 |
"""
|
@@ -313,6 +325,8 @@ def hol(testing=False):
|
|
313 |
if os.path.isfile(f_path):
|
314 |
os.remove(f_path)
|
315 |
|
|
|
|
|
316 |
_delete_files_except_pattern(save_dir, r".*\.ml|.*\.doc")
|
317 |
|
318 |
|
@@ -560,7 +574,7 @@ def main():
|
|
560 |
coq(creds)
|
561 |
lean(creds)
|
562 |
hol()
|
563 |
-
cam()
|
564 |
|
565 |
|
566 |
if __name__ == "__main__":
|
|
|
17 |
"https://zenodo.org/record/4902289/files/naturalproofs_proofwiki.json?download=1"
|
18 |
)
|
19 |
|
20 |
+
def check_encoding(path):
|
21 |
+
for f in os.listdir(path):
|
22 |
+
f_path = os.path.join(path, f)
|
23 |
+
if os.path.isfile(f_path):
|
24 |
+
with open(f_path, encoding="utf-8") as fle:
|
25 |
+
try:
|
26 |
+
fle.read()
|
27 |
+
except UnicodeDecodeError:
|
28 |
+
print(f"{f_path} is not unicode")
|
29 |
+
elif os.path.isdir(f_path):
|
30 |
+
check_encoding(f_path)
|
31 |
+
|
32 |
|
33 |
def _get_dir_from_repo(author, repo, sha, repo_dir, save_path, creds):
|
34 |
"""
|
|
|
325 |
if os.path.isfile(f_path):
|
326 |
os.remove(f_path)
|
327 |
|
328 |
+
os.system("rm -r formal/hol/Proofrecording")
|
329 |
+
|
330 |
_delete_files_except_pattern(save_dir, r".*\.ml|.*\.doc")
|
331 |
|
332 |
|
|
|
574 |
coq(creds)
|
575 |
lean(creds)
|
576 |
hol()
|
577 |
+
#cam()
|
578 |
|
579 |
|
580 |
if __name__ == "__main__":
|
fetch_mathoverflow.py
CHANGED
@@ -24,6 +24,14 @@ a structured set of questions with answers.
|
|
24 |
3. Run `questions()` and run it to get a dictionary of mathoverflow questions.
|
25 |
Each question has an `Answers` field that contains a list of answers for the given q.
|
26 |
"""
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
27 |
|
28 |
# source: https://meta.stackexchange.com/questions/2677/database-schema-documentation-for-the-public-data-dump-and-sede
|
29 |
class PostType(Enum):
|
@@ -180,16 +188,26 @@ def get_and_format(url, save_dir):
|
|
180 |
print("parsing xml...")
|
181 |
qs = questions()
|
182 |
|
|
|
183 |
qs_texts = [text_of_post(qs[key]) for key in tqdm(qs.keys())]
|
184 |
|
185 |
-
|
186 |
-
|
187 |
-
|
188 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
189 |
|
190 |
os.system(f"rm -r {DATA_DIR}")
|
191 |
os.remove(archive_path)
|
192 |
|
193 |
if __name__ == '__main__':
|
194 |
get_and_format("https://archive.org/download/stackexchange/mathoverflow.net.7z",
|
195 |
-
"
|
|
|
|
|
|
24 |
3. Run `questions()` and run it to get a dictionary of mathoverflow questions.
|
25 |
Each question has an `Answers` field that contains a list of answers for the given q.
|
26 |
"""
|
27 |
+
def batch_loader(seq, size):
|
28 |
+
"""
|
29 |
+
Iterator that takes in a list `seq` and returns
|
30 |
+
chunks of size `size`
|
31 |
+
"""
|
32 |
+
return [seq[pos:pos + size] for pos in range(0, len(seq), size)]
|
33 |
+
|
34 |
+
DOC_SEP = "<|endoftext|>"
|
35 |
|
36 |
# source: https://meta.stackexchange.com/questions/2677/database-schema-documentation-for-the-public-data-dump-and-sede
|
37 |
class PostType(Enum):
|
|
|
188 |
print("parsing xml...")
|
189 |
qs = questions()
|
190 |
|
191 |
+
print("converting xml to text...")
|
192 |
qs_texts = [text_of_post(qs[key]) for key in tqdm(qs.keys())]
|
193 |
|
194 |
+
batches = batch_loader(qs_texts, 5000)
|
195 |
+
|
196 |
+
for i, batch in tqdm(enumerate(batches)):
|
197 |
+
shard_path = os.path.join(save_dir, f"shard_{i}.txt")
|
198 |
+
|
199 |
+
to_cat = [post for post, score, _, answered in batch
|
200 |
+
if score >=5 and answered]
|
201 |
+
shard = f"{DOC_SEP}\n".join(to_cat)
|
202 |
+
|
203 |
+
with open(shard_path, "w") as f:
|
204 |
+
f.write(shard)
|
205 |
|
206 |
os.system(f"rm -r {DATA_DIR}")
|
207 |
os.remove(archive_path)
|
208 |
|
209 |
if __name__ == '__main__':
|
210 |
get_and_format("https://archive.org/download/stackexchange/mathoverflow.net.7z",
|
211 |
+
"stack-exchange/math_overflow")
|
212 |
+
get_and_format("https://archive.org/download/stackexchange/math.stackexchange.com.7z",
|
213 |
+
"stack-exchange/math_stack_exchange")
|
formal/afp/ADS_Functor/ADS_Construction.thy
ADDED
@@ -0,0 +1,1281 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
(* Author: Andreas Lochbihler, Digital Asset
|
2 |
+
Author: Ognjen Maric, Digital Asset *)
|
3 |
+
|
4 |
+
theory ADS_Construction imports
|
5 |
+
Merkle_Interface
|
6 |
+
"HOL-Library.Simps_Case_Conv"
|
7 |
+
begin
|
8 |
+
|
9 |
+
(************************************************************)
|
10 |
+
section \<open> Building blocks for authenticated data structures on datatypes \<close>
|
11 |
+
(************************************************************)
|
12 |
+
|
13 |
+
(************************************************************)
|
14 |
+
subsection \<open> Building Block: Identity Functor \<close>
|
15 |
+
(************************************************************)
|
16 |
+
|
17 |
+
text \<open>If nothing is blindable in a type, then the type itself is the hash and the ADS of itself.\<close>
|
18 |
+
|
19 |
+
abbreviation (input) hash_discrete :: "('a, 'a) hash" where "hash_discrete \<equiv> id"
|
20 |
+
|
21 |
+
abbreviation (input) blinding_of_discrete :: "'a blinding_of" where
|
22 |
+
"blinding_of_discrete \<equiv> (=)"
|
23 |
+
|
24 |
+
definition merge_discrete :: "'a merge" where
|
25 |
+
"merge_discrete x y = (if x = y then Some y else None)"
|
26 |
+
|
27 |
+
lemma blinding_of_discrete_hash:
|
28 |
+
"blinding_of_discrete \<le> vimage2p hash_discrete hash_discrete (=)"
|
29 |
+
by(auto simp add: vimage2p_def)
|
30 |
+
|
31 |
+
lemma blinding_of_on_discrete [locale_witness]:
|
32 |
+
"blinding_of_on UNIV hash_discrete blinding_of_discrete"
|
33 |
+
by(unfold_locales)(simp_all add: OO_eq eq_onp_def blinding_of_discrete_hash)
|
34 |
+
|
35 |
+
lemma merge_on_discrete [locale_witness]:
|
36 |
+
"merge_on UNIV hash_discrete blinding_of_discrete merge_discrete"
|
37 |
+
by unfold_locales(auto simp add: merge_discrete_def)
|
38 |
+
|
39 |
+
lemma merkle_discrete [locale_witness]:
|
40 |
+
"merkle_interface hash_discrete blinding_of_discrete merge_discrete"
|
41 |
+
..
|
42 |
+
|
43 |
+
parametric_constant merge_discrete_parametric [transfer_rule]: merge_discrete_def
|
44 |
+
|
45 |
+
(************************************************************)
|
46 |
+
subsubsection \<open>Example: instantiation for @{typ unit}\<close>
|
47 |
+
(************************************************************)
|
48 |
+
|
49 |
+
abbreviation (input) hash_unit :: "(unit, unit) hash" where "hash_unit \<equiv> hash_discrete"
|
50 |
+
|
51 |
+
abbreviation blinding_of_unit :: "unit blinding_of" where
|
52 |
+
"blinding_of_unit \<equiv> blinding_of_discrete"
|
53 |
+
|
54 |
+
abbreviation merge_unit :: "unit merge" where "merge_unit \<equiv> merge_discrete"
|
55 |
+
|
56 |
+
lemma blinding_of_unit_hash:
|
57 |
+
"blinding_of_unit \<le> vimage2p hash_unit hash_unit (=)"
|
58 |
+
by(fact blinding_of_discrete_hash)
|
59 |
+
|
60 |
+
lemma blinding_of_on_unit:
|
61 |
+
"blinding_of_on UNIV hash_unit blinding_of_unit"
|
62 |
+
by(fact blinding_of_on_discrete)
|
63 |
+
|
64 |
+
lemma merge_on_unit:
|
65 |
+
"merge_on UNIV hash_unit blinding_of_unit merge_unit"
|
66 |
+
by(fact merge_on_discrete)
|
67 |
+
|
68 |
+
lemma merkle_interface_unit:
|
69 |
+
"merkle_interface hash_unit blinding_of_unit merge_unit"
|
70 |
+
by(intro merkle_interfaceI merge_on_unit)
|
71 |
+
|
72 |
+
(************************************************************)
|
73 |
+
subsection \<open> Building Block: Blindable Position \<close>
|
74 |
+
(************************************************************)
|
75 |
+
|
76 |
+
type_synonym 'a blindable = 'a
|
77 |
+
|
78 |
+
text \<open> The following type represents the hashes of a datatype. We model hashes as being injective,
|
79 |
+
but not surjective; some hashes do not correspond to any values of the original datatypes. We
|
80 |
+
model such values as "garbage" coming from a countable set (here, naturals). \<close>
|
81 |
+
|
82 |
+
type_synonym garbage = nat
|
83 |
+
|
84 |
+
datatype 'a\<^sub>h blindable\<^sub>h = Content 'a\<^sub>h | Garbage garbage
|
85 |
+
|
86 |
+
datatype ('a\<^sub>m, 'a\<^sub>h) blindable\<^sub>m = Unblinded 'a\<^sub>m | Blinded "'a\<^sub>h blindable\<^sub>h"
|
87 |
+
|
88 |
+
(************************************************************)
|
89 |
+
subsubsection \<open> Hashes \<close>
|
90 |
+
(************************************************************)
|
91 |
+
|
92 |
+
primrec hash_blindable' :: "(('a\<^sub>h, 'a\<^sub>h) blindable\<^sub>m, 'a\<^sub>h blindable\<^sub>h) hash" where
|
93 |
+
"hash_blindable' (Unblinded x) = Content x"
|
94 |
+
| "hash_blindable' (Blinded x) = x"
|
95 |
+
|
96 |
+
definition hash_blindable :: "('a\<^sub>m, 'a\<^sub>h) hash \<Rightarrow> (('a\<^sub>m, 'a\<^sub>h) blindable\<^sub>m, 'a\<^sub>h blindable\<^sub>h) hash" where
|
97 |
+
"hash_blindable h = hash_blindable' \<circ> map_blindable\<^sub>m h id"
|
98 |
+
|
99 |
+
lemma hash_blindable_simps [simp]:
|
100 |
+
"hash_blindable h (Unblinded x) = Content (h x)"
|
101 |
+
"hash_blindable h (Blinded y) = y"
|
102 |
+
by(simp_all add: hash_blindable_def blindable\<^sub>h.map_id)
|
103 |
+
|
104 |
+
lemma hash_map_blindable_simp:
|
105 |
+
"hash_blindable f (map_blindable\<^sub>m f' id x) = hash_blindable (f o f') x"
|
106 |
+
by(cases x) (simp_all add: hash_blindable_def blindable\<^sub>h.map_comp)
|
107 |
+
|
108 |
+
parametric_constant hash_blindable'_parametric [transfer_rule]: hash_blindable'_def
|
109 |
+
|
110 |
+
parametric_constant hash_blindable_parametric [transfer_rule]: hash_blindable_def
|
111 |
+
|
112 |
+
(************************************************************)
|
113 |
+
subsubsection \<open> Blinding \<close>
|
114 |
+
(************************************************************)
|
115 |
+
|
116 |
+
context
|
117 |
+
fixes h :: "('a\<^sub>m, 'a\<^sub>h) hash"
|
118 |
+
and bo :: "'a\<^sub>m blinding_of"
|
119 |
+
begin
|
120 |
+
|
121 |
+
inductive blinding_of_blindable :: "('a\<^sub>m, 'a\<^sub>h) blindable\<^sub>m blinding_of" where
|
122 |
+
"blinding_of_blindable (Unblinded x) (Unblinded y)" if "bo x y"
|
123 |
+
| "blinding_of_blindable (Blinded x) t" if "hash_blindable h t = x"
|
124 |
+
|
125 |
+
inductive_simps blinding_of_blindable_simps [simp]:
|
126 |
+
"blinding_of_blindable (Unblinded x) y"
|
127 |
+
"blinding_of_blindable (Blinded x) y"
|
128 |
+
"blinding_of_blindable z (Unblinded x)"
|
129 |
+
"blinding_of_blindable z (Blinded x)"
|
130 |
+
|
131 |
+
inductive_simps blinding_of_blindable_simps2:
|
132 |
+
"blinding_of_blindable (Unblinded x) (Unblinded y)"
|
133 |
+
"blinding_of_blindable (Unblinded x) (Blinded y')"
|
134 |
+
"blinding_of_blindable (Blinded x') (Unblinded y)"
|
135 |
+
"blinding_of_blindable (Blinded x') (Blinded y')"
|
136 |
+
|
137 |
+
end
|
138 |
+
|
139 |
+
lemma blinding_of_blindable_mono:
|
140 |
+
assumes "bo \<le> bo'"
|
141 |
+
shows "blinding_of_blindable h bo \<le> blinding_of_blindable h bo'"
|
142 |
+
apply(rule predicate2I)
|
143 |
+
apply(erule blinding_of_blindable.cases; hypsubst)
|
144 |
+
subgoal by(rule blinding_of_blindable.intros)(rule assms[THEN predicate2D])
|
145 |
+
subgoal by(rule blinding_of_blindable.intros) simp
|
146 |
+
done
|
147 |
+
|
148 |
+
lemma blinding_of_blindable_hash:
|
149 |
+
assumes "bo \<le> vimage2p h h (=)"
|
150 |
+
shows "blinding_of_blindable h bo \<le> vimage2p (hash_blindable h) (hash_blindable h) (=)"
|
151 |
+
apply(rule predicate2I vimage2pI)+
|
152 |
+
apply(erule blinding_of_blindable.cases; hypsubst)
|
153 |
+
subgoal using assms[THEN predicate2D] by(simp add: vimage2p_def)
|
154 |
+
subgoal by simp
|
155 |
+
done
|
156 |
+
|
157 |
+
lemma blinding_of_on_blindable [locale_witness]:
|
158 |
+
assumes "blinding_of_on A h bo"
|
159 |
+
shows "blinding_of_on {x. set1_blindable\<^sub>m x \<subseteq> A} (hash_blindable h) (blinding_of_blindable h bo)"
|
160 |
+
(is "blinding_of_on ?A ?h ?bo")
|
161 |
+
proof -
|
162 |
+
interpret blinding_of_on A h bo by fact
|
163 |
+
show ?thesis
|
164 |
+
proof
|
165 |
+
show "?bo \<le> vimage2p ?h ?h (=)"
|
166 |
+
by(rule blinding_of_blindable_hash)(rule hash)
|
167 |
+
show "?bo x x" if "x \<in> ?A" for x using that by(cases x)(auto simp add: refl)
|
168 |
+
show "?bo x z" if "?bo x y" "?bo y z" "x \<in> ?A" for x y z using that
|
169 |
+
by(auto elim!: blinding_of_blindable.cases dest: trans blinding_hash_eq)
|
170 |
+
show "x = y" if "?bo x y" "?bo y x" "x \<in> ?A" for x y using that
|
171 |
+
by(auto elim!: blinding_of_blindable.cases dest: antisym)
|
172 |
+
qed
|
173 |
+
qed
|
174 |
+
|
175 |
+
lemmas blinding_of_blindable [locale_witness] = blinding_of_on_blindable[of UNIV, simplified]
|
176 |
+
|
177 |
+
case_of_simps blinding_of_blindable_alt_def: blinding_of_blindable_simps2
|
178 |
+
parametric_constant blinding_of_blindable_parametric [transfer_rule]: blinding_of_blindable_alt_def
|
179 |
+
|
180 |
+
(************************************************************)
|
181 |
+
subsubsection \<open> Merging \<close>
|
182 |
+
(************************************************************)
|
183 |
+
|
184 |
+
context
|
185 |
+
fixes h :: "('a\<^sub>m, 'a\<^sub>h) hash"
|
186 |
+
fixes m :: "'a\<^sub>m merge"
|
187 |
+
begin
|
188 |
+
|
189 |
+
fun merge_blindable :: "('a\<^sub>m, 'a\<^sub>h) blindable\<^sub>m merge" where
|
190 |
+
"merge_blindable (Unblinded x) (Unblinded y) = map_option Unblinded (m x y)"
|
191 |
+
| "merge_blindable (Blinded x) (Unblinded y) = (if x = Content (h y) then Some (Unblinded y) else None)"
|
192 |
+
| "merge_blindable (Unblinded y) (Blinded x) = (if x = Content (h y) then Some (Unblinded y) else None)"
|
193 |
+
| "merge_blindable (Blinded t) (Blinded u) = (if t = u then Some (Blinded u) else None)"
|
194 |
+
|
195 |
+
lemma merge_on_blindable [locale_witness]:
|
196 |
+
assumes "merge_on A h bo m"
|
197 |
+
shows "merge_on {x. set1_blindable\<^sub>m x \<subseteq> A} (hash_blindable h) (blinding_of_blindable h bo) merge_blindable"
|
198 |
+
(is "merge_on ?A ?h ?bo ?m")
|
199 |
+
proof -
|
200 |
+
interpret merge_on A h bo m by fact
|
201 |
+
show ?thesis
|
202 |
+
proof
|
203 |
+
show "\<exists>ab. ?m a b = Some ab \<and> ?bo a ab \<and> ?bo b ab \<and> (\<forall>u. ?bo a u \<longrightarrow> ?bo b u \<longrightarrow> ?bo ab u)" if "?h a = ?h b" "a \<in> ?A" for a b
|
204 |
+
using that by(cases "(a, b)" rule: merge_blindable.cases)(auto simp add: refl dest!: join)
|
205 |
+
show "?m a b = None" if "?h a \<noteq> ?h b" "a \<in> ?A" for a b
|
206 |
+
using that by(cases "(a, b)" rule: merge_blindable.cases)(auto simp add: dest!: undefined)
|
207 |
+
qed
|
208 |
+
qed
|
209 |
+
|
210 |
+
lemmas merge_blindable [locale_witness] =
|
211 |
+
merge_on_blindable[of UNIV, simplified]
|
212 |
+
|
213 |
+
end
|
214 |
+
|
215 |
+
lemma merge_blindable_alt_def:
|
216 |
+
"merge_blindable h m x y = (case (x, y) of
|
217 |
+
(Unblinded x, Unblinded y) \<Rightarrow> map_option Unblinded (m x y)
|
218 |
+
| (Blinded x, Unblinded y) \<Rightarrow> (if Content (h y) = x then Some (Unblinded y) else None)
|
219 |
+
| (Unblinded y, Blinded x) \<Rightarrow> (if Content (h y) = x then Some (Unblinded y) else None)
|
220 |
+
| (Blinded t, Blinded u) \<Rightarrow> (if t = u then Some (Blinded u) else None))"
|
221 |
+
by(simp split: blindable\<^sub>m.split blindable\<^sub>h.split)
|
222 |
+
|
223 |
+
parametric_constant merge_blindable_parametric [transfer_rule]: merge_blindable_alt_def
|
224 |
+
|
225 |
+
lemma merge_blindable_cong [fundef_cong]:
|
226 |
+
assumes "\<And>a b. \<lbrakk> a \<in> set1_blindable\<^sub>m x; b \<in> set1_blindable\<^sub>m y \<rbrakk> \<Longrightarrow> m a b = m' a b"
|
227 |
+
shows "merge_blindable h m x y = merge_blindable h m' x y"
|
228 |
+
by(auto simp add: merge_blindable_alt_def split: blindable\<^sub>m.split intro: assms intro!: arg_cong[where f="map_option _"])
|
229 |
+
|
230 |
+
(************************************************************)
|
231 |
+
subsubsection \<open> Merkle interface \<close>
|
232 |
+
(************************************************************)
|
233 |
+
|
234 |
+
lemma merkle_blindable [locale_witness]:
|
235 |
+
assumes "merkle_interface h bo m"
|
236 |
+
shows "merkle_interface (hash_blindable h) (blinding_of_blindable h bo) (merge_blindable h m)"
|
237 |
+
proof -
|
238 |
+
interpret merge_on UNIV h bo m using assms by(simp add: merkle_interface_aux)
|
239 |
+
show ?thesis unfolding merkle_interface_aux ..
|
240 |
+
qed
|
241 |
+
|
242 |
+
|
243 |
+
(************************************************************)
|
244 |
+
subsubsection \<open> Non-recursive blindable positions \<close>
|
245 |
+
(************************************************************)
|
246 |
+
|
247 |
+
text \<open> For a non-recursive data type @{typ 'a}, the type of hashes in @{type blindable\<^sub>m} is fixed
|
248 |
+
to be simply @{typ "'a blindable\<^sub>h"}. We obtain this by instantiating the type variable with the
|
249 |
+
identity building block. \<close>
|
250 |
+
|
251 |
+
type_synonym 'a nr_blindable = "('a, 'a) blindable\<^sub>m"
|
252 |
+
|
253 |
+
abbreviation hash_nr_blindable :: "('a nr_blindable, 'a blindable\<^sub>h) hash" where
|
254 |
+
"hash_nr_blindable \<equiv> hash_blindable hash_discrete"
|
255 |
+
|
256 |
+
abbreviation blinding_of_nr_blindable :: "'a nr_blindable blinding_of" where
|
257 |
+
"blinding_of_nr_blindable \<equiv> blinding_of_blindable hash_discrete blinding_of_discrete"
|
258 |
+
|
259 |
+
abbreviation merge_nr_blindable :: "'a nr_blindable merge" where
|
260 |
+
"merge_nr_blindable \<equiv> merge_blindable hash_discrete merge_discrete"
|
261 |
+
|
262 |
+
lemma merge_on_nr_blindable:
|
263 |
+
"merge_on UNIV hash_nr_blindable blinding_of_nr_blindable merge_nr_blindable"
|
264 |
+
..
|
265 |
+
|
266 |
+
lemma merkle_nr_blindable:
|
267 |
+
"merkle_interface hash_nr_blindable blinding_of_nr_blindable merge_nr_blindable"
|
268 |
+
..
|
269 |
+
|
270 |
+
(************************************************************)
|
271 |
+
subsection \<open> Building block: Sums \<close>
|
272 |
+
(************************************************************)
|
273 |
+
|
274 |
+
text \<open> We prove that we can lift the ADS construction through sums.\<close>
|
275 |
+
|
276 |
+
type_synonym ('a\<^sub>h, 'b\<^sub>h) sum\<^sub>h = "'a\<^sub>h + 'b\<^sub>h"
|
277 |
+
type_notation sum\<^sub>h (infixr "+\<^sub>h" 10)
|
278 |
+
|
279 |
+
type_synonym ('a\<^sub>m, 'b\<^sub>m) sum\<^sub>m = "'a\<^sub>m + 'b\<^sub>m"
|
280 |
+
\<comment> \<open>If a functor does not introduce blindable positions, then we don't need the type variable copies.\<close>
|
281 |
+
type_notation sum\<^sub>m (infixr "+\<^sub>m" 10)
|
282 |
+
|
283 |
+
(************************************************************)
|
284 |
+
subsubsection \<open> Hashes \<close>
|
285 |
+
(************************************************************)
|
286 |
+
|
287 |
+
abbreviation (input) hash_sum' :: "('a\<^sub>h +\<^sub>h 'b\<^sub>h, 'a\<^sub>h +\<^sub>h 'b\<^sub>h) hash" where
|
288 |
+
"hash_sum' \<equiv> id"
|
289 |
+
|
290 |
+
abbreviation (input) hash_sum :: "('a\<^sub>m, 'a\<^sub>h) hash \<Rightarrow> ('b\<^sub>m, 'b\<^sub>h) hash \<Rightarrow> ('a\<^sub>m +\<^sub>m 'b\<^sub>m, 'a\<^sub>h +\<^sub>h 'b\<^sub>h) hash"
|
291 |
+
where "hash_sum \<equiv> map_sum"
|
292 |
+
|
293 |
+
(************************************************************)
|
294 |
+
subsubsection \<open> Blinding \<close>
|
295 |
+
(************************************************************)
|
296 |
+
|
297 |
+
abbreviation (input) blinding_of_sum :: "'a\<^sub>m blinding_of \<Rightarrow> 'b\<^sub>m blinding_of \<Rightarrow> ('a\<^sub>m +\<^sub>m 'b\<^sub>m) blinding_of" where
|
298 |
+
"blinding_of_sum \<equiv> rel_sum"
|
299 |
+
|
300 |
+
lemmas blinding_of_sum_mono = sum.rel_mono
|
301 |
+
|
302 |
+
lemma blinding_of_sum_hash:
|
303 |
+
assumes "boa \<le> vimage2p rha rha (=)" "bob \<le> vimage2p rhb rhb (=)"
|
304 |
+
shows "blinding_of_sum boa bob \<le> vimage2p (hash_sum rha rhb) (hash_sum rha rhb) (=)"
|
305 |
+
using assms by(auto simp add: vimage2p_def elim!: rel_sum.cases)
|
306 |
+
|
307 |
+
lemma blinding_of_on_sum [locale_witness]:
|
308 |
+
assumes "blinding_of_on A rha boa" "blinding_of_on B rhb bob"
|
309 |
+
shows "blinding_of_on {x. setl x \<subseteq> A \<and> setr x \<subseteq> B} (hash_sum rha rhb) (blinding_of_sum boa bob)"
|
310 |
+
(is "blinding_of_on ?A ?h ?bo")
|
311 |
+
proof -
|
312 |
+
interpret a: blinding_of_on A rha boa by fact
|
313 |
+
interpret b: blinding_of_on B rhb bob by fact
|
314 |
+
show ?thesis
|
315 |
+
proof
|
316 |
+
show "?bo x x" if "x \<in> ?A" for x using that by(intro sum.rel_refl_strong)(auto intro: a.refl b.refl)
|
317 |
+
show "?bo x z" if "?bo x y" "?bo y z" "x \<in> ?A" for x y z
|
318 |
+
using that by(auto elim!: rel_sum.cases dest: a.trans b.trans)
|
319 |
+
show "x = y" if "?bo x y" "?bo y x" "x \<in> ?A" for x y
|
320 |
+
using that by(auto elim!: rel_sum.cases dest: a.antisym b.antisym)
|
321 |
+
qed(rule blinding_of_sum_hash a.hash b.hash)+
|
322 |
+
qed
|
323 |
+
|
324 |
+
lemmas blinding_of_sum [locale_witness] = blinding_of_on_sum[of UNIV _ _ UNIV, simplified]
|
325 |
+
|
326 |
+
(************************************************************)
|
327 |
+
subsubsection \<open> Merging \<close>
|
328 |
+
(************************************************************)
|
329 |
+
|
330 |
+
context
|
331 |
+
fixes ma :: "'a\<^sub>m merge"
|
332 |
+
fixes mb :: "'b\<^sub>m merge"
|
333 |
+
begin
|
334 |
+
|
335 |
+
fun merge_sum :: "('a\<^sub>m +\<^sub>m 'b\<^sub>m) merge" where
|
336 |
+
"merge_sum (Inl x) (Inl y) = map_option Inl (ma x y)"
|
337 |
+
| "merge_sum (Inr x) (Inr y) = map_option Inr (mb x y)"
|
338 |
+
| "merge_sum _ _ = None"
|
339 |
+
|
340 |
+
lemma merge_on_sum [locale_witness]:
|
341 |
+
assumes "merge_on A rha boa ma" "merge_on B rhb bob mb"
|
342 |
+
shows "merge_on {x. setl x \<subseteq> A \<and> setr x \<subseteq> B} (hash_sum rha rhb) (blinding_of_sum boa bob) merge_sum"
|
343 |
+
(is "merge_on ?A ?h ?bo ?m")
|
344 |
+
proof -
|
345 |
+
interpret a: merge_on A rha boa ma by fact
|
346 |
+
interpret b: merge_on B rhb bob mb by fact
|
347 |
+
show ?thesis
|
348 |
+
proof
|
349 |
+
show "\<exists>ab. ?m a b = Some ab \<and> ?bo a ab \<and> ?bo b ab \<and> (\<forall>u. ?bo a u \<longrightarrow> ?bo b u \<longrightarrow> ?bo ab u)"
|
350 |
+
if "?h a = ?h b" "a \<in> ?A" for a b using that
|
351 |
+
by(cases "(a, b)" rule: merge_sum.cases)(auto dest!: a.join b.join elim!: rel_sum.cases)
|
352 |
+
show "?m a b = None" if "?h a \<noteq> ?h b" "a \<in> ?A" for a b using that
|
353 |
+
by(cases "(a, b)" rule: merge_sum.cases)(auto dest!: a.undefined b.undefined)
|
354 |
+
qed
|
355 |
+
qed
|
356 |
+
|
357 |
+
lemmas merge_sum [locale_witness] = merge_on_sum[where A=UNIV and B=UNIV, simplified]
|
358 |
+
|
359 |
+
lemma merge_sum_alt_def:
|
360 |
+
"merge_sum x y = (case (x, y) of
|
361 |
+
(Inl x, Inl y) \<Rightarrow> map_option Inl (ma x y)
|
362 |
+
| (Inr x, Inr y) \<Rightarrow> map_option Inr (mb x y)
|
363 |
+
| _ \<Rightarrow> None)"
|
364 |
+
by(simp add: split: sum.split)
|
365 |
+
|
366 |
+
end
|
367 |
+
|
368 |
+
lemma merge_sum_cong[fundef_cong]:
|
369 |
+
"\<lbrakk> x = x'; y = y';
|
370 |
+
\<And>xl yl. \<lbrakk> x = Inl xl; y = Inl yl \<rbrakk> \<Longrightarrow> ma xl yl = ma' xl yl;
|
371 |
+
\<And>xr yr. \<lbrakk> x = Inr xr; y = Inr yr \<rbrakk> \<Longrightarrow> mb xr yr = mb' xr yr \<rbrakk> \<Longrightarrow>
|
372 |
+
merge_sum ma mb x y = merge_sum ma' mb' x' y'"
|
373 |
+
by(cases x; simp_all; cases y; auto)
|
374 |
+
|
375 |
+
parametric_constant merge_sum_parametric [transfer_rule]: merge_sum_alt_def
|
376 |
+
|
377 |
+
subsubsection \<open> Merkle interface \<close>
|
378 |
+
|
379 |
+
lemma merkle_sum [locale_witness]:
|
380 |
+
assumes "merkle_interface rha boa ma" "merkle_interface rhb bob mb"
|
381 |
+
shows "merkle_interface (hash_sum rha rhb) (blinding_of_sum boa bob) (merge_sum ma mb)"
|
382 |
+
proof -
|
383 |
+
interpret a: merge_on UNIV rha boa ma unfolding merkle_interface_aux[symmetric] by fact
|
384 |
+
interpret b: merge_on UNIV rhb bob mb unfolding merkle_interface_aux[symmetric] by fact
|
385 |
+
show ?thesis unfolding merkle_interface_aux[symmetric] ..
|
386 |
+
qed
|
387 |
+
|
388 |
+
(************************************************************)
|
389 |
+
subsection \<open> Building Block: Products\<close>
|
390 |
+
(************************************************************)
|
391 |
+
|
392 |
+
text \<open> We prove that we can lift the ADS construction through products.\<close>
|
393 |
+
|
394 |
+
type_synonym ('a\<^sub>h, 'b\<^sub>h) prod\<^sub>h = "'a\<^sub>h \<times> 'b\<^sub>h"
|
395 |
+
type_notation prod\<^sub>h ("(_ \<times>\<^sub>h/ _)" [21, 20] 20)
|
396 |
+
|
397 |
+
type_synonym ('a\<^sub>m, 'b\<^sub>m) prod\<^sub>m = "'a\<^sub>m \<times> 'b\<^sub>m"
|
398 |
+
\<comment> \<open>If a functor does not introduce blindable positions, then we don't need the type variable copies.\<close>
|
399 |
+
type_notation prod\<^sub>m ("(_ \<times>\<^sub>m/ _)" [21, 20] 20)
|
400 |
+
|
401 |
+
(************************************************************)
|
402 |
+
subsubsection \<open> Hashes \<close>
|
403 |
+
(************************************************************)
|
404 |
+
|
405 |
+
abbreviation (input) hash_prod' :: "('a\<^sub>h \<times>\<^sub>h 'b\<^sub>h, 'a\<^sub>h \<times>\<^sub>h 'b\<^sub>h) hash" where
|
406 |
+
"hash_prod' \<equiv> id"
|
407 |
+
|
408 |
+
abbreviation (input) hash_prod :: "('a\<^sub>m, 'a\<^sub>h) hash \<Rightarrow> ('b\<^sub>m, 'b\<^sub>h) hash \<Rightarrow> ('a\<^sub>m \<times>\<^sub>m 'b\<^sub>m, 'a\<^sub>h \<times>\<^sub>h 'b\<^sub>h) hash"
|
409 |
+
where "hash_prod \<equiv> map_prod"
|
410 |
+
|
411 |
+
(************************************************************)
|
412 |
+
subsubsection \<open> Blinding \<close>
|
413 |
+
(************************************************************)
|
414 |
+
|
415 |
+
abbreviation (input) blinding_of_prod :: "'a\<^sub>m blinding_of \<Rightarrow> 'b\<^sub>m blinding_of \<Rightarrow> ('a\<^sub>m \<times>\<^sub>m 'b\<^sub>m) blinding_of" where
|
416 |
+
"blinding_of_prod \<equiv> rel_prod"
|
417 |
+
|
418 |
+
lemmas blinding_of_prod_mono = prod.rel_mono
|
419 |
+
|
420 |
+
lemma blinding_of_prod_hash:
|
421 |
+
assumes "boa \<le> vimage2p rha rha (=)" "bob \<le> vimage2p rhb rhb (=)"
|
422 |
+
shows "blinding_of_prod boa bob \<le> vimage2p (hash_prod rha rhb) (hash_prod rha rhb) (=)"
|
423 |
+
using assms by(auto simp add: vimage2p_def)
|
424 |
+
|
425 |
+
lemma blinding_of_on_prod [locale_witness]:
|
426 |
+
assumes "blinding_of_on A rha boa" "blinding_of_on B rhb bob"
|
427 |
+
shows "blinding_of_on {x. fsts x \<subseteq> A \<and> snds x \<subseteq> B} (hash_prod rha rhb) (blinding_of_prod boa bob)"
|
428 |
+
(is "blinding_of_on ?A ?h ?bo")
|
429 |
+
proof -
|
430 |
+
interpret a: blinding_of_on A rha boa by fact
|
431 |
+
interpret b: blinding_of_on B rhb bob by fact
|
432 |
+
show ?thesis
|
433 |
+
proof
|
434 |
+
show "?bo x x" if "x \<in> ?A" for x using that by(cases x)(auto intro: a.refl b.refl)
|
435 |
+
show "?bo x z" if "?bo x y" "?bo y z" "x \<in> ?A" for x y z using that
|
436 |
+
by(auto elim!: rel_prod.cases dest: a.trans b.trans)
|
437 |
+
show "x = y" if "?bo x y" "?bo y x" "x \<in> ?A" for x y using that
|
438 |
+
by(auto elim!: rel_prod.cases dest: a.antisym b.antisym)
|
439 |
+
qed(rule blinding_of_prod_hash a.hash b.hash)+
|
440 |
+
qed
|
441 |
+
|
442 |
+
lemmas blinding_of_prod [locale_witness] = blinding_of_on_prod[where A=UNIV and B=UNIV, simplified]
|
443 |
+
|
444 |
+
(************************************************************)
|
445 |
+
subsubsection \<open> Merging \<close>
|
446 |
+
(************************************************************)
|
447 |
+
|
448 |
+
context
|
449 |
+
fixes ma :: "'a\<^sub>m merge"
|
450 |
+
fixes mb :: "'b\<^sub>m merge"
|
451 |
+
begin
|
452 |
+
|
453 |
+
fun merge_prod :: "('a\<^sub>m \<times>\<^sub>m 'b\<^sub>m) merge" where
|
454 |
+
"merge_prod (x, y) (x', y') = Option.bind (ma x x') (\<lambda>x''. map_option (Pair x'') (mb y y'))"
|
455 |
+
|
456 |
+
lemma merge_on_prod [locale_witness]:
|
457 |
+
assumes "merge_on A rha boa ma" "merge_on B rhb bob mb"
|
458 |
+
shows "merge_on {x. fsts x \<subseteq> A \<and> snds x \<subseteq> B} (hash_prod rha rhb) (blinding_of_prod boa bob) merge_prod"
|
459 |
+
(is "merge_on ?A ?h ?bo ?m")
|
460 |
+
proof -
|
461 |
+
interpret a: merge_on A rha boa ma by fact
|
462 |
+
interpret b: merge_on B rhb bob mb by fact
|
463 |
+
show ?thesis
|
464 |
+
proof
|
465 |
+
show "\<exists>ab. ?m a b = Some ab \<and> ?bo a ab \<and> ?bo b ab \<and> (\<forall>u. ?bo a u \<longrightarrow> ?bo b u \<longrightarrow> ?bo ab u)"
|
466 |
+
if "?h a = ?h b" "a \<in> ?A" for a b using that
|
467 |
+
by(cases "(a, b)" rule: merge_prod.cases)(auto dest!: a.join b.join)
|
468 |
+
show "?m a b = None" if "?h a \<noteq> ?h b" "a \<in> ?A" for a b using that
|
469 |
+
by(cases "(a, b)" rule: merge_prod.cases)(auto dest!: a.undefined b.undefined)
|
470 |
+
qed
|
471 |
+
qed
|
472 |
+
|
473 |
+
lemmas merge_prod [locale_witness] = merge_on_prod[where A=UNIV and B=UNIV, simplified]
|
474 |
+
|
475 |
+
lemma merge_prod_alt_def:
|
476 |
+
"merge_prod = (\<lambda>(x, y) (x', y'). Option.bind (ma x x') (\<lambda>x''. map_option (Pair x'') (mb y y')))"
|
477 |
+
by(simp add: fun_eq_iff)
|
478 |
+
|
479 |
+
end
|
480 |
+
|
481 |
+
lemma merge_prod_cong[fundef_cong]:
|
482 |
+
assumes "\<And>a b. \<lbrakk> a \<in> fsts p1; b \<in> fsts p2 \<rbrakk> \<Longrightarrow> ma a b = ma' a b"
|
483 |
+
and "\<And>a b. \<lbrakk> a \<in> snds p1; b \<in> snds p2 \<rbrakk> \<Longrightarrow> mb a b = mb' a b"
|
484 |
+
shows "merge_prod ma mb p1 p2 = merge_prod ma' mb' p1 p2"
|
485 |
+
using assms by(cases p1; cases p2) auto
|
486 |
+
|
487 |
+
parametric_constant merge_prod_parametric [transfer_rule]: merge_prod_alt_def
|
488 |
+
|
489 |
+
(************************************************************)
|
490 |
+
subsubsection \<open> Merkle Interface \<close>
|
491 |
+
(************************************************************)
|
492 |
+
|
493 |
+
lemma merkle_product [locale_witness]:
|
494 |
+
assumes "merkle_interface rha boa ma" "merkle_interface rhb bob mb"
|
495 |
+
shows "merkle_interface (hash_prod rha rhb) (blinding_of_prod boa bob) (merge_prod ma mb)"
|
496 |
+
proof -
|
497 |
+
interpret a: merge_on UNIV rha boa ma unfolding merkle_interface_aux[symmetric] by fact
|
498 |
+
interpret b: merge_on UNIV rhb bob mb unfolding merkle_interface_aux[symmetric] by fact
|
499 |
+
show ?thesis unfolding merkle_interface_aux[symmetric] ..
|
500 |
+
qed
|
501 |
+
|
502 |
+
|
503 |
+
(************************************************************)
|
504 |
+
subsection \<open>Building Block: Lists\<close>
|
505 |
+
(************************************************************)
|
506 |
+
|
507 |
+
text \<open>The ADS construction on lists is done the easiest through a separate isomorphic datatype
|
508 |
+
that has only a single constructor. We hide this construction in a locale. \<close>
|
509 |
+
|
510 |
+
locale list_R1 begin
|
511 |
+
|
512 |
+
type_synonym ('a, 'b) list_F = "unit + 'a \<times> 'b"
|
513 |
+
|
514 |
+
abbreviation (input) "set_base_F\<^sub>m \<equiv> \<lambda>x. setr x \<bind> fsts"
|
515 |
+
abbreviation (input) "set_rec_F\<^sub>m \<equiv> \<lambda>A. setr A \<bind> snds"
|
516 |
+
abbreviation (input) "map_F \<equiv> \<lambda>fb fr. map_sum id (map_prod fb fr)"
|
517 |
+
|
518 |
+
datatype 'a list_R1 = list_R1 (unR: "('a, 'a list_R1) list_F")
|
519 |
+
|
520 |
+
lemma list_R1_const_into_dest: "list_R1 F = l \<longleftrightarrow> F = unR l"
|
521 |
+
by auto
|
522 |
+
|
523 |
+
declare list_R1.split[split]
|
524 |
+
|
525 |
+
lemma list_R1_induct[case_names list_R1]:
|
526 |
+
assumes "\<And>F. \<lbrakk> \<And>l'. l' \<in> set_rec_F\<^sub>m F \<Longrightarrow> P l' \<rbrakk> \<Longrightarrow> P (list_R1 F)"
|
527 |
+
shows "P l"
|
528 |
+
apply(rule list_R1.induct)
|
529 |
+
apply(auto intro!: assms)
|
530 |
+
done
|
531 |
+
|
532 |
+
lemma set_list_R1_eq:
|
533 |
+
"{x. set_base_F\<^sub>m x \<subseteq> A \<and> set_rec_F\<^sub>m x \<subseteq> B} =
|
534 |
+
{x. setl x \<subseteq> UNIV \<and> setr x \<subseteq> {x. fsts x \<subseteq> A \<and> snds x \<subseteq> B}}"
|
535 |
+
by(auto simp add: bind_UNION)
|
536 |
+
|
537 |
+
(************************************************************)
|
538 |
+
subsubsection \<open> The Isomorphism \<close>
|
539 |
+
(************************************************************)
|
540 |
+
|
541 |
+
primrec (transfer) list_R1_to_list :: "'a list_R1 \<Rightarrow> 'a list" where
|
542 |
+
"list_R1_to_list (list_R1 l) = (case map_sum id (map_prod id list_R1_to_list) l of Inl () \<Rightarrow> [] | Inr (x, xs) \<Rightarrow> x # xs)"
|
543 |
+
|
544 |
+
lemma list_R1_to_list_simps [simp]:
|
545 |
+
"list_R1_to_list (list_R1 (Inl ())) = []"
|
546 |
+
"list_R1_to_list (list_R1 (Inr (x, xs))) = x # list_R1_to_list xs"
|
547 |
+
by(simp_all split: unit.split)
|
548 |
+
|
549 |
+
declare list_R1_to_list.simps [simp del]
|
550 |
+
|
551 |
+
primrec (transfer) list_to_list_R1 :: "'a list \<Rightarrow> 'a list_R1" where
|
552 |
+
"list_to_list_R1 [] = list_R1 (Inl ())"
|
553 |
+
| "list_to_list_R1 (x#xs) = list_R1 (Inr (x, list_to_list_R1 xs))"
|
554 |
+
|
555 |
+
lemma R1_of_list: "list_R1_to_list (list_to_list_R1 x) = x"
|
556 |
+
by(induct x) (auto)
|
557 |
+
|
558 |
+
lemma list_of_R1: "list_to_list_R1 (list_R1_to_list x) = x"
|
559 |
+
apply(induct x)
|
560 |
+
subgoal for x
|
561 |
+
by(cases x) (auto)
|
562 |
+
done
|
563 |
+
|
564 |
+
lemma list_R1_def: "type_definition list_to_list_R1 list_R1_to_list UNIV"
|
565 |
+
by(unfold_locales)(auto intro: R1_of_list list_of_R1)
|
566 |
+
|
567 |
+
setup_lifting list_R1_def
|
568 |
+
|
569 |
+
lemma map_list_R1_list_to_list_R1: "map_list_R1 f (list_to_list_R1 xs) = list_to_list_R1 (map f xs)"
|
570 |
+
by(induction xs) auto
|
571 |
+
|
572 |
+
lemma list_R1_map_trans [transfer_rule]: includes lifting_syntax shows
|
573 |
+
"(((=) ===> (=)) ===> pcr_list (=) ===> pcr_list (=)) map_list_R1 map"
|
574 |
+
by(auto 4 3 simp add: list.pcr_cr_eq rel_fun_eq cr_list_def map_list_R1_list_to_list_R1)
|
575 |
+
|
576 |
+
lemma set_list_R1_list_to_list_R1: "set_list_R1 (list_to_list_R1 xs) = set xs"
|
577 |
+
by(induction xs) auto
|
578 |
+
|
579 |
+
lemma list_R1_set_trans [transfer_rule]: includes lifting_syntax shows
|
580 |
+
"(pcr_list (=) ===> (=)) set_list_R1 set"
|
581 |
+
by(auto simp add: list.pcr_cr_eq cr_list_def set_list_R1_list_to_list_R1)
|
582 |
+
|
583 |
+
lemma rel_list_R1_list_to_list_R1:
|
584 |
+
"rel_list_R1 R (list_to_list_R1 xs) (list_to_list_R1 ys) \<longleftrightarrow> list_all2 R xs ys"
|
585 |
+
(is "?lhs \<longleftrightarrow> ?rhs")
|
586 |
+
proof
|
587 |
+
define xs' and ys' where "xs' = list_to_list_R1 xs" and "ys' = list_to_list_R1 ys"
|
588 |
+
assume "rel_list_R1 R xs' ys'"
|
589 |
+
then have "list_all2 R (list_R1_to_list xs') (list_R1_to_list ys')"
|
590 |
+
by induction(auto elim!: rel_sum.cases)
|
591 |
+
thus ?rhs by(simp add: xs'_def ys'_def R1_of_list)
|
592 |
+
next
|
593 |
+
show ?lhs if ?rhs using that by induction auto
|
594 |
+
qed
|
595 |
+
|
596 |
+
lemma list_R1_rel_trans[transfer_rule]: includes lifting_syntax shows
|
597 |
+
"(((=) ===> (=) ===> (=)) ===> pcr_list (=) ===> pcr_list (=) ===> (=)) rel_list_R1 list_all2"
|
598 |
+
by(auto 4 4 simp add: list.pcr_cr_eq rel_fun_eq cr_list_def rel_list_R1_list_to_list_R1)
|
599 |
+
|
600 |
+
(************************************************************)
|
601 |
+
subsubsection \<open> Hashes \<close>
|
602 |
+
(************************************************************)
|
603 |
+
|
604 |
+
type_synonym ('a\<^sub>h, 'b\<^sub>h) list_F\<^sub>h = "unit +\<^sub>h 'a\<^sub>h \<times>\<^sub>h 'b\<^sub>h"
|
605 |
+
|
606 |
+
type_synonym ('a\<^sub>m, 'b\<^sub>m) list_F\<^sub>m = "unit +\<^sub>m 'a\<^sub>m \<times>\<^sub>m 'b\<^sub>m"
|
607 |
+
|
608 |
+
type_synonym 'a\<^sub>h list_R1\<^sub>h = "'a\<^sub>h list_R1"
|
609 |
+
\<comment> \<open>In theory, we should define a separate datatype here of the functor @{typ "('a\<^sub>h, _) list_F\<^sub>h"}.
|
610 |
+
We take a shortcut because they're isomorphic.\<close>
|
611 |
+
|
612 |
+
type_synonym 'a\<^sub>m list_R1\<^sub>m = "'a\<^sub>m list_R1"
|
613 |
+
\<comment> \<open>In theory, we should define a separate datatype here of the functor @{typ "('a\<^sub>m, _) list_F\<^sub>m"}.
|
614 |
+
We take a shortcut because they're isomorphic.\<close>
|
615 |
+
|
616 |
+
definition hash_F :: "('a\<^sub>m, 'a\<^sub>h) hash \<Rightarrow> ('b\<^sub>m, 'b\<^sub>h) hash \<Rightarrow> (('a\<^sub>m, 'b\<^sub>m) list_F\<^sub>m, ('a\<^sub>h, 'b\<^sub>h) list_F\<^sub>h) hash" where
|
617 |
+
"hash_F h rhL = hash_sum hash_unit (hash_prod h rhL)"
|
618 |
+
|
619 |
+
abbreviation (input) hash_R1 :: "('a\<^sub>m, 'a\<^sub>h) hash \<Rightarrow> ('a\<^sub>m list_R1\<^sub>m, 'a\<^sub>h list_R1\<^sub>h) hash" where
|
620 |
+
"hash_R1 \<equiv> map_list_R1"
|
621 |
+
|
622 |
+
parametric_constant hash_F_parametric[transfer_rule]: hash_F_def
|
623 |
+
|
624 |
+
(************************************************************)
|
625 |
+
subsubsection \<open> Blinding \<close>
|
626 |
+
(************************************************************)
|
627 |
+
|
628 |
+
definition blinding_of_F :: "'a\<^sub>m blinding_of \<Rightarrow> 'b\<^sub>m blinding_of \<Rightarrow> ('a\<^sub>m, 'b\<^sub>m) list_F\<^sub>m blinding_of" where
|
629 |
+
"blinding_of_F bo bL = blinding_of_sum blinding_of_unit (blinding_of_prod bo bL)"
|
630 |
+
|
631 |
+
abbreviation (input) blinding_of_R1 :: "'a blinding_of \<Rightarrow> 'a list_R1 blinding_of" where
|
632 |
+
"blinding_of_R1 \<equiv> rel_list_R1"
|
633 |
+
|
634 |
+
lemma blinding_of_hash_R1:
|
635 |
+
assumes "bo \<le> vimage2p h h (=)"
|
636 |
+
shows "blinding_of_R1 bo \<le> vimage2p (hash_R1 h) (hash_R1 h) (=)"
|
637 |
+
apply(rule predicate2I vimage2pI)+
|
638 |
+
apply(auto simp add: predicate2D_vimage2p[OF assms] elim!: list_R1.rel_induct rel_sum.cases rel_prod.cases)
|
639 |
+
done
|
640 |
+
|
641 |
+
lemma blinding_of_on_R1 [locale_witness]:
|
642 |
+
assumes "blinding_of_on A h bo"
|
643 |
+
shows "blinding_of_on {x. set_list_R1 x \<subseteq> A} (hash_R1 h) (blinding_of_R1 bo)"
|
644 |
+
(is "blinding_of_on ?A ?h ?bo")
|
645 |
+
proof -
|
646 |
+
interpret a: blinding_of_on A h bo by fact
|
647 |
+
show ?thesis
|
648 |
+
proof
|
649 |
+
show hash: "?bo \<le> vimage2p ?h ?h (=)" using a.hash by(rule blinding_of_hash_R1)
|
650 |
+
|
651 |
+
have "?bo x x \<and> (?bo x y \<longrightarrow> ?bo y z \<longrightarrow> ?bo x z) \<and> (?bo x y \<longrightarrow> ?bo y x \<longrightarrow> x = y)" if "x \<in> ?A" for x y z using that
|
652 |
+
proof(induction x arbitrary: y z)
|
653 |
+
case (list_R1 x y' z')
|
654 |
+
from list_R1.prems have s1: "set_base_F\<^sub>m x \<subseteq> A" by(fastforce)
|
655 |
+
from list_R1.prems have s3: "set_rec_F\<^sub>m x \<bind> set_list_R1 \<subseteq> A" by(fastforce intro: rev_bexI)
|
656 |
+
|
657 |
+
interpret F: blinding_of_on "{y. set_base_F\<^sub>m y \<subseteq> A \<and> set_rec_F\<^sub>m y \<subseteq> set_rec_F\<^sub>m x}"
|
658 |
+
"hash_F h (hash_R1 h)" "blinding_of_F bo (blinding_of_R1 bo)"
|
659 |
+
unfolding hash_F_def blinding_of_F_def set_list_R1_eq
|
660 |
+
proof
|
661 |
+
let ?A' = "setr x \<bind> snds" and ?bo' = "rel_list_R1 bo"
|
662 |
+
show "?bo' x x" if "x \<in> ?A'" for x using that list_R1 by(force simp add: eq_onp_def)
|
663 |
+
show "?bo' x z" if "?bo' x y" "?bo' y z" "x \<in> ?A'" for x y z
|
664 |
+
using that list_R1.IH[of _ x y z] list_R1.prems
|
665 |
+
by(force simp add: bind_UNION prod_set_defs)
|
666 |
+
show "x = y" if "?bo' x y" "?bo' y x" "x \<in> ?A'" for x y
|
667 |
+
using that list_R1.IH[of _ x y] list_R1.prems
|
668 |
+
by(force simp add: prod_set_defs)
|
669 |
+
qed(rule hash)
|
670 |
+
show ?case using list_R1.prems
|
671 |
+
apply(intro conjI)
|
672 |
+
subgoal using F.refl[of x] s1 unfolding blinding_of_F_def by(auto intro: list_R1.rel_intros)
|
673 |
+
subgoal using s1 by(auto elim!: list_R1.rel_cases F.trans[unfolded blinding_of_F_def] intro: list_R1.rel_intros)
|
674 |
+
subgoal using s1 by(auto elim!: list_R1.rel_cases dest: F.antisym[unfolded blinding_of_F_def])
|
675 |
+
done
|
676 |
+
qed
|
677 |
+
then show "x \<in> ?A \<Longrightarrow> ?bo x x"
|
678 |
+
and "\<lbrakk> ?bo x y; ?bo y z; x \<in> ?A \<rbrakk> \<Longrightarrow> ?bo x z"
|
679 |
+
and "\<lbrakk> ?bo x y; ?bo y x; x \<in> ?A \<rbrakk> \<Longrightarrow> x = y"
|
680 |
+
for x y z by blast+
|
681 |
+
qed
|
682 |
+
qed
|
683 |
+
|
684 |
+
lemmas blinding_of_R1 [locale_witness] = blinding_of_on_R1[where A=UNIV, simplified]
|
685 |
+
|
686 |
+
parametric_constant blinding_of_F_parametric[transfer_rule]: blinding_of_F_def
|
687 |
+
|
688 |
+
(************************************************************)
|
689 |
+
subsubsection \<open> Merging \<close>
|
690 |
+
(************************************************************)
|
691 |
+
|
692 |
+
definition merge_F :: "'a\<^sub>m merge \<Rightarrow> 'b\<^sub>m merge \<Rightarrow> ('a\<^sub>m, 'b\<^sub>m) list_F\<^sub>m merge" where
|
693 |
+
"merge_F m mL = merge_sum merge_unit (merge_prod m mL)"
|
694 |
+
|
695 |
+
lemma merge_F_cong[fundef_cong]:
|
696 |
+
assumes "\<And>a b. \<lbrakk> a \<in> set_base_F\<^sub>m x; b \<in> set_base_F\<^sub>m y \<rbrakk> \<Longrightarrow> m a b = m' a b"
|
697 |
+
and "\<And>a b. \<lbrakk> a \<in> set_rec_F\<^sub>m x; b \<in> set_rec_F\<^sub>m y \<rbrakk> \<Longrightarrow> mL a b = mL' a b"
|
698 |
+
shows "merge_F m mL x y = merge_F m' mL' x y"
|
699 |
+
using assms
|
700 |
+
apply(cases x; cases y)
|
701 |
+
apply(simp_all add: merge_F_def)
|
702 |
+
apply(rule arg_cong[where f="map_option _"])
|
703 |
+
apply(blast intro: merge_prod_cong)
|
704 |
+
done
|
705 |
+
|
706 |
+
context
|
707 |
+
fixes m :: "'a\<^sub>m merge"
|
708 |
+
notes setr.simps[simp]
|
709 |
+
begin
|
710 |
+
fun merge_R1 :: "'a\<^sub>m list_R1\<^sub>m merge" where
|
711 |
+
"merge_R1 (list_R1 l1) (list_R1 l2) = map_option list_R1 (merge_F m merge_R1 l1 l2)"
|
712 |
+
end
|
713 |
+
|
714 |
+
case_of_simps merge_cases [simp]: merge_R1.simps
|
715 |
+
|
716 |
+
lemma merge_on_R1:
|
717 |
+
assumes "merge_on A h bo m"
|
718 |
+
shows "merge_on {x. set_list_R1 x \<subseteq> A } (hash_R1 h) (blinding_of_R1 bo) (merge_R1 m)"
|
719 |
+
(is "merge_on ?A ?h ?bo ?m")
|
720 |
+
proof -
|
721 |
+
interpret a: merge_on A h bo m by fact
|
722 |
+
show ?thesis
|
723 |
+
proof
|
724 |
+
have "(?h a = ?h b \<longrightarrow> (\<exists>ab. ?m a b = Some ab \<and> ?bo a ab \<and> ?bo b ab \<and> (\<forall>u. ?bo a u \<longrightarrow> ?bo b u \<longrightarrow> ?bo ab u))) \<and>
|
725 |
+
(?h a \<noteq> ?h b \<longrightarrow> ?m a b = None)"
|
726 |
+
if "a \<in> ?A" for a b using that unfolding mem_Collect_eq
|
727 |
+
proof(induction a arbitrary: b rule: list_R1_induct)
|
728 |
+
case wfInd: (list_R1 l)
|
729 |
+
interpret merge_on "{y. set_base_F\<^sub>m y \<subseteq> A \<and> set_rec_F\<^sub>m y \<subseteq> set_rec_F\<^sub>m l}"
|
730 |
+
"hash_F h ?h" "blinding_of_F bo ?bo" "merge_F m ?m"
|
731 |
+
unfolding set_list_R1_eq hash_F_def merge_F_def blinding_of_F_def
|
732 |
+
proof
|
733 |
+
fix a
|
734 |
+
assume a: "a \<in> set_rec_F\<^sub>m l"
|
735 |
+
with wfInd.prems have a': "set_list_R1 a \<subseteq> A"
|
736 |
+
by fastforce
|
737 |
+
|
738 |
+
show "hash_R1 h a = hash_R1 h b
|
739 |
+
\<Longrightarrow> \<exists>ab. ?m a b = Some ab \<and> ?bo a ab \<and> ?bo b ab \<and>
|
740 |
+
(\<forall>u. ?bo a u \<longrightarrow> ?bo b u \<longrightarrow> ?bo ab u)"
|
741 |
+
and "?h a \<noteq> ?h b \<Longrightarrow> ?m a b = None" for b
|
742 |
+
using wfInd.IH[OF a a', rule_format, of b]
|
743 |
+
by(auto dest: sym)
|
744 |
+
qed
|
745 |
+
show ?case using wfInd.prems
|
746 |
+
apply(intro conjI strip)
|
747 |
+
subgoal
|
748 |
+
by(auto 4 4 dest!: join[unfolded hash_F_def]
|
749 |
+
simp add: blinding_of_F_def UN_subset_iff list_R1.rel_sel)
|
750 |
+
subgoal by(auto 4 3 intro!: undefined[simplified hash_F_def])
|
751 |
+
done
|
752 |
+
qed
|
753 |
+
then show
|
754 |
+
"?h a = ?h b \<Longrightarrow> \<exists>ab. ?m a b = Some ab \<and> ?bo a ab \<and> ?bo b ab \<and> (\<forall>u. ?bo a u \<longrightarrow> ?bo b u \<longrightarrow> ?bo ab u)"
|
755 |
+
"?h a \<noteq> ?h b \<Longrightarrow> ?m a b = None"
|
756 |
+
if "a \<in> ?A" for a b using that by blast+
|
757 |
+
qed
|
758 |
+
qed
|
759 |
+
|
760 |
+
lemmas merge_R1 [locale_witness] = merge_on_R1[where A=UNIV, simplified]
|
761 |
+
|
762 |
+
lemma merkle_list_R1 [locale_witness]:
|
763 |
+
assumes "merkle_interface h bo m"
|
764 |
+
shows "merkle_interface (hash_R1 h) (blinding_of_R1 bo) (merge_R1 m)"
|
765 |
+
proof -
|
766 |
+
interpret merge_on UNIV h bo m using assms by(unfold merkle_interface_aux)
|
767 |
+
show ?thesis unfolding merkle_interface_aux[symmetric] ..
|
768 |
+
qed
|
769 |
+
|
770 |
+
lemma merge_R1_cong [fundef_cong]:
|
771 |
+
assumes "\<And>a b. \<lbrakk> a \<in> set_list_R1 x; b \<in> set_list_R1 y \<rbrakk> \<Longrightarrow> m a b = m' a b"
|
772 |
+
shows "merge_R1 m x y = merge_R1 m' x y"
|
773 |
+
using assms
|
774 |
+
apply(induction x y rule: merge_R1.induct)
|
775 |
+
apply(simp del: merge_cases)
|
776 |
+
apply(rule arg_cong[where f="map_option _"])
|
777 |
+
apply(blast intro: merge_F_cong[unfolded bind_UNION])
|
778 |
+
done
|
779 |
+
|
780 |
+
parametric_constant merge_F_parametric[transfer_rule]: merge_F_def
|
781 |
+
|
782 |
+
lemma merge_R1_parametric [transfer_rule]:
|
783 |
+
includes lifting_syntax
|
784 |
+
notes [simp del] = merge_cases
|
785 |
+
assumes [transfer_rule]: "bi_unique A"
|
786 |
+
shows "((A ===> A ===> rel_option A) ===> rel_list_R1 A ===> rel_list_R1 A ===> rel_option (rel_list_R1 A))
|
787 |
+
merge_R1 merge_R1"
|
788 |
+
apply(intro rel_funI)
|
789 |
+
subgoal premises prems [transfer_rule] for m1 m2 xs1 xs2 ys1 ys2 using prems(2, 3)
|
790 |
+
apply(induction xs1 ys1 arbitrary: xs2 ys2 rule: merge_R1.induct)
|
791 |
+
apply(elim list_R1.rel_cases rel_sum.cases; clarsimp simp add: option.rel_map merge_F_def merge_discrete_def)
|
792 |
+
apply(elim meta_allE; (erule meta_impE, simp)+)
|
793 |
+
subgoal premises [transfer_rule] by transfer_prover
|
794 |
+
done
|
795 |
+
done
|
796 |
+
|
797 |
+
end
|
798 |
+
|
799 |
+
subsubsection \<open> Transferring the Constructions to Lists \<close>
|
800 |
+
type_synonym 'a\<^sub>h list\<^sub>h = "'a\<^sub>h list"
|
801 |
+
type_synonym 'a\<^sub>m list\<^sub>m = "'a\<^sub>m list"
|
802 |
+
|
803 |
+
context begin
|
804 |
+
interpretation list_R1 .
|
805 |
+
|
806 |
+
abbreviation (input) hash_list :: "('a\<^sub>m, 'a\<^sub>h) hash \<Rightarrow> ('a\<^sub>m list\<^sub>m, 'a\<^sub>h list\<^sub>h) hash"
|
807 |
+
where "hash_list \<equiv> map"
|
808 |
+
abbreviation (input) blinding_of_list :: "'a\<^sub>m blinding_of \<Rightarrow> 'a\<^sub>m list\<^sub>m blinding_of"
|
809 |
+
where "blinding_of_list \<equiv> list_all2"
|
810 |
+
lift_definition merge_list :: "'a\<^sub>m merge \<Rightarrow> 'a\<^sub>m list\<^sub>m merge" is merge_R1 .
|
811 |
+
|
812 |
+
lemma blinding_of_list_mono:
|
813 |
+
"\<lbrakk> \<And>x y. bo x y \<longrightarrow> bo' x y \<rbrakk> \<Longrightarrow>
|
814 |
+
blinding_of_list bo x y \<longrightarrow> blinding_of_list bo' x y"
|
815 |
+
by (transfer) (blast intro: list_R1.rel_mono_strong)
|
816 |
+
|
817 |
+
lemmas blinding_of_list_hash = blinding_of_hash_R1[Transfer.transferred]
|
818 |
+
and blinding_of_on_list [locale_witness] = blinding_of_on_R1[Transfer.transferred]
|
819 |
+
and blinding_of_list [locale_witness] = blinding_of_R1[Transfer.transferred]
|
820 |
+
and merge_on_list [locale_witness] = merge_on_R1[Transfer.transferred]
|
821 |
+
and merge_list [locale_witness] = merge_R1[Transfer.transferred]
|
822 |
+
and merge_list_cong = merge_R1_cong[Transfer.transferred]
|
823 |
+
|
824 |
+
lemma blinding_of_list_mono_pred:
|
825 |
+
"R \<le> R' \<Longrightarrow> blinding_of_list R \<le> blinding_of_list R'"
|
826 |
+
by(transfer) (rule list_R1.rel_mono)
|
827 |
+
|
828 |
+
lemma blinding_of_list_simp: "blinding_of_list = list_all2"
|
829 |
+
by(transfer) (rule refl)
|
830 |
+
|
831 |
+
lemma merkle_list [locale_witness]:
|
832 |
+
assumes [locale_witness]: "merkle_interface h bo m"
|
833 |
+
shows "merkle_interface (hash_list h) (blinding_of_list bo) (merge_list m)"
|
834 |
+
by(transfer fixing: h bo m) unfold_locales
|
835 |
+
|
836 |
+
parametric_constant merge_list_parametric [transfer_rule]: merge_list_def
|
837 |
+
|
838 |
+
lifting_update list.lifting
|
839 |
+
lifting_forget list.lifting
|
840 |
+
|
841 |
+
end
|
842 |
+
|
843 |
+
|
844 |
+
(************************************************************)
|
845 |
+
subsection \<open>Building block: function space\<close>
|
846 |
+
(************************************************************)
|
847 |
+
|
848 |
+
text \<open> We prove that we can lift the ADS construction through functions.\<close>
|
849 |
+
|
850 |
+
type_synonym ('a, 'b\<^sub>h) fun\<^sub>h = "'a \<Rightarrow> 'b\<^sub>h"
|
851 |
+
type_notation fun\<^sub>h (infixr "\<Rightarrow>\<^sub>h" 0)
|
852 |
+
|
853 |
+
type_synonym ('a, 'b\<^sub>m) fun\<^sub>m = "'a \<Rightarrow> 'b\<^sub>m"
|
854 |
+
type_notation fun\<^sub>m (infixr "\<Rightarrow>\<^sub>m" 0)
|
855 |
+
|
856 |
+
(************************************************************)
|
857 |
+
subsubsection \<open> Hashes \<close>
|
858 |
+
(************************************************************)
|
859 |
+
|
860 |
+
text \<open> Only the range is live, the domain is dead like for BNFs. \<close>
|
861 |
+
|
862 |
+
abbreviation (input) hash_fun' :: "('a \<Rightarrow>\<^sub>m 'b\<^sub>h, 'a \<Rightarrow>\<^sub>h 'b\<^sub>h) hash" where
|
863 |
+
"hash_fun' \<equiv> id"
|
864 |
+
|
865 |
+
abbreviation (input) hash_fun :: "('b\<^sub>m, 'b\<^sub>h) hash \<Rightarrow> ('a \<Rightarrow>\<^sub>m 'b\<^sub>m, 'a \<Rightarrow>\<^sub>h 'b\<^sub>h) hash"
|
866 |
+
where "hash_fun \<equiv> comp"
|
867 |
+
|
868 |
+
(************************************************************)
|
869 |
+
subsubsection \<open> Blinding \<close>
|
870 |
+
(************************************************************)
|
871 |
+
|
872 |
+
abbreviation (input) blinding_of_fun :: "'b\<^sub>m blinding_of \<Rightarrow> ('a \<Rightarrow>\<^sub>m 'b\<^sub>m) blinding_of" where
|
873 |
+
"blinding_of_fun \<equiv> rel_fun (=)"
|
874 |
+
|
875 |
+
lemmas blinding_of_fun_mono = fun.rel_mono
|
876 |
+
|
877 |
+
lemma blinding_of_fun_hash:
|
878 |
+
assumes "bo \<le> vimage2p rh rh (=)"
|
879 |
+
shows "blinding_of_fun bo \<le> vimage2p (hash_fun rh) (hash_fun rh) (=)"
|
880 |
+
using assms by(auto simp add: vimage2p_def rel_fun_def le_fun_def)
|
881 |
+
|
882 |
+
lemma blinding_of_on_fun [locale_witness]:
|
883 |
+
assumes "blinding_of_on A rh bo"
|
884 |
+
shows "blinding_of_on {x. range x \<subseteq> A} (hash_fun rh) (blinding_of_fun bo)"
|
885 |
+
(is "blinding_of_on ?A ?h ?bo")
|
886 |
+
proof -
|
887 |
+
interpret a: blinding_of_on A rh bo by fact
|
888 |
+
show ?thesis
|
889 |
+
proof
|
890 |
+
show "?bo x x" if "x \<in> ?A" for x using that by(auto simp add: rel_fun_def intro: a.refl)
|
891 |
+
show "?bo x z" if "?bo x y" "?bo y z" "x \<in> ?A" for x y z using that
|
892 |
+
by(auto 4 3 simp add: rel_fun_def intro: a.trans)
|
893 |
+
show "x = y" if "?bo x y" "?bo y x" "x \<in> ?A" for x y using that
|
894 |
+
by(fastforce simp add: fun_eq_iff rel_fun_def intro: a.antisym)
|
895 |
+
qed(rule blinding_of_fun_hash a.hash)+
|
896 |
+
qed
|
897 |
+
|
898 |
+
lemmas blinding_of_fun [locale_witness] = blinding_of_on_fun[where A=UNIV, simplified]
|
899 |
+
|
900 |
+
(************************************************************)
|
901 |
+
subsubsection \<open> Merging \<close>
|
902 |
+
(************************************************************)
|
903 |
+
|
904 |
+
context
|
905 |
+
fixes m :: "'b\<^sub>m merge"
|
906 |
+
begin
|
907 |
+
|
908 |
+
definition merge_fun :: "('a \<Rightarrow>\<^sub>m 'b\<^sub>m) merge" where
|
909 |
+
"merge_fun f g = (if \<forall>x. m (f x) (g x) \<noteq> None then Some (\<lambda>x. the (m (f x) (g x))) else None)"
|
910 |
+
|
911 |
+
lemma merge_on_fun [locale_witness]:
|
912 |
+
assumes "merge_on A rh bo m"
|
913 |
+
shows "merge_on {x. range x \<subseteq> A} (hash_fun rh) (blinding_of_fun bo) merge_fun"
|
914 |
+
(is "merge_on ?A ?h ?bo ?m")
|
915 |
+
proof -
|
916 |
+
interpret a: merge_on A rh bo m by fact
|
917 |
+
show ?thesis
|
918 |
+
proof
|
919 |
+
show "\<exists>ab. ?m a b = Some ab \<and> ?bo a ab \<and> ?bo b ab \<and> (\<forall>u. ?bo a u \<longrightarrow> ?bo b u \<longrightarrow> ?bo ab u)"
|
920 |
+
if "?h a = ?h b" "a \<in> ?A" for a b
|
921 |
+
using that(1)[THEN fun_cong, unfolded o_apply, THEN a.join, OF that(2)[unfolded mem_Collect_eq, THEN subsetD, OF rangeI]]
|
922 |
+
by atomize(subst (asm) choice_iff; auto simp add: merge_fun_def rel_fun_def)
|
923 |
+
show "?m a b = None" if "?h a \<noteq> ?h b" "a \<in> ?A" for a b using that
|
924 |
+
by(auto simp add: merge_fun_def fun_eq_iff dest: a.undefined)
|
925 |
+
qed
|
926 |
+
qed
|
927 |
+
|
928 |
+
lemmas merge_fun [locale_witness] = merge_on_fun[where A=UNIV, simplified]
|
929 |
+
|
930 |
+
end
|
931 |
+
|
932 |
+
lemma merge_fun_cong[fundef_cong]:
|
933 |
+
assumes "\<And>a b. \<lbrakk> a \<in> range f; b \<in> range g \<rbrakk> \<Longrightarrow> m a b = m' a b"
|
934 |
+
shows "merge_fun m f g = merge_fun m' f g"
|
935 |
+
using assms[OF rangeI rangeI] by(clarsimp simp add: merge_fun_def)
|
936 |
+
|
937 |
+
lemma is_none_alt_def: "Option.is_none x \<longleftrightarrow> (case x of None \<Rightarrow> True | Some _ \<Rightarrow> False)"
|
938 |
+
by(auto simp add: Option.is_none_def split: option.splits)
|
939 |
+
|
940 |
+
parametric_constant is_none_parametric [transfer_rule]: is_none_alt_def
|
941 |
+
|
942 |
+
lemma merge_fun_parametric [transfer_rule]: includes lifting_syntax shows
|
943 |
+
"((A ===> B ===> rel_option C) ===> ((=) ===> A) ===> ((=) ===> B) ===> rel_option ((=) ===> C))
|
944 |
+
merge_fun merge_fun"
|
945 |
+
proof(intro rel_funI)
|
946 |
+
fix m :: "'a merge" and m' :: "'b merge" and f :: "'c \<Rightarrow> 'a" and f' :: "'c \<Rightarrow> 'b" and g :: "'c \<Rightarrow> 'a" and g' :: "'c \<Rightarrow> 'b"
|
947 |
+
assume m: "(A ===> B ===> rel_option C) m m'"
|
948 |
+
and f: "((=) ===> A) f f'" and g: "((=) ===> B) g g'"
|
949 |
+
note [transfer_rule] = this
|
950 |
+
have cond [unfolded Option.is_none_def]: "(\<forall>x. \<not> Option.is_none (m (f x) (g x))) \<longleftrightarrow> (\<forall>x. \<not> Option.is_none (m' (f' x) (g' x)))"
|
951 |
+
by transfer_prover
|
952 |
+
moreover
|
953 |
+
have "((=) ===> C) (\<lambda>x. the (m (f x) (g x))) (\<lambda>x. the (m' (f' x) (g' x)))" if *: "\<forall>x. \<not> m (f x) (g x) = None"
|
954 |
+
proof -
|
955 |
+
obtain fg fg' where m: "m (f x) (g x) = Some (fg x)" and m': "m' (f' x) (g' x) = Some (fg' x)" for x
|
956 |
+
using * *[simplified cond]
|
957 |
+
by(simp)(subst (asm) (1 2) choice_iff; clarsimp)
|
958 |
+
have "rel_option C (Some (fg x)) (Some (fg' x))" for x unfolding m[symmetric] m'[symmetric] by transfer_prover
|
959 |
+
then show ?thesis by(simp add: rel_fun_def m m')
|
960 |
+
qed
|
961 |
+
ultimately show "rel_option ((=) ===> C) (merge_fun m f g) (merge_fun m' f' g')"
|
962 |
+
unfolding merge_fun_def by(simp)
|
963 |
+
qed
|
964 |
+
|
965 |
+
(************************************************************)
|
966 |
+
subsubsection \<open> Merkle Interface \<close>
|
967 |
+
(************************************************************)
|
968 |
+
|
969 |
+
lemma merkle_fun [locale_witness]:
|
970 |
+
assumes "merkle_interface rh bo m"
|
971 |
+
shows "merkle_interface (hash_fun rh) (blinding_of_fun bo) (merge_fun m)"
|
972 |
+
proof -
|
973 |
+
interpret a: merge_on UNIV rh bo m unfolding merkle_interface_aux[symmetric] by fact
|
974 |
+
show ?thesis unfolding merkle_interface_aux[symmetric] ..
|
975 |
+
qed
|
976 |
+
|
977 |
+
(************************************************************)
|
978 |
+
subsection \<open>Rose trees\<close>
|
979 |
+
(************************************************************)
|
980 |
+
|
981 |
+
text \<open>
|
982 |
+
We now define an ADS over rose trees, which is like a arbitrarily branching Merkle tree where each
|
983 |
+
node in the tree can be blinded, including the root. The number of children and the position of a
|
984 |
+
child among its siblings cannot be hidden. The construction allows to plug in further blindable
|
985 |
+
positions in the labels of the nodes.
|
986 |
+
\<close>
|
987 |
+
|
988 |
+
type_synonym ('a, 'b) rose_tree_F = "'a \<times> 'b list"
|
989 |
+
|
990 |
+
abbreviation (input) map_rose_tree_F where
|
991 |
+
"map_rose_tree_F f1 f2 \<equiv> map_prod f1 (map f2)"
|
992 |
+
definition map_rose_tree_F_const where
|
993 |
+
"map_rose_tree_F_const f1 f2 \<equiv> map_rose_tree_F f1 f2"
|
994 |
+
|
995 |
+
datatype 'a rose_tree = Tree "('a, 'a rose_tree) rose_tree_F"
|
996 |
+
|
997 |
+
type_synonym ('a\<^sub>h, 'b\<^sub>h) rose_tree_F\<^sub>h = "('a\<^sub>h \<times>\<^sub>h 'b\<^sub>h list\<^sub>h) blindable\<^sub>h"
|
998 |
+
|
999 |
+
datatype 'a\<^sub>h rose_tree\<^sub>h = Tree\<^sub>h "('a\<^sub>h, 'a\<^sub>h rose_tree\<^sub>h) rose_tree_F\<^sub>h"
|
1000 |
+
|
1001 |
+
type_synonym ('a\<^sub>m, 'a\<^sub>h, 'b\<^sub>m, 'b\<^sub>h) rose_tree_F\<^sub>m = "('a\<^sub>m \<times>\<^sub>m 'b\<^sub>m list\<^sub>m, 'a\<^sub>h \<times>\<^sub>h 'b\<^sub>h list\<^sub>h) blindable\<^sub>m"
|
1002 |
+
|
1003 |
+
datatype ('a\<^sub>m, 'a\<^sub>h) rose_tree\<^sub>m = Tree\<^sub>m "('a\<^sub>m, 'a\<^sub>h, ('a\<^sub>m, 'a\<^sub>h) rose_tree\<^sub>m, 'a\<^sub>h rose_tree\<^sub>h) rose_tree_F\<^sub>m"
|
1004 |
+
|
1005 |
+
abbreviation (input) map_rose_tree_F\<^sub>m
|
1006 |
+
:: "('ma \<Rightarrow> 'a) \<Rightarrow> ('mr \<Rightarrow> 'r) \<Rightarrow> ('ma, 'ha, 'mr, 'hr) rose_tree_F\<^sub>m \<Rightarrow> ('a, 'ha, 'r, 'hr) rose_tree_F\<^sub>m"
|
1007 |
+
where
|
1008 |
+
"map_rose_tree_F\<^sub>m f g \<equiv> map_blindable\<^sub>m (map_prod f (map g)) id"
|
1009 |
+
|
1010 |
+
(************************************************************)
|
1011 |
+
subsubsection \<open> Hashes \<close>
|
1012 |
+
(************************************************************)
|
1013 |
+
|
1014 |
+
abbreviation (input) hash_rt_F'
|
1015 |
+
:: "(('a\<^sub>h, 'a\<^sub>h, 'b\<^sub>h, 'b\<^sub>h) rose_tree_F\<^sub>m, ('a\<^sub>h, 'b\<^sub>h) rose_tree_F\<^sub>h) hash"
|
1016 |
+
where
|
1017 |
+
"hash_rt_F' \<equiv> hash_blindable id"
|
1018 |
+
|
1019 |
+
definition hash_rt_F\<^sub>m
|
1020 |
+
:: "('a\<^sub>m, 'a\<^sub>h) hash \<Rightarrow> ('b\<^sub>m, 'b\<^sub>h) hash \<Rightarrow>
|
1021 |
+
(('a\<^sub>m, 'a\<^sub>h, 'b\<^sub>m, 'b\<^sub>h) rose_tree_F\<^sub>m, ('a\<^sub>h, 'b\<^sub>h) rose_tree_F\<^sub>h) hash" where
|
1022 |
+
"hash_rt_F\<^sub>m h rhm \<equiv> hash_rt_F' o map_rose_tree_F\<^sub>m h rhm"
|
1023 |
+
|
1024 |
+
lemma hash_rt_F\<^sub>m_alt_def: "hash_rt_F\<^sub>m h rhm = hash_blindable (map_prod h (map rhm))"
|
1025 |
+
by(simp add: hash_rt_F\<^sub>m_def fun_eq_iff hash_map_blindable_simp)
|
1026 |
+
|
1027 |
+
primrec (transfer) hash_rt_tree'
|
1028 |
+
:: "(('a\<^sub>h, 'a\<^sub>h) rose_tree\<^sub>m, 'a\<^sub>h rose_tree\<^sub>h) hash" where
|
1029 |
+
"hash_rt_tree' (Tree\<^sub>m x) = Tree\<^sub>h (hash_rt_F' (map_rose_tree_F\<^sub>m id hash_rt_tree' x))"
|
1030 |
+
|
1031 |
+
definition hash_tree
|
1032 |
+
:: "('a\<^sub>m, 'a\<^sub>h) hash \<Rightarrow> (('a\<^sub>m, 'a\<^sub>h) rose_tree\<^sub>m, 'a\<^sub>h rose_tree\<^sub>h) hash" where
|
1033 |
+
"hash_tree h = hash_rt_tree' o map_rose_tree\<^sub>m h id"
|
1034 |
+
|
1035 |
+
lemma blindable\<^sub>m_map_compositionality:
|
1036 |
+
"map_blindable\<^sub>m f g o map_blindable\<^sub>m f' g' = map_blindable\<^sub>m (f o f') (g o g')"
|
1037 |
+
by(rule ext) (simp add: blindable\<^sub>m.map_comp)
|
1038 |
+
|
1039 |
+
lemma hash_tree_simps [simp]:
|
1040 |
+
"hash_tree h (Tree\<^sub>m x) = Tree\<^sub>h (hash_rt_F\<^sub>m h (hash_tree h) x)"
|
1041 |
+
by(simp add: hash_tree_def hash_rt_F\<^sub>m_def
|
1042 |
+
map_prod.comp map_sum.comp rose_tree\<^sub>h.map_comp blindable\<^sub>m.map_comp
|
1043 |
+
prod.map_id0 rose_tree\<^sub>h.map_id0)
|
1044 |
+
|
1045 |
+
parametric_constant hash_rt_F\<^sub>m_parametric [transfer_rule]: hash_rt_F\<^sub>m_alt_def
|
1046 |
+
|
1047 |
+
parametric_constant hash_tree_parametric [transfer_rule]: hash_tree_def
|
1048 |
+
|
1049 |
+
(************************************************************)
|
1050 |
+
subsubsection \<open> Blinding \<close>
|
1051 |
+
(************************************************************)
|
1052 |
+
|
1053 |
+
abbreviation (input) blinding_of_rt_F\<^sub>m
|
1054 |
+
:: "('a\<^sub>m, 'a\<^sub>h) hash \<Rightarrow> 'a\<^sub>m blinding_of \<Rightarrow> ('b\<^sub>m, 'b\<^sub>h) hash \<Rightarrow> 'b\<^sub>m blinding_of
|
1055 |
+
\<Rightarrow> ('a\<^sub>m, 'a\<^sub>h, 'b\<^sub>m, 'b\<^sub>h) rose_tree_F\<^sub>m blinding_of" where
|
1056 |
+
"blinding_of_rt_F\<^sub>m ha boa hb bob \<equiv> blinding_of_blindable (hash_prod ha (map hb))
|
1057 |
+
(blinding_of_prod boa (blinding_of_list bob))"
|
1058 |
+
|
1059 |
+
lemma blinding_of_rt_F\<^sub>m_mono:
|
1060 |
+
"\<lbrakk> boa \<le> boa'; bob \<le> bob' \<rbrakk> \<Longrightarrow> blinding_of_rt_F\<^sub>m ha boa hb bob \<le> blinding_of_rt_F\<^sub>m ha boa' hb bob'"
|
1061 |
+
by(intro blinding_of_blindable_mono prod.rel_mono list.rel_mono)
|
1062 |
+
|
1063 |
+
lemma blinding_of_rt_F\<^sub>m_mono_inductive:
|
1064 |
+
assumes "\<And>x y. boa x y \<longrightarrow> boa' x y" "\<And>x y. bob x y \<longrightarrow> bob' x y"
|
1065 |
+
shows "blinding_of_rt_F\<^sub>m ha boa hb bob x y \<longrightarrow> blinding_of_rt_F\<^sub>m ha boa' hb bob' x y"
|
1066 |
+
apply(rule impI)
|
1067 |
+
apply(erule blinding_of_rt_F\<^sub>m_mono[THEN predicate2D, rotated -1])
|
1068 |
+
using assms by blast+
|
1069 |
+
|
1070 |
+
context
|
1071 |
+
fixes h :: "('a\<^sub>m, 'a\<^sub>h) hash"
|
1072 |
+
and bo :: "'a\<^sub>m blinding_of"
|
1073 |
+
begin
|
1074 |
+
|
1075 |
+
inductive blinding_of_tree :: "('a\<^sub>m, 'a\<^sub>h) rose_tree\<^sub>m blinding_of" where
|
1076 |
+
"blinding_of_tree (Tree\<^sub>m t1) (Tree\<^sub>m t2)"
|
1077 |
+
if "blinding_of_rt_F\<^sub>m h bo (hash_tree h) blinding_of_tree t1 t2"
|
1078 |
+
monos blinding_of_rt_F\<^sub>m_mono_inductive
|
1079 |
+
|
1080 |
+
end
|
1081 |
+
|
1082 |
+
inductive_simps blinding_of_tree_simps [simp]:
|
1083 |
+
"blinding_of_tree h bo (Tree\<^sub>m t1) (Tree\<^sub>m t2)"
|
1084 |
+
|
1085 |
+
lemma blinding_of_rt_F\<^sub>m_hash:
|
1086 |
+
assumes "boa \<le> vimage2p ha ha (=)" "bob \<le> vimage2p hb hb (=)"
|
1087 |
+
shows "blinding_of_rt_F\<^sub>m ha boa hb bob \<le> vimage2p (hash_rt_F\<^sub>m ha hb) (hash_rt_F\<^sub>m ha hb) (=)"
|
1088 |
+
apply(rule order_trans)
|
1089 |
+
apply(rule blinding_of_blindable_hash)
|
1090 |
+
apply(fold relator_eq)
|
1091 |
+
apply(unfold vimage2p_map_rel_prod vimage2p_map_list_all2)
|
1092 |
+
apply(rule prod.rel_mono assms list.rel_mono)+
|
1093 |
+
apply(simp only: hash_rt_F\<^sub>m_def vimage2p_comp o_apply hash_blindable_def blindable\<^sub>m.map_id0 id_def[symmetric] vimage2p_id id_apply)
|
1094 |
+
done
|
1095 |
+
|
1096 |
+
lemma blinding_of_tree_hash:
|
1097 |
+
assumes "bo \<le> vimage2p h h (=)"
|
1098 |
+
shows "blinding_of_tree h bo \<le> vimage2p (hash_tree h) (hash_tree h) (=)"
|
1099 |
+
apply(rule predicate2I vimage2pI)+
|
1100 |
+
apply(erule blinding_of_tree.induct)
|
1101 |
+
apply(simp)
|
1102 |
+
apply(erule blinding_of_rt_F\<^sub>m_hash[OF assms, THEN predicate2D_vimage2p, rotated 1])
|
1103 |
+
apply(blast intro: vimage2pI)
|
1104 |
+
done
|
1105 |
+
|
1106 |
+
abbreviation (input) set1_rt_F\<^sub>m :: "('a\<^sub>m, 'a\<^sub>h, 'b\<^sub>h, 'b\<^sub>m) rose_tree_F\<^sub>m \<Rightarrow> 'a\<^sub>m set" where
|
1107 |
+
"set1_rt_F\<^sub>m x \<equiv> set1_blindable\<^sub>m x \<bind> fsts"
|
1108 |
+
|
1109 |
+
abbreviation (input) set3_rt_F\<^sub>m :: "('a\<^sub>m, 'a\<^sub>h, 'b\<^sub>m, 'b\<^sub>h) rose_tree_F\<^sub>m \<Rightarrow> 'b\<^sub>m set" where
|
1110 |
+
"set3_rt_F\<^sub>m x \<equiv> (set1_blindable\<^sub>m x \<bind> snds) \<bind> set"
|
1111 |
+
|
1112 |
+
lemma set_rt_F\<^sub>m_eq:
|
1113 |
+
"{x. set1_rt_F\<^sub>m x \<subseteq> A \<and> set3_rt_F\<^sub>m x \<subseteq> B} =
|
1114 |
+
{x. set1_blindable\<^sub>m x \<subseteq> {x. fsts x \<subseteq> A \<and> snds x \<subseteq> {x. set x \<subseteq> B}}}"
|
1115 |
+
by force
|
1116 |
+
|
1117 |
+
lemma hash_blindable_map: "hash_blindable f \<circ> map_blindable\<^sub>m g id = hash_blindable (f \<circ> g)"
|
1118 |
+
by(rule ext) (simp add: hash_blindable_def blindable\<^sub>m.map_comp)
|
1119 |
+
|
1120 |
+
lemma blinding_of_on_tree [locale_witness]:
|
1121 |
+
assumes "blinding_of_on A h bo"
|
1122 |
+
shows "blinding_of_on {x. set1_rose_tree\<^sub>m x \<subseteq> A} (hash_tree h) (blinding_of_tree h bo)"
|
1123 |
+
(is "blinding_of_on ?A ?h ?bo")
|
1124 |
+
proof -
|
1125 |
+
interpret a: blinding_of_on A h bo by fact
|
1126 |
+
show ?thesis
|
1127 |
+
proof
|
1128 |
+
show "?bo \<le> vimage2p ?h ?h (=)" using a.hash by(rule blinding_of_tree_hash)
|
1129 |
+
have "?bo x x \<and> (?bo x y \<longrightarrow> ?bo y z \<longrightarrow> ?bo x z) \<and> (?bo x y \<longrightarrow> ?bo y x \<longrightarrow> x = y)" if "x \<in> ?A" for x y z using that
|
1130 |
+
proof(induction x arbitrary: y z)
|
1131 |
+
case (Tree\<^sub>m x)
|
1132 |
+
have [locale_witness]: "blinding_of_on (set3_rt_F\<^sub>m x) (hash_tree h) (blinding_of_tree h bo)"
|
1133 |
+
apply unfold_locales
|
1134 |
+
subgoal by(rule blinding_of_tree_hash)(rule a.hash)
|
1135 |
+
subgoal using Tree\<^sub>m.IH Tree\<^sub>m.prems by(fastforce simp add: eq_onp_def)
|
1136 |
+
subgoal for x y z using Tree\<^sub>m.IH[of _ _ x y z] Tree\<^sub>m.prems by fastforce
|
1137 |
+
subgoal for x y using Tree\<^sub>m.IH[of _ _ x y] Tree\<^sub>m.prems by fastforce
|
1138 |
+
done
|
1139 |
+
interpret blinding_of_on
|
1140 |
+
"{a. set1_rt_F\<^sub>m a \<subseteq> A \<and> set3_rt_F\<^sub>m a \<subseteq> set3_rt_F\<^sub>m x}"
|
1141 |
+
"hash_rt_F\<^sub>m h ?h" "blinding_of_rt_F\<^sub>m h bo ?h ?bo"
|
1142 |
+
unfolding set_rt_F\<^sub>m_eq hash_rt_F\<^sub>m_alt_def ..
|
1143 |
+
from Tree\<^sub>m.prems show ?case
|
1144 |
+
apply(intro conjI)
|
1145 |
+
subgoal by(fastforce intro!: blinding_of_tree.intros refl[unfolded hash_rt_F\<^sub>m_alt_def])
|
1146 |
+
subgoal by(fastforce elim!: blinding_of_tree.cases trans[unfolded hash_rt_F\<^sub>m_alt_def]
|
1147 |
+
intro!: blinding_of_tree.intros)
|
1148 |
+
subgoal by(fastforce elim!: blinding_of_tree.cases antisym[unfolded hash_rt_F\<^sub>m_alt_def])
|
1149 |
+
done
|
1150 |
+
qed
|
1151 |
+
then show "x \<in> ?A \<Longrightarrow> ?bo x x"
|
1152 |
+
and "\<lbrakk> ?bo x y; ?bo y z; x \<in> ?A \<rbrakk> \<Longrightarrow> ?bo x z"
|
1153 |
+
and "\<lbrakk> ?bo x y; ?bo y x; x \<in> ?A \<rbrakk> \<Longrightarrow> x = y"
|
1154 |
+
for x y z by blast+
|
1155 |
+
qed
|
1156 |
+
qed
|
1157 |
+
|
1158 |
+
lemmas blinding_of_tree [locale_witness] = blinding_of_on_tree[where A=UNIV, simplified]
|
1159 |
+
|
1160 |
+
lemma blinding_of_tree_mono:
|
1161 |
+
"bo \<le> bo' \<Longrightarrow> blinding_of_tree h bo \<le> blinding_of_tree h bo'"
|
1162 |
+
apply(rule predicate2I)
|
1163 |
+
apply(erule blinding_of_tree.induct)
|
1164 |
+
apply(rule blinding_of_tree.intros)
|
1165 |
+
apply(erule blinding_of_rt_F\<^sub>m_mono[THEN predicate2D, rotated -1])
|
1166 |
+
apply(blast)+
|
1167 |
+
done
|
1168 |
+
|
1169 |
+
(************************************************************)
|
1170 |
+
subsubsection \<open> Merging \<close>
|
1171 |
+
(************************************************************)
|
1172 |
+
|
1173 |
+
definition merge_rt_F\<^sub>m
|
1174 |
+
:: "('a\<^sub>m, 'a\<^sub>h) hash \<Rightarrow> 'a\<^sub>m merge \<Rightarrow> ('b\<^sub>m, 'b\<^sub>h) hash \<Rightarrow> 'b\<^sub>m merge \<Rightarrow>
|
1175 |
+
('a\<^sub>m, 'a\<^sub>h, 'b\<^sub>m, 'b\<^sub>h) rose_tree_F\<^sub>m merge"
|
1176 |
+
where
|
1177 |
+
"merge_rt_F\<^sub>m ha ma hr mr \<equiv> merge_blindable (hash_prod ha (hash_list hr)) (merge_prod ma (merge_list mr))"
|
1178 |
+
|
1179 |
+
lemma merge_rt_F\<^sub>m_cong [fundef_cong]:
|
1180 |
+
assumes "\<And>a b. \<lbrakk> a \<in> set1_rt_F\<^sub>m x; b \<in> set1_rt_F\<^sub>m y \<rbrakk> \<Longrightarrow> ma a b = ma' a b"
|
1181 |
+
and "\<And>a b. \<lbrakk> a \<in> set3_rt_F\<^sub>m x; b \<in> set3_rt_F\<^sub>m y \<rbrakk> \<Longrightarrow> mm a b = mm' a b"
|
1182 |
+
shows "merge_rt_F\<^sub>m ha ma hm mm x y = merge_rt_F\<^sub>m ha ma' hm mm' x y"
|
1183 |
+
using assms
|
1184 |
+
apply(cases x; cases y; simp add: merge_rt_F\<^sub>m_def bind_UNION)
|
1185 |
+
apply(rule arg_cong[where f="map_option _"])
|
1186 |
+
apply(blast intro: merge_prod_cong merge_list_cong)
|
1187 |
+
done
|
1188 |
+
|
1189 |
+
lemma in_set1_blindable\<^sub>m_iff: "x \<in> set1_blindable\<^sub>m y \<longleftrightarrow> y = Unblinded x"
|
1190 |
+
by(cases y) auto
|
1191 |
+
|
1192 |
+
context
|
1193 |
+
fixes h :: "('a\<^sub>m, 'a\<^sub>h) hash"
|
1194 |
+
and ma :: "'a\<^sub>m merge"
|
1195 |
+
notes in_set1_blindable\<^sub>m_iff[simp]
|
1196 |
+
begin
|
1197 |
+
fun merge_tree :: "('a\<^sub>m, 'a\<^sub>h) rose_tree\<^sub>m merge" where
|
1198 |
+
"merge_tree (Tree\<^sub>m x) (Tree\<^sub>m y) = map_option Tree\<^sub>m (
|
1199 |
+
merge_rt_F\<^sub>m h ma (hash_tree h) merge_tree x y)"
|
1200 |
+
end
|
1201 |
+
|
1202 |
+
lemma merge_on_tree [locale_witness]:
|
1203 |
+
assumes "merge_on A h bo m"
|
1204 |
+
shows "merge_on {x. set1_rose_tree\<^sub>m x \<subseteq> A} (hash_tree h) (blinding_of_tree h bo) (merge_tree h m)"
|
1205 |
+
(is "merge_on ?A ?h ?bo ?m")
|
1206 |
+
proof -
|
1207 |
+
interpret a: merge_on A h bo m by fact
|
1208 |
+
show ?thesis
|
1209 |
+
proof
|
1210 |
+
have "(?h a = ?h b \<longrightarrow> (\<exists>ab. ?m a b = Some ab \<and> ?bo a ab \<and> ?bo b ab \<and> (\<forall>u. ?bo a u \<longrightarrow> ?bo b u \<longrightarrow> ?bo ab u))) \<and>
|
1211 |
+
(?h a \<noteq> ?h b \<longrightarrow> ?m a b = None)"
|
1212 |
+
if "a \<in> ?A" for a b using that unfolding mem_Collect_eq
|
1213 |
+
proof(induction a arbitrary: b rule: rose_tree\<^sub>m.induct)
|
1214 |
+
case (Tree\<^sub>m x y)
|
1215 |
+
interpret merge_on
|
1216 |
+
"{y. set1_rt_F\<^sub>m y \<subseteq> A \<and> set3_rt_F\<^sub>m y \<subseteq> set3_rt_F\<^sub>m x}"
|
1217 |
+
"hash_rt_F\<^sub>m h ?h"
|
1218 |
+
"blinding_of_rt_F\<^sub>m h bo ?h ?bo"
|
1219 |
+
"merge_rt_F\<^sub>m h m ?h ?m"
|
1220 |
+
unfolding set_rt_F\<^sub>m_eq hash_rt_F\<^sub>m_alt_def merge_rt_F\<^sub>m_def
|
1221 |
+
proof
|
1222 |
+
fix a
|
1223 |
+
assume a: "a \<in> set3_rt_F\<^sub>m x"
|
1224 |
+
with Tree\<^sub>m.prems have a': "set1_rose_tree\<^sub>m a \<subseteq> A"
|
1225 |
+
by(force simp add: bind_UNION)
|
1226 |
+
|
1227 |
+
from a obtain l and ab where a'': "ab \<in> set1_blindable\<^sub>m x" "l \<in> snds ab" "a \<in> set l"
|
1228 |
+
by(clarsimp simp add: bind_UNION)
|
1229 |
+
|
1230 |
+
fix b
|
1231 |
+
from Tree\<^sub>m.IH[OF a'' a', rule_format, of b]
|
1232 |
+
show "hash_tree h a = hash_tree h b
|
1233 |
+
\<Longrightarrow> \<exists>ab. merge_tree h m a b = Some ab \<and> blinding_of_tree h bo a ab \<and> blinding_of_tree h bo b ab \<and>
|
1234 |
+
(\<forall>u. blinding_of_tree h bo a u \<longrightarrow> blinding_of_tree h bo b u \<longrightarrow> blinding_of_tree h bo ab u)"
|
1235 |
+
and "hash_tree h a \<noteq> hash_tree h b \<Longrightarrow> merge_tree h m a b = None"
|
1236 |
+
by(auto dest: sym)
|
1237 |
+
qed
|
1238 |
+
show ?case using Tree\<^sub>m.prems
|
1239 |
+
apply(intro conjI strip)
|
1240 |
+
subgoal by(cases y)(fastforce dest!: join simp add: blinding_of_tree.simps)
|
1241 |
+
subgoal by (cases y) (fastforce dest!: undefined)
|
1242 |
+
done
|
1243 |
+
qed
|
1244 |
+
then show
|
1245 |
+
"?h a = ?h b \<Longrightarrow> \<exists>ab. ?m a b = Some ab \<and> ?bo a ab \<and> ?bo b ab \<and> (\<forall>u. ?bo a u \<longrightarrow> ?bo b u \<longrightarrow> ?bo ab u)"
|
1246 |
+
"?h a \<noteq> ?h b \<Longrightarrow> ?m a b = None"
|
1247 |
+
if "a \<in> ?A" for a b using that by blast+
|
1248 |
+
qed
|
1249 |
+
qed
|
1250 |
+
|
1251 |
+
lemmas merge_tree [locale_witness] = merge_on_tree[where A=UNIV, simplified]
|
1252 |
+
|
1253 |
+
lemma option_bind_comm:
|
1254 |
+
"((x :: 'a option) \<bind> (\<lambda>y. c \<bind> (\<lambda>z. f y z))) = (c \<bind> (\<lambda>y. x \<bind> (\<lambda>z. f z y)))"
|
1255 |
+
by(cases x; cases c; auto)
|
1256 |
+
|
1257 |
+
parametric_constant merge_rt_F\<^sub>m_parametric [transfer_rule]: merge_rt_F\<^sub>m_def
|
1258 |
+
|
1259 |
+
(************************************************************)
|
1260 |
+
subsubsection \<open>Merkle interface\<close>
|
1261 |
+
(************************************************************)
|
1262 |
+
|
1263 |
+
lemma merkle_tree [locale_witness]:
|
1264 |
+
assumes "merkle_interface h bo m"
|
1265 |
+
shows "merkle_interface (hash_tree h) (blinding_of_tree h bo) (merge_tree h m)"
|
1266 |
+
proof -
|
1267 |
+
interpret merge_on UNIV h bo m using assms unfolding merkle_interface_aux .
|
1268 |
+
show ?thesis unfolding merkle_interface_aux[symmetric] ..
|
1269 |
+
qed
|
1270 |
+
|
1271 |
+
lemma merge_tree_cong [fundef_cong]:
|
1272 |
+
assumes "\<And>a b. \<lbrakk> a \<in> set1_rose_tree\<^sub>m x; b \<in> set1_rose_tree\<^sub>m y \<rbrakk> \<Longrightarrow> m a b = m' a b"
|
1273 |
+
shows "merge_tree h m x y = merge_tree h m' x y"
|
1274 |
+
using assms
|
1275 |
+
apply(induction x y rule: merge_tree.induct)
|
1276 |
+
apply(simp add: bind_UNION)
|
1277 |
+
apply(rule arg_cong[where f="map_option _"])
|
1278 |
+
apply(rule merge_rt_F\<^sub>m_cong; simp add: bind_UNION; blast)
|
1279 |
+
done
|
1280 |
+
|
1281 |
+
end
|
formal/afp/ADS_Functor/Canton_Transaction_Tree.thy
ADDED
@@ -0,0 +1,518 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
theory Canton_Transaction_Tree imports
|
2 |
+
Inclusion_Proof_Construction
|
3 |
+
begin
|
4 |
+
|
5 |
+
section \<open>Canton's hierarchical transaction trees\<close>
|
6 |
+
|
7 |
+
typedecl view_data
|
8 |
+
typedecl view_metadata
|
9 |
+
typedecl common_metadata
|
10 |
+
typedecl participant_metadata
|
11 |
+
|
12 |
+
datatype view = View view_metadata view_data (subviews: "view list")
|
13 |
+
|
14 |
+
datatype transaction = Transaction common_metadata participant_metadata (views: "view list")
|
15 |
+
|
16 |
+
subsection \<open>Views as authenticated data structures\<close>
|
17 |
+
|
18 |
+
type_synonym view_metadata\<^sub>h = "view_metadata blindable\<^sub>h"
|
19 |
+
type_synonym view_data\<^sub>h = "view_data blindable\<^sub>h"
|
20 |
+
|
21 |
+
datatype view\<^sub>h = View\<^sub>h "((view_metadata\<^sub>h \<times>\<^sub>h view_data\<^sub>h) \<times>\<^sub>h view\<^sub>h list\<^sub>h) blindable\<^sub>h"
|
22 |
+
|
23 |
+
type_synonym view_metadata\<^sub>m = "(view_metadata, view_metadata) blindable\<^sub>m"
|
24 |
+
type_synonym view_data\<^sub>m = "(view_data, view_data) blindable\<^sub>m"
|
25 |
+
|
26 |
+
datatype view\<^sub>m = View\<^sub>m
|
27 |
+
"((view_metadata\<^sub>m \<times>\<^sub>m view_data\<^sub>m) \<times>\<^sub>m view\<^sub>m list\<^sub>m,
|
28 |
+
(view_metadata\<^sub>h \<times>\<^sub>h view_data\<^sub>h) \<times>\<^sub>h view\<^sub>h list\<^sub>h) blindable\<^sub>m"
|
29 |
+
|
30 |
+
abbreviation (input) hash_view_data :: "(view_data\<^sub>m, view_data\<^sub>h) hash" where
|
31 |
+
"hash_view_data \<equiv> hash_blindable id"
|
32 |
+
abbreviation (input) blinding_of_view_data :: "view_data\<^sub>m blinding_of" where
|
33 |
+
"blinding_of_view_data \<equiv> blinding_of_blindable id (=)"
|
34 |
+
abbreviation (input) merge_view_data :: "view_data\<^sub>m merge" where
|
35 |
+
"merge_view_data \<equiv> merge_blindable id merge_discrete"
|
36 |
+
|
37 |
+
lemma merkle_view_data:
|
38 |
+
"merkle_interface hash_view_data blinding_of_view_data merge_view_data"
|
39 |
+
by unfold_locales
|
40 |
+
|
41 |
+
abbreviation (input) hash_view_metadata :: "(view_metadata\<^sub>m, view_metadata\<^sub>h) hash" where
|
42 |
+
"hash_view_metadata \<equiv> hash_blindable id"
|
43 |
+
abbreviation (input) blinding_of_view_metadata :: "view_metadata\<^sub>m blinding_of" where
|
44 |
+
"blinding_of_view_metadata \<equiv> blinding_of_blindable id (=)"
|
45 |
+
abbreviation (input) merge_view_metadata :: "view_metadata\<^sub>m merge" where
|
46 |
+
"merge_view_metadata \<equiv> merge_blindable id merge_discrete"
|
47 |
+
|
48 |
+
lemma merkle_view_metadata:
|
49 |
+
"merkle_interface hash_view_metadata blinding_of_view_metadata merge_view_metadata"
|
50 |
+
by unfold_locales
|
51 |
+
|
52 |
+
type_synonym view_content = "view_metadata \<times> view_data"
|
53 |
+
type_synonym view_content\<^sub>h = "view_metadata\<^sub>h \<times>\<^sub>h view_data\<^sub>h"
|
54 |
+
type_synonym view_content\<^sub>m = "view_metadata\<^sub>m \<times>\<^sub>m view_data\<^sub>m"
|
55 |
+
|
56 |
+
locale view_merkle begin
|
57 |
+
|
58 |
+
type_synonym view\<^sub>h' = "view_content\<^sub>h rose_tree\<^sub>h"
|
59 |
+
|
60 |
+
primrec from_view\<^sub>h :: "view\<^sub>h \<Rightarrow> view\<^sub>h'" where
|
61 |
+
"from_view\<^sub>h (View\<^sub>h x) = Tree\<^sub>h (map_blindable\<^sub>h (map_prod id (map from_view\<^sub>h)) x)"
|
62 |
+
|
63 |
+
primrec to_view\<^sub>h :: "view\<^sub>h' \<Rightarrow> view\<^sub>h" where
|
64 |
+
"to_view\<^sub>h (Tree\<^sub>h x) = View\<^sub>h (map_blindable\<^sub>h (map_prod id (map to_view\<^sub>h)) x)"
|
65 |
+
|
66 |
+
lemma from_to_view\<^sub>h [simp]: "from_view\<^sub>h (to_view\<^sub>h x) = x"
|
67 |
+
apply(induction x)
|
68 |
+
apply(simp add: blindable\<^sub>h.map_comp o_def prod.map_comp)
|
69 |
+
apply(simp cong: blindable\<^sub>h.map_cong prod.map_cong list.map_cong add: blindable\<^sub>h.map_id[unfolded id_def])
|
70 |
+
done
|
71 |
+
|
72 |
+
lemma to_from_view\<^sub>h [simp]: "to_view\<^sub>h (from_view\<^sub>h x) = x"
|
73 |
+
apply(induction x)
|
74 |
+
apply(simp add: blindable\<^sub>h.map_comp o_def prod.map_comp)
|
75 |
+
apply(simp cong: blindable\<^sub>h.map_cong prod.map_cong list.map_cong add: blindable\<^sub>h.map_id[unfolded id_def])
|
76 |
+
done
|
77 |
+
|
78 |
+
lemma iso_view\<^sub>h: "type_definition from_view\<^sub>h to_view\<^sub>h UNIV"
|
79 |
+
by unfold_locales simp_all
|
80 |
+
|
81 |
+
setup_lifting iso_view\<^sub>h
|
82 |
+
|
83 |
+
lemma cr_view\<^sub>h_Grp: "cr_view\<^sub>h = Grp UNIV to_view\<^sub>h"
|
84 |
+
by(simp add: cr_view\<^sub>h_def Grp_def fun_eq_iff)(transfer, auto)
|
85 |
+
|
86 |
+
lemma View\<^sub>h_transfer [transfer_rule]: includes lifting_syntax shows
|
87 |
+
"(rel_blindable\<^sub>h (rel_prod (=) (list_all2 pcr_view\<^sub>h)) ===> pcr_view\<^sub>h) Tree\<^sub>h View\<^sub>h"
|
88 |
+
by(simp add: rel_fun_def view\<^sub>h.pcr_cr_eq cr_view\<^sub>h_Grp list.rel_Grp eq_alt prod.rel_Grp blindable\<^sub>h.rel_Grp)
|
89 |
+
(simp add: Grp_def)
|
90 |
+
|
91 |
+
type_synonym view\<^sub>m' = "(view_content\<^sub>m, view_content\<^sub>h) rose_tree\<^sub>m"
|
92 |
+
|
93 |
+
primrec from_view\<^sub>m :: "view\<^sub>m \<Rightarrow> view\<^sub>m'" where
|
94 |
+
"from_view\<^sub>m (View\<^sub>m x) = Tree\<^sub>m (map_blindable\<^sub>m (map_prod id (map from_view\<^sub>m)) (map_prod id (map from_view\<^sub>h)) x)"
|
95 |
+
|
96 |
+
primrec to_view\<^sub>m :: "view\<^sub>m' \<Rightarrow> view\<^sub>m" where
|
97 |
+
"to_view\<^sub>m (Tree\<^sub>m x) = View\<^sub>m (map_blindable\<^sub>m (map_prod id (map to_view\<^sub>m)) (map_prod id (map to_view\<^sub>h)) x)"
|
98 |
+
|
99 |
+
lemma from_to_view\<^sub>m [simp]: "from_view\<^sub>m (to_view\<^sub>m x) = x"
|
100 |
+
apply(induction x)
|
101 |
+
apply(simp add: blindable\<^sub>m.map_comp o_def prod.map_comp)
|
102 |
+
apply(simp cong: blindable\<^sub>m.map_cong prod.map_cong list.map_cong add: blindable\<^sub>m.map_id[unfolded id_def])
|
103 |
+
done
|
104 |
+
|
105 |
+
lemma to_from_view\<^sub>m [simp]: "to_view\<^sub>m (from_view\<^sub>m x) = x"
|
106 |
+
apply(induction x)
|
107 |
+
apply(simp add: blindable\<^sub>m.map_comp o_def prod.map_comp)
|
108 |
+
apply(simp cong: blindable\<^sub>m.map_cong prod.map_cong list.map_cong add: blindable\<^sub>m.map_id[unfolded id_def])
|
109 |
+
done
|
110 |
+
|
111 |
+
lemma iso_view\<^sub>m: "type_definition from_view\<^sub>m to_view\<^sub>m UNIV"
|
112 |
+
by unfold_locales simp_all
|
113 |
+
|
114 |
+
setup_lifting iso_view\<^sub>m
|
115 |
+
|
116 |
+
lemma cr_view\<^sub>m_Grp: "cr_view\<^sub>m = Grp UNIV to_view\<^sub>m"
|
117 |
+
by(simp add: cr_view\<^sub>m_def Grp_def fun_eq_iff)(transfer, auto)
|
118 |
+
|
119 |
+
lemma View\<^sub>m_transfer [transfer_rule]: includes lifting_syntax shows
|
120 |
+
"(rel_blindable\<^sub>m (rel_prod (=) (list_all2 pcr_view\<^sub>m)) (rel_prod (=) (list_all2 pcr_view\<^sub>h)) ===> pcr_view\<^sub>m) Tree\<^sub>m View\<^sub>m"
|
121 |
+
by(simp add: rel_fun_def view\<^sub>h.pcr_cr_eq view\<^sub>m.pcr_cr_eq cr_view\<^sub>h_Grp cr_view\<^sub>m_Grp list.rel_Grp eq_alt prod.rel_Grp blindable\<^sub>m.rel_Grp)
|
122 |
+
(simp add: Grp_def)
|
123 |
+
|
124 |
+
end
|
125 |
+
|
126 |
+
code_datatype View\<^sub>h
|
127 |
+
code_datatype View\<^sub>m
|
128 |
+
|
129 |
+
context begin
|
130 |
+
interpretation view_merkle .
|
131 |
+
|
132 |
+
abbreviation (input) hash_view_content :: "(view_content\<^sub>m, view_content\<^sub>h) hash" where
|
133 |
+
"hash_view_content \<equiv> hash_prod hash_view_metadata hash_view_data"
|
134 |
+
|
135 |
+
abbreviation (input) blinding_of_view_content :: "view_content\<^sub>m blinding_of" where
|
136 |
+
"blinding_of_view_content \<equiv> blinding_of_prod blinding_of_view_metadata blinding_of_view_data"
|
137 |
+
|
138 |
+
abbreviation (input) merge_view_content :: "view_content\<^sub>m merge" where
|
139 |
+
"merge_view_content \<equiv> merge_prod merge_view_metadata merge_view_data"
|
140 |
+
|
141 |
+
lift_definition hash_view :: "(view\<^sub>m, view\<^sub>h) hash" is
|
142 |
+
"hash_tree hash_view_content" .
|
143 |
+
|
144 |
+
lift_definition blinding_of_view :: "view\<^sub>m blinding_of" is
|
145 |
+
"blinding_of_tree hash_view_content blinding_of_view_content" .
|
146 |
+
|
147 |
+
lift_definition merge_view :: "view\<^sub>m merge" is
|
148 |
+
"merge_tree hash_view_content merge_view_content" .
|
149 |
+
|
150 |
+
lemma merkle_view [locale_witness]: "merkle_interface hash_view blinding_of_view merge_view"
|
151 |
+
by transfer unfold_locales
|
152 |
+
|
153 |
+
lemma hash_view_simps [simp]:
|
154 |
+
"hash_view (View\<^sub>m x) =
|
155 |
+
View\<^sub>h (hash_blindable (hash_prod hash_view_content (hash_list hash_view)) x)"
|
156 |
+
by transfer(simp add: hash_rt_F\<^sub>m_def prod.map_comp hash_blindable_def blindable\<^sub>m.map_id)
|
157 |
+
|
158 |
+
lemma blinding_of_view_iff [simp]:
|
159 |
+
"blinding_of_view (View\<^sub>m x) (View\<^sub>m y) \<longleftrightarrow>
|
160 |
+
blinding_of_blindable (hash_prod hash_view_content (hash_list hash_view))
|
161 |
+
(blinding_of_prod blinding_of_view_content (blinding_of_list blinding_of_view)) x y"
|
162 |
+
by transfer simp
|
163 |
+
|
164 |
+
lemma blinding_of_view_induct [consumes 1, induct pred: blinding_of_view]:
|
165 |
+
assumes "blinding_of_view x y"
|
166 |
+
and "\<And>x y. blinding_of_blindable (hash_prod hash_view_content (hash_list hash_view))
|
167 |
+
(blinding_of_prod blinding_of_view_content (blinding_of_list (\<lambda>x y. blinding_of_view x y \<and> P x y))) x y
|
168 |
+
\<Longrightarrow> P (View\<^sub>m x) (View\<^sub>m y)"
|
169 |
+
shows "P x y"
|
170 |
+
using assms by transfer(rule blinding_of_tree.induct)
|
171 |
+
|
172 |
+
lemma merge_view_simps [simp]:
|
173 |
+
"merge_view (View\<^sub>m x) (View\<^sub>m y) =
|
174 |
+
map_option View\<^sub>m (merge_rt_F\<^sub>m hash_view_content merge_view_content hash_view merge_view x y)"
|
175 |
+
by transfer simp
|
176 |
+
|
177 |
+
end
|
178 |
+
|
179 |
+
subsection \<open>Transaction trees as authenticated data structures\<close>
|
180 |
+
|
181 |
+
type_synonym common_metadata\<^sub>h = "common_metadata blindable\<^sub>h"
|
182 |
+
type_synonym common_metadata\<^sub>m = "(common_metadata, common_metadata) blindable\<^sub>m"
|
183 |
+
|
184 |
+
type_synonym participant_metadata\<^sub>h = "participant_metadata blindable\<^sub>h"
|
185 |
+
type_synonym participant_metadata\<^sub>m = "(participant_metadata, participant_metadata) blindable\<^sub>m"
|
186 |
+
|
187 |
+
datatype transaction\<^sub>h = Transaction\<^sub>h
|
188 |
+
(the_Transaction\<^sub>h: "((common_metadata\<^sub>h \<times>\<^sub>h participant_metadata\<^sub>h) \<times>\<^sub>h view\<^sub>h list\<^sub>h) blindable\<^sub>h")
|
189 |
+
|
190 |
+
datatype transaction\<^sub>m = Transaction\<^sub>m
|
191 |
+
(the_Transaction\<^sub>m: "((common_metadata\<^sub>m \<times>\<^sub>m participant_metadata\<^sub>m) \<times>\<^sub>m view\<^sub>m list\<^sub>m,
|
192 |
+
(common_metadata\<^sub>h \<times>\<^sub>h participant_metadata\<^sub>h) \<times>\<^sub>h view\<^sub>h list\<^sub>h) blindable\<^sub>m")
|
193 |
+
|
194 |
+
abbreviation (input) hash_common_metadata :: "(common_metadata\<^sub>m, common_metadata\<^sub>h) hash" where
|
195 |
+
"hash_common_metadata \<equiv> hash_blindable id"
|
196 |
+
abbreviation (input) blinding_of_common_metadata :: "common_metadata\<^sub>m blinding_of" where
|
197 |
+
"blinding_of_common_metadata \<equiv> blinding_of_blindable id (=)"
|
198 |
+
abbreviation (input) merge_common_metadata :: "common_metadata\<^sub>m merge" where
|
199 |
+
"merge_common_metadata \<equiv> merge_blindable id merge_discrete"
|
200 |
+
|
201 |
+
abbreviation (input) hash_participant_metadata :: "(participant_metadata\<^sub>m, participant_metadata\<^sub>h) hash" where
|
202 |
+
"hash_participant_metadata \<equiv> hash_blindable id"
|
203 |
+
abbreviation (input) blinding_of_participant_metadata :: "participant_metadata\<^sub>m blinding_of" where
|
204 |
+
"blinding_of_participant_metadata \<equiv> blinding_of_blindable id (=)"
|
205 |
+
abbreviation (input) merge_participant_metadata :: "participant_metadata\<^sub>m merge" where
|
206 |
+
"merge_participant_metadata \<equiv> merge_blindable id merge_discrete"
|
207 |
+
|
208 |
+
locale transaction_merkle begin
|
209 |
+
|
210 |
+
lemma iso_transaction\<^sub>h: "type_definition the_Transaction\<^sub>h Transaction\<^sub>h UNIV"
|
211 |
+
by unfold_locales simp_all
|
212 |
+
|
213 |
+
setup_lifting iso_transaction\<^sub>h
|
214 |
+
|
215 |
+
lemma Transaction\<^sub>h_transfer [transfer_rule]: includes lifting_syntax shows
|
216 |
+
"((=) ===> pcr_transaction\<^sub>h) id Transaction\<^sub>h"
|
217 |
+
by(simp add: transaction\<^sub>h.pcr_cr_eq cr_transaction\<^sub>h_def rel_fun_def)
|
218 |
+
|
219 |
+
lemma iso_transaction\<^sub>m: "type_definition the_Transaction\<^sub>m Transaction\<^sub>m UNIV"
|
220 |
+
by unfold_locales simp_all
|
221 |
+
|
222 |
+
setup_lifting iso_transaction\<^sub>m
|
223 |
+
|
224 |
+
lemma Transaction\<^sub>m_transfer [transfer_rule]: includes lifting_syntax shows
|
225 |
+
"((=) ===> pcr_transaction\<^sub>m) id Transaction\<^sub>m"
|
226 |
+
by(simp add: transaction\<^sub>m.pcr_cr_eq cr_transaction\<^sub>m_def rel_fun_def)
|
227 |
+
|
228 |
+
end
|
229 |
+
|
230 |
+
code_datatype Transaction\<^sub>h
|
231 |
+
code_datatype Transaction\<^sub>m
|
232 |
+
|
233 |
+
context begin
|
234 |
+
interpretation transaction_merkle .
|
235 |
+
|
236 |
+
lift_definition hash_transaction :: "(transaction\<^sub>m, transaction\<^sub>h) hash" is
|
237 |
+
"hash_blindable (hash_prod (hash_prod hash_common_metadata hash_participant_metadata) (hash_list hash_view))" .
|
238 |
+
|
239 |
+
lift_definition blinding_of_transaction :: "transaction\<^sub>m blinding_of" is
|
240 |
+
"blinding_of_blindable
|
241 |
+
(hash_prod (hash_prod hash_common_metadata hash_participant_metadata) (hash_list hash_view))
|
242 |
+
(blinding_of_prod (blinding_of_prod blinding_of_common_metadata blinding_of_participant_metadata) (blinding_of_list blinding_of_view))" .
|
243 |
+
|
244 |
+
lift_definition merge_transaction :: "transaction\<^sub>m merge" is
|
245 |
+
"merge_blindable
|
246 |
+
(hash_prod (hash_prod hash_common_metadata hash_participant_metadata) (hash_list hash_view))
|
247 |
+
(merge_prod (merge_prod merge_common_metadata merge_participant_metadata) (merge_list merge_view))" .
|
248 |
+
|
249 |
+
lemma merkle_transaction [locale_witness]:
|
250 |
+
"merkle_interface hash_transaction blinding_of_transaction merge_transaction"
|
251 |
+
by transfer unfold_locales
|
252 |
+
|
253 |
+
lemmas hash_transaction_simps [simp] = hash_transaction.abs_eq
|
254 |
+
lemmas blinding_of_transaction_iff [simp] = blinding_of_transaction.abs_eq
|
255 |
+
lemmas merge_transaction_simps [simp] = merge_transaction.abs_eq
|
256 |
+
|
257 |
+
end
|
258 |
+
|
259 |
+
interpretation transaction:
|
260 |
+
merkle_interface hash_transaction blinding_of_transaction merge_transaction
|
261 |
+
by(rule merkle_transaction)
|
262 |
+
|
263 |
+
subsection \<open>
|
264 |
+
Constructing authenticated data structures for views
|
265 |
+
\<close>
|
266 |
+
|
267 |
+
context view_merkle begin
|
268 |
+
|
269 |
+
type_synonym view' = "(view_metadata \<times> view_data) rose_tree"
|
270 |
+
|
271 |
+
primrec from_view :: "view \<Rightarrow> view'" where
|
272 |
+
"from_view (View vm vd vs) = Tree ((vm, vd), map from_view vs)"
|
273 |
+
|
274 |
+
primrec to_view :: "view' \<Rightarrow> view" where
|
275 |
+
"to_view (Tree x) = View (fst (fst x)) (snd (fst x)) (snd (map_prod id (map to_view) x))"
|
276 |
+
|
277 |
+
lemma from_to_view [simp]: "from_view (to_view x) = x"
|
278 |
+
by(induction x)(clarsimp cong: map_cong)
|
279 |
+
|
280 |
+
lemma to_from_view [simp]: "to_view (from_view x) = x"
|
281 |
+
by(induction x)(clarsimp cong: map_cong)
|
282 |
+
|
283 |
+
lemma iso_view: "type_definition from_view to_view UNIV"
|
284 |
+
by unfold_locales simp_all
|
285 |
+
|
286 |
+
setup_lifting iso_view
|
287 |
+
|
288 |
+
definition View' :: "(view_metadata \<times> view_data) \<times> view list \<Rightarrow> view" where
|
289 |
+
"View' = (\<lambda>((vm, vd), vs). View vm vd vs)"
|
290 |
+
|
291 |
+
lemma View_View': "View = (\<lambda>vm vd vs. View' ((vm, vd), vs))"
|
292 |
+
by(simp add: View'_def)
|
293 |
+
|
294 |
+
lemma cr_view_Grp: "cr_view = Grp UNIV to_view"
|
295 |
+
by(simp add: cr_view_def Grp_def fun_eq_iff)(transfer, auto)
|
296 |
+
|
297 |
+
lemma View'_transfer [transfer_rule]: includes lifting_syntax shows
|
298 |
+
"(rel_prod (=) (list_all2 pcr_view) ===> pcr_view) Tree View'"
|
299 |
+
by(simp add: view.pcr_cr_eq cr_view_Grp eq_alt prod.rel_Grp rose_tree.rel_Grp list.rel_Grp)
|
300 |
+
(auto simp add: Grp_def View'_def)
|
301 |
+
|
302 |
+
end
|
303 |
+
|
304 |
+
code_datatype View
|
305 |
+
|
306 |
+
context begin
|
307 |
+
interpretation view_merkle .
|
308 |
+
|
309 |
+
abbreviation embed_view_content :: "view_metadata \<times> view_data \<Rightarrow> view_metadata\<^sub>m \<times> view_data\<^sub>m" where
|
310 |
+
"embed_view_content \<equiv> map_prod Unblinded Unblinded"
|
311 |
+
|
312 |
+
lift_definition embed_view :: "view \<Rightarrow> view\<^sub>m" is "embed_source_tree embed_view_content" .
|
313 |
+
|
314 |
+
lemma embed_view_simps [simp]:
|
315 |
+
"embed_view (View vm vd vs) = View\<^sub>m (Unblinded ((Unblinded vm, Unblinded vd), map embed_view vs))"
|
316 |
+
unfolding View_View' by transfer simp
|
317 |
+
|
318 |
+
end
|
319 |
+
|
320 |
+
context transaction_merkle begin
|
321 |
+
|
322 |
+
primrec the_Transaction :: "transaction \<Rightarrow> (common_metadata \<times> participant_metadata) \<times> view list" where
|
323 |
+
"the_Transaction (Transaction cm pm views) = ((cm, pm), views)" for views
|
324 |
+
|
325 |
+
definition Transaction' :: "(common_metadata \<times> participant_metadata) \<times> view list \<Rightarrow> transaction" where
|
326 |
+
"Transaction' = (\<lambda>((cm, pm), views). Transaction cm pm views)"
|
327 |
+
|
328 |
+
lemma Transaction_Transaction': "Transaction = (\<lambda>cm pm views. Transaction' ((cm, pm), views))"
|
329 |
+
by(simp add: Transaction'_def)
|
330 |
+
|
331 |
+
lemma the_Transaction_inverse [simp]: "Transaction' (the_Transaction x) = x"
|
332 |
+
by(cases x)(simp add: Transaction'_def)
|
333 |
+
|
334 |
+
lemma Transaction'_inverse [simp]: "the_Transaction (Transaction' x) = x"
|
335 |
+
by(simp add: Transaction'_def split_def)
|
336 |
+
|
337 |
+
lemma iso_transaction: "type_definition the_Transaction Transaction' UNIV"
|
338 |
+
by unfold_locales simp_all
|
339 |
+
|
340 |
+
setup_lifting iso_transaction
|
341 |
+
|
342 |
+
lemma Transaction'_transfer [transfer_rule]: includes lifting_syntax shows
|
343 |
+
"((=) ===> pcr_transaction) id Transaction'"
|
344 |
+
by(simp add: transaction.pcr_cr_eq cr_transaction_def rel_fun_def)
|
345 |
+
|
346 |
+
end
|
347 |
+
|
348 |
+
code_datatype Transaction
|
349 |
+
|
350 |
+
context begin
|
351 |
+
interpretation transaction_merkle .
|
352 |
+
|
353 |
+
lift_definition embed_transaction :: "transaction \<Rightarrow> transaction\<^sub>m" is
|
354 |
+
"Unblinded \<circ> map_prod (map_prod Unblinded Unblinded) (map embed_view)" .
|
355 |
+
|
356 |
+
lemma embed_transaction_simps [simp]:
|
357 |
+
"embed_transaction (Transaction cm pm views) =
|
358 |
+
Transaction\<^sub>m (Unblinded ((Unblinded cm, Unblinded pm), map embed_view views))"
|
359 |
+
for views unfolding Transaction_Transaction' by transfer simp
|
360 |
+
|
361 |
+
end
|
362 |
+
|
363 |
+
subsubsection \<open>Inclusion proof for the mediator\<close>
|
364 |
+
|
365 |
+
primrec mediator_view :: "view \<Rightarrow> view\<^sub>m" where
|
366 |
+
"mediator_view (View vm vd vs) =
|
367 |
+
View\<^sub>m (Unblinded ((Unblinded vm, Blinded (Content vd)), map mediator_view vs))"
|
368 |
+
|
369 |
+
primrec mediator_transaction_tree :: "transaction \<Rightarrow> transaction\<^sub>m" where
|
370 |
+
"mediator_transaction_tree (Transaction cm pm views) =
|
371 |
+
Transaction\<^sub>m (Unblinded ((Unblinded cm, Blinded (Content pm)), map mediator_view views))"
|
372 |
+
for views
|
373 |
+
|
374 |
+
lemma blinding_of_mediator_view [simp]: "blinding_of_view (mediator_view view) (embed_view view)"
|
375 |
+
by(induction view)(auto simp add: list.rel_map intro!: list.rel_refl_strong)
|
376 |
+
|
377 |
+
lemma blinding_of_mediator_transaction_tree:
|
378 |
+
"blinding_of_transaction (mediator_transaction_tree tt) (embed_transaction tt)"
|
379 |
+
by(cases tt)(auto simp add: list.rel_map intro: list.rel_refl_strong)
|
380 |
+
|
381 |
+
subsubsection \<open>Inclusion proofs for participants\<close>
|
382 |
+
|
383 |
+
text \<open>Next, we define a function for producing all transaction views from a given view,
|
384 |
+
and prove its properties.\<close>
|
385 |
+
|
386 |
+
type_synonym view_path_elem = "(view_metadata \<times> view_data) blindable \<times> view list \<times> view list"
|
387 |
+
type_synonym view_path = "view_path_elem list"
|
388 |
+
type_synonym view_zipper = "view_path \<times> view"
|
389 |
+
|
390 |
+
type_synonym view_path_elem\<^sub>m = "(view_metadata\<^sub>m \<times>\<^sub>m view_data\<^sub>m) \<times> view\<^sub>m list\<^sub>m \<times> view\<^sub>m list\<^sub>m"
|
391 |
+
type_synonym view_path\<^sub>m = "view_path_elem\<^sub>m list"
|
392 |
+
type_synonym view_zipper\<^sub>m = "view_path\<^sub>m \<times> view\<^sub>m"
|
393 |
+
|
394 |
+
context begin
|
395 |
+
interpretation view_merkle .
|
396 |
+
|
397 |
+
lift_definition zipper_of_view :: "view \<Rightarrow> view_zipper" is zipper_of_tree .
|
398 |
+
lift_definition view_of_zipper :: "view_zipper \<Rightarrow> view" is tree_of_zipper .
|
399 |
+
|
400 |
+
lift_definition zipper_of_view\<^sub>m :: "view\<^sub>m \<Rightarrow> view_zipper\<^sub>m" is zipper_of_tree\<^sub>m .
|
401 |
+
lift_definition view_of_zipper\<^sub>m :: "view_zipper\<^sub>m \<Rightarrow> view\<^sub>m" is tree_of_zipper\<^sub>m .
|
402 |
+
|
403 |
+
lemma view_of_zipper\<^sub>m_Nil [simp]: "view_of_zipper\<^sub>m ([], t) = t"
|
404 |
+
by transfer simp
|
405 |
+
|
406 |
+
lift_definition blind_view_path_elem :: "view_path_elem \<Rightarrow> view_path_elem\<^sub>m" is
|
407 |
+
"blind_path_elem embed_view_content hash_view_content" .
|
408 |
+
|
409 |
+
lift_definition blind_view_path :: "view_path \<Rightarrow> view_path\<^sub>m" is
|
410 |
+
"blind_path embed_view_content hash_view_content" .
|
411 |
+
|
412 |
+
lift_definition embed_view_path_elem :: "view_path_elem \<Rightarrow> view_path_elem\<^sub>m" is
|
413 |
+
"embed_path_elem embed_view_content" .
|
414 |
+
|
415 |
+
lift_definition embed_view_path :: "view_path \<Rightarrow> view_path\<^sub>m" is
|
416 |
+
"embed_path embed_view_content" .
|
417 |
+
|
418 |
+
lift_definition hash_view_path_elem :: "view_path_elem\<^sub>m \<Rightarrow> (view_content\<^sub>h \<times> view\<^sub>h list \<times> view\<^sub>h list)" is
|
419 |
+
"hash_path_elem hash_view_content" .
|
420 |
+
|
421 |
+
lift_definition zippers_view :: "view_zipper \<Rightarrow> view_zipper\<^sub>m list" is
|
422 |
+
"zippers_rose_tree embed_view_content hash_view_content" .
|
423 |
+
|
424 |
+
lemma embed_view_path_Nil [simp]: "embed_view_path [] = []"
|
425 |
+
by transfer(simp add: embed_path_def)
|
426 |
+
|
427 |
+
lemma zippers_view_same_hash:
|
428 |
+
assumes "z \<in> set (zippers_view (p, t))"
|
429 |
+
shows "hash_view (view_of_zipper\<^sub>m z) = hash_view (view_of_zipper\<^sub>m (embed_view_path p, embed_view t))"
|
430 |
+
using assms by transfer(rule zippers_rose_tree_same_hash')
|
431 |
+
|
432 |
+
lemma zippers_view_blinding_of:
|
433 |
+
assumes "z \<in> set (zippers_view (p, t))"
|
434 |
+
shows "blinding_of_view (view_of_zipper\<^sub>m z) (view_of_zipper\<^sub>m (blind_view_path p, embed_view t))"
|
435 |
+
using assms by transfer(rule zippers_rose_tree_blinding_of, unfold_locales)
|
436 |
+
|
437 |
+
end
|
438 |
+
|
439 |
+
primrec blind_view :: "view \<Rightarrow> view\<^sub>m" where
|
440 |
+
"blind_view (View vm vd subviews) =
|
441 |
+
View\<^sub>m (Blinded (Content ((Content vm, Content vd), map (hash_view \<circ> embed_view) subviews)))"
|
442 |
+
for subviews
|
443 |
+
|
444 |
+
lemma hash_blind_view: "hash_view (blind_view view) = hash_view (embed_view view)"
|
445 |
+
by(cases view) simp
|
446 |
+
|
447 |
+
primrec blind_transaction :: "transaction \<Rightarrow> transaction\<^sub>m" where
|
448 |
+
"blind_transaction (Transaction cm pm views) =
|
449 |
+
Transaction\<^sub>m (Blinded (Content ((Content cm, Content pm), map (hash_view \<circ> blind_view) views)))"
|
450 |
+
for views
|
451 |
+
|
452 |
+
lemma hash_blind_transaction:
|
453 |
+
"hash_transaction (blind_transaction transaction) = hash_transaction (embed_transaction transaction)"
|
454 |
+
by(cases transaction)(simp add: hash_blind_view)
|
455 |
+
|
456 |
+
|
457 |
+
typedecl participant
|
458 |
+
consts recipients :: "view_metadata \<Rightarrow> participant list"
|
459 |
+
|
460 |
+
fun view_recipients :: "view\<^sub>m \<Rightarrow> participant set" where
|
461 |
+
"view_recipients (View\<^sub>m (Unblinded ((Unblinded vm, vd), subviews))) = set (recipients vm)" for subviews
|
462 |
+
| "view_recipients _ = {}" \<comment> \<open>Sane default case\<close>
|
463 |
+
|
464 |
+
context fixes participant :: participant begin
|
465 |
+
|
466 |
+
definition view_trees_for :: "view \<Rightarrow> view\<^sub>m list" where
|
467 |
+
"view_trees_for view =
|
468 |
+
map view_of_zipper\<^sub>m
|
469 |
+
(filter (\<lambda>(_, t). participant \<in> view_recipients t)
|
470 |
+
(zippers_view ([], view)))"
|
471 |
+
|
472 |
+
primrec transaction_views_for :: "transaction \<Rightarrow> transaction\<^sub>m list" where
|
473 |
+
"transaction_views_for (Transaction cm pm views) =
|
474 |
+
map (\<lambda>view\<^sub>m. Transaction\<^sub>m (Unblinded ((Unblinded cm, Unblinded pm), view\<^sub>m)))
|
475 |
+
(concat (map (\<lambda>(l, v, r). map (\<lambda>v\<^sub>m. map blind_view l @ [v\<^sub>m] @ map blind_view r) (view_trees_for v)) (splits views)))"
|
476 |
+
for views
|
477 |
+
|
478 |
+
lemma view_trees_for_same_hash:
|
479 |
+
"vt \<in> set (view_trees_for view) \<Longrightarrow> hash_view vt = hash_view (embed_view view)"
|
480 |
+
by(auto simp add: view_trees_for_def dest: zippers_view_same_hash)
|
481 |
+
|
482 |
+
lemma transaction_views_for_same_hash:
|
483 |
+
"t\<^sub>m \<in> set (transaction_views_for t) \<Longrightarrow> hash_transaction t\<^sub>m = hash_transaction (embed_transaction t)"
|
484 |
+
by(cases t)(clarsimp simp add: splits_iff hash_blind_view view_trees_for_same_hash)
|
485 |
+
|
486 |
+
definition transaction_projection_for :: "transaction \<Rightarrow> transaction\<^sub>m" where
|
487 |
+
"transaction_projection_for t =
|
488 |
+
(let tvs = transaction_views_for t
|
489 |
+
in if tvs = [] then blind_transaction t else the (transaction.Merge (set tvs)))"
|
490 |
+
|
491 |
+
lemma transaction_projection_for_same_hash:
|
492 |
+
"hash_transaction (transaction_projection_for t) = hash_transaction (embed_transaction t)"
|
493 |
+
proof(cases "transaction_views_for t = []")
|
494 |
+
case True thus ?thesis by(simp add: transaction_projection_for_def Let_def hash_blind_transaction)
|
495 |
+
next
|
496 |
+
case False
|
497 |
+
then have "transaction.Merge (set (transaction_views_for t)) \<noteq> None"
|
498 |
+
by(intro transaction.Merge_defined)(auto simp add: transaction_views_for_same_hash)
|
499 |
+
with False show ?thesis
|
500 |
+
apply(clarsimp simp add: transaction_projection_for_def neq_Nil_conv simp del: transaction.Merge_insert)
|
501 |
+
apply(drule transaction.Merge_hash[symmetric], blast)
|
502 |
+
apply(auto intro: transaction_views_for_same_hash)
|
503 |
+
done
|
504 |
+
qed
|
505 |
+
|
506 |
+
lemma transaction_projection_for_upper:
|
507 |
+
assumes "t\<^sub>m \<in> set (transaction_views_for t)"
|
508 |
+
shows "blinding_of_transaction t\<^sub>m (transaction_projection_for t)"
|
509 |
+
proof -
|
510 |
+
from assms have "transaction.Merge (set (transaction_views_for t)) \<noteq> None"
|
511 |
+
by(intro transaction.Merge_defined)(auto simp add: transaction_views_for_same_hash)
|
512 |
+
with assms show ?thesis
|
513 |
+
by(auto simp add: transaction_projection_for_def Let_def dest: transaction.Merge_upper)
|
514 |
+
qed
|
515 |
+
|
516 |
+
end
|
517 |
+
|
518 |
+
end
|
formal/afp/ADS_Functor/Generic_ADS_Construction.thy
ADDED
@@ -0,0 +1,469 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
(* Author: Andreas Lochbihler, Digital Asset
|
2 |
+
Author: Ognjen Maric, Digital Asset *)
|
3 |
+
|
4 |
+
theory Generic_ADS_Construction imports
|
5 |
+
"Merkle_Interface"
|
6 |
+
"HOL-Library.BNF_Axiomatization"
|
7 |
+
begin
|
8 |
+
|
9 |
+
section \<open>Generic construction of authenticated data structures\<close>
|
10 |
+
|
11 |
+
subsection \<open>Functors\<close>
|
12 |
+
|
13 |
+
subsubsection \<open>Source functor\<close>
|
14 |
+
|
15 |
+
text \<open>
|
16 |
+
|
17 |
+
We want to allow ADSs of arbitrary ADTs, which we call "source trees". The ADTs we are interested in can
|
18 |
+
in general be represented as the least fixpoints of some bounded natural (bi-)functor (BNF) \<open>('a, 'b) F\<close>, where
|
19 |
+
@{typ 'a} is the type of "source" data, and @{typ 'b} is a recursion "handle".
|
20 |
+
However, Isabelle's type system does not support higher kinds, necessary to parameterize our definitions
|
21 |
+
over functors.
|
22 |
+
Instead, we first develop a general theory of ADSs over an arbitrary, but fixed functor,
|
23 |
+
and its least fixpoint. We show that the theory is compositional, in that the functor's least fixed point
|
24 |
+
can then be reused as the "source" data of another functor.
|
25 |
+
|
26 |
+
We start by defining the arbitrary fixed functor, its fixpoints, and showing how composition can be
|
27 |
+
done. A higher-level explanation is found in the paper.
|
28 |
+
\<close>
|
29 |
+
|
30 |
+
|
31 |
+
bnf_axiomatization ('a, 'b) F [wits: "'a \<Rightarrow> ('a, 'b) F"]
|
32 |
+
|
33 |
+
context notes [[typedef_overloaded]] begin
|
34 |
+
datatype 'a T = T "('a, 'a T) F"
|
35 |
+
end
|
36 |
+
|
37 |
+
subsubsection \<open>Base Merkle functor\<close>
|
38 |
+
|
39 |
+
text \<open>
|
40 |
+
This type captures the ADS hashes.
|
41 |
+
\<close>
|
42 |
+
|
43 |
+
bnf_axiomatization ('a, 'b) F\<^sub>h [wits: "'a \<Rightarrow> ('a, 'b) F\<^sub>h"]
|
44 |
+
|
45 |
+
text \<open>
|
46 |
+
It intuitively contains mixed garbage and source values.
|
47 |
+
The functor's recursive handle @{typ 'b} might contain partial garbage.
|
48 |
+
\<close>
|
49 |
+
|
50 |
+
|
51 |
+
text \<open>
|
52 |
+
This type captures the ADS inclusion proofs.
|
53 |
+
The functor \<open>('a, 'a', 'b, 'b') F\<^sub>m\<close> has all type variables doubled.
|
54 |
+
This type represents all values including the information which parts are blinded.
|
55 |
+
The original type variable @{typ 'a} now represents the source data, which for compositionality can contain blindable positions.
|
56 |
+
The type @{typ 'b} is a recursive handle to inclusion sub-proofs (which can be partialy blinded).
|
57 |
+
The type @{typ 'a'} represent "hashes" of the source data in @{typ 'a}, i.e., a mix of source values and garbage.
|
58 |
+
The type @{typ 'b'} is a recursive handle to ADS hashes of subtrees.
|
59 |
+
|
60 |
+
The corresponding type of recursive authenticated trees is then a fixpoint of this functor.
|
61 |
+
\<close>
|
62 |
+
|
63 |
+
bnf_axiomatization ('a\<^sub>m, 'a\<^sub>h, 'b\<^sub>m, 'b\<^sub>h) F\<^sub>m [wits: "'a\<^sub>m \<Rightarrow> 'a\<^sub>h \<Rightarrow> 'b\<^sub>h \<Rightarrow> ('a\<^sub>m, 'a\<^sub>h, 'b\<^sub>m, 'b\<^sub>h) F\<^sub>m"]
|
64 |
+
|
65 |
+
subsubsection \<open>Least fixpoint\<close>
|
66 |
+
|
67 |
+
context notes [[typedef_overloaded]] begin
|
68 |
+
datatype 'a\<^sub>h T\<^sub>h = T\<^sub>h "('a\<^sub>h, 'a\<^sub>h T\<^sub>h) F\<^sub>h"
|
69 |
+
end
|
70 |
+
|
71 |
+
context notes [[typedef_overloaded]] begin
|
72 |
+
datatype ('a\<^sub>m, 'a\<^sub>h) T\<^sub>m = T\<^sub>m (the_T\<^sub>m: "('a\<^sub>m, 'a\<^sub>h, ('a\<^sub>m, 'a\<^sub>h) T\<^sub>m, 'a\<^sub>h T\<^sub>h) F\<^sub>m")
|
73 |
+
end
|
74 |
+
|
75 |
+
|
76 |
+
subsubsection \<open> Composition \<close>
|
77 |
+
|
78 |
+
text \<open>
|
79 |
+
Finally, we show how to compose two Merkle functors.
|
80 |
+
For simplicity, we reuse @{typ \<open>('a, 'b) F\<close>} and @{typ \<open>'a T\<close>}.
|
81 |
+
\<close>
|
82 |
+
|
83 |
+
context notes [[typedef_overloaded]] begin
|
84 |
+
|
85 |
+
datatype ('a, 'b) G = G "('a T, 'b) F"
|
86 |
+
|
87 |
+
datatype ('a\<^sub>h, 'b\<^sub>h) G\<^sub>h = G\<^sub>h (the_G\<^sub>h: "('a\<^sub>h T\<^sub>h, 'b\<^sub>h) F\<^sub>h")
|
88 |
+
|
89 |
+
datatype ('a\<^sub>m, 'a\<^sub>h, 'b\<^sub>m, 'b\<^sub>h) G\<^sub>m = G\<^sub>m (the_G\<^sub>m: "(('a\<^sub>m, 'a\<^sub>h) T\<^sub>m, 'a\<^sub>h T\<^sub>h, 'b\<^sub>m, 'b\<^sub>h) F\<^sub>m")
|
90 |
+
|
91 |
+
end
|
92 |
+
|
93 |
+
|
94 |
+
subsection \<open>Root hash\<close>
|
95 |
+
|
96 |
+
subsubsection \<open>Base functor\<close>
|
97 |
+
|
98 |
+
text \<open>
|
99 |
+
The root hash of an authenticated value is modelled as a blindable value of type @{typ "('a', 'b') F\<^sub>h"}.
|
100 |
+
(Actually, we want to use an abstract datatype for root hashes, but we omit this distinction here for simplicity.)
|
101 |
+
\<close>
|
102 |
+
|
103 |
+
consts root_hash_F' :: "(('a\<^sub>h, 'a\<^sub>h, 'b\<^sub>h, 'b\<^sub>h) F\<^sub>m, ('a\<^sub>h, 'b\<^sub>h) F\<^sub>h) hash"
|
104 |
+
\<comment> \<open>Root hash operation where we assume that all atoms have already been replaced by root hashes.
|
105 |
+
This assumption is reflected in the equality of the type parameters of @{type F\<^sub>m} \<close>
|
106 |
+
|
107 |
+
type_synonym ('a\<^sub>m, 'a\<^sub>h, 'b\<^sub>m, 'b\<^sub>h) hash_F =
|
108 |
+
"('a\<^sub>m, 'a\<^sub>h) hash \<Rightarrow> ('b\<^sub>m, 'b\<^sub>h) hash \<Rightarrow> (('a\<^sub>m, 'a\<^sub>h, 'b\<^sub>m, 'b\<^sub>h) F\<^sub>m, ('a\<^sub>h, 'b\<^sub>h) F\<^sub>h) hash"
|
109 |
+
definition root_hash_F :: "('a\<^sub>m, 'a\<^sub>h, 'b\<^sub>m, 'b\<^sub>h) hash_F" where
|
110 |
+
"root_hash_F rha rhb = root_hash_F' \<circ> map_F\<^sub>m rha id rhb id"
|
111 |
+
|
112 |
+
subsubsection \<open>Least fixpoint\<close>
|
113 |
+
|
114 |
+
primrec root_hash_T' :: "(('a\<^sub>h, 'a\<^sub>h) T\<^sub>m, 'a\<^sub>h T\<^sub>h) hash" where
|
115 |
+
"root_hash_T' (T\<^sub>m x) = T\<^sub>h (root_hash_F' (map_F\<^sub>m id id root_hash_T' id x))"
|
116 |
+
|
117 |
+
definition root_hash_T :: "('a\<^sub>m, 'a\<^sub>h) hash \<Rightarrow> (('a\<^sub>m, 'a\<^sub>h) T\<^sub>m, 'a\<^sub>h T\<^sub>h) hash" where
|
118 |
+
"root_hash_T rha = root_hash_T' \<circ> map_T\<^sub>m rha id"
|
119 |
+
|
120 |
+
lemma root_hash_T_simps [simp]:
|
121 |
+
"root_hash_T rha (T\<^sub>m x) = T\<^sub>h (root_hash_F rha (root_hash_T rha) x)"
|
122 |
+
by(simp add: root_hash_T_def F\<^sub>m.map_comp root_hash_F_def T\<^sub>h.map_id0)
|
123 |
+
|
124 |
+
subsubsection \<open>Composition\<close>
|
125 |
+
|
126 |
+
primrec root_hash_G' :: "(('a\<^sub>h, 'a\<^sub>h, 'b\<^sub>h, 'b\<^sub>h) G\<^sub>m, ('a\<^sub>h, 'b\<^sub>h) G\<^sub>h) hash" where
|
127 |
+
"root_hash_G' (G\<^sub>m x) = G\<^sub>h (root_hash_F' (map_F\<^sub>m root_hash_T' id id id x))"
|
128 |
+
|
129 |
+
definition root_hash_G :: "('a\<^sub>m, 'a\<^sub>h) hash \<Rightarrow> ('b\<^sub>m, 'b\<^sub>h) hash \<Rightarrow> (('a\<^sub>m, 'a\<^sub>h, 'b\<^sub>m, 'b\<^sub>h) G\<^sub>m, ('a\<^sub>h, 'b\<^sub>h) G\<^sub>h) hash" where
|
130 |
+
"root_hash_G rha rhb = root_hash_G' \<circ> map_G\<^sub>m rha id rhb id"
|
131 |
+
|
132 |
+
lemma root_hash_G_unfold:
|
133 |
+
"root_hash_G rha rhb = G\<^sub>h \<circ> root_hash_F (root_hash_T rha) rhb \<circ> the_G\<^sub>m"
|
134 |
+
apply(rule ext)
|
135 |
+
subgoal for x
|
136 |
+
by(cases x)(simp add: root_hash_G_def fun_eq_iff root_hash_F_def root_hash_T_def F\<^sub>m.map_comp T\<^sub>m.map_comp o_def T\<^sub>h.map_id id_def[symmetric])
|
137 |
+
done
|
138 |
+
|
139 |
+
lemma root_hash_G_simps [simp]:
|
140 |
+
"root_hash_G rha rhb (G\<^sub>m x) = G\<^sub>h (root_hash_F (root_hash_T rha) rhb x)"
|
141 |
+
by(simp add: root_hash_G_def root_hash_T_def F\<^sub>m.map_comp root_hash_F_def T\<^sub>h.map_id0)
|
142 |
+
|
143 |
+
|
144 |
+
subsection \<open>Blinding relation\<close>
|
145 |
+
|
146 |
+
text \<open>
|
147 |
+
The blinding relation determines whether one ADS value is a blinding of another.
|
148 |
+
\<close>
|
149 |
+
|
150 |
+
subsubsection \<open> Blinding on the base functor (@{type F\<^sub>m}) \<close>
|
151 |
+
|
152 |
+
type_synonym ('a\<^sub>m, 'a\<^sub>h, 'b\<^sub>m, 'b\<^sub>h) blinding_of_F =
|
153 |
+
"('a\<^sub>m, 'a\<^sub>h) hash \<Rightarrow> 'a\<^sub>m blinding_of \<Rightarrow> ('b\<^sub>m, 'b\<^sub>h) hash \<Rightarrow> 'b\<^sub>m blinding_of \<Rightarrow> ('a\<^sub>m, 'a\<^sub>h, 'b\<^sub>m, 'b\<^sub>h) F\<^sub>m blinding_of"
|
154 |
+
|
155 |
+
\<comment> \<open> Computes whether a partially blinded ADS is a blinding of another one \<close>
|
156 |
+
axiomatization blinding_of_F :: "('a\<^sub>m, 'a\<^sub>h, 'b\<^sub>m, 'b\<^sub>h) blinding_of_F" where
|
157 |
+
blinding_of_F_mono: "\<lbrakk> boa \<le> boa'; bob \<le> bob' \<rbrakk>
|
158 |
+
\<Longrightarrow> blinding_of_F rha boa rhb bob \<le> blinding_of_F rha boa' rhb bob'"
|
159 |
+
\<comment> \<open> Monotonicity must be unconditional (without the assumption @{text "blinding_of_on"})
|
160 |
+
such that we can justify the recursive definition for the least fixpoint. \<close>
|
161 |
+
and blinding_respects_hashes_F [locale_witness]:
|
162 |
+
"\<lbrakk> blinding_respects_hashes rha boa; blinding_respects_hashes rhb bob \<rbrakk>
|
163 |
+
\<Longrightarrow> blinding_respects_hashes (root_hash_F rha rhb) (blinding_of_F rha boa rhb bob)"
|
164 |
+
and blinding_of_on_F [locale_witness]:
|
165 |
+
"\<lbrakk> blinding_of_on A rha boa; blinding_of_on B rhb bob \<rbrakk>
|
166 |
+
\<Longrightarrow> blinding_of_on {x. set1_F\<^sub>m x \<subseteq> A \<and> set3_F\<^sub>m x \<subseteq> B} (root_hash_F rha rhb) (blinding_of_F rha boa rhb bob)"
|
167 |
+
|
168 |
+
lemma blinding_of_F_mono_inductive:
|
169 |
+
assumes a: "\<And>x y. boa x y \<longrightarrow> boa' x y"
|
170 |
+
and b: "\<And>x y. bob x y \<longrightarrow> bob' x y"
|
171 |
+
shows "blinding_of_F rha boa rhb bob x y \<longrightarrow> blinding_of_F rha boa' rhb bob' x y"
|
172 |
+
using assms by(blast intro: blinding_of_F_mono[THEN predicate2D, OF predicate2I predicate2I])
|
173 |
+
|
174 |
+
subsubsection \<open> Blinding on least fixpoints \<close>
|
175 |
+
|
176 |
+
context
|
177 |
+
fixes rh :: "('a\<^sub>m, 'a\<^sub>h) hash"
|
178 |
+
and bo :: "'a\<^sub>m blinding_of"
|
179 |
+
begin
|
180 |
+
|
181 |
+
inductive blinding_of_T :: "('a\<^sub>m, 'a\<^sub>h) T\<^sub>m blinding_of" where
|
182 |
+
"blinding_of_T (T\<^sub>m x) (T\<^sub>m y)" if
|
183 |
+
"blinding_of_F rh bo (root_hash_T rh) blinding_of_T x y"
|
184 |
+
monos blinding_of_F_mono_inductive
|
185 |
+
|
186 |
+
end
|
187 |
+
|
188 |
+
lemma blinding_of_T_mono:
|
189 |
+
assumes "bo \<le> bo'"
|
190 |
+
shows "blinding_of_T rh bo \<le> blinding_of_T rh bo'"
|
191 |
+
by(rule predicate2I; erule blinding_of_T.induct)
|
192 |
+
(blast intro: blinding_of_T.intros blinding_of_F_mono[THEN predicate2D, OF assms, rotated -1])
|
193 |
+
|
194 |
+
lemma blinding_of_T_root_hash:
|
195 |
+
assumes "bo \<le> vimage2p rh rh (=)"
|
196 |
+
shows "blinding_of_T rh bo \<le> vimage2p (root_hash_T rh) (root_hash_T rh) (=)"
|
197 |
+
apply(rule predicate2I vimage2pI)+
|
198 |
+
apply(erule blinding_of_T.induct)
|
199 |
+
apply simp
|
200 |
+
apply(drule blinding_respects_hashes_F[unfolded blinding_respects_hashes_def, THEN predicate2D, rotated -1])
|
201 |
+
apply(rule assms)
|
202 |
+
apply(blast intro: vimage2pI)
|
203 |
+
apply(simp add: vimage2p_def)
|
204 |
+
done
|
205 |
+
|
206 |
+
lemma blinding_respects_hashes_T [locale_witness]:
|
207 |
+
"blinding_respects_hashes rh bo \<Longrightarrow> blinding_respects_hashes (root_hash_T rh) (blinding_of_T rh bo)"
|
208 |
+
unfolding blinding_respects_hashes_def by(rule blinding_of_T_root_hash)
|
209 |
+
|
210 |
+
lemma blinding_of_on_T [locale_witness]:
|
211 |
+
assumes "blinding_of_on A rh bo"
|
212 |
+
shows "blinding_of_on {x. set1_T\<^sub>m x \<subseteq> A} (root_hash_T rh) (blinding_of_T rh bo)"
|
213 |
+
(is "blinding_of_on ?A ?h ?bo")
|
214 |
+
proof -
|
215 |
+
interpret a: blinding_of_on A rh bo by fact
|
216 |
+
show ?thesis
|
217 |
+
proof
|
218 |
+
have "?bo x x \<and> (?bo x y \<longrightarrow> ?bo y z \<longrightarrow> ?bo x z) \<and> (?bo x y \<longrightarrow> ?bo y x \<longrightarrow> x = y)"
|
219 |
+
if "x \<in> ?A" for x y z using that
|
220 |
+
proof(induction x arbitrary: y z)
|
221 |
+
case (T\<^sub>m x)
|
222 |
+
interpret blinding_of_on
|
223 |
+
"{a. set1_F\<^sub>m a \<subseteq> A \<and> set3_F\<^sub>m a \<subseteq> set3_F\<^sub>m x}"
|
224 |
+
"root_hash_F rh ?h"
|
225 |
+
"blinding_of_F rh bo ?h ?bo"
|
226 |
+
apply(rule blinding_of_on_F[OF assms])
|
227 |
+
apply unfold_locales
|
228 |
+
subgoal using T\<^sub>m.IH T\<^sub>m.prems by(force simp add: eq_onp_def)
|
229 |
+
subgoal for a b c using T\<^sub>m.IH[of a b c] T\<^sub>m.prems by auto
|
230 |
+
subgoal for a b using T\<^sub>m.IH[of a b] T\<^sub>m.prems by auto
|
231 |
+
done
|
232 |
+
show ?case using T\<^sub>m.prems
|
233 |
+
apply(intro conjI)
|
234 |
+
subgoal by(auto intro: blinding_of_T.intros refl)
|
235 |
+
subgoal by(auto elim!: blinding_of_T.cases trans intro!: blinding_of_T.intros)
|
236 |
+
subgoal by(auto elim!: blinding_of_T.cases dest: antisym)
|
237 |
+
done
|
238 |
+
qed
|
239 |
+
then show "x \<in> ?A \<Longrightarrow> ?bo x x"
|
240 |
+
and "\<lbrakk> ?bo x y; ?bo y z; x \<in> ?A \<rbrakk> \<Longrightarrow> ?bo x z"
|
241 |
+
and "\<lbrakk> ?bo x y; ?bo y x; x \<in> ?A \<rbrakk> \<Longrightarrow> x = y"
|
242 |
+
for x y z by blast+
|
243 |
+
qed
|
244 |
+
qed
|
245 |
+
|
246 |
+
lemmas blinding_of_T [locale_witness] = blinding_of_on_T[where A=UNIV, simplified]
|
247 |
+
|
248 |
+
subsubsection \<open> Blinding on composition \<close>
|
249 |
+
|
250 |
+
context
|
251 |
+
fixes rha :: "('a\<^sub>m, 'a\<^sub>h) hash"
|
252 |
+
and boa :: "'a\<^sub>m blinding_of"
|
253 |
+
and rhb :: "('b\<^sub>m, 'b\<^sub>h) hash"
|
254 |
+
and bob :: "'b\<^sub>m blinding_of"
|
255 |
+
begin
|
256 |
+
|
257 |
+
inductive blinding_of_G :: "('a\<^sub>m, 'a\<^sub>h, 'b\<^sub>m, 'b\<^sub>h) G\<^sub>m blinding_of" where
|
258 |
+
"blinding_of_G (G\<^sub>m x) (G\<^sub>m y)" if
|
259 |
+
"blinding_of_F (root_hash_T rha) (blinding_of_T rha boa) rhb bob x y"
|
260 |
+
|
261 |
+
lemma blinding_of_G_unfold:
|
262 |
+
"blinding_of_G = vimage2p the_G\<^sub>m the_G\<^sub>m (blinding_of_F (root_hash_T rha) (blinding_of_T rha boa) rhb bob)"
|
263 |
+
apply(rule ext)+
|
264 |
+
subgoal for x y by(cases x; cases y)(simp_all add: blinding_of_G.simps fun_eq_iff vimage2p_def)
|
265 |
+
done
|
266 |
+
|
267 |
+
end
|
268 |
+
|
269 |
+
lemma blinding_of_G_mono:
|
270 |
+
assumes "boa \<le> boa'" "bob \<le> bob'"
|
271 |
+
shows "blinding_of_G rha boa rhb bob \<le> blinding_of_G rha boa' rhb bob'"
|
272 |
+
unfolding blinding_of_G_unfold
|
273 |
+
by(rule vimage2p_mono' blinding_of_F_mono blinding_of_T_mono assms)+
|
274 |
+
|
275 |
+
lemma blinding_of_G_root_hash:
|
276 |
+
assumes "boa \<le> vimage2p rha rha (=)" and "bob \<le> vimage2p rhb rhb (=)"
|
277 |
+
shows "blinding_of_G rha boa rhb bob \<le> vimage2p (root_hash_G rha rhb) (root_hash_G rha rhb) (=)"
|
278 |
+
unfolding blinding_of_G_unfold root_hash_G_unfold vimage2p_comp o_apply
|
279 |
+
apply(rule vimage2p_mono')
|
280 |
+
apply(rule order_trans)
|
281 |
+
apply(rule blinding_respects_hashes_F[unfolded blinding_respects_hashes_def])
|
282 |
+
apply(rule blinding_of_T_root_hash)
|
283 |
+
apply(rule assms)+
|
284 |
+
apply(rule vimage2p_mono')
|
285 |
+
apply(simp add: vimage2p_def)
|
286 |
+
done
|
287 |
+
|
288 |
+
lemma blinding_of_on_G [locale_witness]:
|
289 |
+
assumes "blinding_of_on A rha boa" "blinding_of_on B rhb bob"
|
290 |
+
shows "blinding_of_on {x. set1_G\<^sub>m x \<subseteq> A \<and> set3_G\<^sub>m x \<subseteq> B} (root_hash_G rha rhb) (blinding_of_G rha boa rhb bob)"
|
291 |
+
(is "blinding_of_on ?A ?h ?bo")
|
292 |
+
proof -
|
293 |
+
interpret a: blinding_of_on A rha boa by fact
|
294 |
+
interpret b: blinding_of_on B rhb bob by fact
|
295 |
+
interpret FT: blinding_of_on
|
296 |
+
"{x. set1_F\<^sub>m x \<subseteq> {x. set1_T\<^sub>m x \<subseteq> A} \<and> set3_F\<^sub>m x \<subseteq> B}"
|
297 |
+
"root_hash_F (root_hash_T rha) rhb"
|
298 |
+
"blinding_of_F (root_hash_T rha) (blinding_of_T rha boa) rhb bob"
|
299 |
+
..
|
300 |
+
show ?thesis
|
301 |
+
proof
|
302 |
+
show "?bo \<le> vimage2p ?h ?h (=)"
|
303 |
+
using a.hash b.hash
|
304 |
+
by(rule blinding_of_G_root_hash)
|
305 |
+
show "?bo x x" if "x \<in> ?A" for x using that
|
306 |
+
by(cases x; hypsubst)(rule blinding_of_G.intros; rule FT.refl; auto)
|
307 |
+
show "?bo x z" if "?bo x y" "?bo y z" "x \<in> ?A" for x y z using that
|
308 |
+
by(fastforce elim!: blinding_of_G.cases intro!: blinding_of_G.intros elim!: FT.trans)
|
309 |
+
show "x = y" if "?bo x y" "?bo y x" "x \<in> ?A" for x y using that
|
310 |
+
by(clarsimp elim!: blinding_of_G.cases)(erule (1) FT.antisym; auto)
|
311 |
+
qed
|
312 |
+
qed
|
313 |
+
|
314 |
+
lemmas blinding_of_G [locale_witness] = blinding_of_on_G[where A=UNIV and B=UNIV, simplified]
|
315 |
+
|
316 |
+
subsection \<open>Merging\<close>
|
317 |
+
|
318 |
+
text \<open>Two Merkle values with the same root hash can be merged into a less blinded Merkle value.
|
319 |
+
The operation is unspecified for trees with different root hashes.
|
320 |
+
\<close>
|
321 |
+
|
322 |
+
subsubsection \<open> Merging on the base functor \<close>
|
323 |
+
|
324 |
+
axiomatization merge_F :: "('a\<^sub>m, 'a\<^sub>h) hash \<Rightarrow> 'a\<^sub>m merge \<Rightarrow> ('b\<^sub>m, 'b\<^sub>h) hash \<Rightarrow> 'b\<^sub>m merge
|
325 |
+
\<Rightarrow> ('a\<^sub>m, 'a\<^sub>h, 'b\<^sub>m, 'b\<^sub>h) F\<^sub>m merge" where
|
326 |
+
merge_F_cong [fundef_cong]:
|
327 |
+
"\<lbrakk> \<And>a b. a \<in> set1_F\<^sub>m x \<Longrightarrow> ma a b = ma' a b; \<And>a b. a \<in> set3_F\<^sub>m x \<Longrightarrow> mb a b = mb' a b \<rbrakk>
|
328 |
+
\<Longrightarrow> merge_F rha ma rhb mb x y = merge_F rha ma' rhb mb' x y"
|
329 |
+
and
|
330 |
+
merge_on_F [locale_witness]:
|
331 |
+
"\<lbrakk> merge_on A rha boa ma; merge_on B rhb bob mb \<rbrakk>
|
332 |
+
\<Longrightarrow> merge_on {x. set1_F\<^sub>m x \<subseteq> A \<and> set3_F\<^sub>m x \<subseteq> B} (root_hash_F rha rhb) (blinding_of_F rha boa rhb bob) (merge_F rha ma rhb mb)"
|
333 |
+
|
334 |
+
lemmas merge_F [locale_witness] = merge_on_F[where A=UNIV and B=UNIV, simplified]
|
335 |
+
|
336 |
+
subsubsection \<open> Merging on the least fixpoint \<close>
|
337 |
+
|
338 |
+
lemma wfP_subterm_T: "wfP (\<lambda>x y. x \<in> set3_F\<^sub>m (the_T\<^sub>m y))"
|
339 |
+
apply(rule wfPUNIVI)
|
340 |
+
subgoal premises IH[rule_format] for P x
|
341 |
+
by(induct x)(auto intro: IH)
|
342 |
+
done
|
343 |
+
|
344 |
+
lemma irrefl_subterm_T: "x \<in> set3_F\<^sub>m y \<Longrightarrow> y \<noteq> the_T\<^sub>m x"
|
345 |
+
using wfP_subterm_T by (auto simp: wfP_def elim!: wf_irrefl)
|
346 |
+
|
347 |
+
context
|
348 |
+
fixes rh :: "('a\<^sub>m, 'a\<^sub>h) hash"
|
349 |
+
fixes m :: "'a\<^sub>m merge"
|
350 |
+
begin
|
351 |
+
|
352 |
+
function merge_T :: "('a\<^sub>m, 'a\<^sub>h) T\<^sub>m merge" where
|
353 |
+
"merge_T (T\<^sub>m x) (T\<^sub>m y) = map_option T\<^sub>m (merge_F rh m (root_hash_T rh) merge_T x y)"
|
354 |
+
by pat_completeness auto
|
355 |
+
termination
|
356 |
+
apply(relation "{(x, y). x \<in> set3_F\<^sub>m (the_T\<^sub>m y)} <*lex*> {(x, y). x \<in> set3_F\<^sub>m (the_T\<^sub>m y)}")
|
357 |
+
apply(auto simp add: wfP_def[symmetric] wfP_subterm_T)
|
358 |
+
done
|
359 |
+
|
360 |
+
lemma merge_on_T [locale_witness]:
|
361 |
+
assumes "merge_on A rh bo m"
|
362 |
+
shows "merge_on {x. set1_T\<^sub>m x \<subseteq> A} (root_hash_T rh) (blinding_of_T rh bo) merge_T"
|
363 |
+
(is "merge_on ?A ?h ?bo ?m")
|
364 |
+
proof -
|
365 |
+
interpret a: merge_on A rh bo m by fact
|
366 |
+
show ?thesis
|
367 |
+
proof
|
368 |
+
have "(?h a = ?h b \<longrightarrow> (\<exists>ab. ?m a b = Some ab \<and> ?bo a ab \<and> ?bo b ab \<and> (\<forall>u. ?bo a u \<longrightarrow> ?bo b u \<longrightarrow> ?bo ab u))) \<and>
|
369 |
+
(?h a \<noteq> ?h b \<longrightarrow> ?m a b = None)"
|
370 |
+
if "a \<in> ?A" for a b using that unfolding mem_Collect_eq
|
371 |
+
proof(induction a arbitrary: b)
|
372 |
+
case (T\<^sub>m x y)
|
373 |
+
interpret merge_on "{y. set1_F\<^sub>m y \<subseteq> A \<and> set3_F\<^sub>m y \<subseteq> set3_F\<^sub>m x}"
|
374 |
+
"root_hash_F rh ?h" "blinding_of_F rh bo ?h ?bo" "merge_F rh m ?h ?m"
|
375 |
+
proof
|
376 |
+
fix a
|
377 |
+
assume a: "a \<in> set3_F\<^sub>m x"
|
378 |
+
with T\<^sub>m.prems have a': "set1_T\<^sub>m a \<subseteq> A" by auto
|
379 |
+
|
380 |
+
fix b
|
381 |
+
from T\<^sub>m.IH[OF a a', rule_format, of b]
|
382 |
+
show "root_hash_T rh a = root_hash_T rh b
|
383 |
+
\<Longrightarrow> \<exists>ab. merge_T a b = Some ab \<and> blinding_of_T rh bo a ab \<and> blinding_of_T rh bo b ab \<and>
|
384 |
+
(\<forall>u. blinding_of_T rh bo a u \<longrightarrow> blinding_of_T rh bo b u \<longrightarrow> blinding_of_T rh bo ab u)"
|
385 |
+
and "root_hash_T rh a \<noteq> root_hash_T rh b \<Longrightarrow> merge_T a b = None"
|
386 |
+
by(auto dest: sym)
|
387 |
+
qed
|
388 |
+
show ?case using T\<^sub>m.prems
|
389 |
+
apply(intro conjI strip)
|
390 |
+
subgoal by(cases y)(auto dest!: join simp add: blinding_of_T.simps)
|
391 |
+
subgoal by(cases y)(auto dest!: undefined)
|
392 |
+
done
|
393 |
+
qed
|
394 |
+
then show
|
395 |
+
"?h a = ?h b \<Longrightarrow> \<exists>ab. ?m a b = Some ab \<and> ?bo a ab \<and> ?bo b ab \<and> (\<forall>u. ?bo a u \<longrightarrow> ?bo b u \<longrightarrow> ?bo ab u)"
|
396 |
+
"?h a \<noteq> ?h b \<Longrightarrow> ?m a b = None"
|
397 |
+
if "a \<in> ?A" for a b using that by blast+
|
398 |
+
qed
|
399 |
+
qed
|
400 |
+
|
401 |
+
lemmas merge_T [locale_witness] = merge_on_T[where A=UNIV, simplified]
|
402 |
+
|
403 |
+
end
|
404 |
+
|
405 |
+
lemma merge_T_cong [fundef_cong]:
|
406 |
+
assumes "\<And>a b. a \<in> set1_T\<^sub>m x \<Longrightarrow> m a b = m' a b"
|
407 |
+
shows "merge_T rh m x y = merge_T rh m' x y"
|
408 |
+
using assms
|
409 |
+
apply(induction x y rule: merge_T.induct)
|
410 |
+
apply simp
|
411 |
+
apply(rule arg_cong[where f="map_option _"])
|
412 |
+
apply(blast intro: merge_F_cong)
|
413 |
+
done
|
414 |
+
|
415 |
+
subsubsection \<open> Merging and composition \<close>
|
416 |
+
|
417 |
+
context
|
418 |
+
fixes rha :: "('a\<^sub>m, 'a\<^sub>h) hash"
|
419 |
+
fixes ma :: "'a\<^sub>m merge"
|
420 |
+
fixes rhb :: "('b\<^sub>m, 'b\<^sub>h) hash"
|
421 |
+
fixes mb :: "'b\<^sub>m merge"
|
422 |
+
begin
|
423 |
+
|
424 |
+
primrec merge_G :: "('a\<^sub>m, 'a\<^sub>h, 'b\<^sub>m, 'b\<^sub>h) G\<^sub>m merge" where
|
425 |
+
"merge_G (G\<^sub>m x) y' = (case y' of G\<^sub>m y \<Rightarrow>
|
426 |
+
map_option G\<^sub>m (merge_F (root_hash_T rha) (merge_T rha ma) rhb mb x y))"
|
427 |
+
|
428 |
+
lemma merge_G_simps [simp]:
|
429 |
+
"merge_G (G\<^sub>m x) (G\<^sub>m y) = map_option G\<^sub>m (merge_F (root_hash_T rha) (merge_T rha ma) rhb mb x y)"
|
430 |
+
by(simp)
|
431 |
+
|
432 |
+
declare merge_G.simps [simp del]
|
433 |
+
|
434 |
+
lemma merge_on_G:
|
435 |
+
assumes a: "merge_on A rha boa ma" and b: "merge_on B rhb bob mb"
|
436 |
+
shows "merge_on {x. set1_G\<^sub>m x \<subseteq> A \<and> set3_G\<^sub>m x \<subseteq> B} (root_hash_G rha rhb) (blinding_of_G rha boa rhb bob) merge_G"
|
437 |
+
(is "merge_on ?A ?h ?bo ?m")
|
438 |
+
proof -
|
439 |
+
interpret a: merge_on A rha boa ma by fact
|
440 |
+
interpret b: merge_on B rhb bob mb by fact
|
441 |
+
interpret F: merge_on
|
442 |
+
"{x. set1_F\<^sub>m x \<subseteq> {x. set1_T\<^sub>m x \<subseteq> A} \<and> set3_F\<^sub>m x \<subseteq> B}"
|
443 |
+
"root_hash_F (root_hash_T rha) rhb"
|
444 |
+
"blinding_of_F (root_hash_T rha) (blinding_of_T rha boa) rhb bob"
|
445 |
+
"merge_F (root_hash_T rha) (merge_T rha ma) rhb mb"
|
446 |
+
..
|
447 |
+
show ?thesis
|
448 |
+
proof
|
449 |
+
show "\<exists>ab. ?m a b = Some ab \<and> ?bo a ab \<and> ?bo b ab \<and> (\<forall>u. ?bo a u \<longrightarrow> ?bo b u \<longrightarrow> ?bo ab u)"
|
450 |
+
if "?h a = ?h b" "a \<in> ?A" for a b using that
|
451 |
+
by(cases a; cases b)(auto dest!: F.join simp add: blinding_of_G.simps)
|
452 |
+
show "?m a b = None" if "?h a \<noteq> ?h b" "a \<in> ?A" for a b using that
|
453 |
+
by(cases a; cases b)(auto dest!: F.undefined)
|
454 |
+
qed
|
455 |
+
qed
|
456 |
+
|
457 |
+
lemmas merge_G [locale_witness] = merge_on_G[where A=UNIV and B=UNIV, simplified]
|
458 |
+
|
459 |
+
end
|
460 |
+
|
461 |
+
lemma merge_G_cong [fundef_cong]:
|
462 |
+
"\<lbrakk> \<And>a b. a \<in> set1_G\<^sub>m x \<Longrightarrow> ma a b = ma' a b; \<And>a b. a \<in> set3_G\<^sub>m x \<Longrightarrow> mb a b = mb' a b \<rbrakk>
|
463 |
+
\<Longrightarrow> merge_G rha ma rhb mb x y = merge_G rha ma' rhb mb' x y"
|
464 |
+
apply(cases x; cases y; simp)
|
465 |
+
apply(rule arg_cong[where f="map_option _"])
|
466 |
+
apply(blast intro: merge_F_cong merge_T_cong)
|
467 |
+
done
|
468 |
+
|
469 |
+
end
|
formal/afp/ADS_Functor/Inclusion_Proof_Construction.thy
ADDED
@@ -0,0 +1,430 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
(* Author: Andreas Lochbihler, Digital Asset
|
2 |
+
Author: Ognjen Maric, Digital Asset *)
|
3 |
+
|
4 |
+
theory Inclusion_Proof_Construction imports
|
5 |
+
ADS_Construction
|
6 |
+
begin
|
7 |
+
|
8 |
+
primrec blind_blindable :: "('a\<^sub>m \<Rightarrow> 'a\<^sub>h) \<Rightarrow> ('a\<^sub>m, 'a\<^sub>h) blindable\<^sub>m \<Rightarrow> ('a\<^sub>m, 'a\<^sub>h) blindable\<^sub>m" where
|
9 |
+
"blind_blindable h (Blinded x) = Blinded x"
|
10 |
+
| "blind_blindable h (Unblinded x) = Blinded (Content (h x))"
|
11 |
+
|
12 |
+
lemma hash_blind_blindable [simp]: "hash_blindable h (blind_blindable h x) = hash_blindable h x"
|
13 |
+
by(cases x) simp_all
|
14 |
+
|
15 |
+
subsection \<open>Inclusion proof construction for rose trees\<close>
|
16 |
+
|
17 |
+
(************************************************************)
|
18 |
+
subsubsection \<open> Hashing, embedding and blinding source trees \<close>
|
19 |
+
(************************************************************)
|
20 |
+
|
21 |
+
context fixes h :: "'a \<Rightarrow> 'a\<^sub>h" begin
|
22 |
+
fun hash_source_tree :: "'a rose_tree \<Rightarrow> 'a\<^sub>h rose_tree\<^sub>h" where
|
23 |
+
"hash_source_tree (Tree (data, subtrees)) = Tree\<^sub>h (Content (h data, map hash_source_tree subtrees))"
|
24 |
+
end
|
25 |
+
|
26 |
+
context fixes e :: "'a \<Rightarrow> 'a\<^sub>m" begin
|
27 |
+
fun embed_source_tree :: "'a rose_tree \<Rightarrow> ('a\<^sub>m, 'a\<^sub>h) rose_tree\<^sub>m" where
|
28 |
+
"embed_source_tree (Tree (data, subtrees)) =
|
29 |
+
Tree\<^sub>m (Unblinded (e data, map embed_source_tree subtrees))"
|
30 |
+
end
|
31 |
+
|
32 |
+
context fixes h :: "'a \<Rightarrow> 'a\<^sub>h" begin
|
33 |
+
fun blind_source_tree :: "'a rose_tree \<Rightarrow> ('a\<^sub>m, 'a\<^sub>h) rose_tree\<^sub>m" where
|
34 |
+
"blind_source_tree (Tree (data, subtrees)) = Tree\<^sub>m (Blinded (Content (h data, map (hash_source_tree h) subtrees)))"
|
35 |
+
end
|
36 |
+
|
37 |
+
case_of_simps blind_source_tree_cases: blind_source_tree.simps
|
38 |
+
|
39 |
+
fun is_blinded :: "('a\<^sub>m, 'a\<^sub>h) rose_tree\<^sub>m \<Rightarrow> bool" where
|
40 |
+
"is_blinded (Tree\<^sub>m (Blinded _)) = True"
|
41 |
+
| "is_blinded _ = False"
|
42 |
+
|
43 |
+
lemma hash_blinded_simp: "hash_tree h' (blind_source_tree h st) = hash_source_tree h st"
|
44 |
+
by(cases st rule: blind_source_tree.cases)(simp_all add: hash_rt_F\<^sub>m_def)
|
45 |
+
|
46 |
+
lemma hash_embedded_simp:
|
47 |
+
"hash_tree h (embed_source_tree e st) = hash_source_tree (h \<circ> e) st"
|
48 |
+
by(induction st rule: embed_source_tree.induct)(simp add: hash_rt_F\<^sub>m_def)
|
49 |
+
|
50 |
+
lemma blinded_embedded_same_hash:
|
51 |
+
"hash_tree h'' (blind_source_tree (h o e) st) = hash_tree h (embed_source_tree e st)"
|
52 |
+
by(simp add: hash_blinded_simp hash_embedded_simp)
|
53 |
+
|
54 |
+
lemma blinding_blinds [simp]:
|
55 |
+
"is_blinded (blind_source_tree h t)"
|
56 |
+
by(simp add: blind_source_tree_cases split: rose_tree.split)
|
57 |
+
|
58 |
+
lemma blinded_blinds_embedded:
|
59 |
+
"blinding_of_tree h bo (blind_source_tree (h o e) st) (embed_source_tree e st)"
|
60 |
+
by(cases st rule: blind_source_tree.cases)(simp_all add: hash_embedded_simp)
|
61 |
+
|
62 |
+
fun embed_hash_tree :: "'ha rose_tree\<^sub>h \<Rightarrow> ('a, 'ha) rose_tree\<^sub>m" where
|
63 |
+
"embed_hash_tree (Tree\<^sub>h h) = Tree\<^sub>m (Blinded h)"
|
64 |
+
|
65 |
+
|
66 |
+
(************************************************************)
|
67 |
+
subsubsection \<open>Auxiliary definitions: selectors and list splits\<close>
|
68 |
+
(************************************************************)
|
69 |
+
|
70 |
+
fun children :: "'a rose_tree \<Rightarrow> 'a rose_tree list" where
|
71 |
+
"children (Tree (data, subtrees)) = subtrees"
|
72 |
+
|
73 |
+
fun children\<^sub>m :: "('a, 'a\<^sub>h) rose_tree\<^sub>m \<Rightarrow> ('a, 'a\<^sub>h) rose_tree\<^sub>m list" where
|
74 |
+
"children\<^sub>m (Tree\<^sub>m (Unblinded (data, subtrees))) = subtrees"
|
75 |
+
| "children\<^sub>m _ = undefined"
|
76 |
+
|
77 |
+
fun splits :: "'a list \<Rightarrow> ('a list \<times> 'a \<times> 'a list) list" where
|
78 |
+
"splits [] = []"
|
79 |
+
| "splits (x#xs) = ([], x, xs) # map (\<lambda>(l, y, r). (x # l, y, r)) (splits xs)"
|
80 |
+
|
81 |
+
lemma splits_iff: "(l, a, r) \<in> set (splits ll) = (ll = l @ a # r)"
|
82 |
+
by(induction ll arbitrary: l a r)(auto simp add: Cons_eq_append_conv)
|
83 |
+
|
84 |
+
(************************************************************)
|
85 |
+
subsubsection \<open> Zippers \<close>
|
86 |
+
(************************************************************)
|
87 |
+
|
88 |
+
text \<open> Zippers provide a neat representation of tree-like ADSs when they have only a single
|
89 |
+
unblinded subtree. The zipper path provides the "inclusion proof" that the unblinded subtree is
|
90 |
+
included in a larger structure. \<close>
|
91 |
+
|
92 |
+
type_synonym 'a path_elem = "'a \<times> 'a rose_tree list \<times> 'a rose_tree list"
|
93 |
+
type_synonym 'a path = "'a path_elem list"
|
94 |
+
type_synonym 'a zipper = "'a path \<times> 'a rose_tree"
|
95 |
+
|
96 |
+
definition zipper_of_tree :: "'a rose_tree \<Rightarrow> 'a zipper" where
|
97 |
+
"zipper_of_tree t \<equiv> ([], t)"
|
98 |
+
|
99 |
+
fun tree_of_zipper :: "'a zipper \<Rightarrow> 'a rose_tree" where
|
100 |
+
"tree_of_zipper ([], t) = t"
|
101 |
+
| "tree_of_zipper ((a, l, r) # z, t) = tree_of_zipper (z, (Tree (a, (l @ t # r))))"
|
102 |
+
|
103 |
+
case_of_simps tree_of_zipper_cases: tree_of_zipper.simps
|
104 |
+
|
105 |
+
lemma tree_of_zipper_id[iff]: "tree_of_zipper (zipper_of_tree t) = t"
|
106 |
+
by(simp add: zipper_of_tree_def)
|
107 |
+
|
108 |
+
fun zipper_children :: "'a zipper \<Rightarrow> 'a zipper list" where
|
109 |
+
"zipper_children (p, Tree (a, ts)) = map (\<lambda>(l, t, r). ((a, l, r) # p, t)) (splits ts)"
|
110 |
+
|
111 |
+
lemma zipper_children_same_tree:
|
112 |
+
assumes "z' \<in> set (zipper_children z)"
|
113 |
+
shows "tree_of_zipper z' = tree_of_zipper z"
|
114 |
+
proof-
|
115 |
+
obtain p a ts where z: "z = (p, Tree (a, ts))"
|
116 |
+
using assms
|
117 |
+
by(cases z rule: zipper_children.cases) (simp_all)
|
118 |
+
|
119 |
+
then obtain l t r where ltr: "z' = ((a, l, r) # p, t)" and "(l, t, r) \<in> set (splits ts)"
|
120 |
+
using assms
|
121 |
+
by(auto)
|
122 |
+
|
123 |
+
with z show ?thesis
|
124 |
+
by(simp add: splits_iff)
|
125 |
+
qed
|
126 |
+
|
127 |
+
type_synonym ('a\<^sub>m, 'a\<^sub>h) path_elem\<^sub>m = "'a\<^sub>m \<times> ('a\<^sub>m, 'a\<^sub>h) rose_tree\<^sub>m list \<times> ('a\<^sub>m, 'a\<^sub>h) rose_tree\<^sub>m list"
|
128 |
+
type_synonym ('a\<^sub>m, 'a\<^sub>h) path\<^sub>m = "('a\<^sub>m, 'a\<^sub>h) path_elem\<^sub>m list"
|
129 |
+
type_synonym ('a\<^sub>m, 'a\<^sub>h) zipper\<^sub>m = "('a\<^sub>m, 'a\<^sub>h) path\<^sub>m \<times> ('a\<^sub>m, 'a\<^sub>h) rose_tree\<^sub>m"
|
130 |
+
|
131 |
+
definition zipper_of_tree\<^sub>m :: "('a\<^sub>m, 'a\<^sub>h) rose_tree\<^sub>m \<Rightarrow> ('a\<^sub>m, 'a\<^sub>h) zipper\<^sub>m" where
|
132 |
+
"zipper_of_tree\<^sub>m t \<equiv> ([], t)"
|
133 |
+
|
134 |
+
fun tree_of_zipper\<^sub>m :: "('a\<^sub>m, 'a\<^sub>h) zipper\<^sub>m \<Rightarrow> ('a\<^sub>m, 'a\<^sub>h) rose_tree\<^sub>m" where
|
135 |
+
"tree_of_zipper\<^sub>m ([], t) = t"
|
136 |
+
| "tree_of_zipper\<^sub>m ((m, l, r) # z, t) = tree_of_zipper\<^sub>m (z, Tree\<^sub>m (Unblinded (m, l @ t # r)))"
|
137 |
+
|
138 |
+
lemma tree_of_zipper\<^sub>m_append:
|
139 |
+
"tree_of_zipper\<^sub>m (p @ p', t) = tree_of_zipper\<^sub>m (p', tree_of_zipper\<^sub>m (p, t))"
|
140 |
+
by(induction p arbitrary: p' t) auto
|
141 |
+
|
142 |
+
fun zipper_children\<^sub>m :: "('a\<^sub>m, 'a\<^sub>h) zipper\<^sub>m \<Rightarrow> ('a\<^sub>m, 'a\<^sub>h) zipper\<^sub>m list" where
|
143 |
+
"zipper_children\<^sub>m (p, Tree\<^sub>m (Unblinded (a, ts))) = map (\<lambda>(l, t, r). ((a, l, r) # p, t)) (splits ts) "
|
144 |
+
| "zipper_children\<^sub>m _ = []"
|
145 |
+
|
146 |
+
lemma zipper_children_same_tree\<^sub>m:
|
147 |
+
assumes "z' \<in> set (zipper_children\<^sub>m z)"
|
148 |
+
shows "tree_of_zipper\<^sub>m z' = tree_of_zipper\<^sub>m z"
|
149 |
+
proof-
|
150 |
+
obtain p a ts where z: "z = (p, Tree\<^sub>m (Unblinded (a, ts)))"
|
151 |
+
using assms
|
152 |
+
by(cases z rule: zipper_children\<^sub>m.cases) (simp_all)
|
153 |
+
|
154 |
+
then obtain l t r where ltr: "z' = ((a, l, r) # p, t)" and "(l, t, r) \<in> set (splits ts)"
|
155 |
+
using assms
|
156 |
+
by(auto)
|
157 |
+
|
158 |
+
with z show ?thesis
|
159 |
+
by(simp add: splits_iff)
|
160 |
+
qed
|
161 |
+
|
162 |
+
fun blind_path_elem :: "('a \<Rightarrow> 'a\<^sub>m) \<Rightarrow> ('a\<^sub>m \<Rightarrow> 'a\<^sub>h) \<Rightarrow> 'a path_elem \<Rightarrow> ('a\<^sub>m, 'a\<^sub>h) path_elem\<^sub>m" where
|
163 |
+
"blind_path_elem e h (x, l, r) = (e x, map (blind_source_tree (h \<circ> e)) l, map (blind_source_tree (h \<circ> e)) r)"
|
164 |
+
|
165 |
+
case_of_simps blind_path_elem_cases: blind_path_elem.simps
|
166 |
+
|
167 |
+
definition blind_path :: "('a \<Rightarrow> 'a\<^sub>m) \<Rightarrow> ('a\<^sub>m \<Rightarrow> 'a\<^sub>h) \<Rightarrow> 'a path \<Rightarrow> ('a\<^sub>m, 'a\<^sub>h) path\<^sub>m" where
|
168 |
+
"blind_path e h \<equiv> map (blind_path_elem e h)"
|
169 |
+
|
170 |
+
fun embed_path_elem :: "('a \<Rightarrow> 'a\<^sub>m) \<Rightarrow> 'a path_elem \<Rightarrow> ('a\<^sub>m, 'a\<^sub>h) path_elem\<^sub>m" where
|
171 |
+
"embed_path_elem e (d, l, r) = (e d, map (embed_source_tree e) l, map (embed_source_tree e) r)"
|
172 |
+
|
173 |
+
definition embed_path :: "('a \<Rightarrow> 'a\<^sub>m) \<Rightarrow> 'a path \<Rightarrow> ('a\<^sub>m, 'a\<^sub>h) path\<^sub>m" where
|
174 |
+
"embed_path embed_elem \<equiv> map (embed_path_elem embed_elem)"
|
175 |
+
|
176 |
+
lemma hash_tree_of_zipper_same_path:
|
177 |
+
"hash_tree h (tree_of_zipper\<^sub>m (p, v)) = hash_tree h (tree_of_zipper\<^sub>m (p, v'))
|
178 |
+
\<longleftrightarrow> hash_tree h v = hash_tree h v'"
|
179 |
+
by(induction p arbitrary: v v')(auto simp add: hash_rt_F\<^sub>m_def)
|
180 |
+
|
181 |
+
fun hash_path_elem :: "('a\<^sub>m \<Rightarrow> 'a\<^sub>h) \<Rightarrow> ('a\<^sub>m, 'a\<^sub>h) path_elem\<^sub>m \<Rightarrow> ('a\<^sub>h \<times> 'a\<^sub>h rose_tree\<^sub>h list \<times> 'a\<^sub>h rose_tree\<^sub>h list)" where
|
182 |
+
"hash_path_elem h (e, l, r) = (h e, map (hash_tree h) l, map (hash_tree h) r)"
|
183 |
+
|
184 |
+
lemma hash_view_zipper_eqI:
|
185 |
+
"\<lbrakk> hash_list (hash_path_elem h) p = hash_list (hash_path_elem h') p';
|
186 |
+
hash_tree h v = hash_tree h' v' \<rbrakk> \<Longrightarrow>
|
187 |
+
hash_tree h (tree_of_zipper\<^sub>m (p, v)) = hash_tree h' (tree_of_zipper\<^sub>m (p', v'))"
|
188 |
+
by(induction p arbitrary: p' v v')(auto simp add: hash_rt_F\<^sub>m_def)
|
189 |
+
|
190 |
+
lemma blind_embed_path_same_hash:
|
191 |
+
"hash_tree h (tree_of_zipper\<^sub>m (blind_path e h p, t)) = hash_tree h (tree_of_zipper\<^sub>m (embed_path e p, t))"
|
192 |
+
proof -
|
193 |
+
have "hash_path_elem h \<circ> blind_path_elem e h = hash_path_elem h \<circ> embed_path_elem e"
|
194 |
+
by(clarsimp simp add: hash_blinded_simp hash_embedded_simp fun_eq_iff intro!: arg_cong2[where f=hash_source_tree, OF _ refl])
|
195 |
+
then show ?thesis
|
196 |
+
by(intro hash_view_zipper_eqI)(simp_all add: embed_path_def blind_path_def list.map_comp)
|
197 |
+
qed
|
198 |
+
|
199 |
+
lemma tree_of_embed_commute:
|
200 |
+
"tree_of_zipper\<^sub>m (embed_path e p, embed_source_tree e t) = embed_source_tree e (tree_of_zipper (p, t))"
|
201 |
+
by(induction "(p, t)" arbitrary: p t rule: tree_of_zipper.induct)(simp_all add: embed_path_def)
|
202 |
+
|
203 |
+
lemma childz_same_tree:
|
204 |
+
"(l, t, r) \<in> set (splits ts) \<Longrightarrow>
|
205 |
+
tree_of_zipper\<^sub>m (embed_path e p, embed_source_tree e (Tree (d, ts)))
|
206 |
+
= tree_of_zipper\<^sub>m (embed_path e ((d, l, r) # p), embed_source_tree e t)"
|
207 |
+
by(simp add: tree_of_embed_commute splits_iff del: embed_source_tree.simps)
|
208 |
+
|
209 |
+
lemma blinding_of_same_path:
|
210 |
+
assumes bo: "blinding_of_on UNIV h bo"
|
211 |
+
shows
|
212 |
+
"blinding_of_tree h bo (tree_of_zipper\<^sub>m (p, t)) (tree_of_zipper\<^sub>m (p, t'))
|
213 |
+
\<longleftrightarrow> blinding_of_tree h bo t t'"
|
214 |
+
proof -
|
215 |
+
interpret a: blinding_of_on UNIV h bo by fact
|
216 |
+
interpret tree: blinding_of_on UNIV "hash_tree h" "blinding_of_tree h bo" ..
|
217 |
+
show ?thesis
|
218 |
+
by(induction p arbitrary: t t')(auto simp add: list_all2_append list.rel_refl a.refl tree.refl)
|
219 |
+
qed
|
220 |
+
|
221 |
+
lemma zipper_children_size_change [termination_simp]: "(a, b) \<in> set (zipper_children (p, v)) \<Longrightarrow> size b < size v"
|
222 |
+
by(cases v)(clarsimp simp add: splits_iff Set.image_iff)
|
223 |
+
|
224 |
+
|
225 |
+
subsection \<open>All zippers of a rose tree\<close>
|
226 |
+
|
227 |
+
context fixes e :: "'a \<Rightarrow> 'a\<^sub>m" and h :: "'a\<^sub>m \<Rightarrow> 'a\<^sub>h" begin
|
228 |
+
|
229 |
+
fun zippers_rose_tree :: "'a zipper \<Rightarrow> ('a\<^sub>m, 'a\<^sub>h) zipper\<^sub>m list" where
|
230 |
+
"zippers_rose_tree (p, t) = (blind_path e h p, embed_source_tree e t) #
|
231 |
+
concat (map zippers_rose_tree (zipper_children (p, t)))"
|
232 |
+
|
233 |
+
end
|
234 |
+
|
235 |
+
lemmas [simp del] = zippers_rose_tree.simps zipper_children.simps
|
236 |
+
|
237 |
+
lemma zippers_rose_tree_same_hash':
|
238 |
+
assumes "z \<in> set (zippers_rose_tree e h (p, t))"
|
239 |
+
shows "hash_tree h (tree_of_zipper\<^sub>m z) =
|
240 |
+
hash_tree h (tree_of_zipper\<^sub>m (embed_path e p, embed_source_tree e t))"
|
241 |
+
using assms(1)
|
242 |
+
proof(induction "(p, t)" arbitrary: p t rule: zippers_rose_tree.induct)
|
243 |
+
case (1 p t)
|
244 |
+
from "1.prems"[unfolded zippers_rose_tree.simps]
|
245 |
+
consider (find) "z = (blind_path e h p, embed_source_tree e t)"
|
246 |
+
| (rec) x ts l t' r where "t = Tree (x, ts)" "(l, t', r) \<in> set (splits ts)" "z \<in> set (zippers_rose_tree e h ((x, l, r) # p, t'))"
|
247 |
+
by(cases t)(auto simp add: zipper_children.simps)
|
248 |
+
then show ?case
|
249 |
+
proof cases
|
250 |
+
case rec
|
251 |
+
then show ?thesis
|
252 |
+
apply(subst "1.hyps"[of "(x, l, r) # p" "t'"])
|
253 |
+
apply(simp_all add: rev_image_eqI zipper_children.simps)
|
254 |
+
by (metis (no_types) childz_same_tree comp_apply embed_source_tree.simps rec(2))
|
255 |
+
qed(simp add: blind_embed_path_same_hash)
|
256 |
+
qed
|
257 |
+
|
258 |
+
lemma zippers_rose_tree_blinding_of:
|
259 |
+
assumes "blinding_of_on UNIV h bo"
|
260 |
+
and z: "z \<in> set (zippers_rose_tree e h (p, t))"
|
261 |
+
shows "blinding_of_tree h bo (tree_of_zipper\<^sub>m z) (tree_of_zipper\<^sub>m (blind_path e h p, embed_source_tree e t))"
|
262 |
+
using z
|
263 |
+
proof(induction "(p, t)" arbitrary: p t rule: zippers_rose_tree.induct)
|
264 |
+
case (1 p t)
|
265 |
+
|
266 |
+
interpret a: blinding_of_on UNIV h bo by fact
|
267 |
+
interpret rt: blinding_of_on UNIV "hash_tree h" "blinding_of_tree h bo" ..
|
268 |
+
|
269 |
+
from "1.prems"[unfolded zippers_rose_tree.simps]
|
270 |
+
consider (find) "z = (blind_path e h p, embed_source_tree e t)"
|
271 |
+
| (rec) x ts l t' r where "t = Tree (x, ts)" "(l, t', r) \<in> set (splits ts)" "z \<in> set (zippers_rose_tree e h ((x, l, r) # p, t'))"
|
272 |
+
by(cases t)(auto simp add: zipper_children.simps)
|
273 |
+
then show ?case
|
274 |
+
proof cases
|
275 |
+
case find
|
276 |
+
then show ?thesis by(simp add: rt.refl)
|
277 |
+
next
|
278 |
+
case rec
|
279 |
+
then have "blinding_of_tree h bo
|
280 |
+
(tree_of_zipper\<^sub>m z)
|
281 |
+
(tree_of_zipper\<^sub>m (blind_path e h ((x, l, r) # p), embed_source_tree e t'))"
|
282 |
+
by(intro 1)(simp add: rev_image_eqI zipper_children.simps)
|
283 |
+
also have "blinding_of_tree h bo
|
284 |
+
(tree_of_zipper\<^sub>m (blind_path e h ((x, l, r) # p), embed_source_tree e t'))
|
285 |
+
(tree_of_zipper\<^sub>m (blind_path e h p, embed_source_tree e (Tree (x, ts))))"
|
286 |
+
using rec
|
287 |
+
by(simp add: blind_path_def splits_iff blinding_of_same_path[OF assms(1)] a.refl list_all2_append list_all2_same list.rel_map blinded_blinds_embedded rt.refl)
|
288 |
+
finally (rt.trans) show ?thesis using rec by simp
|
289 |
+
qed
|
290 |
+
qed
|
291 |
+
|
292 |
+
lemma zippers_rose_tree_neq_Nil: "zippers_rose_tree e h (p, t) \<noteq> []"
|
293 |
+
by(simp add: zippers_rose_tree.simps)
|
294 |
+
|
295 |
+
lemma (in comp_fun_idem) fold_set_union:
|
296 |
+
assumes "finite A" "finite B"
|
297 |
+
shows "Finite_Set.fold f z (A \<union> B) = Finite_Set.fold f (Finite_Set.fold f z A) B"
|
298 |
+
using assms(2,1) by induct simp_all
|
299 |
+
|
300 |
+
context merkle_interface begin
|
301 |
+
|
302 |
+
lemma comp_fun_idem_merge: "comp_fun_idem (\<lambda>x yo. yo \<bind> m x)"
|
303 |
+
apply(unfold_locales; clarsimp simp add: fun_eq_iff split: bind_split)
|
304 |
+
subgoal by (metis assoc bind.bind_lunit bind.bind_lzero idem option.distinct(1))
|
305 |
+
subgoal by (simp add: join)
|
306 |
+
done
|
307 |
+
|
308 |
+
interpretation merge: comp_fun_idem "\<lambda>x yo. yo \<bind> m x" by(rule comp_fun_idem_merge)
|
309 |
+
|
310 |
+
definition Merge :: "'a\<^sub>m set \<Rightarrow> 'a\<^sub>m option" where
|
311 |
+
"Merge A = (if A = {} \<or> infinite A then None else Finite_Set.fold (\<lambda>x yo. yo \<bind> m x) (Some (SOME x. x \<in> A)) A)"
|
312 |
+
|
313 |
+
lemma Merge_empty [simp]: "Merge {} = None"
|
314 |
+
by(simp add: Merge_def)
|
315 |
+
|
316 |
+
lemma Merge_infinite [simp]: "infinite A \<Longrightarrow> Merge A = None"
|
317 |
+
by(simp add: Merge_def)
|
318 |
+
|
319 |
+
lemma Merge_cong_start:
|
320 |
+
"Finite_Set.fold (\<lambda>x yo. yo \<bind> m x) (Some x) A = Finite_Set.fold (\<lambda>x yo. yo \<bind> m x) (Some y) A" (is "?lhs = ?rhs")
|
321 |
+
if "x \<in> A" "y \<in> A" "finite A"
|
322 |
+
proof -
|
323 |
+
have "?lhs = Finite_Set.fold (\<lambda>x yo. yo \<bind> m x) (Some x) (insert y A)" using that by(simp add: insert_absorb)
|
324 |
+
also have "\<dots> = Finite_Set.fold (\<lambda>x yo. yo \<bind> m x) (m x y) A" using that
|
325 |
+
by(simp only: merge.fold_insert_idem2)(simp add: commute)
|
326 |
+
also have "\<dots> = Finite_Set.fold (\<lambda>x yo. yo \<bind> m x) (Some y) (insert x A)" using that
|
327 |
+
by(simp only: merge.fold_insert_idem2)(simp)
|
328 |
+
also have "\<dots> = ?rhs" using that by(simp add: insert_absorb)
|
329 |
+
finally show ?thesis .
|
330 |
+
qed
|
331 |
+
|
332 |
+
lemma Merge_insert [simp]: "Merge (insert x A) = (if A = {} then Some x else Merge A \<bind> m x)" (is "?lhs = ?rhs")
|
333 |
+
proof(cases "finite A \<and> A \<noteq> {}")
|
334 |
+
case True
|
335 |
+
then have "?lhs = Finite_Set.fold (\<lambda>x yo. yo \<bind> m x) (Some (SOME x. x \<in> A)) (insert x A)"
|
336 |
+
unfolding Merge_def by(subst Merge_cong_start[where y="SOME x. x \<in> A", OF someI])(auto intro: someI)
|
337 |
+
also have "\<dots> = ?rhs" using True by(simp add: Merge_def)
|
338 |
+
finally show ?thesis .
|
339 |
+
qed(auto simp add: Merge_def idem)
|
340 |
+
|
341 |
+
lemma Merge_insert_alt:
|
342 |
+
"Merge (insert x A) = Finite_Set.fold (\<lambda>x yo. yo \<bind> m x) (Some x) A" (is "?lhs = ?rhs") if "finite A"
|
343 |
+
proof -
|
344 |
+
have "?lhs = Finite_Set.fold (\<lambda>x yo. yo \<bind> m x) (Some x) (insert x A)" using that
|
345 |
+
unfolding Merge_def by(subst Merge_cong_start[where y=x, OF someI]) auto
|
346 |
+
also have "\<dots> = ?rhs" using that by(simp only: merge.fold_insert_idem2)(simp add: idem)
|
347 |
+
finally show ?thesis .
|
348 |
+
qed
|
349 |
+
|
350 |
+
lemma Merge_None [simp]: "Finite_Set.fold (\<lambda>x yo. yo \<bind> m x) None A = None"
|
351 |
+
proof(cases "finite A")
|
352 |
+
case True
|
353 |
+
then show ?thesis by(induction) auto
|
354 |
+
qed simp
|
355 |
+
|
356 |
+
lemma Merge_union:
|
357 |
+
"Merge (A \<union> B) = (if A = {} then Merge B else if B = {} then Merge A else (Merge A \<bind> (\<lambda>a. Merge B \<bind> m a)))"
|
358 |
+
(is "?lhs = ?rhs")
|
359 |
+
proof(cases "finite (A \<union> B) \<and> A \<noteq> {} \<and> B \<noteq> {}")
|
360 |
+
case True
|
361 |
+
then have "?lhs = Finite_Set.fold (\<lambda>x yo. yo \<bind> m x) (Some (SOME x. x \<in> B)) (B \<union> A)"
|
362 |
+
unfolding Merge_def by(subst Merge_cong_start[where y="SOME x. x \<in> B", OF someI])(auto intro: someI simp add: Un_commute)
|
363 |
+
also have "\<dots> = Finite_Set.fold (\<lambda>x yo. yo \<bind> m x) (Merge B) A" using True
|
364 |
+
by(simp add: Merge_def merge.fold_set_union)
|
365 |
+
also have "\<dots> = Merge A \<bind> (\<lambda>a. Merge B \<bind> m a)"
|
366 |
+
proof(cases "Merge B")
|
367 |
+
case (Some b)
|
368 |
+
thus ?thesis using True
|
369 |
+
by simp(subst Merge_insert_alt[symmetric]; simp add: commute; metis commute)
|
370 |
+
qed simp
|
371 |
+
finally show ?thesis using True by simp
|
372 |
+
qed auto
|
373 |
+
|
374 |
+
lemma Merge_upper:
|
375 |
+
assumes m: "Merge A = Some x" and y: "y \<in> A"
|
376 |
+
shows "bo y x"
|
377 |
+
proof -
|
378 |
+
have "Merge A = Merge (insert y A)" using y by(simp add: insert_absorb)
|
379 |
+
also have "\<dots> = Merge A \<bind> m y" using y by auto
|
380 |
+
finally have "m y x = Some x" using m by simp
|
381 |
+
thus ?thesis by(simp add: bo_def)
|
382 |
+
qed
|
383 |
+
|
384 |
+
lemma Merge_least:
|
385 |
+
assumes m: "Merge A = Some x" and u[rule_format]: "\<forall>a\<in>A. bo a u"
|
386 |
+
shows "bo x u"
|
387 |
+
proof -
|
388 |
+
define a where "a \<equiv> SOME x. x \<in> A"
|
389 |
+
from m have A: "finite A" "A \<noteq> {}"
|
390 |
+
and *: "Finite_Set.fold (\<lambda>x yo. yo \<bind> m x) (Some a) A = Some x"
|
391 |
+
by(auto simp add: Merge_def a_def split: if_splits)
|
392 |
+
from A have "bo a u" by(auto intro: someI u simp add: a_def)
|
393 |
+
with A * u show ?thesis
|
394 |
+
proof(induction A arbitrary: a)
|
395 |
+
case (insert x A)
|
396 |
+
then show ?case
|
397 |
+
by(cases "m x a"; cases "A = {}"; simp only: merge.fold_insert_idem2; simp)(auto simp add: join)
|
398 |
+
qed simp
|
399 |
+
qed
|
400 |
+
|
401 |
+
lemma Merge_defined:
|
402 |
+
assumes "finite A" "A \<noteq> {}" "\<forall>a\<in>A. \<forall>b \<in> A. h a = h b"
|
403 |
+
shows "Merge A \<noteq> None"
|
404 |
+
proof
|
405 |
+
define a where "a \<equiv> SOME a. a \<in> A"
|
406 |
+
have a: "a \<in> A" unfolding a_def using assms by(auto intro: someI)
|
407 |
+
hence ha: "\<forall>b \<in> A. h b = h a" using assms by blast
|
408 |
+
|
409 |
+
assume m: "Merge A = None"
|
410 |
+
hence "Finite_Set.fold (\<lambda>x yo. yo \<bind> m x) (Some a) A = None"
|
411 |
+
using assms by(simp add: Merge_def a_def)
|
412 |
+
with assms(1) show False using ha
|
413 |
+
proof(induction arbitrary: a)
|
414 |
+
case (insert x A)
|
415 |
+
thus ?case
|
416 |
+
apply(cases "m x a"; use nothing in \<open>simp only: merge.fold_insert_idem2\<close>)
|
417 |
+
apply(simp add: merge_respects_hashes)
|
418 |
+
apply(fastforce simp add: join vimage2p_def dest: hash[THEN predicate2D])
|
419 |
+
done
|
420 |
+
qed simp
|
421 |
+
qed
|
422 |
+
|
423 |
+
lemma Merge_hash:
|
424 |
+
assumes "Merge A = Some x" "a \<in> A"
|
425 |
+
shows "h a = h x"
|
426 |
+
using Merge_upper[OF assms] hash by(auto simp add: vimage2p_def)
|
427 |
+
|
428 |
+
end
|
429 |
+
|
430 |
+
end
|
formal/afp/ADS_Functor/Merkle_Interface.thy
ADDED
@@ -0,0 +1,299 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
(* Author: Andreas Lochbihler, Digital Asset
|
2 |
+
Author: Ognjen Maric, Digital Asset *)
|
3 |
+
|
4 |
+
theory Merkle_Interface
|
5 |
+
imports
|
6 |
+
Main
|
7 |
+
"HOL-Library.Conditional_Parametricity"
|
8 |
+
"HOL-Library.Monad_Syntax"
|
9 |
+
begin
|
10 |
+
|
11 |
+
alias vimage2p = BNF_Def.vimage2p
|
12 |
+
alias Grp = BNF_Def.Grp
|
13 |
+
alias setl = Basic_BNFs.setl
|
14 |
+
alias setr = Basic_BNFs.setr
|
15 |
+
alias fsts = Basic_BNFs.fsts
|
16 |
+
alias snds = Basic_BNFs.snds
|
17 |
+
|
18 |
+
attribute_setup locale_witness = \<open>Scan.succeed Locale.witness_add\<close>
|
19 |
+
|
20 |
+
lemma vimage2p_mono': "R \<le> S \<Longrightarrow> vimage2p f g R \<le> vimage2p f g S"
|
21 |
+
by(auto simp add: vimage2p_def le_fun_def)
|
22 |
+
|
23 |
+
lemma vimage2p_map_rel_prod:
|
24 |
+
"vimage2p (map_prod f g) (map_prod f' g') (rel_prod A B) = rel_prod (vimage2p f f' A) (vimage2p g g' B)"
|
25 |
+
by(simp add: vimage2p_def prod.rel_map)
|
26 |
+
|
27 |
+
lemma vimage2p_map_list_all2:
|
28 |
+
"vimage2p (map f) (map g) (list_all2 A) = list_all2 (vimage2p f g A)"
|
29 |
+
by(simp add: vimage2p_def list.rel_map)
|
30 |
+
|
31 |
+
lemma equivclp_least:
|
32 |
+
assumes le: "r \<le> s" and s: "equivp s"
|
33 |
+
shows "equivclp r \<le> s"
|
34 |
+
apply(rule predicate2I)
|
35 |
+
subgoal by(induction rule: equivclp_induct)(auto 4 3 intro: equivp_reflp[OF s] equivp_transp[OF s] equivp_symp[OF s] le[THEN predicate2D])
|
36 |
+
done
|
37 |
+
|
38 |
+
lemma reflp_eq_onp: "reflp R \<longleftrightarrow> eq_onp (\<lambda>x. True) \<le> R"
|
39 |
+
by(auto simp add: reflp_def eq_onp_def)
|
40 |
+
|
41 |
+
lemma eq_onpE:
|
42 |
+
assumes "eq_onp P x y"
|
43 |
+
obtains "x = y" "P y"
|
44 |
+
using assms by(auto simp add: eq_onp_def)
|
45 |
+
|
46 |
+
lemma case_unit_parametric [transfer_rule]: "rel_fun A (rel_fun (=) A) case_unit case_unit"
|
47 |
+
by(simp add: rel_fun_def split: unit.split)
|
48 |
+
|
49 |
+
|
50 |
+
(************************************************************)
|
51 |
+
section \<open>Authenticated Data Structures\<close>
|
52 |
+
(************************************************************)
|
53 |
+
|
54 |
+
(************************************************************)
|
55 |
+
subsection \<open>Interface\<close>
|
56 |
+
(************************************************************)
|
57 |
+
|
58 |
+
(************************************************************)
|
59 |
+
subsubsection \<open> Types \<close>
|
60 |
+
(************************************************************)
|
61 |
+
|
62 |
+
type_synonym ('a\<^sub>m, 'a\<^sub>h) hash = "'a\<^sub>m \<Rightarrow> 'a\<^sub>h" \<comment> \<open>Type of hash operation\<close>
|
63 |
+
type_synonym 'a\<^sub>m blinding_of = "'a\<^sub>m \<Rightarrow> 'a\<^sub>m \<Rightarrow> bool"
|
64 |
+
type_synonym 'a\<^sub>m merge = "'a\<^sub>m \<Rightarrow> 'a\<^sub>m \<Rightarrow> 'a\<^sub>m option" \<comment> \<open> merging that can fail for values with different hashes\<close>
|
65 |
+
|
66 |
+
(************************************************************)
|
67 |
+
subsubsection \<open> Properties \<close>
|
68 |
+
(************************************************************)
|
69 |
+
|
70 |
+
locale merkle_interface =
|
71 |
+
fixes h :: "('a\<^sub>m, 'a\<^sub>h) hash"
|
72 |
+
and bo :: "'a\<^sub>m blinding_of"
|
73 |
+
and m :: "'a\<^sub>m merge"
|
74 |
+
assumes merge_respects_hashes: "h a = h b \<longleftrightarrow> (\<exists>ab. m a b = Some ab)"
|
75 |
+
and idem: "m a a = Some a"
|
76 |
+
and commute: "m a b = m b a"
|
77 |
+
and assoc: "m a b \<bind> m c = m b c \<bind> m a"
|
78 |
+
and bo_def: "bo a b \<longleftrightarrow> m a b = Some b"
|
79 |
+
begin
|
80 |
+
|
81 |
+
lemma reflp: "reflp bo"
|
82 |
+
unfolding bo_def by(rule reflpI)(simp add: idem)
|
83 |
+
|
84 |
+
lemma antisymp: "antisymp bo"
|
85 |
+
unfolding bo_def by(rule antisympI)(simp add: commute)
|
86 |
+
|
87 |
+
lemma transp: "transp bo"
|
88 |
+
apply(rule transpI)
|
89 |
+
subgoal for x y z using assoc[of x y z] by(simp add: commute bo_def)
|
90 |
+
done
|
91 |
+
|
92 |
+
lemma hash: "bo \<le> vimage2p h h (=)"
|
93 |
+
unfolding bo_def by(auto simp add: vimage2p_def merge_respects_hashes)
|
94 |
+
|
95 |
+
lemma join: "m a b = Some ab \<longleftrightarrow> bo a ab \<and> bo b ab \<and> (\<forall>u. bo a u \<longrightarrow> bo b u \<longrightarrow> bo ab u)"
|
96 |
+
unfolding bo_def
|
97 |
+
by (smt Option.bind_cong bind.bind_lunit commute idem merkle_interface.assoc merkle_interface_axioms)
|
98 |
+
|
99 |
+
text \<open>The equivalence closure of the blinding relation are the equivalence classes of the hash function (the kernel).\<close>
|
100 |
+
|
101 |
+
lemma equivclp_blinding_of: "equivclp bo = vimage2p h h (=)" (is "?lhs = ?rhs")
|
102 |
+
proof(rule antisym)
|
103 |
+
show "?lhs \<le> ?rhs" by(rule equivclp_least[OF hash])(rule equivp_vimage2p[OF identity_equivp])
|
104 |
+
show "?rhs \<le> ?lhs" unfolding vimage2p_def
|
105 |
+
proof(rule predicate2I)
|
106 |
+
fix x y
|
107 |
+
assume "h x = h y"
|
108 |
+
then obtain xy where "m x y = Some xy" unfolding merge_respects_hashes ..
|
109 |
+
hence "bo x xy" "bo y xy" unfolding join by blast+
|
110 |
+
hence "equivclp bo x xy" "equivclp bo xy y" by(blast)+
|
111 |
+
thus "equivclp bo x y" by(rule equivclp_trans)
|
112 |
+
qed
|
113 |
+
qed
|
114 |
+
|
115 |
+
end
|
116 |
+
|
117 |
+
(************************************************************)
|
118 |
+
subsection \<open> Auxiliary definitions \<close>
|
119 |
+
(************************************************************)
|
120 |
+
|
121 |
+
text \<open> Directly proving that an interface satisfies the specification of a Merkle interface as given
|
122 |
+
above is difficult. Instead, we provide several layers of auxiliary definitions that can easily be
|
123 |
+
proved layer-by-layer.
|
124 |
+
|
125 |
+
In particular, proving that an interface on recursive datatypes is a Merkle interface requires
|
126 |
+
induction. As the induction hypothesis only applies to a subset of values of a type, we add
|
127 |
+
auxiliary definitions equipped with an explicit set @{term A} of values to which the definition
|
128 |
+
applies. Once the induction proof is complete, we can typically instantiate @{term A} with @{term
|
129 |
+
UNIV}. In particular, in the induction proof for a layer, we can assume that properties for the
|
130 |
+
earlier layers hold for \<^emph>\<open>all\<close> values, not just those in the induction hypothesis.
|
131 |
+
\<close>
|
132 |
+
|
133 |
+
(************************************************************)
|
134 |
+
subsubsection \<open> Blinding \<close>
|
135 |
+
(************************************************************)
|
136 |
+
locale blinding_respects_hashes =
|
137 |
+
fixes h :: "('a\<^sub>m, 'a\<^sub>h) hash"
|
138 |
+
and bo :: "'a\<^sub>m blinding_of"
|
139 |
+
assumes hash: "bo \<le> vimage2p h h (=)"
|
140 |
+
begin
|
141 |
+
|
142 |
+
lemma blinding_hash_eq: "bo x y \<Longrightarrow> h x = h y"
|
143 |
+
by(drule hash[THEN predicate2D])(simp add: vimage2p_def)
|
144 |
+
|
145 |
+
end
|
146 |
+
|
147 |
+
locale blinding_of_on =
|
148 |
+
blinding_respects_hashes h bo
|
149 |
+
for A :: "'a\<^sub>m set"
|
150 |
+
and h :: "('a\<^sub>m, 'a\<^sub>h) hash"
|
151 |
+
and bo :: "'a\<^sub>m blinding_of"
|
152 |
+
+ assumes refl: "x \<in> A \<Longrightarrow> bo x x"
|
153 |
+
and trans: "\<lbrakk> bo x y; bo y z; x \<in> A \<rbrakk> \<Longrightarrow> bo x z"
|
154 |
+
and antisym: "\<lbrakk> bo x y; bo y x; x \<in> A \<rbrakk> \<Longrightarrow> x = y"
|
155 |
+
begin
|
156 |
+
|
157 |
+
lemma refl_pointfree: "eq_onp (\<lambda>x. x \<in> A) \<le> bo"
|
158 |
+
by(auto elim!: eq_onpE intro: refl)
|
159 |
+
|
160 |
+
lemma blinding_respects_hashes: "blinding_respects_hashes h bo" ..
|
161 |
+
lemmas hash = hash
|
162 |
+
|
163 |
+
lemma trans_pointfree: "eq_onp (\<lambda>x. x \<in> A) OO bo OO bo \<le> bo"
|
164 |
+
by(auto elim!: eq_onpE intro: trans)
|
165 |
+
|
166 |
+
lemma antisym_pointfree: "inf (eq_onp (\<lambda>x. x \<in> A) OO bo) bo\<inverse>\<inverse> \<le> (=)"
|
167 |
+
by(auto elim!: eq_onpE dest: antisym)
|
168 |
+
|
169 |
+
end
|
170 |
+
|
171 |
+
(************************************************************)
|
172 |
+
subsubsection \<open> Merging \<close>
|
173 |
+
(************************************************************)
|
174 |
+
|
175 |
+
text \<open> In general, we prove the properties of blinding before the properties of merging. Thus,
|
176 |
+
in the following definitions we assume that the blinding properties already hold on @{term UNIV}.
|
177 |
+
The @{term Ball} restricts the argument of the merge operation on which induction will be done. \<close>
|
178 |
+
|
179 |
+
locale merge_on =
|
180 |
+
blinding_of_on UNIV h bo
|
181 |
+
for A :: "'a\<^sub>m set"
|
182 |
+
and h :: "('a\<^sub>m, 'a\<^sub>h) hash"
|
183 |
+
and bo :: "'a\<^sub>m blinding_of"
|
184 |
+
and m :: "'a\<^sub>m merge" +
|
185 |
+
assumes join: "\<lbrakk> h a = h b; a \<in> A \<rbrakk>
|
186 |
+
\<Longrightarrow> \<exists>ab. m a b = Some ab \<and> bo a ab \<and> bo b ab \<and> (\<forall>u. bo a u \<longrightarrow> bo b u \<longrightarrow> bo ab u)"
|
187 |
+
and undefined: "\<lbrakk> h a \<noteq> h b; a \<in> A \<rbrakk> \<Longrightarrow> m a b = None"
|
188 |
+
begin
|
189 |
+
|
190 |
+
lemma same: "a \<in> A \<Longrightarrow> m a a = Some a"
|
191 |
+
using join[of a a] refl[of a] by(auto 4 3 intro: antisym)
|
192 |
+
|
193 |
+
lemma blinding_of_antisym_on: "blinding_of_on UNIV h bo" ..
|
194 |
+
|
195 |
+
lemma transp: "transp bo"
|
196 |
+
by(auto intro: transpI trans)
|
197 |
+
|
198 |
+
lemmas hash = hash
|
199 |
+
and refl = refl
|
200 |
+
and antisym = antisym[OF _ _ UNIV_I]
|
201 |
+
|
202 |
+
lemma respects_hashes:
|
203 |
+
"a \<in> A \<Longrightarrow> h a = h b \<longleftrightarrow> (\<exists>ab. m a b = Some ab)"
|
204 |
+
using join undefined
|
205 |
+
by fastforce
|
206 |
+
|
207 |
+
lemma join':
|
208 |
+
"a \<in> A \<Longrightarrow> \<forall>ab. m a b = Some ab \<longleftrightarrow> bo a ab \<and> bo b ab \<and> (\<forall>u. bo a u \<longrightarrow> bo b u \<longrightarrow> bo ab u)"
|
209 |
+
using join undefined
|
210 |
+
by (metis (full_types) hash local.antisym option.distinct(1) option.sel predicate2D vimage2p_def)
|
211 |
+
|
212 |
+
lemma merge_on_subset:
|
213 |
+
"B \<subseteq> A \<Longrightarrow> merge_on B h bo m"
|
214 |
+
by unfold_locales (auto dest: same join undefined)
|
215 |
+
|
216 |
+
end
|
217 |
+
|
218 |
+
subsection \<open> Interface equality \<close>
|
219 |
+
|
220 |
+
text \<open> Here, we prove that the auxiliary definitions specify the same interface as the original ones.\<close>
|
221 |
+
|
222 |
+
lemma merkle_interface_aux: "merkle_interface h bo m = merge_on UNIV h bo m"
|
223 |
+
(is "?lhs = ?rhs")
|
224 |
+
proof
|
225 |
+
show ?rhs if ?lhs
|
226 |
+
proof
|
227 |
+
interpret merkle_interface h bo m by(fact that)
|
228 |
+
show "bo \<le> vimage2p h h (=)" by(fact hash)
|
229 |
+
show "bo x x" for x using reflp by(simp add: reflp_def)
|
230 |
+
show "bo x z" if "bo x y" "bo y z" for x y z using transp that by(rule transpD)
|
231 |
+
show "x = y" if "bo x y" "bo y x" for x y using antisymp that by(rule antisympD)
|
232 |
+
show "\<exists>ab. m a b = Some ab \<and> bo a ab \<and> bo b ab \<and> (\<forall>u. bo a u \<longrightarrow> bo b u \<longrightarrow> bo ab u)" if "h a = h b" for a b
|
233 |
+
using that by(simp add: merge_respects_hashes join)
|
234 |
+
show "m a b = None" if "h a \<noteq> h b" for a b using that by(simp add: merge_respects_hashes)
|
235 |
+
qed
|
236 |
+
|
237 |
+
show ?lhs if ?rhs
|
238 |
+
proof
|
239 |
+
interpret merge_on UNIV h bo m by(fact that)
|
240 |
+
show eq: "h a = h b \<longleftrightarrow> (\<exists>ab. m a b = Some ab)" for a b by(simp add: respects_hashes)
|
241 |
+
show idem: "m a a = Some a" for a by(simp add: same)
|
242 |
+
show commute: "m a b = m b a" for a b
|
243 |
+
using join[of a b] join[of b a] undefined antisym by(cases "m a b") force+
|
244 |
+
have undefined_partitioned: "m a c = None" if "m a b = None" "m b c = Some bc" for a b c bc
|
245 |
+
using that eq by (metis option.distinct(1) option.exhaust)
|
246 |
+
have merge_twice: "m a b = Some c \<Longrightarrow> m a c = Some c" for a b c by (simp add: join')
|
247 |
+
show "m a b \<bind> m c = m b c \<bind> m a" for a b c
|
248 |
+
proof(simp split: Option.bind_split; safe)
|
249 |
+
show "None = m a d" if "m a b = None" "m b c = Some d" for d using that
|
250 |
+
by(metis undefined_partitioned merge_twice)
|
251 |
+
show "m c d = None" if "m a b = Some d" "m b c = None" for d using that
|
252 |
+
by(metis commute merge_twice undefined_partitioned)
|
253 |
+
next
|
254 |
+
fix ab bc
|
255 |
+
assume assms: "m a b = Some ab" "m b c = Some bc"
|
256 |
+
then obtain cab and abc where cab: "m c ab = Some cab" and abc: "m a bc = Some abc"
|
257 |
+
using eq[THEN iffD2, OF exI] eq[THEN iffD1] by (metis merge_twice)
|
258 |
+
thus "m c ab = m a bc" using assms
|
259 |
+
by(clarsimp simp add: join')(metis UNIV_I abc cab local.antisym local.trans)
|
260 |
+
qed
|
261 |
+
show "bo a b \<longleftrightarrow> m a b = Some b" for a b using idem join' by auto
|
262 |
+
qed
|
263 |
+
qed
|
264 |
+
|
265 |
+
lemma merkle_interfaceI [locale_witness]:
|
266 |
+
assumes "merge_on UNIV h bo m"
|
267 |
+
shows "merkle_interface h bo m"
|
268 |
+
using assms unfolding merkle_interface_aux by auto
|
269 |
+
|
270 |
+
lemma (in merkle_interface) merkle_interfaceD: "merge_on UNIV h bo m"
|
271 |
+
using merkle_interface_aux[of h bo m, symmetric]
|
272 |
+
by simp unfold_locales
|
273 |
+
|
274 |
+
subsection \<open> Parametricity rules \<close>
|
275 |
+
|
276 |
+
context includes lifting_syntax begin
|
277 |
+
parametric_constant le_fun_parametric[transfer_rule]: le_fun_def
|
278 |
+
parametric_constant vimage2p_parametric[transfer_rule]: vimage2p_def
|
279 |
+
parametric_constant blinding_respects_hashes_parametric_aux: blinding_respects_hashes_def
|
280 |
+
|
281 |
+
lemma blinding_respects_hashes_parametric [transfer_rule]:
|
282 |
+
"((A1 ===> A2) ===> (A1 ===> A1 ===> (\<longleftrightarrow>)) ===> (\<longleftrightarrow>))
|
283 |
+
blinding_respects_hashes blinding_respects_hashes"
|
284 |
+
if [transfer_rule]: "bi_unique A2" "bi_total A1"
|
285 |
+
by(rule blinding_respects_hashes_parametric_aux that le_fun_parametric | simp add: rel_fun_eq)+
|
286 |
+
|
287 |
+
parametric_constant blinding_of_on_axioms_parametric [transfer_rule]:
|
288 |
+
blinding_of_on_axioms_def[folded Ball_def, unfolded le_fun_def le_bool_def eq_onp_def relcompp.simps, simplified]
|
289 |
+
parametric_constant blinding_of_on_parametric [transfer_rule]: blinding_of_on_def
|
290 |
+
parametric_constant antisymp_parametric[transfer_rule]: antisymp_def
|
291 |
+
parametric_constant transp_parametric[transfer_rule]: transp_def
|
292 |
+
|
293 |
+
parametric_constant merge_on_axioms_parametric [transfer_rule]: merge_on_axioms_def
|
294 |
+
parametric_constant merge_on_parametric[transfer_rule]: merge_on_def
|
295 |
+
|
296 |
+
parametric_constant merkle_interface_parametric[transfer_rule]: merkle_interface_def
|
297 |
+
end
|
298 |
+
|
299 |
+
end
|
formal/afp/ADS_Functor/document/root.tex
ADDED
@@ -0,0 +1,78 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
\documentclass[11pt,a4paper]{article}
|
2 |
+
\usepackage[T1]{fontenc}
|
3 |
+
\usepackage{isabelle,isabellesym}
|
4 |
+
|
5 |
+
% further packages required for unusual symbols (see also
|
6 |
+
% isabellesym.sty), use only when needed
|
7 |
+
|
8 |
+
%\usepackage{amssymb}
|
9 |
+
%for \<leadsto>, \<box>, \<diamond>, \<sqsupset>, \<mho>, \<Join>,
|
10 |
+
%\<lhd>, \<lesssim>, \<greatersim>, \<lessapprox>, \<greaterapprox>,
|
11 |
+
%\<triangleq>, \<yen>, \<lozenge>
|
12 |
+
|
13 |
+
%\usepackage{eurosym}
|
14 |
+
%for \<euro>
|
15 |
+
|
16 |
+
%\usepackage[only,bigsqcap]{stmaryrd}
|
17 |
+
%for \<Sqinter>
|
18 |
+
|
19 |
+
%\usepackage{eufrak}
|
20 |
+
%for \<AA> ... \<ZZ>, \<aa> ... \<zz> (also included in amssymb)
|
21 |
+
|
22 |
+
%\usepackage{textcomp}
|
23 |
+
%for \<onequarter>, \<onehalf>, \<threequarters>, \<degree>, \<cent>,
|
24 |
+
%\<currency>
|
25 |
+
|
26 |
+
% this should be the last package used
|
27 |
+
\usepackage{pdfsetup}
|
28 |
+
|
29 |
+
% urls in roman style, theory text in math-similar italics
|
30 |
+
\urlstyle{rm}
|
31 |
+
\isabellestyle{it}
|
32 |
+
|
33 |
+
% for uniform font size
|
34 |
+
%\renewcommand{\isastyle}{\isastyleminor}
|
35 |
+
|
36 |
+
|
37 |
+
\begin{document}
|
38 |
+
|
39 |
+
\title{Authenticated Data Structures as Functors}
|
40 |
+
\author{Andreas Lochbihler \qquad Ognjen Maric \\[1em] Digital Asset}
|
41 |
+
|
42 |
+
\maketitle
|
43 |
+
|
44 |
+
\begin{abstract}
|
45 |
+
Authenticated data structures allow several systems to convince each other that they are referring to the same data structure,
|
46 |
+
even if each of them knows only a part of the data structure.
|
47 |
+
Using inclusion proofs, knowledgable systems can selectively share their knowledge with other systems
|
48 |
+
and the latter can verify the authenticity of what is being shared.
|
49 |
+
|
50 |
+
In this paper, we show how to modularly define authenticated data structures, their inclusion proofs, and operations thereon
|
51 |
+
as datatypes in Isabelle/HOL, using a shallow embedding.
|
52 |
+
Modularity allows us to construct complicated trees from reusable building blocks, which we call Merkle functors.
|
53 |
+
Merkle functors include sums, products, and function spaces and are closed under composition and least fixpoints.
|
54 |
+
|
55 |
+
As a practical application, we model the hierarchical transactions of Canton,
|
56 |
+
a practical interoperability protocol for distributed ledgers, as authenticated data structures.
|
57 |
+
This is a first step towards formalizing the Canton protocol and verifying its integrity and security guarantees.
|
58 |
+
\end{abstract}
|
59 |
+
|
60 |
+
|
61 |
+
\tableofcontents
|
62 |
+
|
63 |
+
% sane default for proof documents
|
64 |
+
\parindent 0pt\parskip 0.5ex
|
65 |
+
|
66 |
+
% generated text of all theories
|
67 |
+
\input{session}
|
68 |
+
|
69 |
+
% optional bibliography
|
70 |
+
%\bibliographystyle{abbrv}
|
71 |
+
%\bibliography{root}
|
72 |
+
|
73 |
+
\end{document}
|
74 |
+
|
75 |
+
%%% Local Variables:
|
76 |
+
%%% mode: latex
|
77 |
+
%%% TeX-master: t
|
78 |
+
%%% End:
|
formal/afp/AI_Planning_Languages_Semantics/Error_Monad_Add.thy
ADDED
@@ -0,0 +1,52 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
theory Error_Monad_Add
|
2 |
+
imports
|
3 |
+
"Certification_Monads.Check_Monad"
|
4 |
+
"Show.Show_Instances"
|
5 |
+
begin
|
6 |
+
(* TODO: Move *)
|
7 |
+
abbreviation "assert_opt \<Phi> \<equiv> if \<Phi> then Some () else None"
|
8 |
+
|
9 |
+
definition "lift_opt m e \<equiv> case m of Some x \<Rightarrow> Error_Monad.return x | None \<Rightarrow> Error_Monad.error e"
|
10 |
+
|
11 |
+
lemma lift_opt_simps[simp]:
|
12 |
+
"lift_opt None e = error e"
|
13 |
+
"lift_opt (Some v) e = return v"
|
14 |
+
by (auto simp: lift_opt_def)
|
15 |
+
|
16 |
+
(* TODO: Move *)
|
17 |
+
lemma reflcl_image_iff[simp]: "R\<^sup>=``S = S\<union>R``S" by blast
|
18 |
+
|
19 |
+
named_theorems return_iff
|
20 |
+
|
21 |
+
lemma bind_return_iff[return_iff]: "Error_Monad.bind m f = Inr y \<longleftrightarrow> (\<exists>x. m = Inr x \<and> f x = Inr y)"
|
22 |
+
by auto
|
23 |
+
|
24 |
+
lemma lift_opt_return_iff[return_iff]: "lift_opt m e = Inr x \<longleftrightarrow> m=Some x"
|
25 |
+
unfolding lift_opt_def by (auto split: option.split)
|
26 |
+
|
27 |
+
lemma check_return_iff[return_iff]: "check \<Phi> e = Inr uu \<longleftrightarrow> \<Phi>"
|
28 |
+
by (auto simp: check_def)
|
29 |
+
|
30 |
+
|
31 |
+
lemma check_simps[simp]:
|
32 |
+
"check True e = succeed"
|
33 |
+
"check False e = error e"
|
34 |
+
by (auto simp: check_def)
|
35 |
+
|
36 |
+
lemma Let_return_iff[return_iff]: "(let x=v in f x) = Inr w \<longleftrightarrow> f v = Inr w" by simp
|
37 |
+
|
38 |
+
|
39 |
+
abbreviation ERR :: "shows \<Rightarrow> (unit \<Rightarrow> shows)" where "ERR s \<equiv> \<lambda>_. s"
|
40 |
+
abbreviation ERRS :: "String.literal \<Rightarrow> (unit \<Rightarrow> shows)" where "ERRS s \<equiv> ERR (shows s)"
|
41 |
+
|
42 |
+
|
43 |
+
lemma error_monad_bind_split: "P (bind m f) \<longleftrightarrow> (\<forall>v. m = Inl v \<longrightarrow> P (Inl v)) \<and> (\<forall>v. m = Inr v \<longrightarrow> P (f v))"
|
44 |
+
by (cases m) auto
|
45 |
+
|
46 |
+
lemma error_monad_bind_split_asm: "P (bind m f) \<longleftrightarrow> \<not> (\<exists>x. m = Inl x \<and> \<not> P (Inl x) \<or> (\<exists>x. m = Inr x \<and> \<not> P (f x)))"
|
47 |
+
by (cases m) auto
|
48 |
+
|
49 |
+
lemmas error_monad_bind_splits =error_monad_bind_split error_monad_bind_split_asm
|
50 |
+
|
51 |
+
|
52 |
+
end
|
formal/afp/AI_Planning_Languages_Semantics/Lifschitz_Consistency.thy
ADDED
@@ -0,0 +1,416 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
section \<open>Soundness theorem for the STRIPS semantics\<close>
|
2 |
+
text \<open>We prove the soundness theorem according to ~\cite{lifschitz1987semantics}.\<close>
|
3 |
+
|
4 |
+
theory Lifschitz_Consistency
|
5 |
+
imports PDDL_STRIPS_Semantics
|
6 |
+
begin
|
7 |
+
|
8 |
+
|
9 |
+
text \<open>States are modeled as valuations of our underlying predicate logic.\<close>
|
10 |
+
type_synonym state = "(predicate\<times>object list) valuation"
|
11 |
+
|
12 |
+
context ast_domain begin
|
13 |
+
text \<open>An action is a partial function from states to states. \<close>
|
14 |
+
type_synonym action = "state \<rightharpoonup> state"
|
15 |
+
|
16 |
+
text \<open>The Isabelle/HOL formula @{prop \<open>f s = Some s'\<close>} means
|
17 |
+
that \<open>f\<close> is applicable in state \<open>s\<close>, and the result is \<open>s'\<close>. \<close>
|
18 |
+
|
19 |
+
text \<open>Definition B (i)--(iv) in Lifschitz's paper~\cite{lifschitz1987semantics}\<close>
|
20 |
+
|
21 |
+
fun is_NegPredAtom where
|
22 |
+
"is_NegPredAtom (Not x) = is_predAtom x" | "is_NegPredAtom _ = False"
|
23 |
+
|
24 |
+
definition "close_eq s = (\<lambda>predAtm p xs \<Rightarrow> s (p,xs) | Eq a b \<Rightarrow> a=b)"
|
25 |
+
|
26 |
+
lemma close_eq_predAtm[simp]: "close_eq s (predAtm p xs) \<longleftrightarrow> s (p,xs)"
|
27 |
+
by (auto simp: close_eq_def)
|
28 |
+
|
29 |
+
lemma close_eq_Eq[simp]: "close_eq s (Eq a b) \<longleftrightarrow> a=b"
|
30 |
+
by (auto simp: close_eq_def)
|
31 |
+
|
32 |
+
|
33 |
+
abbreviation entail_eq :: "state \<Rightarrow> object atom formula \<Rightarrow> bool" (infix "\<Turnstile>\<^sub>=" 55)
|
34 |
+
where "entail_eq s f \<equiv> close_eq s \<Turnstile> f"
|
35 |
+
|
36 |
+
|
37 |
+
fun sound_opr :: "ground_action \<Rightarrow> action \<Rightarrow> bool" where
|
38 |
+
"sound_opr (Ground_Action pre (Effect add del)) f \<longleftrightarrow>
|
39 |
+
(\<forall>s. s \<Turnstile>\<^sub>= pre \<longrightarrow>
|
40 |
+
(\<exists>s'. f s = Some s' \<and> (\<forall>atm. is_predAtom atm \<and> atm \<notin> set del \<and> s \<Turnstile>\<^sub>= atm \<longrightarrow> s' \<Turnstile>\<^sub>= atm)
|
41 |
+
\<and> (\<forall>atm. is_predAtom atm \<and> atm \<notin> set add \<and> s \<Turnstile>\<^sub>= Not atm \<longrightarrow> s' \<Turnstile>\<^sub>= Not atm)
|
42 |
+
\<and> (\<forall>fmla. fmla \<in> set add \<longrightarrow> s' \<Turnstile>\<^sub>= fmla)
|
43 |
+
\<and> (\<forall>fmla. fmla \<in> set del \<and> fmla \<notin> set add \<longrightarrow> s' \<Turnstile>\<^sub>= (Not fmla))
|
44 |
+
))
|
45 |
+
\<and> (\<forall>fmla\<in>set add. is_predAtom fmla)"
|
46 |
+
|
47 |
+
lemma sound_opr_alt:
|
48 |
+
"sound_opr opr f =
|
49 |
+
((\<forall>s. s \<Turnstile>\<^sub>= (precondition opr) \<longrightarrow>
|
50 |
+
(\<exists>s'. f s = (Some s')
|
51 |
+
\<and> (\<forall>atm. is_predAtom atm \<and> atm \<notin> set(dels (effect opr)) \<and> s \<Turnstile>\<^sub>= atm \<longrightarrow> s' \<Turnstile>\<^sub>= atm)
|
52 |
+
\<and> (\<forall>atm. is_predAtom atm \<and> atm \<notin> set (adds (effect opr)) \<and> s \<Turnstile>\<^sub>= Not atm \<longrightarrow> s' \<Turnstile>\<^sub>= Not atm)
|
53 |
+
\<and> (\<forall>atm. atm \<in> set(adds (effect opr)) \<longrightarrow> s' \<Turnstile>\<^sub>= atm)
|
54 |
+
\<and> (\<forall>fmla. fmla \<in> set (dels (effect opr)) \<and> fmla \<notin> set(adds (effect opr)) \<longrightarrow> s' \<Turnstile>\<^sub>= (Not fmla))
|
55 |
+
\<and> (\<forall>a b. s \<Turnstile>\<^sub>= Atom (Eq a b) \<longrightarrow> s' \<Turnstile>\<^sub>= Atom (Eq a b))
|
56 |
+
\<and> (\<forall>a b. s \<Turnstile>\<^sub>= Not (Atom (Eq a b)) \<longrightarrow> s' \<Turnstile>\<^sub>= Not (Atom (Eq a b)))
|
57 |
+
))
|
58 |
+
\<and> (\<forall>fmla\<in>set(adds (effect opr)). is_predAtom fmla))"
|
59 |
+
by (cases "(opr,f)" rule: sound_opr.cases) auto
|
60 |
+
|
61 |
+
text \<open>Definition B (v)--(vii) in Lifschitz's paper~\cite{lifschitz1987semantics}\<close>
|
62 |
+
definition sound_system
|
63 |
+
:: "ground_action set
|
64 |
+
\<Rightarrow> world_model
|
65 |
+
\<Rightarrow> state
|
66 |
+
\<Rightarrow> (ground_action \<Rightarrow> action)
|
67 |
+
\<Rightarrow> bool"
|
68 |
+
where
|
69 |
+
"sound_system \<Sigma> M\<^sub>0 s\<^sub>0 f \<longleftrightarrow>
|
70 |
+
((\<forall>fmla\<in>close_world M\<^sub>0. s\<^sub>0 \<Turnstile>\<^sub>= fmla)
|
71 |
+
\<and> wm_basic M\<^sub>0
|
72 |
+
\<and> (\<forall>\<alpha>\<in>\<Sigma>. sound_opr \<alpha> (f \<alpha>)))"
|
73 |
+
|
74 |
+
text \<open>Composing two actions\<close>
|
75 |
+
definition compose_action :: "action \<Rightarrow> action \<Rightarrow> action" where
|
76 |
+
"compose_action f1 f2 x = (case f2 x of Some y \<Rightarrow> f1 y | None \<Rightarrow> None)"
|
77 |
+
|
78 |
+
text \<open>Composing a list of actions\<close>
|
79 |
+
definition compose_actions :: "action list \<Rightarrow> action" where
|
80 |
+
"compose_actions fs \<equiv> fold compose_action fs Some"
|
81 |
+
|
82 |
+
text \<open>Composing a list of actions satisfies some natural lemmas: \<close>
|
83 |
+
lemma compose_actions_Nil[simp]:
|
84 |
+
"compose_actions [] = Some" unfolding compose_actions_def by auto
|
85 |
+
|
86 |
+
lemma compose_actions_Cons[simp]:
|
87 |
+
"f s = Some s' \<Longrightarrow> compose_actions (f#fs) s = compose_actions fs s'"
|
88 |
+
proof -
|
89 |
+
interpret monoid_add compose_action Some
|
90 |
+
apply unfold_locales
|
91 |
+
unfolding compose_action_def
|
92 |
+
by (auto split: option.split)
|
93 |
+
assume "f s = Some s'"
|
94 |
+
then show ?thesis
|
95 |
+
unfolding compose_actions_def
|
96 |
+
by (simp add: compose_action_def fold_plus_sum_list_rev)
|
97 |
+
qed
|
98 |
+
|
99 |
+
text \<open>Soundness Theorem in Lifschitz's paper~\cite{lifschitz1987semantics}.\<close>
|
100 |
+
theorem STRIPS_sema_sound:
|
101 |
+
assumes "sound_system \<Sigma> M\<^sub>0 s\<^sub>0 f"
|
102 |
+
\<comment> \<open>For a sound system \<open>\<Sigma>\<close>\<close>
|
103 |
+
assumes "set \<alpha>s \<subseteq> \<Sigma>"
|
104 |
+
\<comment> \<open>And a plan \<open>\<alpha>s\<close>\<close>
|
105 |
+
assumes "ground_action_path M\<^sub>0 \<alpha>s M'"
|
106 |
+
\<comment> \<open>Which is accepted by the system, yielding result \<open>M'\<close>
|
107 |
+
(called \<open>R(\<alpha>s)\<close> in Lifschitz's paper~\cite{lifschitz1987semantics}.)\<close>
|
108 |
+
obtains s'
|
109 |
+
\<comment> \<open>We have that \<open>f(\<alpha>s)\<close> is applicable
|
110 |
+
in initial state, yielding state \<open>s'\<close> (called \<open>f\<^sub>\<alpha>\<^sub>s(s\<^sub>0)\<close> in Lifschitz's paper~\cite{lifschitz1987semantics}.)\<close>
|
111 |
+
where "compose_actions (map f \<alpha>s) s\<^sub>0 = Some s'"
|
112 |
+
\<comment> \<open>The result world model \<open>M'\<close> is satisfied in state \<open>s'\<close>\<close>
|
113 |
+
and "\<forall>fmla\<in>close_world M'. s' \<Turnstile>\<^sub>= fmla"
|
114 |
+
proof -
|
115 |
+
have "(valuation M' \<Turnstile> fmla)" if "wm_basic M'" "fmla\<in>M'" for fmla
|
116 |
+
using that apply (induction fmla)
|
117 |
+
by (auto simp: valuation_def wm_basic_def split: atom.split)
|
118 |
+
have "\<exists>s'. compose_actions (map f \<alpha>s) s\<^sub>0 = Some s' \<and> (\<forall>fmla\<in>close_world M'. s' \<Turnstile>\<^sub>= fmla)"
|
119 |
+
using assms
|
120 |
+
proof(induction \<alpha>s arbitrary: s\<^sub>0 M\<^sub>0 )
|
121 |
+
case Nil
|
122 |
+
then show ?case by (auto simp add: close_world_def compose_action_def sound_system_def)
|
123 |
+
next
|
124 |
+
case ass: (Cons \<alpha> \<alpha>s)
|
125 |
+
then obtain pre add del where a: "\<alpha> = Ground_Action pre (Effect add del)"
|
126 |
+
using ground_action.exhaust ast_effect.exhaust by metis
|
127 |
+
let ?M\<^sub>1 = "execute_ground_action \<alpha> M\<^sub>0"
|
128 |
+
have "close_world M\<^sub>0 \<TTurnstile> precondition \<alpha>"
|
129 |
+
using ass(4)
|
130 |
+
by auto
|
131 |
+
moreover have s0_ent_cwM0: "\<forall>fmla\<in>(close_world M\<^sub>0). close_eq s\<^sub>0 \<Turnstile> fmla"
|
132 |
+
using ass(2)
|
133 |
+
unfolding sound_system_def
|
134 |
+
by auto
|
135 |
+
ultimately have s0_ent_alpha_precond: "close_eq s\<^sub>0 \<Turnstile> precondition \<alpha>"
|
136 |
+
unfolding entailment_def
|
137 |
+
by auto
|
138 |
+
then obtain s\<^sub>1 where s1: "(f \<alpha>) s\<^sub>0 = Some s\<^sub>1"
|
139 |
+
"(\<forall>atm. is_predAtom atm \<longrightarrow> atm \<notin> set(dels (effect \<alpha>))
|
140 |
+
\<longrightarrow> close_eq s\<^sub>0 \<Turnstile> atm
|
141 |
+
\<longrightarrow> close_eq s\<^sub>1 \<Turnstile> atm)"
|
142 |
+
"(\<forall>fmla. fmla \<in> set(adds (effect \<alpha>))
|
143 |
+
\<longrightarrow> close_eq s\<^sub>1 \<Turnstile> fmla)"
|
144 |
+
"(\<forall>atm. is_predAtom atm \<and> atm \<notin> set (adds (effect \<alpha>)) \<and> close_eq s\<^sub>0 \<Turnstile> Not atm \<longrightarrow> close_eq s\<^sub>1 \<Turnstile> Not atm)"
|
145 |
+
"(\<forall>fmla. fmla \<in> set (dels (effect \<alpha>)) \<and> fmla \<notin> set(adds (effect \<alpha>)) \<longrightarrow> close_eq s\<^sub>1 \<Turnstile> (Not fmla))"
|
146 |
+
"(\<forall>a b. close_eq s\<^sub>0 \<Turnstile> Atom (Eq a b) \<longrightarrow> close_eq s\<^sub>1 \<Turnstile> Atom (Eq a b))"
|
147 |
+
"(\<forall>a b. close_eq s\<^sub>0 \<Turnstile> Not (Atom (Eq a b)) \<longrightarrow> close_eq s\<^sub>1 \<Turnstile> Not (Atom (Eq a b)))"
|
148 |
+
using ass(2-4)
|
149 |
+
unfolding sound_system_def sound_opr_alt by force
|
150 |
+
have "close_eq s\<^sub>1 \<Turnstile> fmla" if "fmla\<in>close_world ?M\<^sub>1" for fmla
|
151 |
+
using ass(2)
|
152 |
+
using that s1 s0_ent_cwM0
|
153 |
+
unfolding sound_system_def execute_ground_action_def wm_basic_def
|
154 |
+
apply (auto simp: in_close_world_conv)
|
155 |
+
subgoal
|
156 |
+
by (metis (no_types, lifting) DiffE UnE a apply_effect.simps ground_action.sel(2) ast_effect.sel(1) ast_effect.sel(2) close_world_extensive subsetCE)
|
157 |
+
subgoal
|
158 |
+
by (metis Diff_iff Un_iff a ground_action.sel(2) ast_domain.apply_effect.simps ast_domain.close_eq_predAtm ast_effect.sel(1) ast_effect.sel(2) formula_semantics.simps(1) formula_semantics.simps(3) in_close_world_conv is_predAtom.simps(1))
|
159 |
+
done
|
160 |
+
moreover have "(\<forall>atm. fmla \<noteq> formula.Atom atm) \<longrightarrow> s \<Turnstile> fmla" if "fmla\<in>?M\<^sub>1" for fmla s
|
161 |
+
proof-
|
162 |
+
have alpha: "(\<forall>s.\<forall>fmla\<in>set(adds (effect \<alpha>)). \<not> is_predAtom fmla \<longrightarrow> s \<Turnstile> fmla)"
|
163 |
+
using ass(2,3)
|
164 |
+
unfolding sound_system_def ast_domain.sound_opr_alt
|
165 |
+
by auto
|
166 |
+
then show ?thesis
|
167 |
+
using that
|
168 |
+
unfolding a execute_ground_action_def
|
169 |
+
using ass.prems(1)[unfolded sound_system_def]
|
170 |
+
by(cases fmla; fastforce simp: wm_basic_def)
|
171 |
+
|
172 |
+
qed
|
173 |
+
moreover have "(\<forall>opr\<in>\<Sigma>. sound_opr opr (f opr))"
|
174 |
+
using ass(2) unfolding sound_system_def
|
175 |
+
by (auto simp add:)
|
176 |
+
moreover have "wm_basic ?M\<^sub>1"
|
177 |
+
using ass(2,3)
|
178 |
+
unfolding sound_system_def execute_ground_action_def
|
179 |
+
thm sound_opr.cases
|
180 |
+
apply (cases "(\<alpha>,f \<alpha>)" rule: sound_opr.cases)
|
181 |
+
apply (auto simp: wm_basic_def)
|
182 |
+
done
|
183 |
+
ultimately have "sound_system \<Sigma> ?M\<^sub>1 s\<^sub>1 f"
|
184 |
+
unfolding sound_system_def
|
185 |
+
by (auto simp: wm_basic_def)
|
186 |
+
from ass.IH[OF this] ass.prems obtain s' where
|
187 |
+
"compose_actions (map f \<alpha>s) s\<^sub>1 = Some s' \<and> (\<forall>a\<in>close_world M'. s' \<Turnstile>\<^sub>= a)"
|
188 |
+
by auto
|
189 |
+
thus ?case by (auto simp: s1(1))
|
190 |
+
qed
|
191 |
+
with that show ?thesis by blast
|
192 |
+
qed
|
193 |
+
|
194 |
+
text \<open>More compact notation of the soundness theorem.\<close>
|
195 |
+
theorem STRIPS_sema_sound_compact_version:
|
196 |
+
"sound_system \<Sigma> M\<^sub>0 s\<^sub>0 f \<Longrightarrow> set \<alpha>s \<subseteq> \<Sigma>
|
197 |
+
\<Longrightarrow> ground_action_path M\<^sub>0 \<alpha>s M'
|
198 |
+
\<Longrightarrow> \<exists>s'. compose_actions (map f \<alpha>s) s\<^sub>0 = Some s'
|
199 |
+
\<and> (\<forall>fmla\<in>close_world M'. s' \<Turnstile>\<^sub>= fmla)"
|
200 |
+
using STRIPS_sema_sound by metis
|
201 |
+
|
202 |
+
end \<comment> \<open>Context of \<open>ast_domain\<close>\<close>
|
203 |
+
|
204 |
+
subsection \<open>Soundness Theorem for PDDL\<close>
|
205 |
+
|
206 |
+
context wf_ast_problem begin
|
207 |
+
|
208 |
+
text \<open>Mapping world models to states\<close>
|
209 |
+
definition state_to_wm :: "state \<Rightarrow> world_model"
|
210 |
+
where "state_to_wm s = ({formula.Atom (predAtm p xs) | p xs. s (p,xs)})"
|
211 |
+
definition wm_to_state :: "world_model \<Rightarrow> state"
|
212 |
+
where "wm_to_state M = (\<lambda>(p,xs). (formula.Atom (predAtm p xs)) \<in> M)"
|
213 |
+
|
214 |
+
|
215 |
+
lemma wm_to_state_eq[simp]: "wm_to_state M (p, as) \<longleftrightarrow> Atom (predAtm p as) \<in> M"
|
216 |
+
by (auto simp: wm_to_state_def)
|
217 |
+
|
218 |
+
|
219 |
+
|
220 |
+
|
221 |
+
lemma wm_to_state_inv[simp]: "wm_to_state (state_to_wm s) = s"
|
222 |
+
by (auto simp: wm_to_state_def
|
223 |
+
state_to_wm_def image_def)
|
224 |
+
|
225 |
+
text \<open>Mapping AST action instances to actions\<close>
|
226 |
+
definition "pddl_opr_to_act g_opr s = (
|
227 |
+
let M = state_to_wm s in
|
228 |
+
if (wm_to_state (close_world M)) \<Turnstile>\<^sub>= (precondition g_opr) then
|
229 |
+
Some (wm_to_state (apply_effect (effect g_opr) M))
|
230 |
+
else
|
231 |
+
None)"
|
232 |
+
|
233 |
+
definition "close_eq_M M = (M \<inter> {Atom (predAtm p xs) | p xs. True }) \<union> {Atom (Eq a a) | a. True} \<union> {\<^bold>\<not>(Atom (Eq a b)) | a b. a\<noteq>b}"
|
234 |
+
|
235 |
+
lemma atom_in_wm_eq:
|
236 |
+
"s \<Turnstile>\<^sub>= (formula.Atom atm)
|
237 |
+
\<longleftrightarrow> ((formula.Atom atm) \<in> close_eq_M (state_to_wm s))"
|
238 |
+
by (auto simp: wm_to_state_def
|
239 |
+
state_to_wm_def image_def close_eq_M_def close_eq_def split: atom.splits)
|
240 |
+
|
241 |
+
lemma atom_in_wm_2_eq:
|
242 |
+
"close_eq (wm_to_state M) \<Turnstile> (formula.Atom atm)
|
243 |
+
\<longleftrightarrow> ((formula.Atom atm) \<in> close_eq_M M)"
|
244 |
+
by (auto simp: wm_to_state_def
|
245 |
+
state_to_wm_def image_def close_eq_def close_eq_M_def split:atom.splits)
|
246 |
+
|
247 |
+
lemma not_dels_preserved:
|
248 |
+
assumes "f \<notin> (set d)" " f \<in> M"
|
249 |
+
shows "f \<in> apply_effect (Effect a d) M"
|
250 |
+
using assms
|
251 |
+
by auto
|
252 |
+
|
253 |
+
lemma adds_satisfied:
|
254 |
+
assumes "f \<in> (set a)"
|
255 |
+
shows "f \<in> apply_effect (Effect a d) M"
|
256 |
+
using assms
|
257 |
+
by auto
|
258 |
+
|
259 |
+
lemma dels_unsatisfied:
|
260 |
+
assumes "f \<in> (set d)" "f \<notin> set a"
|
261 |
+
shows "f \<notin> apply_effect (Effect a d) M"
|
262 |
+
using assms
|
263 |
+
by auto
|
264 |
+
|
265 |
+
lemma dels_unsatisfied_2:
|
266 |
+
assumes "f \<in> set (dels eff)" "f \<notin> set (adds eff)"
|
267 |
+
shows "f \<notin> apply_effect eff M"
|
268 |
+
using assms
|
269 |
+
by (cases eff; auto)
|
270 |
+
|
271 |
+
lemma wf_fmla_atm_is_atom: "wf_fmla_atom objT f \<Longrightarrow> is_predAtom f"
|
272 |
+
by (cases f rule: wf_fmla_atom.cases) auto
|
273 |
+
|
274 |
+
lemma wf_act_adds_are_atoms:
|
275 |
+
assumes "wf_effect_inst effs" "ae \<in> set (adds effs)"
|
276 |
+
shows "is_predAtom ae"
|
277 |
+
using assms
|
278 |
+
by (cases effs) (auto simp: wf_fmla_atom_alt)
|
279 |
+
|
280 |
+
lemma wf_act_adds_dels_atoms:
|
281 |
+
assumes "wf_effect_inst effs" "ae \<in> set (dels effs)"
|
282 |
+
shows "is_predAtom ae"
|
283 |
+
using assms
|
284 |
+
by (cases effs) (auto simp: wf_fmla_atom_alt)
|
285 |
+
|
286 |
+
lemma to_state_close_from_state_eq[simp]: "wm_to_state (close_world (state_to_wm s)) = s"
|
287 |
+
by (auto simp: wm_to_state_def close_world_def
|
288 |
+
state_to_wm_def image_def)
|
289 |
+
|
290 |
+
|
291 |
+
|
292 |
+
lemma wf_eff_pddl_ground_act_is_sound_opr:
|
293 |
+
assumes "wf_effect_inst (effect g_opr)"
|
294 |
+
shows "sound_opr g_opr ((pddl_opr_to_act g_opr))"
|
295 |
+
unfolding sound_opr_alt
|
296 |
+
apply(cases g_opr; safe)
|
297 |
+
subgoal for pre eff s
|
298 |
+
apply (rule exI[where x="wm_to_state(apply_effect eff (state_to_wm s))"])
|
299 |
+
apply (auto simp: pddl_opr_to_act_def Let_def split:if_splits)
|
300 |
+
subgoal for atm
|
301 |
+
by (cases eff; cases atm; auto simp: close_eq_def wm_to_state_def state_to_wm_def split: atom.splits)
|
302 |
+
subgoal for atm
|
303 |
+
by (cases eff; cases atm; auto simp: close_eq_def wm_to_state_def state_to_wm_def split: atom.splits)
|
304 |
+
subgoal for atm
|
305 |
+
using assms
|
306 |
+
by (cases eff; cases atm; force simp: close_eq_def wm_to_state_def state_to_wm_def split: atom.splits)
|
307 |
+
subgoal for fmla
|
308 |
+
using assms
|
309 |
+
by (cases eff; cases fmla rule: wf_fmla_atom.cases; force simp: close_eq_def wm_to_state_def state_to_wm_def split: atom.splits)
|
310 |
+
done
|
311 |
+
subgoal for pre eff fmla
|
312 |
+
using assms
|
313 |
+
by (cases eff; cases fmla rule: wf_fmla_atom.cases; force)
|
314 |
+
done
|
315 |
+
|
316 |
+
|
317 |
+
|
318 |
+
lemma wf_eff_impt_wf_eff_inst: "wf_effect objT eff \<Longrightarrow> wf_effect_inst eff"
|
319 |
+
by (cases eff; auto simp add: wf_fmla_atom_alt)
|
320 |
+
|
321 |
+
lemma wf_pddl_ground_act_is_sound_opr:
|
322 |
+
assumes "wf_ground_action g_opr"
|
323 |
+
shows "sound_opr g_opr (pddl_opr_to_act g_opr)"
|
324 |
+
using wf_eff_impt_wf_eff_inst wf_eff_pddl_ground_act_is_sound_opr assms
|
325 |
+
by (cases g_opr; auto)
|
326 |
+
|
327 |
+
lemma wf_action_schema_sound_inst:
|
328 |
+
assumes "action_params_match act args" "wf_action_schema act"
|
329 |
+
shows "sound_opr
|
330 |
+
(instantiate_action_schema act args)
|
331 |
+
((pddl_opr_to_act (instantiate_action_schema act args)))"
|
332 |
+
using
|
333 |
+
wf_pddl_ground_act_is_sound_opr[
|
334 |
+
OF wf_instantiate_action_schema[OF assms]]
|
335 |
+
by blast
|
336 |
+
|
337 |
+
lemma wf_plan_act_is_sound:
|
338 |
+
assumes "wf_plan_action (PAction n args)"
|
339 |
+
shows "sound_opr
|
340 |
+
(instantiate_action_schema (the (resolve_action_schema n)) args)
|
341 |
+
((pddl_opr_to_act
|
342 |
+
(instantiate_action_schema (the (resolve_action_schema n)) args)))"
|
343 |
+
using assms
|
344 |
+
using wf_action_schema_sound_inst wf_eff_pddl_ground_act_is_sound_opr
|
345 |
+
by (auto split: option.splits)
|
346 |
+
|
347 |
+
lemma wf_plan_act_is_sound':
|
348 |
+
assumes "wf_plan_action \<pi>"
|
349 |
+
shows "sound_opr
|
350 |
+
(resolve_instantiate \<pi>)
|
351 |
+
((pddl_opr_to_act (resolve_instantiate \<pi>)))"
|
352 |
+
using assms wf_plan_act_is_sound
|
353 |
+
by (cases \<pi>; auto )
|
354 |
+
|
355 |
+
lemma wf_world_model_has_atoms: "f\<in>M \<Longrightarrow> wf_world_model M \<Longrightarrow> is_predAtom f"
|
356 |
+
using wf_fmla_atm_is_atom
|
357 |
+
unfolding wf_world_model_def
|
358 |
+
by auto
|
359 |
+
|
360 |
+
lemma wm_to_state_works_for_wf_wm_closed:
|
361 |
+
"wf_world_model M \<Longrightarrow> fmla\<in>close_world M \<Longrightarrow> close_eq (wm_to_state M) \<Turnstile> fmla"
|
362 |
+
apply (cases fmla rule: wf_fmla_atom.cases)
|
363 |
+
by (auto simp: wf_world_model_def close_eq_def wm_to_state_def close_world_def)
|
364 |
+
|
365 |
+
lemma wm_to_state_works_for_wf_wm: "wf_world_model M \<Longrightarrow> fmla\<in>M \<Longrightarrow> close_eq (wm_to_state M) \<Turnstile> fmla"
|
366 |
+
apply (cases fmla rule: wf_fmla_atom.cases)
|
367 |
+
by (auto simp: wf_world_model_def close_eq_def wm_to_state_def)
|
368 |
+
|
369 |
+
|
370 |
+
|
371 |
+
lemma wm_to_state_works_for_I_closed:
|
372 |
+
assumes "x \<in> close_world I"
|
373 |
+
shows "close_eq (wm_to_state I) \<Turnstile> x"
|
374 |
+
apply (rule wm_to_state_works_for_wf_wm_closed)
|
375 |
+
using assms wf_I by auto
|
376 |
+
|
377 |
+
|
378 |
+
lemma wf_wm_imp_basic: "wf_world_model M \<Longrightarrow> wm_basic M"
|
379 |
+
by (auto simp: wf_world_model_def wm_basic_def wf_fmla_atm_is_atom)
|
380 |
+
|
381 |
+
theorem wf_plan_sound_system:
|
382 |
+
assumes "\<forall>\<pi>\<in> set \<pi>s. wf_plan_action \<pi>"
|
383 |
+
shows "sound_system
|
384 |
+
(set (map resolve_instantiate \<pi>s))
|
385 |
+
I
|
386 |
+
(wm_to_state I)
|
387 |
+
((\<lambda>\<alpha>. pddl_opr_to_act \<alpha>))"
|
388 |
+
unfolding sound_system_def
|
389 |
+
proof(intro conjI ballI)
|
390 |
+
show "close_eq(wm_to_state I) \<Turnstile> x" if "x \<in> close_world I" for x
|
391 |
+
using that[unfolded in_close_world_conv]
|
392 |
+
wm_to_state_works_for_I_closed wm_to_state_works_for_wf_wm
|
393 |
+
by (auto simp: wf_I)
|
394 |
+
|
395 |
+
show "wm_basic I" using wf_wm_imp_basic[OF wf_I] .
|
396 |
+
|
397 |
+
show "sound_opr \<alpha> (pddl_opr_to_act \<alpha>)" if "\<alpha> \<in> set (map resolve_instantiate \<pi>s)" for \<alpha>
|
398 |
+
using that
|
399 |
+
using wf_plan_act_is_sound' assms
|
400 |
+
by auto
|
401 |
+
qed
|
402 |
+
|
403 |
+
theorem wf_plan_soundness_theorem:
|
404 |
+
assumes "plan_action_path I \<pi>s M"
|
405 |
+
defines "\<alpha>s \<equiv> map (pddl_opr_to_act \<circ> resolve_instantiate) \<pi>s"
|
406 |
+
defines "s\<^sub>0 \<equiv> wm_to_state I"
|
407 |
+
shows "\<exists>s'. compose_actions \<alpha>s s\<^sub>0 = Some s' \<and> (\<forall>\<phi>\<in>close_world M. s' \<Turnstile>\<^sub>= \<phi>)"
|
408 |
+
apply (rule STRIPS_sema_sound)
|
409 |
+
apply (rule wf_plan_sound_system)
|
410 |
+
using assms
|
411 |
+
unfolding plan_action_path_def
|
412 |
+
by (auto simp add: image_def)
|
413 |
+
|
414 |
+
end \<comment> \<open>Context of \<open>wf_ast_problem\<close>\<close>
|
415 |
+
|
416 |
+
end
|
formal/afp/AI_Planning_Languages_Semantics/Option_Monad_Add.thy
ADDED
@@ -0,0 +1,101 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
theory Option_Monad_Add
|
2 |
+
imports "HOL-Library.Monad_Syntax"
|
3 |
+
begin
|
4 |
+
definition "oassert \<Phi> \<equiv> if \<Phi> then Some () else None"
|
5 |
+
|
6 |
+
fun omap :: "('a\<rightharpoonup>'b) \<Rightarrow> 'a list \<rightharpoonup> 'b list" where
|
7 |
+
"omap f [] = Some []"
|
8 |
+
| "omap f (x#xs) = do { y \<leftarrow> f x; ys \<leftarrow> omap f xs; Some (y#ys) }"
|
9 |
+
|
10 |
+
lemma omap_cong[fundef_cong]:
|
11 |
+
assumes "\<And>x. x\<in>set l' \<Longrightarrow> f x = f' x"
|
12 |
+
assumes "l=l'"
|
13 |
+
shows "omap f l = omap f' l'"
|
14 |
+
unfolding assms(2) using assms(1) by (induction l') (auto)
|
15 |
+
|
16 |
+
lemma assert_eq_iff[simp]:
|
17 |
+
"oassert \<Phi> = None \<longleftrightarrow> \<not>\<Phi>"
|
18 |
+
"oassert \<Phi> = Some u \<longleftrightarrow> \<Phi>"
|
19 |
+
unfolding oassert_def by auto
|
20 |
+
|
21 |
+
lemma omap_length[simp]: "omap f l = Some l' \<Longrightarrow> length l' = length l"
|
22 |
+
apply (induction l arbitrary: l')
|
23 |
+
apply (auto split: Option.bind_splits)
|
24 |
+
done
|
25 |
+
|
26 |
+
lemma omap_append[simp]: "omap f (xs@ys) = do {xs \<leftarrow> omap f xs; ys \<leftarrow> omap f ys; Some (xs@ys)}"
|
27 |
+
by (induction xs) (auto)
|
28 |
+
|
29 |
+
|
30 |
+
lemma omap_alt: "omap f l = Some l' \<longleftrightarrow> (l' = map (the o f) l \<and> (\<forall>x\<in>set l. f x \<noteq> None))"
|
31 |
+
apply (induction l arbitrary: l')
|
32 |
+
apply (auto split: Option.bind_splits)
|
33 |
+
done
|
34 |
+
|
35 |
+
lemma omap_alt_None: "omap f l = None \<longleftrightarrow> (\<exists>x\<in>set l. f x = None)"
|
36 |
+
apply (induction l)
|
37 |
+
apply (auto split: Option.bind_splits)
|
38 |
+
done
|
39 |
+
|
40 |
+
lemma omap_nth: "\<lbrakk>omap f l = Some l'; i<length l\<rbrakk> \<Longrightarrow> f (l!i) = Some (l'!i)"
|
41 |
+
apply (induction l arbitrary: l' i)
|
42 |
+
apply (auto split: Option.bind_splits simp: nth_Cons split: nat.splits)
|
43 |
+
done
|
44 |
+
|
45 |
+
lemma omap_eq_Nil_conv[simp]: "omap f xs = Some [] \<longleftrightarrow> xs=[]"
|
46 |
+
apply (cases xs)
|
47 |
+
apply (auto split: Option.bind_splits)
|
48 |
+
done
|
49 |
+
|
50 |
+
lemma omap_eq_Cons_conv[simp]: "omap f xs = Some (y#ys') \<longleftrightarrow> (\<exists>x xs'. xs=x#xs' \<and> f x = Some y \<and> omap f xs' = Some ys')"
|
51 |
+
apply (cases xs)
|
52 |
+
apply (auto split: Option.bind_splits)
|
53 |
+
done
|
54 |
+
|
55 |
+
lemma omap_eq_append_conv[simp]: "omap f xs = Some (ys\<^sub>1@ys\<^sub>2) \<longleftrightarrow> (\<exists>xs\<^sub>1 xs\<^sub>2. xs=xs\<^sub>1@xs\<^sub>2 \<and> omap f xs\<^sub>1 = Some ys\<^sub>1 \<and> omap f xs\<^sub>2 = Some ys\<^sub>2)"
|
56 |
+
apply (induction ys\<^sub>1 arbitrary: xs)
|
57 |
+
apply (auto 0 3 split: Option.bind_splits)
|
58 |
+
apply (metis append_Cons)
|
59 |
+
done
|
60 |
+
|
61 |
+
lemma omap_list_all2_conv: "omap f xs = Some ys \<longleftrightarrow> (list_all2 (\<lambda>x y. f x = Some y)) xs ys"
|
62 |
+
apply (induction xs arbitrary: ys)
|
63 |
+
apply (auto split: Option.bind_splits simp: )
|
64 |
+
apply (simp add: list_all2_Cons1)
|
65 |
+
apply (simp add: list_all2_Cons1)
|
66 |
+
apply (simp add: list_all2_Cons1)
|
67 |
+
apply clarsimp
|
68 |
+
by (metis option.inject)
|
69 |
+
|
70 |
+
|
71 |
+
|
72 |
+
|
73 |
+
fun omap_option where
|
74 |
+
"omap_option f None = Some None"
|
75 |
+
| "omap_option f (Some x) = do { x \<leftarrow> f x; Some (Some x) }"
|
76 |
+
|
77 |
+
lemma omap_option_conv:
|
78 |
+
"omap_option f xx = None \<longleftrightarrow> (\<exists>x. xx=Some x \<and> f x = None)"
|
79 |
+
"omap_option f xx = (Some (Some x')) \<longleftrightarrow> (\<exists>x. xx=Some x \<and> f x = Some x')"
|
80 |
+
"omap_option f xx = (Some None) \<longleftrightarrow> xx=None"
|
81 |
+
by (cases xx;auto split: Option.bind_splits)+
|
82 |
+
|
83 |
+
lemma omap_option_eq: "omap_option f x = (case x of None \<Rightarrow> Some None | Some x \<Rightarrow> do { x \<leftarrow> f x; Some (Some x) })"
|
84 |
+
by (auto split: option.split)
|
85 |
+
|
86 |
+
fun omap_prod where
|
87 |
+
"omap_prod f\<^sub>1 f\<^sub>2 (a,b) = do { a\<leftarrow>f\<^sub>1 a; b\<leftarrow>f\<^sub>2 b; Some (a,b) }"
|
88 |
+
|
89 |
+
|
90 |
+
(* Extend map function for datatype to option monad.
|
91 |
+
TODO: Show reasonable lemmas, like parametricity, etc.
|
92 |
+
Hopefully only depending on BNF-property of datatype
|
93 |
+
*)
|
94 |
+
definition "omap_dt setf mapf f obj \<equiv> do {
|
95 |
+
oassert (\<forall>x\<in>setf obj. f x \<noteq> None);
|
96 |
+
Some (mapf (the o f) obj)
|
97 |
+
}"
|
98 |
+
|
99 |
+
|
100 |
+
|
101 |
+
end
|
formal/afp/AI_Planning_Languages_Semantics/PDDL_STRIPS_Checker.thy
ADDED
@@ -0,0 +1,406 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
section \<open>Executable PDDL Checker\<close>
|
2 |
+
theory PDDL_STRIPS_Checker
|
3 |
+
imports
|
4 |
+
PDDL_STRIPS_Semantics
|
5 |
+
|
6 |
+
Error_Monad_Add
|
7 |
+
"HOL.String"
|
8 |
+
|
9 |
+
(*"HOL-Library.Code_Char" TODO: This might lead to performance loss! CHECK! *)
|
10 |
+
"HOL-Library.Code_Target_Nat"
|
11 |
+
|
12 |
+
"HOL-Library.While_Combinator"
|
13 |
+
|
14 |
+
"Containers.Containers"
|
15 |
+
begin
|
16 |
+
|
17 |
+
subsection \<open>Generic DFS Reachability Checker\<close>
|
18 |
+
text \<open>Used for subtype checks\<close>
|
19 |
+
|
20 |
+
definition "E_of_succ succ \<equiv> { (u,v). v\<in>set (succ u) }"
|
21 |
+
lemma succ_as_E: "set (succ x) = E_of_succ succ `` {x}"
|
22 |
+
unfolding E_of_succ_def by auto
|
23 |
+
|
24 |
+
context
|
25 |
+
fixes succ :: "'a \<Rightarrow> 'a list"
|
26 |
+
begin
|
27 |
+
|
28 |
+
private abbreviation (input) "E \<equiv> E_of_succ succ"
|
29 |
+
|
30 |
+
|
31 |
+
definition "dfs_reachable D w \<equiv>
|
32 |
+
let (V,w,brk) = while (\<lambda>(V,w,brk). \<not>brk \<and> w\<noteq>[]) (\<lambda>(V,w,_).
|
33 |
+
case w of v#w \<Rightarrow>
|
34 |
+
if D v then (V,v#w,True)
|
35 |
+
else if v\<in>V then (V,w,False)
|
36 |
+
else
|
37 |
+
let V = insert v V in
|
38 |
+
let w = succ v @ w in
|
39 |
+
(V,w,False)
|
40 |
+
) ({},w,False)
|
41 |
+
in brk"
|
42 |
+
|
43 |
+
|
44 |
+
context
|
45 |
+
fixes w\<^sub>0 :: "'a list"
|
46 |
+
assumes finite_dfs_reachable[simp, intro!]: "finite (E\<^sup>* `` set w\<^sub>0)"
|
47 |
+
begin
|
48 |
+
|
49 |
+
private abbreviation (input) "W\<^sub>0 \<equiv> set w\<^sub>0"
|
50 |
+
|
51 |
+
definition "dfs_reachable_invar D V W brk \<longleftrightarrow>
|
52 |
+
W\<^sub>0 \<subseteq> W \<union> V
|
53 |
+
\<and> W \<union> V \<subseteq> E\<^sup>* `` W\<^sub>0
|
54 |
+
\<and> E``V \<subseteq> W \<union> V
|
55 |
+
\<and> Collect D \<inter> V = {}
|
56 |
+
\<and> (brk \<longrightarrow> Collect D \<inter> E\<^sup>* `` W\<^sub>0 \<noteq> {})"
|
57 |
+
|
58 |
+
lemma card_decreases: "
|
59 |
+
\<lbrakk>finite V; y \<notin> V; dfs_reachable_invar D V (Set.insert y W) brk \<rbrakk>
|
60 |
+
\<Longrightarrow> card (E\<^sup>* `` W\<^sub>0 - Set.insert y V) < card (E\<^sup>* `` W\<^sub>0 - V)"
|
61 |
+
apply (rule psubset_card_mono)
|
62 |
+
apply (auto simp: dfs_reachable_invar_def)
|
63 |
+
done
|
64 |
+
|
65 |
+
lemma all_neq_Cons_is_Nil[simp]: (* Odd term remaining in goal \<dots> *)
|
66 |
+
"(\<forall>y ys. x2 \<noteq> y # ys) \<longleftrightarrow> x2 = []" by (cases x2) auto
|
67 |
+
|
68 |
+
lemma dfs_reachable_correct: "dfs_reachable D w\<^sub>0 \<longleftrightarrow> Collect D \<inter> E\<^sup>* `` set w\<^sub>0 \<noteq> {}"
|
69 |
+
unfolding dfs_reachable_def
|
70 |
+
apply (rule while_rule[where
|
71 |
+
P="\<lambda>(V,w,brk). dfs_reachable_invar D V (set w) brk \<and> finite V"
|
72 |
+
and r="measure (\<lambda>V. card (E\<^sup>* `` (set w\<^sub>0) - V)) <*lex*> measure length <*lex*> measure (\<lambda>True\<Rightarrow>0 | False\<Rightarrow>1)"
|
73 |
+
])
|
74 |
+
subgoal by (auto simp: dfs_reachable_invar_def)
|
75 |
+
subgoal
|
76 |
+
apply (auto simp: neq_Nil_conv succ_as_E[of succ] split: if_splits)
|
77 |
+
by (auto simp: dfs_reachable_invar_def Image_iff intro: rtrancl.rtrancl_into_rtrancl)
|
78 |
+
subgoal by (fastforce simp: dfs_reachable_invar_def dest: Image_closed_trancl)
|
79 |
+
subgoal by blast
|
80 |
+
subgoal by (auto simp: neq_Nil_conv card_decreases)
|
81 |
+
done
|
82 |
+
|
83 |
+
end
|
84 |
+
|
85 |
+
definition "tab_succ l \<equiv> Mapping.lookup_default [] (fold (\<lambda>(u,v). Mapping.map_default u [] (Cons v)) l Mapping.empty)"
|
86 |
+
|
87 |
+
|
88 |
+
lemma Some_eq_map_option [iff]: "(Some y = map_option f xo) = (\<exists>z. xo = Some z \<and> f z = y)"
|
89 |
+
by (auto simp add: map_option_case split: option.split)
|
90 |
+
|
91 |
+
|
92 |
+
lemma tab_succ_correct: "E_of_succ (tab_succ l) = set l"
|
93 |
+
proof -
|
94 |
+
have "set (Mapping.lookup_default [] (fold (\<lambda>(u,v). Mapping.map_default u [] (Cons v)) l m) u) = set l `` {u} \<union> set (Mapping.lookup_default [] m u)"
|
95 |
+
for m u
|
96 |
+
apply (induction l arbitrary: m)
|
97 |
+
by (auto
|
98 |
+
simp: Mapping.lookup_default_def Mapping.map_default_def Mapping.default_def
|
99 |
+
simp: lookup_map_entry' lookup_update' keys_is_none_rep Option.is_none_def
|
100 |
+
split: if_splits
|
101 |
+
)
|
102 |
+
from this[where m=Mapping.empty] show ?thesis
|
103 |
+
by (auto simp: E_of_succ_def tab_succ_def lookup_default_empty)
|
104 |
+
qed
|
105 |
+
|
106 |
+
end
|
107 |
+
|
108 |
+
lemma finite_imp_finite_dfs_reachable:
|
109 |
+
"\<lbrakk>finite E; finite S\<rbrakk> \<Longrightarrow> finite (E\<^sup>*``S)"
|
110 |
+
apply (rule finite_subset[where B="S \<union> (Relation.Domain E \<union> Relation.Range E)"])
|
111 |
+
apply (auto simp: intro: finite_Domain finite_Range elim: rtranclE)
|
112 |
+
done
|
113 |
+
|
114 |
+
lemma dfs_reachable_tab_succ_correct: "dfs_reachable (tab_succ l) D vs\<^sub>0 \<longleftrightarrow> Collect D \<inter> (set l)\<^sup>*``set vs\<^sub>0 \<noteq> {}"
|
115 |
+
apply (subst dfs_reachable_correct)
|
116 |
+
by (simp_all add: tab_succ_correct finite_imp_finite_dfs_reachable)
|
117 |
+
|
118 |
+
|
119 |
+
|
120 |
+
subsection \<open>Implementation Refinements\<close>
|
121 |
+
|
122 |
+
subsubsection \<open>Of-Type\<close>
|
123 |
+
|
124 |
+
definition "of_type_impl G oT T \<equiv> (\<forall>pt\<in>set (primitives oT). dfs_reachable G ((=) pt) (primitives T))"
|
125 |
+
|
126 |
+
|
127 |
+
fun ty_term' where
|
128 |
+
"ty_term' varT objT (term.VAR v) = varT v"
|
129 |
+
| "ty_term' varT objT (term.CONST c) = Mapping.lookup objT c"
|
130 |
+
|
131 |
+
lemma ty_term'_correct_aux: "ty_term' varT objT t = ty_term varT (Mapping.lookup objT) t"
|
132 |
+
by (cases t) auto
|
133 |
+
|
134 |
+
lemma ty_term'_correct[simp]: "ty_term' varT objT = ty_term varT (Mapping.lookup objT)"
|
135 |
+
using ty_term'_correct_aux by auto
|
136 |
+
|
137 |
+
context ast_domain begin
|
138 |
+
|
139 |
+
definition "of_type1 pt T \<longleftrightarrow> pt \<in> subtype_rel\<^sup>* `` set (primitives T)"
|
140 |
+
|
141 |
+
lemma of_type_refine1: "of_type oT T \<longleftrightarrow> (\<forall>pt\<in>set (primitives oT). of_type1 pt T)"
|
142 |
+
unfolding of_type_def of_type1_def by auto
|
143 |
+
|
144 |
+
definition "STG \<equiv> (tab_succ (map subtype_edge (types D)))"
|
145 |
+
|
146 |
+
lemma subtype_rel_impl: "subtype_rel = E_of_succ (tab_succ (map subtype_edge (types D)))"
|
147 |
+
by (simp add: tab_succ_correct subtype_rel_def)
|
148 |
+
|
149 |
+
lemma of_type1_impl: "of_type1 pt T \<longleftrightarrow> dfs_reachable (tab_succ (map subtype_edge (types D))) ((=)pt) (primitives T)"
|
150 |
+
by (simp add: subtype_rel_impl of_type1_def dfs_reachable_tab_succ_correct tab_succ_correct)
|
151 |
+
|
152 |
+
lemma of_type_impl_correct: "of_type_impl STG oT T \<longleftrightarrow> of_type oT T"
|
153 |
+
unfolding of_type1_impl STG_def of_type_impl_def of_type_refine1 ..
|
154 |
+
|
155 |
+
definition mp_constT :: "(object, type) mapping" where
|
156 |
+
"mp_constT = Mapping.of_alist (consts D)"
|
157 |
+
|
158 |
+
lemma mp_objT_correct[simp]: "Mapping.lookup mp_constT = constT"
|
159 |
+
unfolding mp_constT_def constT_def
|
160 |
+
by transfer (simp add: Map_To_Mapping.map_apply_def)
|
161 |
+
|
162 |
+
|
163 |
+
|
164 |
+
|
165 |
+
|
166 |
+
|
167 |
+
text \<open>Lifting the subtype-graph through wf-checker\<close>
|
168 |
+
context
|
169 |
+
fixes ty_ent :: "'ent \<rightharpoonup> type" \<comment> \<open>Entity's type, None if invalid\<close>
|
170 |
+
begin
|
171 |
+
|
172 |
+
definition "is_of_type' stg v T \<longleftrightarrow> (
|
173 |
+
case ty_ent v of
|
174 |
+
Some vT \<Rightarrow> of_type_impl stg vT T
|
175 |
+
| None \<Rightarrow> False)"
|
176 |
+
|
177 |
+
lemma is_of_type'_correct: "is_of_type' STG v T = is_of_type ty_ent v T"
|
178 |
+
unfolding is_of_type'_def is_of_type_def of_type_impl_correct ..
|
179 |
+
|
180 |
+
fun wf_pred_atom' where "wf_pred_atom' stg (p,vs) \<longleftrightarrow> (case sig p of
|
181 |
+
None \<Rightarrow> False
|
182 |
+
| Some Ts \<Rightarrow> list_all2 (is_of_type' stg) vs Ts)"
|
183 |
+
|
184 |
+
lemma wf_pred_atom'_correct: "wf_pred_atom' STG pvs = wf_pred_atom ty_ent pvs"
|
185 |
+
by (cases pvs) (auto simp: is_of_type'_correct[abs_def] split:option.split)
|
186 |
+
|
187 |
+
fun wf_atom' :: "_ \<Rightarrow> 'ent atom \<Rightarrow> bool" where
|
188 |
+
"wf_atom' stg (atom.predAtm p vs) \<longleftrightarrow> wf_pred_atom' stg (p,vs)"
|
189 |
+
| "wf_atom' stg (atom.Eq a b) = (ty_ent a \<noteq> None \<and> ty_ent b \<noteq> None)"
|
190 |
+
|
191 |
+
lemma wf_atom'_correct: "wf_atom' STG a = wf_atom ty_ent a"
|
192 |
+
by (cases a) (auto simp: wf_pred_atom'_correct is_of_type'_correct[abs_def] split: option.splits)
|
193 |
+
|
194 |
+
fun wf_fmla' :: "_ \<Rightarrow> ('ent atom) formula \<Rightarrow> bool" where
|
195 |
+
"wf_fmla' stg (Atom a) \<longleftrightarrow> wf_atom' stg a"
|
196 |
+
| "wf_fmla' stg \<bottom> \<longleftrightarrow> True"
|
197 |
+
| "wf_fmla' stg (\<phi>1 \<^bold>\<and> \<phi>2) \<longleftrightarrow> (wf_fmla' stg \<phi>1 \<and> wf_fmla' stg \<phi>2)"
|
198 |
+
| "wf_fmla' stg (\<phi>1 \<^bold>\<or> \<phi>2) \<longleftrightarrow> (wf_fmla' stg \<phi>1 \<and> wf_fmla' stg \<phi>2)"
|
199 |
+
| "wf_fmla' stg (\<phi>1 \<^bold>\<rightarrow> \<phi>2) \<longleftrightarrow> (wf_fmla' stg \<phi>1 \<and> wf_fmla' stg \<phi>2)"
|
200 |
+
| "wf_fmla' stg (\<^bold>\<not>\<phi>) \<longleftrightarrow> wf_fmla' stg \<phi>"
|
201 |
+
|
202 |
+
lemma wf_fmla'_correct: "wf_fmla' STG \<phi> \<longleftrightarrow> wf_fmla ty_ent \<phi>"
|
203 |
+
by (induction \<phi> rule: wf_fmla.induct) (auto simp: wf_atom'_correct)
|
204 |
+
|
205 |
+
fun wf_fmla_atom1' where
|
206 |
+
"wf_fmla_atom1' stg (Atom (predAtm p vs)) \<longleftrightarrow> wf_pred_atom' stg (p,vs)"
|
207 |
+
| "wf_fmla_atom1' stg _ \<longleftrightarrow> False"
|
208 |
+
|
209 |
+
lemma wf_fmla_atom1'_correct: "wf_fmla_atom1' STG \<phi> = wf_fmla_atom ty_ent \<phi>"
|
210 |
+
by (cases \<phi> rule: wf_fmla_atom.cases) (auto
|
211 |
+
simp: wf_atom'_correct is_of_type'_correct[abs_def] split: option.splits)
|
212 |
+
|
213 |
+
fun wf_effect' where
|
214 |
+
"wf_effect' stg (Effect a d) \<longleftrightarrow>
|
215 |
+
(\<forall>ae\<in>set a. wf_fmla_atom1' stg ae)
|
216 |
+
\<and> (\<forall>de\<in>set d. wf_fmla_atom1' stg de)"
|
217 |
+
|
218 |
+
lemma wf_effect'_correct: "wf_effect' STG e = wf_effect ty_ent e"
|
219 |
+
by (cases e) (auto simp: wf_fmla_atom1'_correct)
|
220 |
+
|
221 |
+
end \<comment> \<open>Context fixing \<open>ty_ent\<close>\<close>
|
222 |
+
|
223 |
+
fun wf_action_schema' :: "_ \<Rightarrow> _ \<Rightarrow> ast_action_schema \<Rightarrow> bool" where
|
224 |
+
"wf_action_schema' stg conT (Action_Schema n params pre eff) \<longleftrightarrow> (
|
225 |
+
let
|
226 |
+
tyv = ty_term' (map_of params) conT
|
227 |
+
in
|
228 |
+
distinct (map fst params)
|
229 |
+
\<and> wf_fmla' tyv stg pre
|
230 |
+
\<and> wf_effect' tyv stg eff)"
|
231 |
+
|
232 |
+
lemma wf_action_schema'_correct: "wf_action_schema' STG mp_constT s = wf_action_schema s"
|
233 |
+
by (cases s) (auto simp: wf_fmla'_correct wf_effect'_correct)
|
234 |
+
|
235 |
+
definition wf_domain' :: "_ \<Rightarrow> _ \<Rightarrow> bool" where
|
236 |
+
"wf_domain' stg conT \<equiv>
|
237 |
+
wf_types
|
238 |
+
\<and> distinct (map (predicate_decl.pred) (predicates D))
|
239 |
+
\<and> (\<forall>p\<in>set (predicates D). wf_predicate_decl p)
|
240 |
+
\<and> distinct (map fst (consts D))
|
241 |
+
\<and> (\<forall>(n,T)\<in>set (consts D). wf_type T)
|
242 |
+
\<and> distinct (map ast_action_schema.name (actions D))
|
243 |
+
\<and> (\<forall>a\<in>set (actions D). wf_action_schema' stg conT a)
|
244 |
+
"
|
245 |
+
|
246 |
+
lemma wf_domain'_correct: "wf_domain' STG mp_constT = wf_domain"
|
247 |
+
unfolding wf_domain_def wf_domain'_def
|
248 |
+
by (auto simp: wf_action_schema'_correct)
|
249 |
+
|
250 |
+
|
251 |
+
end \<comment> \<open>Context of \<open>ast_domain\<close>\<close>
|
252 |
+
|
253 |
+
subsubsection \<open>Application of Effects\<close>
|
254 |
+
|
255 |
+
context ast_domain begin
|
256 |
+
text \<open>We implement the application of an effect by explicit iteration over
|
257 |
+
the additions and deletions\<close>
|
258 |
+
fun apply_effect_exec
|
259 |
+
:: "object ast_effect \<Rightarrow> world_model \<Rightarrow> world_model"
|
260 |
+
where
|
261 |
+
"apply_effect_exec (Effect a d) s
|
262 |
+
= fold (\<lambda>add s. Set.insert add s) a
|
263 |
+
(fold (\<lambda>del s. Set.remove del s) d s)"
|
264 |
+
|
265 |
+
lemma apply_effect_exec_refine[simp]:
|
266 |
+
"apply_effect_exec (Effect (a) (d)) s
|
267 |
+
= apply_effect (Effect (a) (d)) s"
|
268 |
+
proof(induction a arbitrary: s)
|
269 |
+
case Nil
|
270 |
+
then show ?case
|
271 |
+
proof(induction d arbitrary: s)
|
272 |
+
case Nil
|
273 |
+
then show ?case by auto
|
274 |
+
next
|
275 |
+
case (Cons a d)
|
276 |
+
then show ?case
|
277 |
+
by (auto simp add: image_def)
|
278 |
+
qed
|
279 |
+
next
|
280 |
+
case (Cons a a)
|
281 |
+
then show ?case
|
282 |
+
proof(induction d arbitrary: s)
|
283 |
+
case Nil
|
284 |
+
then show ?case by (auto; metis Set.insert_def sup_assoc insert_iff)
|
285 |
+
next
|
286 |
+
case (Cons a d)
|
287 |
+
then show ?case
|
288 |
+
by (auto simp: Un_commute minus_set_fold union_set_fold)
|
289 |
+
qed
|
290 |
+
qed
|
291 |
+
|
292 |
+
lemmas apply_effect_eq_impl_eq
|
293 |
+
= apply_effect_exec_refine[symmetric, unfolded apply_effect_exec.simps]
|
294 |
+
|
295 |
+
end \<comment> \<open>Context of \<open>ast_domain\<close>\<close>
|
296 |
+
|
297 |
+
subsubsection \<open>Well-Formedness\<close>
|
298 |
+
|
299 |
+
context ast_problem begin
|
300 |
+
|
301 |
+
text \<open> We start by defining a mapping from objects to types. The container
|
302 |
+
framework will generate efficient, red-black tree based code for that
|
303 |
+
later. \<close>
|
304 |
+
|
305 |
+
type_synonym objT = "(object, type) mapping"
|
306 |
+
|
307 |
+
definition mp_objT :: "(object, type) mapping" where
|
308 |
+
"mp_objT = Mapping.of_alist (consts D @ objects P)"
|
309 |
+
|
310 |
+
lemma mp_objT_correct[simp]: "Mapping.lookup mp_objT = objT"
|
311 |
+
unfolding mp_objT_def objT_alt
|
312 |
+
by transfer (simp add: Map_To_Mapping.map_apply_def)
|
313 |
+
|
314 |
+
text \<open>We refine the typecheck to use the mapping\<close>
|
315 |
+
|
316 |
+
definition "is_obj_of_type_impl stg mp n T = (
|
317 |
+
case Mapping.lookup mp n of None \<Rightarrow> False | Some oT \<Rightarrow> of_type_impl stg oT T
|
318 |
+
)"
|
319 |
+
|
320 |
+
lemma is_obj_of_type_impl_correct[simp]:
|
321 |
+
"is_obj_of_type_impl STG mp_objT = is_obj_of_type"
|
322 |
+
apply (intro ext)
|
323 |
+
apply (auto simp: is_obj_of_type_impl_def is_obj_of_type_def of_type_impl_correct split: option.split)
|
324 |
+
done
|
325 |
+
|
326 |
+
text \<open>We refine the well-formedness checks to use the mapping\<close>
|
327 |
+
|
328 |
+
definition wf_fact' :: "objT \<Rightarrow> _ \<Rightarrow> fact \<Rightarrow> bool"
|
329 |
+
where
|
330 |
+
"wf_fact' ot stg \<equiv> wf_pred_atom' (Mapping.lookup ot) stg"
|
331 |
+
|
332 |
+
lemma wf_fact'_correct[simp]: "wf_fact' mp_objT STG = wf_fact"
|
333 |
+
by (auto simp: wf_fact'_def wf_fact_def wf_pred_atom'_correct[abs_def])
|
334 |
+
|
335 |
+
|
336 |
+
definition "wf_fmla_atom2' mp stg f
|
337 |
+
= (case f of formula.Atom (predAtm p vs) \<Rightarrow> (wf_fact' mp stg (p,vs)) | _ \<Rightarrow> False)"
|
338 |
+
|
339 |
+
lemma wf_fmla_atom2'_correct[simp]:
|
340 |
+
"wf_fmla_atom2' mp_objT STG \<phi> = wf_fmla_atom objT \<phi>"
|
341 |
+
apply (cases \<phi> rule: wf_fmla_atom.cases)
|
342 |
+
by (auto simp: wf_fmla_atom2'_def wf_fact_def split: option.splits)
|
343 |
+
|
344 |
+
definition "wf_problem' stg conT mp \<equiv>
|
345 |
+
wf_domain' stg conT
|
346 |
+
\<and> distinct (map fst (objects P) @ map fst (consts D))
|
347 |
+
\<and> (\<forall>(n,T)\<in>set (objects P). wf_type T)
|
348 |
+
\<and> distinct (init P)
|
349 |
+
\<and> (\<forall>f\<in>set (init P). wf_fmla_atom2' mp stg f)
|
350 |
+
\<and> wf_fmla' (Mapping.lookup mp) stg (goal P)"
|
351 |
+
|
352 |
+
lemma wf_problem'_correct:
|
353 |
+
"wf_problem' STG mp_constT mp_objT = wf_problem"
|
354 |
+
unfolding wf_problem_def wf_problem'_def wf_world_model_def
|
355 |
+
by (auto simp: wf_domain'_correct wf_fmla'_correct)
|
356 |
+
|
357 |
+
|
358 |
+
text \<open>Instantiating actions will yield well-founded effects.
|
359 |
+
Corollary of @{thm wf_instantiate_action_schema}.\<close>
|
360 |
+
lemma wf_effect_inst_weak:
|
361 |
+
fixes a args
|
362 |
+
defines "ai \<equiv> instantiate_action_schema a args"
|
363 |
+
assumes A: "action_params_match a args"
|
364 |
+
"wf_action_schema a"
|
365 |
+
shows "wf_effect_inst (effect ai)"
|
366 |
+
using wf_instantiate_action_schema[OF A] unfolding ai_def[symmetric]
|
367 |
+
by (cases ai) (auto simp: wf_effect_inst_alt)
|
368 |
+
|
369 |
+
|
370 |
+
end \<comment> \<open>Context of \<open>ast_problem\<close>\<close>
|
371 |
+
|
372 |
+
|
373 |
+
context wf_ast_domain begin
|
374 |
+
text \<open>Resolving an action yields a well-founded action schema.\<close>
|
375 |
+
(* TODO: This must be implicitly proved when showing that plan execution
|
376 |
+
preserves wf. Try to remove this redundancy!*)
|
377 |
+
lemma resolve_action_wf:
|
378 |
+
assumes "resolve_action_schema n = Some a"
|
379 |
+
shows "wf_action_schema a"
|
380 |
+
proof -
|
381 |
+
from wf_domain have
|
382 |
+
X1: "distinct (map ast_action_schema.name (actions D))"
|
383 |
+
and X2: "\<forall>a\<in>set (actions D). wf_action_schema a"
|
384 |
+
unfolding wf_domain_def by auto
|
385 |
+
|
386 |
+
show ?thesis
|
387 |
+
using assms unfolding resolve_action_schema_def
|
388 |
+
by (auto simp add: index_by_eq_Some_eq[OF X1] X2)
|
389 |
+
qed
|
390 |
+
|
391 |
+
end \<comment> \<open>Context of \<open>ast_domain\<close>\<close>
|
392 |
+
|
393 |
+
|
394 |
+
subsubsection \<open>Execution of Plan Actions\<close>
|
395 |
+
|
396 |
+
text \<open>We will perform two refinement steps, to summarize redundant operations\<close>
|
397 |
+
|
398 |
+
text \<open>We first lift action schema lookup into the error monad. \<close>
|
399 |
+
context ast_domain begin
|
400 |
+
definition "resolve_action_schemaE n \<equiv>
|
401 |
+
lift_opt
|
402 |
+
(resolve_action_schema n)
|
403 |
+
(ERR (shows ''No such action schema '' o shows n))"
|
404 |
+
end \<comment> \<open>Context of \<open>ast_domain\<close>\<close>
|
405 |
+
|
406 |
+
end \<comment> \<open>Theory\<close>
|
formal/afp/AI_Planning_Languages_Semantics/PDDL_STRIPS_Semantics.thy
ADDED
@@ -0,0 +1,969 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
section \<open>PDDL and STRIPS Semantics\<close>
|
2 |
+
theory PDDL_STRIPS_Semantics
|
3 |
+
imports
|
4 |
+
"Propositional_Proof_Systems.Formulas"
|
5 |
+
"Propositional_Proof_Systems.Sema"
|
6 |
+
"Propositional_Proof_Systems.Consistency"
|
7 |
+
"Automatic_Refinement.Misc"
|
8 |
+
"Automatic_Refinement.Refine_Util"
|
9 |
+
begin
|
10 |
+
no_notation insert ("_ \<triangleright> _" [56,55] 55)
|
11 |
+
|
12 |
+
subsection \<open>Utility Functions\<close>
|
13 |
+
definition "index_by f l \<equiv> map_of (map (\<lambda>x. (f x,x)) l)"
|
14 |
+
|
15 |
+
lemma index_by_eq_Some_eq[simp]:
|
16 |
+
assumes "distinct (map f l)"
|
17 |
+
shows "index_by f l n = Some x \<longleftrightarrow> (x\<in>set l \<and> f x = n)"
|
18 |
+
unfolding index_by_def
|
19 |
+
using assms
|
20 |
+
by (auto simp: o_def)
|
21 |
+
|
22 |
+
lemma index_by_eq_SomeD:
|
23 |
+
shows "index_by f l n = Some x \<Longrightarrow> (x\<in>set l \<and> f x = n)"
|
24 |
+
unfolding index_by_def
|
25 |
+
by (auto dest: map_of_SomeD)
|
26 |
+
|
27 |
+
|
28 |
+
lemma lookup_zip_idx_eq:
|
29 |
+
assumes "length params = length args"
|
30 |
+
assumes "i<length args"
|
31 |
+
assumes "distinct params"
|
32 |
+
assumes "k = params ! i"
|
33 |
+
shows "map_of (zip params args) k = Some (args ! i)"
|
34 |
+
using assms
|
35 |
+
by (auto simp: in_set_conv_nth)
|
36 |
+
|
37 |
+
lemma rtrancl_image_idem[simp]: "R\<^sup>* `` R\<^sup>* `` s = R\<^sup>* `` s"
|
38 |
+
by (metis relcomp_Image rtrancl_idemp_self_comp)
|
39 |
+
|
40 |
+
|
41 |
+
subsection \<open>Abstract Syntax\<close>
|
42 |
+
|
43 |
+
subsubsection \<open>Generic Entities\<close>
|
44 |
+
type_synonym name = string
|
45 |
+
|
46 |
+
datatype predicate = Pred (name: name)
|
47 |
+
|
48 |
+
text \<open>Some of the AST entities are defined over a polymorphic \<open>'val\<close> type,
|
49 |
+
which gets either instantiated by variables (for domains)
|
50 |
+
or objects (for problems).
|
51 |
+
\<close>
|
52 |
+
|
53 |
+
text \<open>An atom is either a predicate with arguments, or an equality statement.\<close>
|
54 |
+
datatype 'ent atom = predAtm (predicate: predicate) (arguments: "'ent list")
|
55 |
+
| Eq (lhs: 'ent) (rhs: 'ent)
|
56 |
+
|
57 |
+
text \<open>A type is a list of primitive type names.
|
58 |
+
To model a primitive type, we use a singleton list.\<close>
|
59 |
+
datatype type = Either (primitives: "name list")
|
60 |
+
|
61 |
+
text \<open>An effect contains a list of values to be added, and a list of values
|
62 |
+
to be removed.\<close>
|
63 |
+
datatype 'ent ast_effect = Effect (adds: "('ent atom formula) list") (dels: "('ent atom formula) list")
|
64 |
+
|
65 |
+
text \<open>Variables are identified by their names.\<close>
|
66 |
+
datatype variable = varname: Var name
|
67 |
+
text \<open>Objects and constants are identified by their names\<close>
|
68 |
+
datatype object = name: Obj name
|
69 |
+
|
70 |
+
datatype "term" = VAR variable | CONST object
|
71 |
+
hide_const (open) VAR CONST \<comment> \<open>Refer to constructors by qualified names only\<close>
|
72 |
+
|
73 |
+
|
74 |
+
|
75 |
+
|
76 |
+
subsubsection \<open>Domains\<close>
|
77 |
+
|
78 |
+
text \<open>An action schema has a name, a typed parameter list, a precondition,
|
79 |
+
and an effect.\<close>
|
80 |
+
datatype ast_action_schema = Action_Schema
|
81 |
+
(name: name)
|
82 |
+
(parameters: "(variable \<times> type) list")
|
83 |
+
(precondition: "term atom formula")
|
84 |
+
(effect: "term ast_effect")
|
85 |
+
|
86 |
+
text \<open>A predicate declaration contains the predicate's name and its
|
87 |
+
argument types.\<close>
|
88 |
+
datatype predicate_decl = PredDecl
|
89 |
+
(pred: predicate)
|
90 |
+
(argTs: "type list")
|
91 |
+
|
92 |
+
text \<open>A domain contains the declarations of primitive types, predicates,
|
93 |
+
and action schemas.\<close>
|
94 |
+
datatype ast_domain = Domain
|
95 |
+
(types: "(name \<times> name) list") \<comment> \<open> \<open>(type, supertype)\<close> declarations. \<close>
|
96 |
+
(predicates: "predicate_decl list")
|
97 |
+
("consts": "(object \<times> type) list")
|
98 |
+
(actions: "ast_action_schema list")
|
99 |
+
|
100 |
+
subsubsection \<open>Problems\<close>
|
101 |
+
|
102 |
+
|
103 |
+
text \<open>A fact is a predicate applied to objects.\<close>
|
104 |
+
type_synonym fact = "predicate \<times> object list"
|
105 |
+
|
106 |
+
text \<open>A problem consists of a domain, a list of objects,
|
107 |
+
a description of the initial state, and a description of the goal state. \<close>
|
108 |
+
datatype ast_problem = Problem
|
109 |
+
(domain: ast_domain)
|
110 |
+
(objects: "(object \<times> type) list")
|
111 |
+
(init: "object atom formula list")
|
112 |
+
(goal: "object atom formula")
|
113 |
+
|
114 |
+
|
115 |
+
subsubsection \<open>Plans\<close>
|
116 |
+
datatype plan_action = PAction
|
117 |
+
(name: name)
|
118 |
+
(arguments: "object list")
|
119 |
+
|
120 |
+
type_synonym plan = "plan_action list"
|
121 |
+
|
122 |
+
subsubsection \<open>Ground Actions\<close>
|
123 |
+
text \<open>The following datatype represents an action scheme that has been
|
124 |
+
instantiated by replacing the arguments with concrete objects,
|
125 |
+
also called ground action.
|
126 |
+
\<close>
|
127 |
+
datatype ground_action = Ground_Action
|
128 |
+
(precondition: "(object atom) formula")
|
129 |
+
(effect: "object ast_effect")
|
130 |
+
|
131 |
+
|
132 |
+
|
133 |
+
subsection \<open>Closed-World Assumption, Equality, and Negation\<close>
|
134 |
+
text \<open>Discriminator for atomic predicate formulas.\<close>
|
135 |
+
fun is_predAtom where
|
136 |
+
"is_predAtom (Atom (predAtm _ _)) = True" | "is_predAtom _ = False"
|
137 |
+
|
138 |
+
|
139 |
+
text \<open>The world model is a set of (atomic) formulas\<close>
|
140 |
+
type_synonym world_model = "object atom formula set"
|
141 |
+
|
142 |
+
text \<open>It is basic, if it only contains atoms\<close>
|
143 |
+
definition "wm_basic M \<equiv> \<forall>a\<in>M. is_predAtom a"
|
144 |
+
|
145 |
+
text \<open>A valuation extracted from the atoms of the world model\<close>
|
146 |
+
definition valuation :: "world_model \<Rightarrow> object atom valuation"
|
147 |
+
where "valuation M \<equiv> \<lambda>predAtm p xs \<Rightarrow> Atom (predAtm p xs) \<in> M | Eq a b \<Rightarrow> a=b"
|
148 |
+
|
149 |
+
text \<open>Augment a world model by adding negated versions of all atoms
|
150 |
+
not contained in it, as well as interpretations of equality.\<close>
|
151 |
+
definition close_world :: "world_model \<Rightarrow> world_model" where "close_world M =
|
152 |
+
M \<union> {\<^bold>\<not>(Atom (predAtm p as)) | p as. Atom (predAtm p as) \<notin> M}
|
153 |
+
\<union> {Atom (Eq a a) | a. True} \<union> {\<^bold>\<not>(Atom (Eq a b)) | a b. a\<noteq>b}"
|
154 |
+
|
155 |
+
definition "close_neg M \<equiv> M \<union> {\<^bold>\<not>(Atom a) | a. Atom a \<notin> M}"
|
156 |
+
lemma "wm_basic M \<Longrightarrow> close_world M = close_neg (M \<union> {Atom (Eq a a) | a. True})"
|
157 |
+
unfolding close_world_def close_neg_def wm_basic_def
|
158 |
+
apply clarsimp
|
159 |
+
apply (auto 0 3)
|
160 |
+
by (metis atom.exhaust)
|
161 |
+
|
162 |
+
|
163 |
+
abbreviation cw_entailment (infix "\<^sup>c\<TTurnstile>\<^sub>=" 53) where
|
164 |
+
"M \<^sup>c\<TTurnstile>\<^sub>= \<phi> \<equiv> close_world M \<TTurnstile> \<phi>"
|
165 |
+
|
166 |
+
|
167 |
+
lemma
|
168 |
+
close_world_extensive: "M \<subseteq> close_world M" and
|
169 |
+
close_world_idem[simp]: "close_world (close_world M) = close_world M"
|
170 |
+
by (auto simp: close_world_def)
|
171 |
+
|
172 |
+
lemma in_close_world_conv:
|
173 |
+
"\<phi> \<in> close_world M \<longleftrightarrow> (
|
174 |
+
\<phi>\<in>M
|
175 |
+
\<or> (\<exists>p as. \<phi>=\<^bold>\<not>(Atom (predAtm p as)) \<and> Atom (predAtm p as)\<notin>M)
|
176 |
+
\<or> (\<exists>a. \<phi>=Atom (Eq a a))
|
177 |
+
\<or> (\<exists>a b. \<phi>=\<^bold>\<not>(Atom (Eq a b)) \<and> a\<noteq>b)
|
178 |
+
)"
|
179 |
+
by (auto simp: close_world_def)
|
180 |
+
|
181 |
+
lemma valuation_aux_1:
|
182 |
+
fixes M :: world_model and \<phi> :: "object atom formula"
|
183 |
+
defines "C \<equiv> close_world M"
|
184 |
+
assumes A: "\<forall>\<phi>\<in>C. \<A> \<Turnstile> \<phi>"
|
185 |
+
shows "\<A> = valuation M"
|
186 |
+
using A unfolding C_def
|
187 |
+
apply -
|
188 |
+
apply (auto simp: in_close_world_conv valuation_def Ball_def intro!: ext split: atom.split)
|
189 |
+
apply (metis formula_semantics.simps(1) formula_semantics.simps(3))
|
190 |
+
apply (metis formula_semantics.simps(1) formula_semantics.simps(3))
|
191 |
+
by (metis atom.collapse(2) formula_semantics.simps(1) is_predAtm_def)
|
192 |
+
|
193 |
+
|
194 |
+
|
195 |
+
lemma valuation_aux_2:
|
196 |
+
assumes "wm_basic M"
|
197 |
+
shows "(\<forall>G\<in>close_world M. valuation M \<Turnstile> G)"
|
198 |
+
using assms unfolding wm_basic_def
|
199 |
+
by (force simp: in_close_world_conv valuation_def elim: is_predAtom.elims)
|
200 |
+
|
201 |
+
lemma val_imp_close_world: "valuation M \<Turnstile> \<phi> \<Longrightarrow> M \<^sup>c\<TTurnstile>\<^sub>= \<phi>"
|
202 |
+
unfolding entailment_def
|
203 |
+
using valuation_aux_1
|
204 |
+
by blast
|
205 |
+
|
206 |
+
lemma close_world_imp_val:
|
207 |
+
"wm_basic M \<Longrightarrow> M \<^sup>c\<TTurnstile>\<^sub>= \<phi> \<Longrightarrow> valuation M \<Turnstile> \<phi>"
|
208 |
+
unfolding entailment_def using valuation_aux_2 by blast
|
209 |
+
|
210 |
+
text \<open>Main theorem of this section:
|
211 |
+
If a world model \<open>M\<close> contains only atoms, its induced valuation
|
212 |
+
satisfies a formula \<open>\<phi>\<close> if and only if the closure of \<open>M\<close> entails \<open>\<phi>\<close>.
|
213 |
+
|
214 |
+
Note that there are no syntactic restrictions on \<open>\<phi>\<close>,
|
215 |
+
in particular, \<open>\<phi>\<close> may contain negation.
|
216 |
+
\<close>
|
217 |
+
theorem valuation_iff_close_world:
|
218 |
+
assumes "wm_basic M"
|
219 |
+
shows "valuation M \<Turnstile> \<phi> \<longleftrightarrow> M \<^sup>c\<TTurnstile>\<^sub>= \<phi>"
|
220 |
+
using assms val_imp_close_world close_world_imp_val by blast
|
221 |
+
|
222 |
+
|
223 |
+
subsubsection \<open>Proper Generalization\<close>
|
224 |
+
text \<open>Adding negation and equality is a proper generalization of the
|
225 |
+
case without negation and equality\<close>
|
226 |
+
|
227 |
+
fun is_STRIPS_fmla :: "'ent atom formula \<Rightarrow> bool" where
|
228 |
+
"is_STRIPS_fmla (Atom (predAtm _ _)) \<longleftrightarrow> True"
|
229 |
+
| "is_STRIPS_fmla (\<bottom>) \<longleftrightarrow> True"
|
230 |
+
| "is_STRIPS_fmla (\<phi>\<^sub>1 \<^bold>\<and> \<phi>\<^sub>2) \<longleftrightarrow> is_STRIPS_fmla \<phi>\<^sub>1 \<and> is_STRIPS_fmla \<phi>\<^sub>2"
|
231 |
+
| "is_STRIPS_fmla (\<phi>\<^sub>1 \<^bold>\<or> \<phi>\<^sub>2) \<longleftrightarrow> is_STRIPS_fmla \<phi>\<^sub>1 \<and> is_STRIPS_fmla \<phi>\<^sub>2"
|
232 |
+
| "is_STRIPS_fmla (\<^bold>\<not>\<bottom>) \<longleftrightarrow> True"
|
233 |
+
| "is_STRIPS_fmla _ \<longleftrightarrow> False"
|
234 |
+
|
235 |
+
lemma aux1: "\<lbrakk>wm_basic M; is_STRIPS_fmla \<phi>; valuation M \<Turnstile> \<phi>; \<forall>G\<in>M. \<A> \<Turnstile> G\<rbrakk> \<Longrightarrow> \<A> \<Turnstile> \<phi>"
|
236 |
+
apply(induction \<phi> rule: is_STRIPS_fmla.induct)
|
237 |
+
by (auto simp: valuation_def)
|
238 |
+
|
239 |
+
lemma aux2: "\<lbrakk>wm_basic M; is_STRIPS_fmla \<phi>; \<forall>\<A>. (\<forall>G\<in>M. \<A> \<Turnstile> G) \<longrightarrow> \<A> \<Turnstile> \<phi>\<rbrakk> \<Longrightarrow> valuation M \<Turnstile> \<phi>"
|
240 |
+
apply(induction \<phi> rule: is_STRIPS_fmla.induct)
|
241 |
+
apply simp_all
|
242 |
+
apply (metis in_close_world_conv valuation_aux_2)
|
243 |
+
using in_close_world_conv valuation_aux_2 apply blast
|
244 |
+
using in_close_world_conv valuation_aux_2 by auto
|
245 |
+
|
246 |
+
|
247 |
+
lemma valuation_iff_STRIPS:
|
248 |
+
assumes "wm_basic M"
|
249 |
+
assumes "is_STRIPS_fmla \<phi>"
|
250 |
+
shows "valuation M \<Turnstile> \<phi> \<longleftrightarrow> M \<TTurnstile> \<phi>"
|
251 |
+
proof -
|
252 |
+
have aux1: "\<And>\<A>. \<lbrakk>valuation M \<Turnstile> \<phi>; \<forall>G\<in>M. \<A> \<Turnstile> G\<rbrakk> \<Longrightarrow> \<A> \<Turnstile> \<phi>"
|
253 |
+
using assms apply(induction \<phi> rule: is_STRIPS_fmla.induct)
|
254 |
+
by (auto simp: valuation_def)
|
255 |
+
have aux2: "\<lbrakk>\<forall>\<A>. (\<forall>G\<in>M. \<A> \<Turnstile> G) \<longrightarrow> \<A> \<Turnstile> \<phi>\<rbrakk> \<Longrightarrow> valuation M \<Turnstile> \<phi>"
|
256 |
+
using assms
|
257 |
+
apply(induction \<phi> rule: is_STRIPS_fmla.induct)
|
258 |
+
apply simp_all
|
259 |
+
apply (metis in_close_world_conv valuation_aux_2)
|
260 |
+
using in_close_world_conv valuation_aux_2 apply blast
|
261 |
+
using in_close_world_conv valuation_aux_2 by auto
|
262 |
+
show ?thesis
|
263 |
+
by (auto simp: entailment_def intro: aux1 aux2)
|
264 |
+
qed
|
265 |
+
|
266 |
+
text \<open>Our extension to negation and equality is a proper generalization of the
|
267 |
+
standard STRIPS semantics for formula without negation and equality\<close>
|
268 |
+
theorem proper_STRIPS_generalization:
|
269 |
+
"\<lbrakk>wm_basic M; is_STRIPS_fmla \<phi>\<rbrakk> \<Longrightarrow> M \<^sup>c\<TTurnstile>\<^sub>= \<phi> \<longleftrightarrow> M \<TTurnstile> \<phi>"
|
270 |
+
by (simp add: valuation_iff_close_world[symmetric] valuation_iff_STRIPS)
|
271 |
+
|
272 |
+
subsection \<open>STRIPS Semantics\<close>
|
273 |
+
|
274 |
+
text \<open>For this section, we fix a domain \<open>D\<close>, using Isabelle's
|
275 |
+
locale mechanism.\<close>
|
276 |
+
locale ast_domain =
|
277 |
+
fixes D :: ast_domain
|
278 |
+
begin
|
279 |
+
text \<open>It seems to be agreed upon that, in case of a contradictory effect,
|
280 |
+
addition overrides deletion. We model this behaviour by first executing
|
281 |
+
the deletions, and then the additions.\<close>
|
282 |
+
fun apply_effect :: "object ast_effect \<Rightarrow> world_model \<Rightarrow> world_model"
|
283 |
+
where
|
284 |
+
"apply_effect (Effect a d) s = (s - set d) \<union> (set a)"
|
285 |
+
|
286 |
+
text \<open>Execute a ground action\<close>
|
287 |
+
definition execute_ground_action :: "ground_action \<Rightarrow> world_model \<Rightarrow> world_model"
|
288 |
+
where
|
289 |
+
"execute_ground_action a M = apply_effect (effect a) M"
|
290 |
+
|
291 |
+
text \<open>Predicate to model that the given list of action instances is
|
292 |
+
executable, and transforms an initial world model \<open>M\<close> into a final
|
293 |
+
model \<open>M'\<close>.
|
294 |
+
|
295 |
+
Note that this definition over the list structure is more convenient in HOL
|
296 |
+
than to explicitly define an indexed sequence \<open>M\<^sub>0\<dots>M\<^sub>N\<close> of intermediate world
|
297 |
+
models, as done in [Lif87].
|
298 |
+
\<close>
|
299 |
+
fun ground_action_path
|
300 |
+
:: "world_model \<Rightarrow> ground_action list \<Rightarrow> world_model \<Rightarrow> bool"
|
301 |
+
where
|
302 |
+
"ground_action_path M [] M' \<longleftrightarrow> (M = M')"
|
303 |
+
| "ground_action_path M (\<alpha>#\<alpha>s) M' \<longleftrightarrow> M \<^sup>c\<TTurnstile>\<^sub>= precondition \<alpha>
|
304 |
+
\<and> ground_action_path (execute_ground_action \<alpha> M) \<alpha>s M'"
|
305 |
+
|
306 |
+
text \<open>Function equations as presented in paper,
|
307 |
+
with inlined @{const execute_ground_action}.\<close>
|
308 |
+
lemma ground_action_path_in_paper:
|
309 |
+
"ground_action_path M [] M' \<longleftrightarrow> (M = M')"
|
310 |
+
"ground_action_path M (\<alpha>#\<alpha>s) M' \<longleftrightarrow> M \<^sup>c\<TTurnstile>\<^sub>= precondition \<alpha>
|
311 |
+
\<and> (ground_action_path (apply_effect (effect \<alpha>) M) \<alpha>s M')"
|
312 |
+
by (auto simp: execute_ground_action_def)
|
313 |
+
|
314 |
+
end \<comment> \<open>Context of \<open>ast_domain\<close>\<close>
|
315 |
+
|
316 |
+
|
317 |
+
|
318 |
+
subsection \<open>Well-Formedness of PDDL\<close>
|
319 |
+
|
320 |
+
(* Well-formedness *)
|
321 |
+
|
322 |
+
(*
|
323 |
+
Compute signature: predicate/arity
|
324 |
+
Check that all atoms (schemas and facts) satisfy signature
|
325 |
+
|
326 |
+
for action:
|
327 |
+
Check that used parameters \<subseteq> declared parameters
|
328 |
+
|
329 |
+
for init/goal: Check that facts only use declared objects
|
330 |
+
*)
|
331 |
+
|
332 |
+
|
333 |
+
fun ty_term where
|
334 |
+
"ty_term varT objT (term.VAR v) = varT v"
|
335 |
+
| "ty_term varT objT (term.CONST c) = objT c"
|
336 |
+
|
337 |
+
|
338 |
+
lemma ty_term_mono: "varT \<subseteq>\<^sub>m varT' \<Longrightarrow> objT \<subseteq>\<^sub>m objT' \<Longrightarrow>
|
339 |
+
ty_term varT objT \<subseteq>\<^sub>m ty_term varT' objT'"
|
340 |
+
apply (rule map_leI)
|
341 |
+
subgoal for x v
|
342 |
+
apply (cases x)
|
343 |
+
apply (auto dest: map_leD)
|
344 |
+
done
|
345 |
+
done
|
346 |
+
|
347 |
+
|
348 |
+
context ast_domain begin
|
349 |
+
|
350 |
+
text \<open>The signature is a partial function that maps the predicates
|
351 |
+
of the domain to lists of argument types.\<close>
|
352 |
+
definition sig :: "predicate \<rightharpoonup> type list" where
|
353 |
+
"sig \<equiv> map_of (map (\<lambda>PredDecl p n \<Rightarrow> (p,n)) (predicates D))"
|
354 |
+
|
355 |
+
text \<open>We use a flat subtype hierarchy, where every type is a subtype
|
356 |
+
of object, and there are no other subtype relations.
|
357 |
+
|
358 |
+
Note that we do not need to restrict this relation to declared types,
|
359 |
+
as we will explicitly ensure that all types used in the problem are
|
360 |
+
declared.
|
361 |
+
\<close>
|
362 |
+
|
363 |
+
fun subtype_edge where
|
364 |
+
"subtype_edge (ty,superty) = (superty,ty)"
|
365 |
+
|
366 |
+
definition "subtype_rel \<equiv> set (map subtype_edge (types D))"
|
367 |
+
|
368 |
+
(*
|
369 |
+
definition "subtype_rel \<equiv> {''object''}\<times>UNIV"
|
370 |
+
*)
|
371 |
+
|
372 |
+
definition of_type :: "type \<Rightarrow> type \<Rightarrow> bool" where
|
373 |
+
"of_type oT T \<equiv> set (primitives oT) \<subseteq> subtype_rel\<^sup>* `` set (primitives T)"
|
374 |
+
text \<open>This checks that every primitive on the LHS is contained in or a
|
375 |
+
subtype of a primitive on the RHS\<close>
|
376 |
+
|
377 |
+
|
378 |
+
text \<open>For the next few definitions, we fix a partial function that maps
|
379 |
+
a polymorphic entity type @{typ "'e"} to types. An entity can be
|
380 |
+
instantiated by variables or objects later.\<close>
|
381 |
+
context
|
382 |
+
fixes ty_ent :: "'ent \<rightharpoonup> type" \<comment> \<open>Entity's type, None if invalid\<close>
|
383 |
+
begin
|
384 |
+
|
385 |
+
text \<open>Checks whether an entity has a given type\<close>
|
386 |
+
definition is_of_type :: "'ent \<Rightarrow> type \<Rightarrow> bool" where
|
387 |
+
"is_of_type v T \<longleftrightarrow> (
|
388 |
+
case ty_ent v of
|
389 |
+
Some vT \<Rightarrow> of_type vT T
|
390 |
+
| None \<Rightarrow> False)"
|
391 |
+
|
392 |
+
fun wf_pred_atom :: "predicate \<times> 'ent list \<Rightarrow> bool" where
|
393 |
+
"wf_pred_atom (p,vs) \<longleftrightarrow> (
|
394 |
+
case sig p of
|
395 |
+
None \<Rightarrow> False
|
396 |
+
| Some Ts \<Rightarrow> list_all2 is_of_type vs Ts)"
|
397 |
+
|
398 |
+
text \<open>Predicate-atoms are well-formed if their arguments match the
|
399 |
+
signature, equalities are well-formed if the arguments are valid
|
400 |
+
objects (have a type).
|
401 |
+
|
402 |
+
TODO: We could check that types may actually overlap
|
403 |
+
\<close>
|
404 |
+
fun wf_atom :: "'ent atom \<Rightarrow> bool" where
|
405 |
+
"wf_atom (predAtm p vs) \<longleftrightarrow> wf_pred_atom (p,vs)"
|
406 |
+
| "wf_atom (Eq a b) \<longleftrightarrow> ty_ent a \<noteq> None \<and> ty_ent b \<noteq> None"
|
407 |
+
|
408 |
+
text \<open>A formula is well-formed if it consists of valid atoms,
|
409 |
+
and does not contain negations, except for the encoding \<open>\<^bold>\<not>\<bottom>\<close> of true.
|
410 |
+
\<close>
|
411 |
+
fun wf_fmla :: "('ent atom) formula \<Rightarrow> bool" where
|
412 |
+
"wf_fmla (Atom a) \<longleftrightarrow> wf_atom a"
|
413 |
+
| "wf_fmla (\<bottom>) \<longleftrightarrow> True"
|
414 |
+
| "wf_fmla (\<phi>1 \<^bold>\<and> \<phi>2) \<longleftrightarrow> (wf_fmla \<phi>1 \<and> wf_fmla \<phi>2)"
|
415 |
+
| "wf_fmla (\<phi>1 \<^bold>\<or> \<phi>2) \<longleftrightarrow> (wf_fmla \<phi>1 \<and> wf_fmla \<phi>2)"
|
416 |
+
| "wf_fmla (\<^bold>\<not>\<phi>) \<longleftrightarrow> wf_fmla \<phi>"
|
417 |
+
| "wf_fmla (\<phi>1 \<^bold>\<rightarrow> \<phi>2) \<longleftrightarrow> (wf_fmla \<phi>1 \<and> wf_fmla \<phi>2)"
|
418 |
+
|
419 |
+
lemma "wf_fmla \<phi> = (\<forall>a\<in>atoms \<phi>. wf_atom a)"
|
420 |
+
by (induction \<phi>) auto
|
421 |
+
|
422 |
+
(*lemma wf_fmla_add_simps[simp]: "wf_fmla (\<^bold>\<not>\<phi>) \<longleftrightarrow> \<phi>=\<bottom>"
|
423 |
+
by (cases \<phi>) auto*)
|
424 |
+
|
425 |
+
text \<open>Special case for a well-formed atomic predicate formula\<close>
|
426 |
+
fun wf_fmla_atom where
|
427 |
+
"wf_fmla_atom (Atom (predAtm a vs)) \<longleftrightarrow> wf_pred_atom (a,vs)"
|
428 |
+
| "wf_fmla_atom _ \<longleftrightarrow> False"
|
429 |
+
|
430 |
+
lemma wf_fmla_atom_alt: "wf_fmla_atom \<phi> \<longleftrightarrow> is_predAtom \<phi> \<and> wf_fmla \<phi>"
|
431 |
+
by (cases \<phi> rule: wf_fmla_atom.cases) auto
|
432 |
+
|
433 |
+
text \<open>An effect is well-formed if the added and removed formulas
|
434 |
+
are atomic\<close>
|
435 |
+
fun wf_effect where
|
436 |
+
"wf_effect (Effect a d) \<longleftrightarrow>
|
437 |
+
(\<forall>ae\<in>set a. wf_fmla_atom ae)
|
438 |
+
\<and> (\<forall>de\<in>set d. wf_fmla_atom de)"
|
439 |
+
|
440 |
+
end \<comment> \<open>Context fixing \<open>ty_ent\<close>\<close>
|
441 |
+
|
442 |
+
|
443 |
+
definition constT :: "object \<rightharpoonup> type" where
|
444 |
+
"constT \<equiv> map_of (consts D)"
|
445 |
+
|
446 |
+
text \<open>An action schema is well-formed if the parameter names are distinct,
|
447 |
+
and the precondition and effect is well-formed wrt.\ the parameters.
|
448 |
+
\<close>
|
449 |
+
fun wf_action_schema :: "ast_action_schema \<Rightarrow> bool" where
|
450 |
+
"wf_action_schema (Action_Schema n params pre eff) \<longleftrightarrow> (
|
451 |
+
let
|
452 |
+
tyt = ty_term (map_of params) constT
|
453 |
+
in
|
454 |
+
distinct (map fst params)
|
455 |
+
\<and> wf_fmla tyt pre
|
456 |
+
\<and> wf_effect tyt eff)"
|
457 |
+
|
458 |
+
text \<open>A type is well-formed if it consists only of declared primitive types,
|
459 |
+
and the type object.\<close>
|
460 |
+
fun wf_type where
|
461 |
+
"wf_type (Either Ts) \<longleftrightarrow> set Ts \<subseteq> insert ''object'' (fst`set (types D))"
|
462 |
+
|
463 |
+
text \<open>A predicate is well-formed if its argument types are well-formed.\<close>
|
464 |
+
fun wf_predicate_decl where
|
465 |
+
"wf_predicate_decl (PredDecl p Ts) \<longleftrightarrow> (\<forall>T\<in>set Ts. wf_type T)"
|
466 |
+
|
467 |
+
text \<open>The types declaration is well-formed, if all supertypes are declared types (or object)\<close>
|
468 |
+
definition "wf_types \<equiv> snd`set (types D) \<subseteq> insert ''object'' (fst`set (types D))"
|
469 |
+
|
470 |
+
text \<open>A domain is well-formed if
|
471 |
+
\<^item> there are no duplicate declared predicate names,
|
472 |
+
\<^item> all declared predicates are well-formed,
|
473 |
+
\<^item> there are no duplicate action names,
|
474 |
+
\<^item> and all declared actions are well-formed
|
475 |
+
\<close>
|
476 |
+
definition wf_domain :: "bool" where
|
477 |
+
"wf_domain \<equiv>
|
478 |
+
wf_types
|
479 |
+
\<and> distinct (map (predicate_decl.pred) (predicates D))
|
480 |
+
\<and> (\<forall>p\<in>set (predicates D). wf_predicate_decl p)
|
481 |
+
\<and> distinct (map fst (consts D))
|
482 |
+
\<and> (\<forall>(n,T)\<in>set (consts D). wf_type T)
|
483 |
+
\<and> distinct (map ast_action_schema.name (actions D))
|
484 |
+
\<and> (\<forall>a\<in>set (actions D). wf_action_schema a)
|
485 |
+
"
|
486 |
+
|
487 |
+
end \<comment> \<open>locale \<open>ast_domain\<close>\<close>
|
488 |
+
|
489 |
+
text \<open>We fix a problem, and also include the definitions for the domain
|
490 |
+
of this problem.\<close>
|
491 |
+
locale ast_problem = ast_domain "domain P"
|
492 |
+
for P :: ast_problem
|
493 |
+
begin
|
494 |
+
text \<open>We refer to the problem domain as \<open>D\<close>\<close>
|
495 |
+
abbreviation "D \<equiv> ast_problem.domain P"
|
496 |
+
|
497 |
+
definition objT :: "object \<rightharpoonup> type" where
|
498 |
+
"objT \<equiv> map_of (objects P) ++ constT"
|
499 |
+
|
500 |
+
lemma objT_alt: "objT = map_of (consts D @ objects P)"
|
501 |
+
unfolding objT_def constT_def
|
502 |
+
apply (clarsimp)
|
503 |
+
done
|
504 |
+
|
505 |
+
definition wf_fact :: "fact \<Rightarrow> bool" where
|
506 |
+
"wf_fact = wf_pred_atom objT"
|
507 |
+
|
508 |
+
text \<open>This definition is needed for well-formedness of the initial model,
|
509 |
+
and forward-references to the concept of world model.
|
510 |
+
\<close>
|
511 |
+
definition wf_world_model where
|
512 |
+
"wf_world_model M = (\<forall>f\<in>M. wf_fmla_atom objT f)"
|
513 |
+
|
514 |
+
(*Note: current semantics assigns each object a unique type *)
|
515 |
+
definition wf_problem where
|
516 |
+
"wf_problem \<equiv>
|
517 |
+
wf_domain
|
518 |
+
\<and> distinct (map fst (objects P) @ map fst (consts D))
|
519 |
+
\<and> (\<forall>(n,T)\<in>set (objects P). wf_type T)
|
520 |
+
\<and> distinct (init P)
|
521 |
+
\<and> wf_world_model (set (init P))
|
522 |
+
\<and> wf_fmla objT (goal P)
|
523 |
+
"
|
524 |
+
|
525 |
+
fun wf_effect_inst :: "object ast_effect \<Rightarrow> bool" where
|
526 |
+
"wf_effect_inst (Effect (a) (d))
|
527 |
+
\<longleftrightarrow> (\<forall>a\<in>set a \<union> set d. wf_fmla_atom objT a)"
|
528 |
+
|
529 |
+
lemma wf_effect_inst_alt: "wf_effect_inst eff = wf_effect objT eff"
|
530 |
+
by (cases eff) auto
|
531 |
+
|
532 |
+
end \<comment> \<open>locale \<open>ast_problem\<close>\<close>
|
533 |
+
|
534 |
+
text \<open>Locale to express a well-formed domain\<close>
|
535 |
+
locale wf_ast_domain = ast_domain +
|
536 |
+
assumes wf_domain: wf_domain
|
537 |
+
|
538 |
+
text \<open>Locale to express a well-formed problem\<close>
|
539 |
+
locale wf_ast_problem = ast_problem P for P +
|
540 |
+
assumes wf_problem: wf_problem
|
541 |
+
begin
|
542 |
+
sublocale wf_ast_domain "domain P"
|
543 |
+
apply unfold_locales
|
544 |
+
using wf_problem
|
545 |
+
unfolding wf_problem_def by simp
|
546 |
+
|
547 |
+
end \<comment> \<open>locale \<open>wf_ast_problem\<close>\<close>
|
548 |
+
|
549 |
+
subsection \<open>PDDL Semantics\<close>
|
550 |
+
|
551 |
+
(* Semantics *)
|
552 |
+
|
553 |
+
(* To apply plan_action:
|
554 |
+
find action schema, instantiate, check precond, apply effect
|
555 |
+
*)
|
556 |
+
|
557 |
+
|
558 |
+
|
559 |
+
context ast_domain begin
|
560 |
+
|
561 |
+
definition resolve_action_schema :: "name \<rightharpoonup> ast_action_schema" where
|
562 |
+
"resolve_action_schema n = index_by ast_action_schema.name (actions D) n"
|
563 |
+
|
564 |
+
fun subst_term where
|
565 |
+
"subst_term psubst (term.VAR x) = psubst x"
|
566 |
+
| "subst_term psubst (term.CONST c) = c"
|
567 |
+
|
568 |
+
text \<open>To instantiate an action schema, we first compute a substitution from
|
569 |
+
parameters to objects, and then apply this substitution to the
|
570 |
+
precondition and effect. The substitution is applied via the \<open>map_xxx\<close>
|
571 |
+
functions generated by the datatype package.
|
572 |
+
\<close>
|
573 |
+
fun instantiate_action_schema
|
574 |
+
:: "ast_action_schema \<Rightarrow> object list \<Rightarrow> ground_action"
|
575 |
+
where
|
576 |
+
"instantiate_action_schema (Action_Schema n params pre eff) args = (let
|
577 |
+
tsubst = subst_term (the o (map_of (zip (map fst params) args)));
|
578 |
+
pre_inst = (map_formula o map_atom) tsubst pre;
|
579 |
+
eff_inst = (map_ast_effect) tsubst eff
|
580 |
+
in
|
581 |
+
Ground_Action pre_inst eff_inst
|
582 |
+
)"
|
583 |
+
|
584 |
+
end \<comment> \<open>Context of \<open>ast_domain\<close>\<close>
|
585 |
+
|
586 |
+
|
587 |
+
context ast_problem begin
|
588 |
+
|
589 |
+
text \<open>Initial model\<close>
|
590 |
+
definition I :: "world_model" where
|
591 |
+
"I \<equiv> set (init P)"
|
592 |
+
|
593 |
+
|
594 |
+
text \<open>Resolve a plan action and instantiate the referenced action schema.\<close>
|
595 |
+
fun resolve_instantiate :: "plan_action \<Rightarrow> ground_action" where
|
596 |
+
"resolve_instantiate (PAction n args) =
|
597 |
+
instantiate_action_schema
|
598 |
+
(the (resolve_action_schema n))
|
599 |
+
args"
|
600 |
+
|
601 |
+
text \<open>Check whether object has specified type\<close>
|
602 |
+
definition "is_obj_of_type n T \<equiv> case objT n of
|
603 |
+
None \<Rightarrow> False
|
604 |
+
| Some oT \<Rightarrow> of_type oT T"
|
605 |
+
|
606 |
+
text \<open>We can also use the generic \<open>is_of_type\<close> function.\<close>
|
607 |
+
lemma is_obj_of_type_alt: "is_obj_of_type = is_of_type objT"
|
608 |
+
apply (intro ext)
|
609 |
+
unfolding is_obj_of_type_def is_of_type_def by auto
|
610 |
+
|
611 |
+
|
612 |
+
text \<open>HOL encoding of matching an action's formal parameters against an
|
613 |
+
argument list.
|
614 |
+
The parameters of the action are encoded as a list of \<open>name\<times>type\<close> pairs,
|
615 |
+
such that we map it to a list of types first. Then, the list
|
616 |
+
relator @{const list_all2} checks that arguments and types have the same
|
617 |
+
length, and each matching pair of argument and type
|
618 |
+
satisfies the predicate @{const is_obj_of_type}.
|
619 |
+
\<close>
|
620 |
+
definition "action_params_match a args
|
621 |
+
\<equiv> list_all2 is_obj_of_type args (map snd (parameters a))"
|
622 |
+
|
623 |
+
text \<open>At this point, we can define well-formedness of a plan action:
|
624 |
+
The action must refer to a declared action schema, the arguments must
|
625 |
+
be compatible with the formal parameters' types.
|
626 |
+
\<close>
|
627 |
+
(* Objects are valid and match parameter types *)
|
628 |
+
fun wf_plan_action :: "plan_action \<Rightarrow> bool" where
|
629 |
+
"wf_plan_action (PAction n args) = (
|
630 |
+
case resolve_action_schema n of
|
631 |
+
None \<Rightarrow> False
|
632 |
+
| Some a \<Rightarrow>
|
633 |
+
action_params_match a args
|
634 |
+
\<and> wf_effect_inst (effect (instantiate_action_schema a args))
|
635 |
+
)"
|
636 |
+
text \<open>
|
637 |
+
TODO: The second conjunct is redundant, as instantiating a well formed
|
638 |
+
action with valid objects yield a valid effect.
|
639 |
+
\<close>
|
640 |
+
|
641 |
+
|
642 |
+
|
643 |
+
text \<open>A sequence of plan actions form a path, if they are well-formed and
|
644 |
+
their instantiations form a path.\<close>
|
645 |
+
definition plan_action_path
|
646 |
+
:: "world_model \<Rightarrow> plan_action list \<Rightarrow> world_model \<Rightarrow> bool"
|
647 |
+
where
|
648 |
+
"plan_action_path M \<pi>s M' =
|
649 |
+
((\<forall>\<pi> \<in> set \<pi>s. wf_plan_action \<pi>)
|
650 |
+
\<and> ground_action_path M (map resolve_instantiate \<pi>s) M')"
|
651 |
+
|
652 |
+
text \<open>A plan is valid wrt.\ a given initial model, if it forms a path to a
|
653 |
+
goal model \<close>
|
654 |
+
definition valid_plan_from :: "world_model \<Rightarrow> plan \<Rightarrow> bool" where
|
655 |
+
"valid_plan_from M \<pi>s = (\<exists>M'. plan_action_path M \<pi>s M' \<and> M' \<^sup>c\<TTurnstile>\<^sub>= (goal P))"
|
656 |
+
|
657 |
+
(* Implementation note: resolve and instantiate already done inside
|
658 |
+
enabledness check, redundancy! *)
|
659 |
+
|
660 |
+
text \<open>Finally, a plan is valid if it is valid wrt.\ the initial world
|
661 |
+
model @{const I}\<close>
|
662 |
+
definition valid_plan :: "plan \<Rightarrow> bool"
|
663 |
+
where "valid_plan \<equiv> valid_plan_from I"
|
664 |
+
|
665 |
+
text \<open>Concise definition used in paper:\<close>
|
666 |
+
lemma "valid_plan \<pi>s \<equiv> \<exists>M'. plan_action_path I \<pi>s M' \<and> M' \<^sup>c\<TTurnstile>\<^sub>= (goal P)"
|
667 |
+
unfolding valid_plan_def valid_plan_from_def by auto
|
668 |
+
|
669 |
+
|
670 |
+
end \<comment> \<open>Context of \<open>ast_problem\<close>\<close>
|
671 |
+
|
672 |
+
|
673 |
+
|
674 |
+
subsection \<open>Preservation of Well-Formedness\<close>
|
675 |
+
|
676 |
+
subsubsection \<open>Well-Formed Action Instances\<close>
|
677 |
+
text \<open>The goal of this section is to establish that well-formedness of
|
678 |
+
world models is preserved by execution of well-formed plan actions.
|
679 |
+
\<close>
|
680 |
+
|
681 |
+
context ast_problem begin
|
682 |
+
|
683 |
+
text \<open>As plan actions are executed by first instantiating them, and then
|
684 |
+
executing the action instance, it is natural to define a well-formedness
|
685 |
+
concept for action instances.\<close>
|
686 |
+
|
687 |
+
fun wf_ground_action :: "ground_action \<Rightarrow> bool" where
|
688 |
+
"wf_ground_action (Ground_Action pre eff) \<longleftrightarrow> (
|
689 |
+
wf_fmla objT pre
|
690 |
+
\<and> wf_effect objT eff
|
691 |
+
)
|
692 |
+
"
|
693 |
+
|
694 |
+
text \<open>We first prove that instantiating a well-formed action schema will yield
|
695 |
+
a well-formed action instance.
|
696 |
+
|
697 |
+
We begin with some auxiliary lemmas before the actual theorem.
|
698 |
+
\<close>
|
699 |
+
|
700 |
+
lemma (in ast_domain) of_type_refl[simp, intro!]: "of_type T T"
|
701 |
+
unfolding of_type_def by auto
|
702 |
+
|
703 |
+
lemma (in ast_domain) of_type_trans[trans]:
|
704 |
+
"of_type T1 T2 \<Longrightarrow> of_type T2 T3 \<Longrightarrow> of_type T1 T3"
|
705 |
+
unfolding of_type_def
|
706 |
+
by clarsimp (metis (no_types, opaque_lifting)
|
707 |
+
Image_mono contra_subsetD order_refl rtrancl_image_idem)
|
708 |
+
|
709 |
+
lemma is_of_type_map_ofE:
|
710 |
+
assumes "is_of_type (map_of params) x T"
|
711 |
+
obtains i xT where "i<length params" "params!i = (x,xT)" "of_type xT T"
|
712 |
+
using assms
|
713 |
+
unfolding is_of_type_def
|
714 |
+
by (auto split: option.splits dest!: map_of_SomeD simp: in_set_conv_nth)
|
715 |
+
|
716 |
+
lemma wf_atom_mono:
|
717 |
+
assumes SS: "tys \<subseteq>\<^sub>m tys'"
|
718 |
+
assumes WF: "wf_atom tys a"
|
719 |
+
shows "wf_atom tys' a"
|
720 |
+
proof -
|
721 |
+
have "list_all2 (is_of_type tys') xs Ts" if "list_all2 (is_of_type tys) xs Ts" for xs Ts
|
722 |
+
using that
|
723 |
+
apply induction
|
724 |
+
by (auto simp: is_of_type_def split: option.splits dest: map_leD[OF SS])
|
725 |
+
with WF show ?thesis
|
726 |
+
by (cases a) (auto split: option.splits dest: map_leD[OF SS])
|
727 |
+
qed
|
728 |
+
|
729 |
+
lemma wf_fmla_atom_mono:
|
730 |
+
assumes SS: "tys \<subseteq>\<^sub>m tys'"
|
731 |
+
assumes WF: "wf_fmla_atom tys a"
|
732 |
+
shows "wf_fmla_atom tys' a"
|
733 |
+
proof -
|
734 |
+
have "list_all2 (is_of_type tys') xs Ts" if "list_all2 (is_of_type tys) xs Ts" for xs Ts
|
735 |
+
using that
|
736 |
+
apply induction
|
737 |
+
by (auto simp: is_of_type_def split: option.splits dest: map_leD[OF SS])
|
738 |
+
with WF show ?thesis
|
739 |
+
by (cases a rule: wf_fmla_atom.cases) (auto split: option.splits dest: map_leD[OF SS])
|
740 |
+
qed
|
741 |
+
|
742 |
+
|
743 |
+
lemma constT_ss_objT: "constT \<subseteq>\<^sub>m objT"
|
744 |
+
unfolding constT_def objT_def
|
745 |
+
apply rule
|
746 |
+
by (auto simp: map_add_def split: option.split)
|
747 |
+
|
748 |
+
lemma wf_atom_constT_imp_objT: "wf_atom (ty_term Q constT) a \<Longrightarrow> wf_atom (ty_term Q objT) a"
|
749 |
+
apply (erule wf_atom_mono[rotated])
|
750 |
+
apply (rule ty_term_mono)
|
751 |
+
by (simp_all add: constT_ss_objT)
|
752 |
+
|
753 |
+
lemma wf_fmla_atom_constT_imp_objT: "wf_fmla_atom (ty_term Q constT) a \<Longrightarrow> wf_fmla_atom (ty_term Q objT) a"
|
754 |
+
apply (erule wf_fmla_atom_mono[rotated])
|
755 |
+
apply (rule ty_term_mono)
|
756 |
+
by (simp_all add: constT_ss_objT)
|
757 |
+
|
758 |
+
context
|
759 |
+
fixes Q and f :: "variable \<Rightarrow> object"
|
760 |
+
assumes INST: "is_of_type Q x T \<Longrightarrow> is_of_type objT (f x) T"
|
761 |
+
begin
|
762 |
+
|
763 |
+
lemma is_of_type_var_conv: "is_of_type (ty_term Q objT) (term.VAR x) T \<longleftrightarrow> is_of_type Q x T"
|
764 |
+
unfolding is_of_type_def by (auto)
|
765 |
+
|
766 |
+
lemma is_of_type_const_conv: "is_of_type (ty_term Q objT) (term.CONST x) T \<longleftrightarrow> is_of_type objT x T"
|
767 |
+
unfolding is_of_type_def
|
768 |
+
by (auto split: option.split)
|
769 |
+
|
770 |
+
lemma INST': "is_of_type (ty_term Q objT) x T \<Longrightarrow> is_of_type objT (subst_term f x) T"
|
771 |
+
apply (cases x) using INST apply (auto simp: is_of_type_var_conv is_of_type_const_conv)
|
772 |
+
done
|
773 |
+
|
774 |
+
|
775 |
+
lemma wf_inst_eq_aux: "Q x = Some T \<Longrightarrow> objT (f x) \<noteq> None"
|
776 |
+
using INST[of x T] unfolding is_of_type_def
|
777 |
+
by (auto split: option.splits)
|
778 |
+
|
779 |
+
lemma wf_inst_eq_aux': "ty_term Q objT x = Some T \<Longrightarrow> objT (subst_term f x) \<noteq> None"
|
780 |
+
by (cases x) (auto simp: wf_inst_eq_aux)
|
781 |
+
|
782 |
+
|
783 |
+
lemma wf_inst_atom:
|
784 |
+
assumes "wf_atom (ty_term Q constT) a"
|
785 |
+
shows "wf_atom objT (map_atom (subst_term f) a)"
|
786 |
+
proof -
|
787 |
+
have X1: "list_all2 (is_of_type objT) (map (subst_term f) xs) Ts" if
|
788 |
+
"list_all2 (is_of_type (ty_term Q objT)) xs Ts" for xs Ts
|
789 |
+
using that
|
790 |
+
apply induction
|
791 |
+
using INST'
|
792 |
+
by auto
|
793 |
+
then show ?thesis
|
794 |
+
using assms[THEN wf_atom_constT_imp_objT] wf_inst_eq_aux'
|
795 |
+
by (cases a; auto split: option.splits)
|
796 |
+
|
797 |
+
qed
|
798 |
+
|
799 |
+
lemma wf_inst_formula_atom:
|
800 |
+
assumes "wf_fmla_atom (ty_term Q constT) a"
|
801 |
+
shows "wf_fmla_atom objT ((map_formula o map_atom o subst_term) f a)"
|
802 |
+
using assms[THEN wf_fmla_atom_constT_imp_objT] wf_inst_atom
|
803 |
+
apply (cases a rule: wf_fmla_atom.cases; auto split: option.splits)
|
804 |
+
by (simp add: INST' list.rel_map(1) list_all2_mono)
|
805 |
+
|
806 |
+
lemma wf_inst_effect:
|
807 |
+
assumes "wf_effect (ty_term Q constT) \<phi>"
|
808 |
+
shows "wf_effect objT ((map_ast_effect o subst_term) f \<phi>)"
|
809 |
+
using assms
|
810 |
+
proof (induction \<phi>)
|
811 |
+
case (Effect x1a x2a)
|
812 |
+
then show ?case using wf_inst_formula_atom by auto
|
813 |
+
qed
|
814 |
+
|
815 |
+
lemma wf_inst_formula:
|
816 |
+
assumes "wf_fmla (ty_term Q constT) \<phi>"
|
817 |
+
shows "wf_fmla objT ((map_formula o map_atom o subst_term) f \<phi>)"
|
818 |
+
using assms
|
819 |
+
by (induction \<phi>) (auto simp: wf_inst_atom dest: wf_inst_eq_aux)
|
820 |
+
|
821 |
+
end
|
822 |
+
|
823 |
+
|
824 |
+
|
825 |
+
text \<open>Instantiating a well-formed action schema with compatible arguments
|
826 |
+
will yield a well-formed action instance.
|
827 |
+
\<close>
|
828 |
+
theorem wf_instantiate_action_schema:
|
829 |
+
assumes "action_params_match a args"
|
830 |
+
assumes "wf_action_schema a"
|
831 |
+
shows "wf_ground_action (instantiate_action_schema a args)"
|
832 |
+
proof (cases a)
|
833 |
+
case [simp]: (Action_Schema name params pre eff)
|
834 |
+
have INST:
|
835 |
+
"is_of_type objT ((the \<circ> map_of (zip (map fst params) args)) x) T"
|
836 |
+
if "is_of_type (map_of params) x T" for x T
|
837 |
+
using that
|
838 |
+
apply (rule is_of_type_map_ofE)
|
839 |
+
using assms
|
840 |
+
apply (clarsimp simp: Let_def)
|
841 |
+
subgoal for i xT
|
842 |
+
unfolding action_params_match_def
|
843 |
+
apply (subst lookup_zip_idx_eq[where i=i];
|
844 |
+
(clarsimp simp: list_all2_lengthD)?)
|
845 |
+
apply (frule list_all2_nthD2[where p=i]; simp?)
|
846 |
+
apply (auto
|
847 |
+
simp: is_obj_of_type_alt is_of_type_def
|
848 |
+
intro: of_type_trans
|
849 |
+
split: option.splits)
|
850 |
+
done
|
851 |
+
done
|
852 |
+
then show ?thesis
|
853 |
+
using assms(2) wf_inst_formula wf_inst_effect
|
854 |
+
by (fastforce split: term.splits simp: Let_def comp_apply[abs_def])
|
855 |
+
qed
|
856 |
+
end \<comment> \<open>Context of \<open>ast_problem\<close>\<close>
|
857 |
+
|
858 |
+
|
859 |
+
|
860 |
+
subsubsection \<open>Preservation\<close>
|
861 |
+
|
862 |
+
context ast_problem begin
|
863 |
+
|
864 |
+
text \<open>We start by defining two shorthands for enabledness and execution of
|
865 |
+
a plan action.\<close>
|
866 |
+
|
867 |
+
text \<open>Shorthand for enabled plan action: It is well-formed, and the
|
868 |
+
precondition holds for its instance.\<close>
|
869 |
+
definition plan_action_enabled :: "plan_action \<Rightarrow> world_model \<Rightarrow> bool" where
|
870 |
+
"plan_action_enabled \<pi> M
|
871 |
+
\<longleftrightarrow> wf_plan_action \<pi> \<and> M \<^sup>c\<TTurnstile>\<^sub>= precondition (resolve_instantiate \<pi>)"
|
872 |
+
|
873 |
+
text \<open>Shorthand for executing a plan action: Resolve, instantiate, and
|
874 |
+
apply effect\<close>
|
875 |
+
definition execute_plan_action :: "plan_action \<Rightarrow> world_model \<Rightarrow> world_model"
|
876 |
+
where "execute_plan_action \<pi> M
|
877 |
+
= (apply_effect (effect (resolve_instantiate \<pi>)) M)"
|
878 |
+
|
879 |
+
text \<open>The @{const plan_action_path} predicate can be decomposed naturally
|
880 |
+
using these shorthands: \<close>
|
881 |
+
lemma plan_action_path_Nil[simp]: "plan_action_path M [] M' \<longleftrightarrow> M'=M"
|
882 |
+
by (auto simp: plan_action_path_def)
|
883 |
+
|
884 |
+
lemma plan_action_path_Cons[simp]:
|
885 |
+
"plan_action_path M (\<pi>#\<pi>s) M' \<longleftrightarrow>
|
886 |
+
plan_action_enabled \<pi> M
|
887 |
+
\<and> plan_action_path (execute_plan_action \<pi> M) \<pi>s M'"
|
888 |
+
by (auto
|
889 |
+
simp: plan_action_path_def execute_plan_action_def
|
890 |
+
execute_ground_action_def plan_action_enabled_def)
|
891 |
+
|
892 |
+
|
893 |
+
|
894 |
+
end \<comment> \<open>Context of \<open>ast_problem\<close>\<close>
|
895 |
+
|
896 |
+
context wf_ast_problem begin
|
897 |
+
text \<open>The initial world model is well-formed\<close>
|
898 |
+
lemma wf_I: "wf_world_model I"
|
899 |
+
using wf_problem
|
900 |
+
unfolding I_def wf_world_model_def wf_problem_def
|
901 |
+
apply(safe) subgoal for f by (induction f) auto
|
902 |
+
done
|
903 |
+
|
904 |
+
text \<open>Application of a well-formed effect preserves well-formedness
|
905 |
+
of the model\<close>
|
906 |
+
lemma wf_apply_effect:
|
907 |
+
assumes "wf_effect objT e"
|
908 |
+
assumes "wf_world_model s"
|
909 |
+
shows "wf_world_model (apply_effect e s)"
|
910 |
+
using assms wf_problem
|
911 |
+
unfolding wf_world_model_def wf_problem_def wf_domain_def
|
912 |
+
by (cases e) (auto split: formula.splits prod.splits)
|
913 |
+
|
914 |
+
text \<open>Execution of plan actions preserves well-formedness\<close>
|
915 |
+
theorem wf_execute:
|
916 |
+
assumes "plan_action_enabled \<pi> s"
|
917 |
+
assumes "wf_world_model s"
|
918 |
+
shows "wf_world_model (execute_plan_action \<pi> s)"
|
919 |
+
using assms
|
920 |
+
proof (cases \<pi>)
|
921 |
+
case [simp]: (PAction name args)
|
922 |
+
|
923 |
+
from \<open>plan_action_enabled \<pi> s\<close> have "wf_plan_action \<pi>"
|
924 |
+
unfolding plan_action_enabled_def by auto
|
925 |
+
then obtain a where
|
926 |
+
"resolve_action_schema name = Some a" and
|
927 |
+
T: "action_params_match a args"
|
928 |
+
by (auto split: option.splits)
|
929 |
+
|
930 |
+
from wf_domain have
|
931 |
+
[simp]: "distinct (map ast_action_schema.name (actions D))"
|
932 |
+
unfolding wf_domain_def by auto
|
933 |
+
|
934 |
+
from \<open>resolve_action_schema name = Some a\<close> have
|
935 |
+
"a \<in> set (actions D)"
|
936 |
+
unfolding resolve_action_schema_def by auto
|
937 |
+
with wf_domain have "wf_action_schema a"
|
938 |
+
unfolding wf_domain_def by auto
|
939 |
+
hence "wf_ground_action (resolve_instantiate \<pi>)"
|
940 |
+
using \<open>resolve_action_schema name = Some a\<close> T
|
941 |
+
wf_instantiate_action_schema
|
942 |
+
by auto
|
943 |
+
thus ?thesis
|
944 |
+
apply (simp add: execute_plan_action_def execute_ground_action_def)
|
945 |
+
apply (rule wf_apply_effect)
|
946 |
+
apply (cases "resolve_instantiate \<pi>"; simp)
|
947 |
+
by (rule \<open>wf_world_model s\<close>)
|
948 |
+
qed
|
949 |
+
|
950 |
+
theorem wf_execute_compact_notation:
|
951 |
+
"plan_action_enabled \<pi> s \<Longrightarrow> wf_world_model s
|
952 |
+
\<Longrightarrow> wf_world_model (execute_plan_action \<pi> s)"
|
953 |
+
by (rule wf_execute)
|
954 |
+
|
955 |
+
|
956 |
+
text \<open>Execution of a plan preserves well-formedness\<close>
|
957 |
+
corollary wf_plan_action_path:
|
958 |
+
assumes "wf_world_model M" and " plan_action_path M \<pi>s M'"
|
959 |
+
shows "wf_world_model M'"
|
960 |
+
using assms
|
961 |
+
by (induction \<pi>s arbitrary: M) (auto intro: wf_execute)
|
962 |
+
|
963 |
+
|
964 |
+
end \<comment> \<open>Context of \<open>wf_ast_problem\<close>\<close>
|
965 |
+
|
966 |
+
|
967 |
+
|
968 |
+
|
969 |
+
end \<comment> \<open>Theory\<close>
|
formal/afp/AI_Planning_Languages_Semantics/SASP_Checker.thy
ADDED
@@ -0,0 +1,348 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
theory SASP_Checker
|
2 |
+
imports SASP_Semantics
|
3 |
+
"HOL-Library.Code_Target_Nat"
|
4 |
+
begin
|
5 |
+
|
6 |
+
section \<open>An Executable Checker for Multi-Valued Planning Problem Solutions\<close>
|
7 |
+
|
8 |
+
|
9 |
+
subsection \<open>Auxiliary Lemmas\<close>
|
10 |
+
lemma map_of_leI:
|
11 |
+
assumes "distinct (map fst l)"
|
12 |
+
assumes "\<And>k v. (k,v)\<in>set l \<Longrightarrow> m k = Some v"
|
13 |
+
shows "map_of l \<subseteq>\<^sub>m m"
|
14 |
+
using assms
|
15 |
+
by (metis (no_types, opaque_lifting) domIff map_le_def map_of_SomeD not_Some_eq)
|
16 |
+
|
17 |
+
lemma [simp]: "fst \<circ> (\<lambda>(a, b, c, d). (f a b c d, g a b c d)) = (\<lambda>(a,b,c,d). f a b c d)"
|
18 |
+
by auto
|
19 |
+
|
20 |
+
lemma map_mp: "m\<subseteq>\<^sub>mm' \<Longrightarrow> m k = Some v \<Longrightarrow> m' k = Some v"
|
21 |
+
by (auto simp: map_le_def dom_def)
|
22 |
+
|
23 |
+
|
24 |
+
lemma map_add_map_of_fold:
|
25 |
+
fixes ps and m :: "'a \<rightharpoonup> 'b"
|
26 |
+
assumes "distinct (map fst ps)"
|
27 |
+
shows "m ++ map_of ps = fold (\<lambda>(k, v) m. m(k \<mapsto> v)) ps m"
|
28 |
+
proof -
|
29 |
+
have X1: "fold (\<lambda>(k, v) m. m(k \<mapsto> v)) ps m(a \<mapsto> b)
|
30 |
+
= fold (\<lambda>(k, v) m. m(k \<mapsto> v)) ps (m(a \<mapsto> b))"
|
31 |
+
if "a \<notin> fst ` set ps"
|
32 |
+
for a b ps and m :: "'a \<rightharpoonup> 'b"
|
33 |
+
using that
|
34 |
+
by (induction ps arbitrary: m) (auto simp: fun_upd_twist)
|
35 |
+
|
36 |
+
show ?thesis
|
37 |
+
using assms
|
38 |
+
by (induction ps arbitrary: m) (auto simp: X1)
|
39 |
+
qed
|
40 |
+
|
41 |
+
|
42 |
+
|
43 |
+
subsection \<open>Well-formedness Check\<close>
|
44 |
+
lemmas wf_code_thms =
|
45 |
+
ast_problem.astDom_def ast_problem.astI_def ast_problem.astG_def ast_problem.ast\<delta>_def
|
46 |
+
ast_problem.numVars_def ast_problem.numVals_def
|
47 |
+
ast_problem.wf_partial_state_def ast_problem.wf_operator_def ast_problem.well_formed_def
|
48 |
+
|
49 |
+
|
50 |
+
declare wf_code_thms[code]
|
51 |
+
|
52 |
+
export_code ast_problem.well_formed in SML
|
53 |
+
|
54 |
+
|
55 |
+
subsection \<open>Execution\<close>
|
56 |
+
|
57 |
+
definition match_pre :: "ast_precond \<Rightarrow> state \<Rightarrow> bool" where
|
58 |
+
"match_pre \<equiv> \<lambda>(x,v) s. s x = Some v"
|
59 |
+
|
60 |
+
definition match_pres :: "ast_precond list \<Rightarrow> state \<Rightarrow> bool" where
|
61 |
+
"match_pres pres s \<equiv> \<forall>pre\<in>set pres. match_pre pre s"
|
62 |
+
|
63 |
+
definition match_implicit_pres :: "ast_effect list \<Rightarrow> state \<Rightarrow> bool" where
|
64 |
+
"match_implicit_pres effs s \<equiv> \<forall>(_,x,vp,_)\<in>set effs.
|
65 |
+
(case vp of None \<Rightarrow> True | Some v \<Rightarrow> s x = Some v)"
|
66 |
+
|
67 |
+
definition enabled_opr' :: "ast_operator \<Rightarrow> state \<Rightarrow> bool" where
|
68 |
+
"enabled_opr' \<equiv> \<lambda>(name,pres,effs,cost) s. match_pres pres s \<and> match_implicit_pres effs s"
|
69 |
+
|
70 |
+
definition eff_enabled' :: "state \<Rightarrow> ast_effect \<Rightarrow> bool" where
|
71 |
+
"eff_enabled' s \<equiv> \<lambda>(pres,_,_,_). match_pres pres s"
|
72 |
+
|
73 |
+
definition "execute_opr' \<equiv> \<lambda>(name,_,effs,_) s.
|
74 |
+
let effs = filter (eff_enabled' s) effs
|
75 |
+
in fold (\<lambda>(_,x,_,v) s. s(x\<mapsto>v)) effs s
|
76 |
+
"
|
77 |
+
|
78 |
+
definition lookup_operator' :: "ast_problem \<Rightarrow> name \<rightharpoonup> ast_operator"
|
79 |
+
where "lookup_operator' \<equiv> \<lambda>(D,I,G,\<delta>) name. find (\<lambda>(n,_,_,_). n=name) \<delta>"
|
80 |
+
|
81 |
+
definition enabled' :: "ast_problem \<Rightarrow> name \<Rightarrow> state \<Rightarrow> bool" where
|
82 |
+
"enabled' problem name s \<equiv>
|
83 |
+
case lookup_operator' problem name of
|
84 |
+
Some \<pi> \<Rightarrow> enabled_opr' \<pi> s
|
85 |
+
| None \<Rightarrow> False"
|
86 |
+
|
87 |
+
definition execute' :: "ast_problem \<Rightarrow> name \<Rightarrow> state \<Rightarrow> state" where
|
88 |
+
"execute' problem name s \<equiv>
|
89 |
+
case lookup_operator' problem name of
|
90 |
+
Some \<pi> \<Rightarrow> execute_opr' \<pi> s
|
91 |
+
| None \<Rightarrow> undefined"
|
92 |
+
|
93 |
+
|
94 |
+
context wf_ast_problem begin
|
95 |
+
|
96 |
+
lemma match_pres_correct:
|
97 |
+
assumes D: "distinct (map fst pres)"
|
98 |
+
assumes "s\<in>valid_states"
|
99 |
+
shows "match_pres pres s \<longleftrightarrow> s\<in>subsuming_states (map_of pres)"
|
100 |
+
proof -
|
101 |
+
have "match_pres pres s \<longleftrightarrow> map_of pres \<subseteq>\<^sub>m s"
|
102 |
+
unfolding match_pres_def match_pre_def
|
103 |
+
apply (auto split: prod.splits)
|
104 |
+
using map_le_def map_of_SomeD apply fastforce
|
105 |
+
by (metis (full_types) D domIff map_le_def map_of_eq_Some_iff option.simps(3))
|
106 |
+
|
107 |
+
with assms show ?thesis
|
108 |
+
unfolding subsuming_states_def
|
109 |
+
by auto
|
110 |
+
qed
|
111 |
+
|
112 |
+
lemma match_implicit_pres_correct:
|
113 |
+
assumes D: "distinct (map (\<lambda>(_, v, _, _). v) effs)"
|
114 |
+
assumes "s\<in>valid_states"
|
115 |
+
shows "match_implicit_pres effs s \<longleftrightarrow> s\<in>subsuming_states (map_of (implicit_pres effs))"
|
116 |
+
proof -
|
117 |
+
from assms show ?thesis
|
118 |
+
unfolding subsuming_states_def
|
119 |
+
unfolding match_implicit_pres_def implicit_pres_def
|
120 |
+
apply (auto
|
121 |
+
split: prod.splits option.splits
|
122 |
+
simp: distinct_map_filter
|
123 |
+
intro!: map_of_leI)
|
124 |
+
apply (force simp: distinct_map_filter split: prod.split elim: map_mp)
|
125 |
+
done
|
126 |
+
qed
|
127 |
+
|
128 |
+
lemma enabled_opr'_correct:
|
129 |
+
assumes V: "s\<in>valid_states"
|
130 |
+
assumes "lookup_operator name = Some \<pi>"
|
131 |
+
shows "enabled_opr' \<pi> s \<longleftrightarrow> enabled name s"
|
132 |
+
using lookup_operator_wf[OF assms(2)] assms
|
133 |
+
unfolding enabled_opr'_def enabled_def wf_operator_def
|
134 |
+
by (auto
|
135 |
+
simp: match_pres_correct[OF _ V] match_implicit_pres_correct[OF _ V]
|
136 |
+
simp: wf_partial_state_def
|
137 |
+
split: option.split
|
138 |
+
)
|
139 |
+
|
140 |
+
lemma eff_enabled'_correct:
|
141 |
+
assumes V: "s\<in>valid_states"
|
142 |
+
assumes "case eff of (pres,_,_,_) \<Rightarrow> wf_partial_state pres"
|
143 |
+
shows "eff_enabled' s eff \<longleftrightarrow> eff_enabled s eff"
|
144 |
+
using assms
|
145 |
+
unfolding eff_enabled'_def eff_enabled_def wf_partial_state_def
|
146 |
+
by (auto simp: match_pres_correct)
|
147 |
+
|
148 |
+
|
149 |
+
lemma execute_opr'_correct:
|
150 |
+
assumes V: "s\<in>valid_states"
|
151 |
+
assumes LO: "lookup_operator name = Some \<pi>"
|
152 |
+
shows "execute_opr' \<pi> s = execute name s"
|
153 |
+
proof (cases \<pi>)
|
154 |
+
case [simp]: (fields name pres effs)
|
155 |
+
|
156 |
+
have [simp]: "filter (eff_enabled' s) effs = filter (eff_enabled s) effs"
|
157 |
+
apply (rule filter_cong[OF refl])
|
158 |
+
apply (rule eff_enabled'_correct[OF V])
|
159 |
+
using lookup_operator_wf[OF LO]
|
160 |
+
unfolding wf_operator_def by auto
|
161 |
+
|
162 |
+
have X1: "distinct (map fst (map (\<lambda>(_, x, _, y). (x, y)) (filter (eff_enabled s) effs)))"
|
163 |
+
using lookup_operator_wf[OF LO]
|
164 |
+
unfolding wf_operator_def
|
165 |
+
by (auto simp: distinct_map_filter)
|
166 |
+
|
167 |
+
term "filter (eff_enabled s) effs"
|
168 |
+
|
169 |
+
have [simp]:
|
170 |
+
"fold (\<lambda>(_, x, _, v) s. s(x \<mapsto> v)) l s =
|
171 |
+
fold (\<lambda>(k, v) m. m(k \<mapsto> v)) (map (\<lambda>(_, x, _, y). (x, y)) l) s"
|
172 |
+
for l :: "ast_effect list"
|
173 |
+
by (induction l arbitrary: s) auto
|
174 |
+
|
175 |
+
show ?thesis
|
176 |
+
unfolding execute_opr'_def execute_def using LO
|
177 |
+
by (auto simp: map_add_map_of_fold[OF X1])
|
178 |
+
qed
|
179 |
+
|
180 |
+
|
181 |
+
lemma lookup_operator'_correct:
|
182 |
+
"lookup_operator' problem name = lookup_operator name"
|
183 |
+
unfolding lookup_operator'_def lookup_operator_def
|
184 |
+
unfolding ast\<delta>_def
|
185 |
+
by (auto split: prod.split)
|
186 |
+
|
187 |
+
lemma enabled'_correct:
|
188 |
+
assumes V: "s\<in>valid_states"
|
189 |
+
shows "enabled' problem name s = enabled name s"
|
190 |
+
unfolding enabled'_def
|
191 |
+
using enabled_opr'_correct[OF V]
|
192 |
+
by (auto split: option.splits simp: enabled_def lookup_operator'_correct)
|
193 |
+
|
194 |
+
lemma execute'_correct:
|
195 |
+
assumes V: "s\<in>valid_states"
|
196 |
+
assumes "enabled name s" (* Intentionally put this here, also we could resolve non-enabled case by reflexivity (undefined=undefined) *)
|
197 |
+
shows "execute' problem name s = execute name s"
|
198 |
+
unfolding execute'_def
|
199 |
+
using execute_opr'_correct[OF V] \<open>enabled name s\<close>
|
200 |
+
by (auto split: option.splits simp: enabled_def lookup_operator'_correct)
|
201 |
+
|
202 |
+
|
203 |
+
|
204 |
+
end
|
205 |
+
|
206 |
+
context ast_problem
|
207 |
+
begin
|
208 |
+
|
209 |
+
fun simulate_plan :: "plan \<Rightarrow> state \<rightharpoonup> state" where
|
210 |
+
"simulate_plan [] s = Some s"
|
211 |
+
| "simulate_plan (\<pi>#\<pi>s) s = (
|
212 |
+
if enabled \<pi> s then
|
213 |
+
let s' = execute \<pi> s in
|
214 |
+
simulate_plan \<pi>s s'
|
215 |
+
else
|
216 |
+
None
|
217 |
+
)"
|
218 |
+
|
219 |
+
lemma simulate_plan_correct: "simulate_plan \<pi>s s = Some s' \<longleftrightarrow> path_to s \<pi>s s'"
|
220 |
+
by (induction s \<pi>s s' rule: path_to.induct) auto
|
221 |
+
|
222 |
+
definition check_plan :: "plan \<Rightarrow> bool" where
|
223 |
+
"check_plan \<pi>s = (
|
224 |
+
case simulate_plan \<pi>s I of
|
225 |
+
None \<Rightarrow> False
|
226 |
+
| Some s' \<Rightarrow> s' \<in> G)"
|
227 |
+
|
228 |
+
lemma check_plan_correct: "check_plan \<pi>s \<longleftrightarrow> valid_plan \<pi>s"
|
229 |
+
unfolding check_plan_def valid_plan_def
|
230 |
+
by (auto split: option.split simp: simulate_plan_correct[symmetric])
|
231 |
+
|
232 |
+
end
|
233 |
+
|
234 |
+
fun simulate_plan' :: "ast_problem \<Rightarrow> plan \<Rightarrow> state \<rightharpoonup> state" where
|
235 |
+
"simulate_plan' problem [] s = Some s"
|
236 |
+
| "simulate_plan' problem (\<pi>#\<pi>s) s = (
|
237 |
+
if enabled' problem \<pi> s then
|
238 |
+
let s = execute' problem \<pi> s in
|
239 |
+
simulate_plan' problem \<pi>s s
|
240 |
+
else
|
241 |
+
None
|
242 |
+
)"
|
243 |
+
|
244 |
+
text \<open>Avoiding duplicate lookup.\<close>
|
245 |
+
(*[code] *)
|
246 |
+
lemma simulate_plan'_code[code]:
|
247 |
+
"simulate_plan' problem [] s = Some s"
|
248 |
+
"simulate_plan' problem (\<pi>#\<pi>s) s = (
|
249 |
+
case lookup_operator' problem \<pi> of
|
250 |
+
None \<Rightarrow> None
|
251 |
+
| Some \<pi> \<Rightarrow>
|
252 |
+
if enabled_opr' \<pi> s then
|
253 |
+
simulate_plan' problem \<pi>s (execute_opr' \<pi> s)
|
254 |
+
else None
|
255 |
+
)"
|
256 |
+
by (auto simp: enabled'_def execute'_def split: option.split)
|
257 |
+
|
258 |
+
|
259 |
+
definition initial_state' :: "ast_problem \<Rightarrow> state" where
|
260 |
+
"initial_state' problem \<equiv> let astI = ast_problem.astI problem in (
|
261 |
+
\<lambda>v. if v<length astI then Some (astI!v) else None
|
262 |
+
)"
|
263 |
+
|
264 |
+
definition check_plan' :: "ast_problem \<Rightarrow> plan \<Rightarrow> bool" where
|
265 |
+
"check_plan' problem \<pi>s = (
|
266 |
+
case simulate_plan' problem \<pi>s (initial_state' problem) of
|
267 |
+
None \<Rightarrow> False
|
268 |
+
| Some s' \<Rightarrow> match_pres (ast_problem.astG problem) s')"
|
269 |
+
|
270 |
+
|
271 |
+
context wf_ast_problem
|
272 |
+
begin
|
273 |
+
|
274 |
+
lemma simulate_plan'_correct:
|
275 |
+
assumes "s\<in>valid_states"
|
276 |
+
shows "simulate_plan' problem \<pi>s s = simulate_plan \<pi>s s"
|
277 |
+
using assms
|
278 |
+
apply (induction \<pi>s s rule: simulate_plan.induct)
|
279 |
+
apply (auto simp: enabled'_correct execute'_correct execute_preserves_valid)
|
280 |
+
done
|
281 |
+
|
282 |
+
lemma simulate_plan'_correct_paper: (* For presentation in paper.
|
283 |
+
Summarizing intermediate refinement step. *)
|
284 |
+
assumes "s\<in>valid_states"
|
285 |
+
shows "simulate_plan' problem \<pi>s s = Some s'
|
286 |
+
\<longleftrightarrow> path_to s \<pi>s s'"
|
287 |
+
using simulate_plan'_correct[OF assms] simulate_plan_correct by simp
|
288 |
+
|
289 |
+
|
290 |
+
lemma initial_state'_correct:
|
291 |
+
"initial_state' problem = I"
|
292 |
+
unfolding initial_state'_def I_def by (auto simp: Let_def)
|
293 |
+
|
294 |
+
lemma check_plan'_correct:
|
295 |
+
"check_plan' problem \<pi>s = check_plan \<pi>s"
|
296 |
+
proof -
|
297 |
+
have D: "distinct (map fst astG)" using wf_goal unfolding wf_partial_state_def by auto
|
298 |
+
|
299 |
+
have S'V: "s'\<in>valid_states" if "simulate_plan \<pi>s I = Some s'" for s'
|
300 |
+
using that by (auto simp: simulate_plan_correct path_to_pres_valid[OF I_valid])
|
301 |
+
|
302 |
+
show ?thesis
|
303 |
+
unfolding check_plan'_def check_plan_def
|
304 |
+
by (auto
|
305 |
+
split: option.splits
|
306 |
+
simp: initial_state'_correct simulate_plan'_correct[OF I_valid]
|
307 |
+
simp: match_pres_correct[OF D S'V] G_def
|
308 |
+
)
|
309 |
+
qed
|
310 |
+
|
311 |
+
end
|
312 |
+
|
313 |
+
|
314 |
+
(* Overall checker *)
|
315 |
+
|
316 |
+
definition verify_plan :: "ast_problem \<Rightarrow> plan \<Rightarrow> String.literal + unit" where
|
317 |
+
"verify_plan problem \<pi>s = (
|
318 |
+
if ast_problem.well_formed problem then
|
319 |
+
if check_plan' problem \<pi>s then Inr () else Inl (STR ''Invalid plan'')
|
320 |
+
else Inl (STR ''Problem not well formed'')
|
321 |
+
)"
|
322 |
+
|
323 |
+
lemma verify_plan_correct:
|
324 |
+
"verify_plan problem \<pi>s = Inr ()
|
325 |
+
\<longleftrightarrow> ast_problem.well_formed problem \<and> ast_problem.valid_plan problem \<pi>s"
|
326 |
+
proof -
|
327 |
+
{
|
328 |
+
assume "ast_problem.well_formed problem"
|
329 |
+
then interpret wf_ast_problem by unfold_locales
|
330 |
+
|
331 |
+
from check_plan'_correct check_plan_correct
|
332 |
+
have "check_plan' problem \<pi>s = valid_plan \<pi>s" by simp
|
333 |
+
}
|
334 |
+
then show ?thesis
|
335 |
+
unfolding verify_plan_def
|
336 |
+
by auto
|
337 |
+
qed
|
338 |
+
|
339 |
+
definition nat_opt_of_integer :: "integer \<Rightarrow> nat option" where
|
340 |
+
"nat_opt_of_integer i = (if (i \<ge> 0) then Some (nat_of_integer i) else None)"
|
341 |
+
|
342 |
+
(*Export functions, which includes constructors*)
|
343 |
+
export_code verify_plan nat_of_integer integer_of_nat nat_opt_of_integer Inl Inr String.explode String.implode
|
344 |
+
in SML
|
345 |
+
module_name SASP_Checker_Exported
|
346 |
+
file "code/SASP_Checker_Exported.sml"
|
347 |
+
|
348 |
+
end
|
formal/afp/AI_Planning_Languages_Semantics/SASP_Semantics.thy
ADDED
@@ -0,0 +1,228 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
theory SASP_Semantics
|
2 |
+
imports Main
|
3 |
+
begin
|
4 |
+
|
5 |
+
section \<open>Semantics of Fast-Downward's Multi-Valued Planning Tasks Language\<close>
|
6 |
+
|
7 |
+
subsection \<open>Syntax\<close>
|
8 |
+
type_synonym name = string
|
9 |
+
type_synonym ast_variable = "name \<times> nat option \<times> name list" (* var name, axiom layer, atom names *)
|
10 |
+
type_synonym ast_variable_section = "ast_variable list"
|
11 |
+
type_synonym ast_initial_state = "nat list"
|
12 |
+
type_synonym ast_goal = "(nat \<times> nat) list"
|
13 |
+
type_synonym ast_precond = "(nat \<times> nat)"
|
14 |
+
type_synonym ast_effect = "ast_precond list \<times> nat \<times> nat option \<times> nat"
|
15 |
+
type_synonym ast_operator = "name \<times> ast_precond list \<times> ast_effect list \<times> nat"
|
16 |
+
type_synonym ast_operator_section = "ast_operator list"
|
17 |
+
|
18 |
+
type_synonym ast_problem =
|
19 |
+
"ast_variable_section \<times> ast_initial_state \<times> ast_goal \<times> ast_operator_section"
|
20 |
+
|
21 |
+
type_synonym plan = "name list"
|
22 |
+
|
23 |
+
subsubsection \<open>Well-Formedness\<close>
|
24 |
+
|
25 |
+
locale ast_problem =
|
26 |
+
fixes problem :: ast_problem
|
27 |
+
begin
|
28 |
+
definition astDom :: ast_variable_section (* TODO: Dom \<rightarrow> Vars, D \<rightarrow> X*)
|
29 |
+
where "astDom \<equiv> case problem of (D,I,G,\<delta>) \<Rightarrow> D"
|
30 |
+
definition astI :: ast_initial_state
|
31 |
+
where "astI \<equiv> case problem of (D,I,G,\<delta>) \<Rightarrow> I"
|
32 |
+
definition astG :: ast_goal
|
33 |
+
where "astG \<equiv> case problem of (D,I,G,\<delta>) \<Rightarrow> G"
|
34 |
+
definition ast\<delta> :: ast_operator_section
|
35 |
+
where "ast\<delta> \<equiv> case problem of (D,I,G,\<delta>) \<Rightarrow> \<delta>"
|
36 |
+
|
37 |
+
definition "numVars \<equiv> length astDom"
|
38 |
+
definition "numVals x \<equiv> length (snd (snd (astDom!x)))"
|
39 |
+
|
40 |
+
definition "wf_partial_state ps \<equiv>
|
41 |
+
distinct (map fst ps)
|
42 |
+
\<and> (\<forall>(x,v) \<in> set ps. x < numVars \<and> v < numVals x)"
|
43 |
+
|
44 |
+
definition wf_operator :: "ast_operator \<Rightarrow> bool"
|
45 |
+
where "wf_operator \<equiv> \<lambda>(name, pres, effs, cost).
|
46 |
+
wf_partial_state pres
|
47 |
+
\<and> distinct (map (\<lambda>(_, v, _, _). v) effs) \<comment> \<open>This may be too restrictive\<close>
|
48 |
+
\<and> (\<forall>(epres,x,vp,v)\<in>set effs.
|
49 |
+
wf_partial_state epres
|
50 |
+
\<and> x < numVars \<and> v < numVals x
|
51 |
+
\<and> (case vp of None \<Rightarrow> True | Some v \<Rightarrow> v<numVals x)
|
52 |
+
)
|
53 |
+
"
|
54 |
+
|
55 |
+
definition "well_formed \<equiv>
|
56 |
+
\<comment> \<open>Initial state\<close>
|
57 |
+
length astI = numVars
|
58 |
+
\<and> (\<forall>x<numVars. astI!x < numVals x)
|
59 |
+
|
60 |
+
\<comment> \<open>Goal\<close>
|
61 |
+
\<and> wf_partial_state astG
|
62 |
+
|
63 |
+
\<comment> \<open>Operators\<close>
|
64 |
+
\<and> (distinct (map fst ast\<delta>))
|
65 |
+
\<and> (\<forall>\<pi>\<in>set ast\<delta>. wf_operator \<pi>)
|
66 |
+
"
|
67 |
+
|
68 |
+
end
|
69 |
+
|
70 |
+
locale wf_ast_problem = ast_problem +
|
71 |
+
assumes wf: well_formed
|
72 |
+
begin
|
73 |
+
lemma wf_initial:
|
74 |
+
"length astI = numVars"
|
75 |
+
"\<forall>x<numVars. astI!x < numVals x"
|
76 |
+
using wf unfolding well_formed_def by auto
|
77 |
+
|
78 |
+
lemma wf_goal: "wf_partial_state astG"
|
79 |
+
using wf unfolding well_formed_def by auto
|
80 |
+
|
81 |
+
lemma wf_operators:
|
82 |
+
"distinct (map fst ast\<delta>)"
|
83 |
+
"\<forall>\<pi>\<in>set ast\<delta>. wf_operator \<pi>"
|
84 |
+
using wf unfolding well_formed_def by auto
|
85 |
+
end
|
86 |
+
|
87 |
+
|
88 |
+
subsection \<open>Semantics as Transition System\<close>
|
89 |
+
|
90 |
+
type_synonym state = "nat \<rightharpoonup> nat"
|
91 |
+
type_synonym pstate = "nat \<rightharpoonup> nat"
|
92 |
+
|
93 |
+
|
94 |
+
context ast_problem
|
95 |
+
begin
|
96 |
+
|
97 |
+
definition Dom :: "nat set" where "Dom = {0..<numVars}"
|
98 |
+
|
99 |
+
definition range_of_var where "range_of_var x \<equiv> {0..<numVals x}"
|
100 |
+
|
101 |
+
definition valid_states :: "state set" where "valid_states \<equiv> {
|
102 |
+
s. dom s = Dom \<and> (\<forall>x\<in>Dom. the (s x) \<in> range_of_var x)
|
103 |
+
}"
|
104 |
+
|
105 |
+
definition I :: state
|
106 |
+
where "I v \<equiv> if v<length astI then Some (astI!v) else None"
|
107 |
+
|
108 |
+
definition subsuming_states :: "pstate \<Rightarrow> state set"
|
109 |
+
where "subsuming_states partial \<equiv> { s\<in>valid_states. partial \<subseteq>\<^sub>m s }"
|
110 |
+
|
111 |
+
definition G :: "state set"
|
112 |
+
where "G \<equiv> subsuming_states (map_of astG)"
|
113 |
+
end
|
114 |
+
|
115 |
+
definition implicit_pres :: "ast_effect list \<Rightarrow> ast_precond list" where
|
116 |
+
"implicit_pres effs \<equiv>
|
117 |
+
map (\<lambda>(_,v,vpre,_). (v,the vpre))
|
118 |
+
(filter (\<lambda>(_,_,vpre,_). vpre\<noteq>None) effs)"
|
119 |
+
|
120 |
+
context ast_problem
|
121 |
+
begin
|
122 |
+
|
123 |
+
definition lookup_operator :: "name \<Rightarrow> ast_operator option" where
|
124 |
+
"lookup_operator name \<equiv> find (\<lambda>(n,_,_,_). n=name) ast\<delta>"
|
125 |
+
|
126 |
+
definition enabled :: "name \<Rightarrow> state \<Rightarrow> bool"
|
127 |
+
where "enabled name s \<equiv>
|
128 |
+
case lookup_operator name of
|
129 |
+
Some (_,pres,effs,_) \<Rightarrow>
|
130 |
+
s\<in>subsuming_states (map_of pres)
|
131 |
+
\<and> s\<in>subsuming_states (map_of (implicit_pres effs))
|
132 |
+
| None \<Rightarrow> False"
|
133 |
+
|
134 |
+
definition eff_enabled :: "state \<Rightarrow> ast_effect \<Rightarrow> bool" where
|
135 |
+
"eff_enabled s \<equiv> \<lambda>(pres,_,_,_). s\<in>subsuming_states (map_of pres)"
|
136 |
+
|
137 |
+
definition execute :: "name \<Rightarrow> state \<Rightarrow> state" where
|
138 |
+
"execute name s \<equiv>
|
139 |
+
case lookup_operator name of
|
140 |
+
Some (_,_,effs,_) \<Rightarrow>
|
141 |
+
s ++ map_of (map (\<lambda>(_,x,_,v). (x,v)) (filter (eff_enabled s) effs))
|
142 |
+
| None \<Rightarrow> undefined
|
143 |
+
"
|
144 |
+
|
145 |
+
fun path_to where
|
146 |
+
"path_to s [] s' \<longleftrightarrow> s'=s"
|
147 |
+
| "path_to s (\<pi>#\<pi>s) s' \<longleftrightarrow> enabled \<pi> s \<and> path_to (execute \<pi> s) \<pi>s s'"
|
148 |
+
|
149 |
+
definition valid_plan :: "plan \<Rightarrow> bool"
|
150 |
+
where "valid_plan \<pi>s \<equiv> \<exists>s'\<in>G. path_to I \<pi>s s'"
|
151 |
+
|
152 |
+
|
153 |
+
end
|
154 |
+
|
155 |
+
(*
|
156 |
+
Next steps:
|
157 |
+
* well-formed stuff
|
158 |
+
* Executable SAS+ validator (well_formed and execute function)
|
159 |
+
|
160 |
+
*)
|
161 |
+
|
162 |
+
subsubsection \<open>Preservation of well-formedness\<close>
|
163 |
+
context wf_ast_problem
|
164 |
+
begin
|
165 |
+
lemma I_valid: "I \<in> valid_states"
|
166 |
+
using wf_initial
|
167 |
+
unfolding valid_states_def Dom_def I_def range_of_var_def
|
168 |
+
by (auto split:if_splits)
|
169 |
+
|
170 |
+
lemma lookup_operator_wf:
|
171 |
+
assumes "lookup_operator name = Some \<pi>"
|
172 |
+
shows "wf_operator \<pi>" "fst \<pi> = name"
|
173 |
+
proof -
|
174 |
+
obtain name' pres effs cost where [simp]: "\<pi>=(name',pres,effs,cost)" by (cases \<pi>)
|
175 |
+
hence [simp]: "name'=name" and IN_AST: "(name,pres,effs,cost) \<in> set ast\<delta>"
|
176 |
+
using assms
|
177 |
+
unfolding lookup_operator_def
|
178 |
+
apply -
|
179 |
+
apply (metis (mono_tags, lifting) case_prodD find_Some_iff)
|
180 |
+
by (metis (mono_tags, lifting) case_prodD find_Some_iff nth_mem)
|
181 |
+
|
182 |
+
from IN_AST show WF: "wf_operator \<pi>" "fst \<pi> = name"
|
183 |
+
unfolding enabled_def using wf_operators by auto
|
184 |
+
qed
|
185 |
+
|
186 |
+
|
187 |
+
lemma execute_preserves_valid:
|
188 |
+
assumes "s\<in>valid_states"
|
189 |
+
assumes "enabled name s"
|
190 |
+
shows "execute name s \<in> valid_states"
|
191 |
+
proof -
|
192 |
+
from \<open>enabled name s\<close> obtain name' pres effs cost where
|
193 |
+
[simp]: "lookup_operator name = Some (name',pres,effs,cost)"
|
194 |
+
unfolding enabled_def by (auto split: option.splits)
|
195 |
+
from lookup_operator_wf[OF this] have WF: "wf_operator (name,pres,effs,cost)" by simp
|
196 |
+
|
197 |
+
have X1: "s ++ m \<in> valid_states" if "\<forall>x v. m x = Some v \<longrightarrow> x<numVars \<and> v<numVals x" for m
|
198 |
+
using that \<open>s\<in>valid_states\<close>
|
199 |
+
by (auto
|
200 |
+
simp: valid_states_def Dom_def range_of_var_def map_add_def dom_def
|
201 |
+
split: option.splits)
|
202 |
+
|
203 |
+
have X2: "x<numVars" "v<numVals x"
|
204 |
+
if "map_of (map (\<lambda>(_, x, _, y). (x, y)) (filter (eff_enabled s) effs)) x = Some v"
|
205 |
+
for x v
|
206 |
+
proof -
|
207 |
+
from that obtain epres vp where "(epres,x,vp,v) \<in> set effs"
|
208 |
+
by (auto dest!: map_of_SomeD)
|
209 |
+
with WF show "x<numVars" "v<numVals x"
|
210 |
+
unfolding wf_operator_def by auto
|
211 |
+
qed
|
212 |
+
|
213 |
+
show ?thesis
|
214 |
+
using assms
|
215 |
+
unfolding enabled_def execute_def
|
216 |
+
by (auto intro!: X1 X2)
|
217 |
+
qed
|
218 |
+
|
219 |
+
lemma path_to_pres_valid:
|
220 |
+
assumes "s\<in>valid_states"
|
221 |
+
assumes "path_to s \<pi>s s'"
|
222 |
+
shows "s'\<in>valid_states"
|
223 |
+
using assms
|
224 |
+
by (induction s \<pi>s s' rule: path_to.induct) (auto simp: execute_preserves_valid)
|
225 |
+
|
226 |
+
end
|
227 |
+
|
228 |
+
end
|
formal/afp/AI_Planning_Languages_Semantics/document/root.tex
ADDED
@@ -0,0 +1,72 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
\documentclass[11pt,a4paper]{article}
|
2 |
+
\usepackage[T1]{fontenc}
|
3 |
+
\usepackage{isabelle,isabellesym}
|
4 |
+
|
5 |
+
% further packages required for unusual symbols (see also
|
6 |
+
% isabellesym.sty), use only when needed
|
7 |
+
|
8 |
+
%\usepackage{amssymb}
|
9 |
+
%for \<leadsto>, \<box>, \<diamond>, \<sqsupset>, \<mho>, \<Join>,
|
10 |
+
%\<lhd>, \<lesssim>, \<greatersim>, \<lessapprox>, \<greaterapprox>,
|
11 |
+
%\<triangleq>, \<yen>, \<lozenge>
|
12 |
+
|
13 |
+
%\usepackage{eurosym}
|
14 |
+
%for \<euro>
|
15 |
+
|
16 |
+
%\usepackage[only,bigsqcap]{stmaryrd}
|
17 |
+
%for \<Sqinter>
|
18 |
+
|
19 |
+
%\usepackage{eufrak}
|
20 |
+
%for \<AA> ... \<ZZ>, \<aa> ... \<zz> (also included in amssymb)
|
21 |
+
|
22 |
+
%\usepackage{textcomp}
|
23 |
+
%for \<onequarter>, \<onehalf>, \<threequarters>, \<degree>, \<cent>,
|
24 |
+
%\<currency>
|
25 |
+
|
26 |
+
\usepackage{wasysym}
|
27 |
+
|
28 |
+
% this should be the last package used
|
29 |
+
\usepackage{pdfsetup}
|
30 |
+
|
31 |
+
% urls in roman style, theory text in math-similar italics
|
32 |
+
\urlstyle{rm}
|
33 |
+
\isabellestyle{it}
|
34 |
+
|
35 |
+
% for uniform font size
|
36 |
+
%\renewcommand{\isastyle}{\isastyleminor}
|
37 |
+
|
38 |
+
|
39 |
+
\begin{document}
|
40 |
+
|
41 |
+
\title{Semantics of AI Planning Languages}
|
42 |
+
\author{Mohammad Abdulaziz and Peter Lammich\footnote{Author names are alphabetically ordered.}}
|
43 |
+
|
44 |
+
% \subtitle{Proof Document}
|
45 |
+
% \author{M. Abdulaziz \and P. Lammich}
|
46 |
+
\date{}
|
47 |
+
|
48 |
+
\maketitle
|
49 |
+
|
50 |
+
This is an Isabelle/HOL formalisation of the semantics of the multi-valued planning tasks language that is used by the planning system Fast-Downward~\cite{helmert2006fast}, the STRIPS~\cite{fikes1971strips} fragment of the Planning Domain Definition Language~\cite{PDDLref} (PDDL), and the STRIPS soundness meta-theory developed by Lifschitz~\cite{lifschitz1987semantics}.
|
51 |
+
It also contains formally verified checkers for checking the well-formedness of problems specified in either language as well the correctness of potential solutions.
|
52 |
+
The formalisation in this entry was described in an earlier publication~\cite{ictai2018}.
|
53 |
+
|
54 |
+
\tableofcontents
|
55 |
+
|
56 |
+
\clearpage
|
57 |
+
|
58 |
+
% sane default for proof documents
|
59 |
+
\parindent 0pt\parskip 0.5ex
|
60 |
+
|
61 |
+
% generated text of all theories
|
62 |
+
\input{session}
|
63 |
+
|
64 |
+
\bibliographystyle{abbrv}
|
65 |
+
\bibliography{root}
|
66 |
+
|
67 |
+
\end{document}
|
68 |
+
|
69 |
+
%%% Local Variables:
|
70 |
+
%%% mode: latex
|
71 |
+
%%% TeX-master: t
|
72 |
+
%%% End:
|
formal/afp/AODV/All.thy
ADDED
@@ -0,0 +1,16 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
(* Title: All.thy
|
2 |
+
License: BSD 2-Clause. See LICENSE.
|
3 |
+
Author: Timothy Bourke, Inria
|
4 |
+
Author: Peter Höfner, NICTA
|
5 |
+
*)
|
6 |
+
|
7 |
+
theory %invisible All
|
8 |
+
imports Aodv_Loop_Freedom
|
9 |
+
"variants/a_norreqid/A_Aodv_Loop_Freedom"
|
10 |
+
"variants/b_fwdrreps/B_Aodv_Loop_Freedom"
|
11 |
+
"variants/c_gtobcast/C_Aodv_Loop_Freedom"
|
12 |
+
"variants/d_fwdrreqs/D_Aodv_Loop_Freedom"
|
13 |
+
"variants/e_all_abcd/E_Aodv_Loop_Freedom"
|
14 |
+
begin
|
15 |
+
|
16 |
+
end %invisible
|
formal/afp/AODV/Aodv.thy
ADDED
@@ -0,0 +1,535 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
(* Title: Aodv.thy
|
2 |
+
License: BSD 2-Clause. See LICENSE.
|
3 |
+
Author: Timothy Bourke, Inria
|
4 |
+
*)
|
5 |
+
|
6 |
+
section "The AODV protocol"
|
7 |
+
|
8 |
+
theory Aodv
|
9 |
+
imports Aodv_Data Aodv_Message
|
10 |
+
AWN.AWN_SOS_Labels AWN.AWN_Invariants
|
11 |
+
begin
|
12 |
+
|
13 |
+
subsection "Data state"
|
14 |
+
|
15 |
+
record state =
|
16 |
+
ip :: "ip"
|
17 |
+
sn :: "sqn"
|
18 |
+
rt :: "rt"
|
19 |
+
rreqs :: "(ip \<times> rreqid) set"
|
20 |
+
store :: "store"
|
21 |
+
(* all locals *)
|
22 |
+
msg :: "msg"
|
23 |
+
data :: "data"
|
24 |
+
dests :: "ip \<rightharpoonup> sqn"
|
25 |
+
pre :: "ip set"
|
26 |
+
rreqid :: "rreqid"
|
27 |
+
dip :: "ip"
|
28 |
+
oip :: "ip"
|
29 |
+
hops :: "nat"
|
30 |
+
dsn :: "sqn"
|
31 |
+
dsk :: "k"
|
32 |
+
osn :: "sqn"
|
33 |
+
sip :: "ip"
|
34 |
+
|
35 |
+
abbreviation aodv_init :: "ip \<Rightarrow> state"
|
36 |
+
where "aodv_init i \<equiv> \<lparr>
|
37 |
+
ip = i,
|
38 |
+
sn = 1,
|
39 |
+
rt = Map.empty,
|
40 |
+
rreqs = {},
|
41 |
+
store = Map.empty,
|
42 |
+
|
43 |
+
msg = (SOME x. True),
|
44 |
+
data = (SOME x. True),
|
45 |
+
dests = (SOME x. True),
|
46 |
+
pre = (SOME x. True),
|
47 |
+
rreqid = (SOME x. True),
|
48 |
+
dip = (SOME x. True),
|
49 |
+
oip = (SOME x. True),
|
50 |
+
hops = (SOME x. True),
|
51 |
+
dsn = (SOME x. True),
|
52 |
+
dsk = (SOME x. True),
|
53 |
+
osn = (SOME x. True),
|
54 |
+
sip = (SOME x. x \<noteq> i)
|
55 |
+
\<rparr>"
|
56 |
+
|
57 |
+
lemma some_neq_not_eq [simp]: "\<not>((SOME x :: nat. x \<noteq> i) = i)"
|
58 |
+
by (subst some_eq_ex) (metis zero_neq_numeral)
|
59 |
+
|
60 |
+
definition clear_locals :: "state \<Rightarrow> state"
|
61 |
+
where "clear_locals \<xi> = \<xi> \<lparr>
|
62 |
+
msg := (SOME x. True),
|
63 |
+
data := (SOME x. True),
|
64 |
+
dests := (SOME x. True),
|
65 |
+
pre := (SOME x. True),
|
66 |
+
rreqid := (SOME x. True),
|
67 |
+
dip := (SOME x. True),
|
68 |
+
oip := (SOME x. True),
|
69 |
+
hops := (SOME x. True),
|
70 |
+
dsn := (SOME x. True),
|
71 |
+
dsk := (SOME x. True),
|
72 |
+
osn := (SOME x. True),
|
73 |
+
sip := (SOME x. x \<noteq> ip \<xi>)
|
74 |
+
\<rparr>"
|
75 |
+
|
76 |
+
lemma clear_locals_sip_not_ip [simp]: "\<not>(sip (clear_locals \<xi>) = ip \<xi>)"
|
77 |
+
unfolding clear_locals_def by simp
|
78 |
+
|
79 |
+
lemma clear_locals_but_not_globals [simp]:
|
80 |
+
"ip (clear_locals \<xi>) = ip \<xi>"
|
81 |
+
"sn (clear_locals \<xi>) = sn \<xi>"
|
82 |
+
"rt (clear_locals \<xi>) = rt \<xi>"
|
83 |
+
"rreqs (clear_locals \<xi>) = rreqs \<xi>"
|
84 |
+
"store (clear_locals \<xi>) = store \<xi>"
|
85 |
+
unfolding clear_locals_def by auto
|
86 |
+
|
87 |
+
subsection "Auxilliary message handling definitions"
|
88 |
+
|
89 |
+
definition is_newpkt
|
90 |
+
where "is_newpkt \<xi> \<equiv> case msg \<xi> of
|
91 |
+
Newpkt data' dip' \<Rightarrow> { \<xi>\<lparr>data := data', dip := dip'\<rparr> }
|
92 |
+
| _ \<Rightarrow> {}"
|
93 |
+
|
94 |
+
definition is_pkt
|
95 |
+
where "is_pkt \<xi> \<equiv> case msg \<xi> of
|
96 |
+
Pkt data' dip' oip' \<Rightarrow> { \<xi>\<lparr> data := data', dip := dip', oip := oip' \<rparr> }
|
97 |
+
| _ \<Rightarrow> {}"
|
98 |
+
|
99 |
+
definition is_rreq
|
100 |
+
where "is_rreq \<xi> \<equiv> case msg \<xi> of
|
101 |
+
Rreq hops' rreqid' dip' dsn' dsk' oip' osn' sip' \<Rightarrow>
|
102 |
+
{ \<xi>\<lparr> hops := hops', rreqid := rreqid', dip := dip', dsn := dsn',
|
103 |
+
dsk := dsk', oip := oip', osn := osn', sip := sip' \<rparr> }
|
104 |
+
| _ \<Rightarrow> {}"
|
105 |
+
|
106 |
+
lemma is_rreq_asm [dest!]:
|
107 |
+
assumes "\<xi>' \<in> is_rreq \<xi>"
|
108 |
+
shows "(\<exists>hops' rreqid' dip' dsn' dsk' oip' osn' sip'.
|
109 |
+
msg \<xi> = Rreq hops' rreqid' dip' dsn' dsk' oip' osn' sip' \<and>
|
110 |
+
\<xi>' = \<xi>\<lparr> hops := hops', rreqid := rreqid', dip := dip', dsn := dsn',
|
111 |
+
dsk := dsk', oip := oip', osn := osn', sip := sip' \<rparr>)"
|
112 |
+
using assms unfolding is_rreq_def
|
113 |
+
by (cases "msg \<xi>") simp_all
|
114 |
+
|
115 |
+
definition is_rrep
|
116 |
+
where "is_rrep \<xi> \<equiv> case msg \<xi> of
|
117 |
+
Rrep hops' dip' dsn' oip' sip' \<Rightarrow>
|
118 |
+
{ \<xi>\<lparr> hops := hops', dip := dip', dsn := dsn', oip := oip', sip := sip' \<rparr> }
|
119 |
+
| _ \<Rightarrow> {}"
|
120 |
+
|
121 |
+
lemma is_rrep_asm [dest!]:
|
122 |
+
assumes "\<xi>' \<in> is_rrep \<xi>"
|
123 |
+
shows "(\<exists>hops' dip' dsn' oip' sip'.
|
124 |
+
msg \<xi> = Rrep hops' dip' dsn' oip' sip' \<and>
|
125 |
+
\<xi>' = \<xi>\<lparr> hops := hops', dip := dip', dsn := dsn', oip := oip', sip := sip' \<rparr>)"
|
126 |
+
using assms unfolding is_rrep_def
|
127 |
+
by (cases "msg \<xi>") simp_all
|
128 |
+
|
129 |
+
definition is_rerr
|
130 |
+
where "is_rerr \<xi> \<equiv> case msg \<xi> of
|
131 |
+
Rerr dests' sip' \<Rightarrow> { \<xi>\<lparr> dests := dests', sip := sip' \<rparr> }
|
132 |
+
| _ \<Rightarrow> {}"
|
133 |
+
|
134 |
+
lemma is_rerr_asm [dest!]:
|
135 |
+
assumes "\<xi>' \<in> is_rerr \<xi>"
|
136 |
+
shows "(\<exists>dests' sip'.
|
137 |
+
msg \<xi> = Rerr dests' sip' \<and>
|
138 |
+
\<xi>' = \<xi>\<lparr> dests := dests', sip := sip' \<rparr>)"
|
139 |
+
using assms unfolding is_rerr_def
|
140 |
+
by (cases "msg \<xi>") simp_all
|
141 |
+
|
142 |
+
lemmas is_msg_defs =
|
143 |
+
is_rerr_def is_rrep_def is_rreq_def is_pkt_def is_newpkt_def
|
144 |
+
|
145 |
+
lemma is_msg_inv_ip [simp]:
|
146 |
+
"\<xi>' \<in> is_rerr \<xi> \<Longrightarrow> ip \<xi>' = ip \<xi>"
|
147 |
+
"\<xi>' \<in> is_rrep \<xi> \<Longrightarrow> ip \<xi>' = ip \<xi>"
|
148 |
+
"\<xi>' \<in> is_rreq \<xi> \<Longrightarrow> ip \<xi>' = ip \<xi>"
|
149 |
+
"\<xi>' \<in> is_pkt \<xi> \<Longrightarrow> ip \<xi>' = ip \<xi>"
|
150 |
+
"\<xi>' \<in> is_newpkt \<xi> \<Longrightarrow> ip \<xi>' = ip \<xi>"
|
151 |
+
unfolding is_msg_defs
|
152 |
+
by (cases "msg \<xi>", clarsimp+)+
|
153 |
+
|
154 |
+
lemma is_msg_inv_sn [simp]:
|
155 |
+
"\<xi>' \<in> is_rerr \<xi> \<Longrightarrow> sn \<xi>' = sn \<xi>"
|
156 |
+
"\<xi>' \<in> is_rrep \<xi> \<Longrightarrow> sn \<xi>' = sn \<xi>"
|
157 |
+
"\<xi>' \<in> is_rreq \<xi> \<Longrightarrow> sn \<xi>' = sn \<xi>"
|
158 |
+
"\<xi>' \<in> is_pkt \<xi> \<Longrightarrow> sn \<xi>' = sn \<xi>"
|
159 |
+
"\<xi>' \<in> is_newpkt \<xi> \<Longrightarrow> sn \<xi>' = sn \<xi>"
|
160 |
+
unfolding is_msg_defs
|
161 |
+
by (cases "msg \<xi>", clarsimp+)+
|
162 |
+
|
163 |
+
lemma is_msg_inv_rt [simp]:
|
164 |
+
"\<xi>' \<in> is_rerr \<xi> \<Longrightarrow> rt \<xi>' = rt \<xi>"
|
165 |
+
"\<xi>' \<in> is_rrep \<xi> \<Longrightarrow> rt \<xi>' = rt \<xi>"
|
166 |
+
"\<xi>' \<in> is_rreq \<xi> \<Longrightarrow> rt \<xi>' = rt \<xi>"
|
167 |
+
"\<xi>' \<in> is_pkt \<xi> \<Longrightarrow> rt \<xi>' = rt \<xi>"
|
168 |
+
"\<xi>' \<in> is_newpkt \<xi> \<Longrightarrow> rt \<xi>' = rt \<xi>"
|
169 |
+
unfolding is_msg_defs
|
170 |
+
by (cases "msg \<xi>", clarsimp+)+
|
171 |
+
|
172 |
+
lemma is_msg_inv_rreqs [simp]:
|
173 |
+
"\<xi>' \<in> is_rerr \<xi> \<Longrightarrow> rreqs \<xi>' = rreqs \<xi>"
|
174 |
+
"\<xi>' \<in> is_rrep \<xi> \<Longrightarrow> rreqs \<xi>' = rreqs \<xi>"
|
175 |
+
"\<xi>' \<in> is_rreq \<xi> \<Longrightarrow> rreqs \<xi>' = rreqs \<xi>"
|
176 |
+
"\<xi>' \<in> is_pkt \<xi> \<Longrightarrow> rreqs \<xi>' = rreqs \<xi>"
|
177 |
+
"\<xi>' \<in> is_newpkt \<xi> \<Longrightarrow> rreqs \<xi>' = rreqs \<xi>"
|
178 |
+
unfolding is_msg_defs
|
179 |
+
by (cases "msg \<xi>", clarsimp+)+
|
180 |
+
|
181 |
+
lemma is_msg_inv_store [simp]:
|
182 |
+
"\<xi>' \<in> is_rerr \<xi> \<Longrightarrow> store \<xi>' = store \<xi>"
|
183 |
+
"\<xi>' \<in> is_rrep \<xi> \<Longrightarrow> store \<xi>' = store \<xi>"
|
184 |
+
"\<xi>' \<in> is_rreq \<xi> \<Longrightarrow> store \<xi>' = store \<xi>"
|
185 |
+
"\<xi>' \<in> is_pkt \<xi> \<Longrightarrow> store \<xi>' = store \<xi>"
|
186 |
+
"\<xi>' \<in> is_newpkt \<xi> \<Longrightarrow> store \<xi>' = store \<xi>"
|
187 |
+
unfolding is_msg_defs
|
188 |
+
by (cases "msg \<xi>", clarsimp+)+
|
189 |
+
|
190 |
+
lemma is_msg_inv_sip [simp]:
|
191 |
+
"\<xi>' \<in> is_pkt \<xi> \<Longrightarrow> sip \<xi>' = sip \<xi>"
|
192 |
+
"\<xi>' \<in> is_newpkt \<xi> \<Longrightarrow> sip \<xi>' = sip \<xi>"
|
193 |
+
unfolding is_msg_defs
|
194 |
+
by (cases "msg \<xi>", clarsimp+)+
|
195 |
+
|
196 |
+
subsection "The protocol process"
|
197 |
+
|
198 |
+
datatype pseqp =
|
199 |
+
PAodv
|
200 |
+
| PNewPkt
|
201 |
+
| PPkt
|
202 |
+
| PRreq
|
203 |
+
| PRrep
|
204 |
+
| PRerr
|
205 |
+
|
206 |
+
fun nat_of_seqp :: "pseqp \<Rightarrow> nat"
|
207 |
+
where
|
208 |
+
"nat_of_seqp PAodv = 1"
|
209 |
+
| "nat_of_seqp PPkt = 2"
|
210 |
+
| "nat_of_seqp PNewPkt = 3"
|
211 |
+
| "nat_of_seqp PRreq = 4"
|
212 |
+
| "nat_of_seqp PRrep = 5"
|
213 |
+
| "nat_of_seqp PRerr = 6"
|
214 |
+
|
215 |
+
instantiation "pseqp" :: ord
|
216 |
+
begin
|
217 |
+
definition less_eq_seqp [iff]: "l1 \<le> l2 = (nat_of_seqp l1 \<le> nat_of_seqp l2)"
|
218 |
+
definition less_seqp [iff]: "l1 < l2 = (nat_of_seqp l1 < nat_of_seqp l2)"
|
219 |
+
instance ..
|
220 |
+
end
|
221 |
+
|
222 |
+
abbreviation AODV
|
223 |
+
where
|
224 |
+
"AODV \<equiv> \<lambda>_. \<lbrakk>clear_locals\<rbrakk> call(PAodv)"
|
225 |
+
|
226 |
+
abbreviation PKT
|
227 |
+
where
|
228 |
+
"PKT args \<equiv>
|
229 |
+
|
230 |
+
\<lbrakk>\<xi>. let (data, dip, oip) = args \<xi> in
|
231 |
+
(clear_locals \<xi>) \<lparr> data := data, dip := dip, oip := oip \<rparr>\<rbrakk>
|
232 |
+
call(PPkt)"
|
233 |
+
abbreviation NEWPKT
|
234 |
+
where
|
235 |
+
"NEWPKT args \<equiv>
|
236 |
+
\<lbrakk>\<xi>. let (data, dip) = args \<xi> in
|
237 |
+
(clear_locals \<xi>) \<lparr> data := data, dip := dip \<rparr>\<rbrakk>
|
238 |
+
call(PNewPkt)"
|
239 |
+
|
240 |
+
abbreviation RREQ
|
241 |
+
where
|
242 |
+
"RREQ args \<equiv>
|
243 |
+
\<lbrakk>\<xi>. let (hops, rreqid, dip, dsn, dsk, oip, osn, sip) = args \<xi> in
|
244 |
+
(clear_locals \<xi>) \<lparr> hops := hops, rreqid := rreqid, dip := dip,
|
245 |
+
dsn := dsn, dsk := dsk, oip := oip,
|
246 |
+
osn := osn, sip := sip \<rparr>\<rbrakk>
|
247 |
+
call(PRreq)"
|
248 |
+
|
249 |
+
abbreviation RREP
|
250 |
+
where
|
251 |
+
"RREP args \<equiv>
|
252 |
+
\<lbrakk>\<xi>. let (hops, dip, dsn, oip, sip) = args \<xi> in
|
253 |
+
(clear_locals \<xi>) \<lparr> hops := hops, dip := dip, dsn := dsn,
|
254 |
+
oip := oip, sip := sip \<rparr>\<rbrakk>
|
255 |
+
call(PRrep)"
|
256 |
+
|
257 |
+
abbreviation RERR
|
258 |
+
where
|
259 |
+
"RERR args \<equiv>
|
260 |
+
\<lbrakk>\<xi>. let (dests, sip) = args \<xi> in
|
261 |
+
(clear_locals \<xi>) \<lparr> dests := dests, sip := sip \<rparr>\<rbrakk>
|
262 |
+
call(PRerr)"
|
263 |
+
|
264 |
+
fun \<Gamma>\<^sub>A\<^sub>O\<^sub>D\<^sub>V :: "(state, msg, pseqp, pseqp label) seqp_env"
|
265 |
+
where
|
266 |
+
"\<Gamma>\<^sub>A\<^sub>O\<^sub>D\<^sub>V PAodv = labelled PAodv (
|
267 |
+
receive(\<lambda>msg' \<xi>. \<xi> \<lparr> msg := msg' \<rparr>).
|
268 |
+
( \<langle>is_newpkt\<rangle> NEWPKT(\<lambda>\<xi>. (data \<xi>, ip \<xi>))
|
269 |
+
\<oplus> \<langle>is_pkt\<rangle> PKT(\<lambda>\<xi>. (data \<xi>, dip \<xi>, oip \<xi>))
|
270 |
+
\<oplus> \<langle>is_rreq\<rangle>
|
271 |
+
\<lbrakk>\<xi>. \<xi> \<lparr>rt := update (rt \<xi>) (sip \<xi>) (0, unk, val, 1, sip \<xi>, {}) \<rparr>\<rbrakk>
|
272 |
+
RREQ(\<lambda>\<xi>. (hops \<xi>, rreqid \<xi>, dip \<xi>, dsn \<xi>, dsk \<xi>, oip \<xi>, osn \<xi>, sip \<xi>))
|
273 |
+
\<oplus> \<langle>is_rrep\<rangle>
|
274 |
+
\<lbrakk>\<xi>. \<xi> \<lparr>rt := update (rt \<xi>) (sip \<xi>) (0, unk, val, 1, sip \<xi>, {}) \<rparr>\<rbrakk>
|
275 |
+
RREP(\<lambda>\<xi>. (hops \<xi>, dip \<xi>, dsn \<xi>, oip \<xi>, sip \<xi>))
|
276 |
+
\<oplus> \<langle>is_rerr\<rangle>
|
277 |
+
\<lbrakk>\<xi>. \<xi> \<lparr>rt := update (rt \<xi>) (sip \<xi>) (0, unk, val, 1, sip \<xi>, {}) \<rparr>\<rbrakk>
|
278 |
+
RERR(\<lambda>\<xi>. (dests \<xi>, sip \<xi>))
|
279 |
+
)
|
280 |
+
\<oplus> \<langle>\<lambda>\<xi>. { \<xi>\<lparr> dip := dip \<rparr> | dip. dip \<in> qD(store \<xi>) \<inter> vD(rt \<xi>) }\<rangle>
|
281 |
+
\<lbrakk>\<xi>. \<xi> \<lparr> data := hd(\<sigma>\<^bsub>queue\<^esub>(store \<xi>, dip \<xi>)) \<rparr>\<rbrakk>
|
282 |
+
unicast(\<lambda>\<xi>. the (nhop (rt \<xi>) (dip \<xi>)), \<lambda>\<xi>. pkt(data \<xi>, dip \<xi>, ip \<xi>)).
|
283 |
+
\<lbrakk>\<xi>. \<xi> \<lparr> store := the (drop (dip \<xi>) (store \<xi>)) \<rparr>\<rbrakk>
|
284 |
+
AODV()
|
285 |
+
\<triangleright> \<lbrakk>\<xi>. \<xi> \<lparr> dests := (\<lambda>rip. if (rip \<in> vD (rt \<xi>) \<and> nhop (rt \<xi>) rip = nhop (rt \<xi>) (dip \<xi>))
|
286 |
+
then Some (inc (sqn (rt \<xi>) rip)) else None) \<rparr>\<rbrakk>
|
287 |
+
\<lbrakk>\<xi>. \<xi> \<lparr> rt := invalidate (rt \<xi>) (dests \<xi>) \<rparr>\<rbrakk>
|
288 |
+
\<lbrakk>\<xi>. \<xi> \<lparr> store := setRRF (store \<xi>) (dests \<xi>)\<rparr>\<rbrakk>
|
289 |
+
\<lbrakk>\<xi>. \<xi> \<lparr> pre := \<Union>{ the (precs (rt \<xi>) rip) | rip. rip \<in> dom (dests \<xi>) } \<rparr>\<rbrakk>
|
290 |
+
\<lbrakk>\<xi>. \<xi> \<lparr> dests := (\<lambda>rip. if ((dests \<xi>) rip \<noteq> None \<and> the (precs (rt \<xi>) rip) \<noteq> {})
|
291 |
+
then (dests \<xi>) rip else None) \<rparr>\<rbrakk>
|
292 |
+
groupcast(\<lambda>\<xi>. pre \<xi>, \<lambda>\<xi>. rerr(dests \<xi>, ip \<xi>)). AODV()
|
293 |
+
\<oplus> \<langle>\<lambda>\<xi>. { \<xi>\<lparr> dip := dip \<rparr>
|
294 |
+
| dip. dip \<in> qD(store \<xi>) - vD(rt \<xi>) \<and> the (\<sigma>\<^bsub>p-flag\<^esub>(store \<xi>, dip)) = req }\<rangle>
|
295 |
+
\<lbrakk>\<xi>. \<xi> \<lparr> store := unsetRRF (store \<xi>) (dip \<xi>) \<rparr>\<rbrakk>
|
296 |
+
\<lbrakk>\<xi>. \<xi> \<lparr> sn := inc (sn \<xi>) \<rparr>\<rbrakk>
|
297 |
+
\<lbrakk>\<xi>. \<xi> \<lparr> rreqid := nrreqid (rreqs \<xi>) (ip \<xi>) \<rparr>\<rbrakk>
|
298 |
+
\<lbrakk>\<xi>. \<xi> \<lparr> rreqs := rreqs \<xi> \<union> {(ip \<xi>, rreqid \<xi>)} \<rparr>\<rbrakk>
|
299 |
+
broadcast(\<lambda>\<xi>. rreq(0, rreqid \<xi>, dip \<xi>, sqn (rt \<xi>) (dip \<xi>), sqnf (rt \<xi>) (dip \<xi>),
|
300 |
+
ip \<xi>, sn \<xi>, ip \<xi>)). AODV())"
|
301 |
+
|
302 |
+
| "\<Gamma>\<^sub>A\<^sub>O\<^sub>D\<^sub>V PNewPkt = labelled PNewPkt (
|
303 |
+
\<langle>\<xi>. dip \<xi> = ip \<xi>\<rangle>
|
304 |
+
deliver(\<lambda>\<xi>. data \<xi>).AODV()
|
305 |
+
\<oplus> \<langle>\<xi>. dip \<xi> \<noteq> ip \<xi>\<rangle>
|
306 |
+
\<lbrakk>\<xi>. \<xi> \<lparr> store := add (data \<xi>) (dip \<xi>) (store \<xi>) \<rparr>\<rbrakk>
|
307 |
+
AODV())"
|
308 |
+
|
309 |
+
| "\<Gamma>\<^sub>A\<^sub>O\<^sub>D\<^sub>V PPkt = labelled PPkt (
|
310 |
+
\<langle>\<xi>. dip \<xi> = ip \<xi>\<rangle>
|
311 |
+
deliver(\<lambda>\<xi>. data \<xi>).AODV()
|
312 |
+
\<oplus> \<langle>\<xi>. dip \<xi> \<noteq> ip \<xi>\<rangle>
|
313 |
+
(
|
314 |
+
\<langle>\<xi>. dip \<xi> \<in> vD (rt \<xi>)\<rangle>
|
315 |
+
unicast(\<lambda>\<xi>. the (nhop (rt \<xi>) (dip \<xi>)), \<lambda>\<xi>. pkt(data \<xi>, dip \<xi>, oip \<xi>)).AODV()
|
316 |
+
\<triangleright>
|
317 |
+
\<lbrakk>\<xi>. \<xi> \<lparr> dests := (\<lambda>rip. if (rip \<in> vD (rt \<xi>) \<and> nhop (rt \<xi>) rip = nhop (rt \<xi>) (dip \<xi>))
|
318 |
+
then Some (inc (sqn (rt \<xi>) rip)) else None) \<rparr>\<rbrakk>
|
319 |
+
\<lbrakk>\<xi>. \<xi> \<lparr> rt := invalidate (rt \<xi>) (dests \<xi>) \<rparr>\<rbrakk>
|
320 |
+
\<lbrakk>\<xi>. \<xi> \<lparr> store := setRRF (store \<xi>) (dests \<xi>)\<rparr>\<rbrakk>
|
321 |
+
\<lbrakk>\<xi>. \<xi> \<lparr> pre := \<Union>{ the (precs (rt \<xi>) rip) | rip. rip \<in> dom (dests \<xi>) } \<rparr>\<rbrakk>
|
322 |
+
\<lbrakk>\<xi>. \<xi> \<lparr> dests := (\<lambda>rip. if ((dests \<xi>) rip \<noteq> None \<and> the (precs (rt \<xi>) rip) \<noteq> {})
|
323 |
+
then (dests \<xi>) rip else None) \<rparr>\<rbrakk>
|
324 |
+
groupcast(\<lambda>\<xi>. pre \<xi>, \<lambda>\<xi>. rerr(dests \<xi>, ip \<xi>)).AODV()
|
325 |
+
\<oplus> \<langle>\<xi>. dip \<xi> \<notin> vD (rt \<xi>)\<rangle>
|
326 |
+
(
|
327 |
+
\<langle>\<xi>. dip \<xi> \<in> iD (rt \<xi>)\<rangle>
|
328 |
+
groupcast(\<lambda>\<xi>. the (precs (rt \<xi>) (dip \<xi>)),
|
329 |
+
\<lambda>\<xi>. rerr([dip \<xi> \<mapsto> sqn (rt \<xi>) (dip \<xi>)], ip \<xi>)). AODV()
|
330 |
+
\<oplus> \<langle>\<xi>. dip \<xi> \<notin> iD (rt \<xi>)\<rangle>
|
331 |
+
AODV()
|
332 |
+
)
|
333 |
+
))"
|
334 |
+
|
335 |
+
| "\<Gamma>\<^sub>A\<^sub>O\<^sub>D\<^sub>V PRreq = labelled PRreq (
|
336 |
+
\<langle>\<xi>. (oip \<xi>, rreqid \<xi>) \<in> rreqs \<xi>\<rangle>
|
337 |
+
AODV()
|
338 |
+
\<oplus> \<langle>\<xi>. (oip \<xi>, rreqid \<xi>) \<notin> rreqs \<xi>\<rangle>
|
339 |
+
\<lbrakk>\<xi>. \<xi> \<lparr> rt := update (rt \<xi>) (oip \<xi>) (osn \<xi>, kno, val, hops \<xi> + 1, sip \<xi>, {}) \<rparr>\<rbrakk>
|
340 |
+
\<lbrakk>\<xi>. \<xi> \<lparr> rreqs := rreqs \<xi> \<union> {(oip \<xi>, rreqid \<xi>)} \<rparr>\<rbrakk>
|
341 |
+
(
|
342 |
+
\<langle>\<xi>. dip \<xi> = ip \<xi>\<rangle>
|
343 |
+
\<lbrakk>\<xi>. \<xi> \<lparr> sn := max (sn \<xi>) (dsn \<xi>) \<rparr>\<rbrakk>
|
344 |
+
unicast(\<lambda>\<xi>. the (nhop (rt \<xi>) (oip \<xi>)), \<lambda>\<xi>. rrep(0, dip \<xi>, sn \<xi>, oip \<xi>, ip \<xi>)).AODV()
|
345 |
+
\<triangleright>
|
346 |
+
\<lbrakk>\<xi>. \<xi> \<lparr> dests := (\<lambda>rip. if (rip \<in> vD (rt \<xi>) \<and> nhop (rt \<xi>) rip = nhop (rt \<xi>) (oip \<xi>))
|
347 |
+
then Some (inc (sqn (rt \<xi>) rip)) else None) \<rparr>\<rbrakk>
|
348 |
+
\<lbrakk>\<xi>. \<xi> \<lparr> rt := invalidate (rt \<xi>) (dests \<xi>) \<rparr>\<rbrakk>
|
349 |
+
\<lbrakk>\<xi>. \<xi> \<lparr> store := setRRF (store \<xi>) (dests \<xi>)\<rparr>\<rbrakk>
|
350 |
+
\<lbrakk>\<xi>. \<xi> \<lparr> pre := \<Union>{ the (precs (rt \<xi>) rip) | rip. rip \<in> dom (dests \<xi>) } \<rparr>\<rbrakk>
|
351 |
+
\<lbrakk>\<xi>. \<xi> \<lparr> dests := (\<lambda>rip. if ((dests \<xi>) rip \<noteq> None \<and> the (precs (rt \<xi>) rip) \<noteq> {})
|
352 |
+
then (dests \<xi>) rip else None) \<rparr>\<rbrakk>
|
353 |
+
groupcast(\<lambda>\<xi>. pre \<xi>, \<lambda>\<xi>. rerr(dests \<xi>, ip \<xi>)).AODV()
|
354 |
+
\<oplus> \<langle>\<xi>. dip \<xi> \<noteq> ip \<xi>\<rangle>
|
355 |
+
(
|
356 |
+
\<langle>\<xi>. dip \<xi> \<in> vD (rt \<xi>) \<and> dsn \<xi> \<le> sqn (rt \<xi>) (dip \<xi>) \<and> sqnf (rt \<xi>) (dip \<xi>) = kno\<rangle>
|
357 |
+
\<lbrakk>\<xi>. \<xi> \<lparr> rt := the (addpreRT (rt \<xi>) (dip \<xi>) {sip \<xi>}) \<rparr>\<rbrakk>
|
358 |
+
\<lbrakk>\<xi>. \<xi> \<lparr> rt := the (addpreRT (rt \<xi>) (oip \<xi>) {the (nhop (rt \<xi>) (dip \<xi>))}) \<rparr>\<rbrakk>
|
359 |
+
unicast(\<lambda>\<xi>. the (nhop (rt \<xi>) (oip \<xi>)), \<lambda>\<xi>. rrep(the (dhops (rt \<xi>) (dip \<xi>)), dip \<xi>,
|
360 |
+
sqn (rt \<xi>) (dip \<xi>), oip \<xi>, ip \<xi>)).
|
361 |
+
AODV()
|
362 |
+
\<triangleright>
|
363 |
+
\<lbrakk>\<xi>. \<xi> \<lparr> dests := (\<lambda>rip. if (rip \<in> vD (rt \<xi>) \<and> nhop (rt \<xi>) rip = nhop (rt \<xi>) (oip \<xi>))
|
364 |
+
then Some (inc (sqn (rt \<xi>) rip)) else None) \<rparr>\<rbrakk>
|
365 |
+
\<lbrakk>\<xi>. \<xi> \<lparr> rt := invalidate (rt \<xi>) (dests \<xi>) \<rparr>\<rbrakk>
|
366 |
+
\<lbrakk>\<xi>. \<xi> \<lparr> store := setRRF (store \<xi>) (dests \<xi>)\<rparr>\<rbrakk>
|
367 |
+
\<lbrakk>\<xi>. \<xi> \<lparr> pre := \<Union>{ the (precs (rt \<xi>) rip) | rip. rip \<in> dom (dests \<xi>) } \<rparr>\<rbrakk>
|
368 |
+
\<lbrakk>\<xi>. \<xi> \<lparr> dests := (\<lambda>rip. if ((dests \<xi>) rip \<noteq> None \<and> the (precs (rt \<xi>) rip) \<noteq> {})
|
369 |
+
then (dests \<xi>) rip else None) \<rparr>\<rbrakk>
|
370 |
+
groupcast(\<lambda>\<xi>. pre \<xi>, \<lambda>\<xi>. rerr(dests \<xi>, ip \<xi>)).AODV()
|
371 |
+
\<oplus> \<langle>\<xi>. dip \<xi> \<notin> vD (rt \<xi>) \<or> sqn (rt \<xi>) (dip \<xi>) < dsn \<xi> \<or> sqnf (rt \<xi>) (dip \<xi>) = unk\<rangle>
|
372 |
+
broadcast(\<lambda>\<xi>. rreq(hops \<xi> + 1, rreqid \<xi>, dip \<xi>, max (sqn (rt \<xi>) (dip \<xi>)) (dsn \<xi>),
|
373 |
+
dsk \<xi>, oip \<xi>, osn \<xi>, ip \<xi>)).
|
374 |
+
AODV()
|
375 |
+
)
|
376 |
+
))"
|
377 |
+
|
378 |
+
| "\<Gamma>\<^sub>A\<^sub>O\<^sub>D\<^sub>V PRrep = labelled PRrep (
|
379 |
+
\<langle>\<xi>. rt \<xi> \<noteq> update (rt \<xi>) (dip \<xi>) (dsn \<xi>, kno, val, hops \<xi> + 1, sip \<xi>, {}) \<rangle>
|
380 |
+
(
|
381 |
+
\<lbrakk>\<xi>. \<xi> \<lparr> rt := update (rt \<xi>) (dip \<xi>) (dsn \<xi>, kno, val, hops \<xi> + 1, sip \<xi>, {}) \<rparr> \<rbrakk>
|
382 |
+
(
|
383 |
+
\<langle>\<xi>. oip \<xi> = ip \<xi> \<rangle>
|
384 |
+
AODV()
|
385 |
+
\<oplus> \<langle>\<xi>. oip \<xi> \<noteq> ip \<xi> \<rangle>
|
386 |
+
(
|
387 |
+
\<langle>\<xi>. oip \<xi> \<in> vD (rt \<xi>)\<rangle>
|
388 |
+
\<lbrakk>\<xi>. \<xi> \<lparr> rt := the (addpreRT (rt \<xi>) (dip \<xi>) {the (nhop (rt \<xi>) (oip \<xi>))}) \<rparr>\<rbrakk>
|
389 |
+
\<lbrakk>\<xi>. \<xi> \<lparr> rt := the (addpreRT (rt \<xi>) (the (nhop (rt \<xi>) (dip \<xi>)))
|
390 |
+
{the (nhop (rt \<xi>) (oip \<xi>))}) \<rparr>\<rbrakk>
|
391 |
+
unicast(\<lambda>\<xi>. the (nhop (rt \<xi>) (oip \<xi>)), \<lambda>\<xi>. rrep(hops \<xi> + 1, dip \<xi>, dsn \<xi>, oip \<xi>, ip \<xi>)).
|
392 |
+
AODV()
|
393 |
+
\<triangleright>
|
394 |
+
\<lbrakk>\<xi>. \<xi> \<lparr> dests := (\<lambda>rip. if (rip \<in> vD (rt \<xi>) \<and> nhop (rt \<xi>) rip = nhop (rt \<xi>) (oip \<xi>))
|
395 |
+
then Some (inc (sqn (rt \<xi>) rip)) else None) \<rparr>\<rbrakk>
|
396 |
+
\<lbrakk>\<xi>. \<xi> \<lparr> rt := invalidate (rt \<xi>) (dests \<xi>) \<rparr>\<rbrakk>
|
397 |
+
\<lbrakk>\<xi>. \<xi> \<lparr> store := setRRF (store \<xi>) (dests \<xi>)\<rparr>\<rbrakk>
|
398 |
+
\<lbrakk>\<xi>. \<xi> \<lparr> pre := \<Union>{ the (precs (rt \<xi>) rip) | rip. rip \<in> dom (dests \<xi>) } \<rparr>\<rbrakk>
|
399 |
+
\<lbrakk>\<xi>. \<xi> \<lparr> dests := (\<lambda>rip. if ((dests \<xi>) rip \<noteq> None \<and> the (precs (rt \<xi>) rip) \<noteq> {})
|
400 |
+
then (dests \<xi>) rip else None) \<rparr>\<rbrakk>
|
401 |
+
groupcast(\<lambda>\<xi>. pre \<xi>, \<lambda>\<xi>. rerr(dests \<xi>, ip \<xi>)).AODV()
|
402 |
+
\<oplus> \<langle>\<xi>. oip \<xi> \<notin> vD (rt \<xi>)\<rangle>
|
403 |
+
AODV()
|
404 |
+
)
|
405 |
+
)
|
406 |
+
)
|
407 |
+
\<oplus> \<langle>\<xi>. rt \<xi> = update (rt \<xi>) (dip \<xi>) (dsn \<xi>, kno, val, hops \<xi> + 1, sip \<xi>, {}) \<rangle>
|
408 |
+
AODV()
|
409 |
+
)"
|
410 |
+
|
411 |
+
| "\<Gamma>\<^sub>A\<^sub>O\<^sub>D\<^sub>V PRerr = labelled PRerr (
|
412 |
+
\<lbrakk>\<xi>. \<xi> \<lparr> dests := (\<lambda>rip. case (dests \<xi>) rip of None \<Rightarrow> None
|
413 |
+
| Some rsn \<Rightarrow> if rip \<in> vD (rt \<xi>) \<and> the (nhop (rt \<xi>) rip) = sip \<xi>
|
414 |
+
\<and> sqn (rt \<xi>) rip < rsn then Some rsn else None) \<rparr>\<rbrakk>
|
415 |
+
\<lbrakk>\<xi>. \<xi> \<lparr> rt := invalidate (rt \<xi>) (dests \<xi>) \<rparr>\<rbrakk>
|
416 |
+
\<lbrakk>\<xi>. \<xi> \<lparr> store := setRRF (store \<xi>) (dests \<xi>)\<rparr>\<rbrakk>
|
417 |
+
\<lbrakk>\<xi>. \<xi> \<lparr> pre := \<Union>{ the (precs (rt \<xi>) rip) | rip. rip \<in> dom (dests \<xi>) } \<rparr>\<rbrakk>
|
418 |
+
\<lbrakk>\<xi>. \<xi> \<lparr> dests := (\<lambda>rip. if ((dests \<xi>) rip \<noteq> None \<and> the (precs (rt \<xi>) rip) \<noteq> {})
|
419 |
+
then (dests \<xi>) rip else None) \<rparr>\<rbrakk>
|
420 |
+
groupcast(\<lambda>\<xi>. pre \<xi>, \<lambda>\<xi>. rerr(dests \<xi>, ip \<xi>)). AODV())"
|
421 |
+
|
422 |
+
declare \<Gamma>\<^sub>A\<^sub>O\<^sub>D\<^sub>V.simps [simp del, code del]
|
423 |
+
lemmas \<Gamma>\<^sub>A\<^sub>O\<^sub>D\<^sub>V_simps [simp, code] = \<Gamma>\<^sub>A\<^sub>O\<^sub>D\<^sub>V.simps [simplified]
|
424 |
+
|
425 |
+
fun \<Gamma>\<^sub>A\<^sub>O\<^sub>D\<^sub>V_skeleton
|
426 |
+
where
|
427 |
+
"\<Gamma>\<^sub>A\<^sub>O\<^sub>D\<^sub>V_skeleton PAodv = seqp_skeleton (\<Gamma>\<^sub>A\<^sub>O\<^sub>D\<^sub>V PAodv)"
|
428 |
+
| "\<Gamma>\<^sub>A\<^sub>O\<^sub>D\<^sub>V_skeleton PNewPkt = seqp_skeleton (\<Gamma>\<^sub>A\<^sub>O\<^sub>D\<^sub>V PNewPkt)"
|
429 |
+
| "\<Gamma>\<^sub>A\<^sub>O\<^sub>D\<^sub>V_skeleton PPkt = seqp_skeleton (\<Gamma>\<^sub>A\<^sub>O\<^sub>D\<^sub>V PPkt)"
|
430 |
+
| "\<Gamma>\<^sub>A\<^sub>O\<^sub>D\<^sub>V_skeleton PRreq = seqp_skeleton (\<Gamma>\<^sub>A\<^sub>O\<^sub>D\<^sub>V PRreq)"
|
431 |
+
| "\<Gamma>\<^sub>A\<^sub>O\<^sub>D\<^sub>V_skeleton PRrep = seqp_skeleton (\<Gamma>\<^sub>A\<^sub>O\<^sub>D\<^sub>V PRrep)"
|
432 |
+
| "\<Gamma>\<^sub>A\<^sub>O\<^sub>D\<^sub>V_skeleton PRerr = seqp_skeleton (\<Gamma>\<^sub>A\<^sub>O\<^sub>D\<^sub>V PRerr)"
|
433 |
+
|
434 |
+
lemma \<Gamma>\<^sub>A\<^sub>O\<^sub>D\<^sub>V_skeleton_wf [simp]:
|
435 |
+
"wellformed \<Gamma>\<^sub>A\<^sub>O\<^sub>D\<^sub>V_skeleton"
|
436 |
+
proof (rule, intro allI)
|
437 |
+
fix pn pn'
|
438 |
+
show "call(pn') \<notin> stermsl (\<Gamma>\<^sub>A\<^sub>O\<^sub>D\<^sub>V_skeleton pn)"
|
439 |
+
by (cases pn) simp_all
|
440 |
+
qed
|
441 |
+
|
442 |
+
declare \<Gamma>\<^sub>A\<^sub>O\<^sub>D\<^sub>V_skeleton.simps [simp del, code del]
|
443 |
+
lemmas \<Gamma>\<^sub>A\<^sub>O\<^sub>D\<^sub>V_skeleton_simps [simp, code]
|
444 |
+
= \<Gamma>\<^sub>A\<^sub>O\<^sub>D\<^sub>V_skeleton.simps [simplified \<Gamma>\<^sub>A\<^sub>O\<^sub>D\<^sub>V_simps seqp_skeleton.simps]
|
445 |
+
|
446 |
+
lemma aodv_proc_cases [dest]:
|
447 |
+
fixes p pn
|
448 |
+
shows "p \<in> ctermsl (\<Gamma>\<^sub>A\<^sub>O\<^sub>D\<^sub>V pn) \<Longrightarrow>
|
449 |
+
(p \<in> ctermsl (\<Gamma>\<^sub>A\<^sub>O\<^sub>D\<^sub>V PAodv) \<or>
|
450 |
+
p \<in> ctermsl (\<Gamma>\<^sub>A\<^sub>O\<^sub>D\<^sub>V PNewPkt) \<or>
|
451 |
+
p \<in> ctermsl (\<Gamma>\<^sub>A\<^sub>O\<^sub>D\<^sub>V PPkt) \<or>
|
452 |
+
p \<in> ctermsl (\<Gamma>\<^sub>A\<^sub>O\<^sub>D\<^sub>V PRreq) \<or>
|
453 |
+
p \<in> ctermsl (\<Gamma>\<^sub>A\<^sub>O\<^sub>D\<^sub>V PRrep) \<or>
|
454 |
+
p \<in> ctermsl (\<Gamma>\<^sub>A\<^sub>O\<^sub>D\<^sub>V PRerr))"
|
455 |
+
by (cases pn) simp_all
|
456 |
+
|
457 |
+
definition \<sigma>\<^sub>A\<^sub>O\<^sub>D\<^sub>V :: "ip \<Rightarrow> (state \<times> (state, msg, pseqp, pseqp label) seqp) set"
|
458 |
+
where "\<sigma>\<^sub>A\<^sub>O\<^sub>D\<^sub>V i \<equiv> {(aodv_init i, \<Gamma>\<^sub>A\<^sub>O\<^sub>D\<^sub>V PAodv)}"
|
459 |
+
|
460 |
+
abbreviation paodv
|
461 |
+
:: "ip \<Rightarrow> (state \<times> (state, msg, pseqp, pseqp label) seqp, msg seq_action) automaton"
|
462 |
+
where
|
463 |
+
"paodv i \<equiv> \<lparr> init = \<sigma>\<^sub>A\<^sub>O\<^sub>D\<^sub>V i, trans = seqp_sos \<Gamma>\<^sub>A\<^sub>O\<^sub>D\<^sub>V \<rparr>"
|
464 |
+
|
465 |
+
lemma aodv_trans: "trans (paodv i) = seqp_sos \<Gamma>\<^sub>A\<^sub>O\<^sub>D\<^sub>V"
|
466 |
+
by simp
|
467 |
+
|
468 |
+
lemma aodv_control_within [simp]: "control_within \<Gamma>\<^sub>A\<^sub>O\<^sub>D\<^sub>V (init (paodv i))"
|
469 |
+
unfolding \<sigma>\<^sub>A\<^sub>O\<^sub>D\<^sub>V_def by (rule control_withinI) (auto simp del: \<Gamma>\<^sub>A\<^sub>O\<^sub>D\<^sub>V_simps)
|
470 |
+
|
471 |
+
lemma aodv_wf [simp]:
|
472 |
+
"wellformed \<Gamma>\<^sub>A\<^sub>O\<^sub>D\<^sub>V"
|
473 |
+
proof (rule, intro allI)
|
474 |
+
fix pn pn'
|
475 |
+
show "call(pn') \<notin> stermsl (\<Gamma>\<^sub>A\<^sub>O\<^sub>D\<^sub>V pn)"
|
476 |
+
by (cases pn) simp_all
|
477 |
+
qed
|
478 |
+
|
479 |
+
lemmas aodv_labels_not_empty [simp] = labels_not_empty [OF aodv_wf]
|
480 |
+
|
481 |
+
lemma aodv_ex_label [intro]: "\<exists>l. l\<in>labels \<Gamma>\<^sub>A\<^sub>O\<^sub>D\<^sub>V p"
|
482 |
+
by (metis aodv_labels_not_empty all_not_in_conv)
|
483 |
+
|
484 |
+
lemma aodv_ex_labelE [elim]:
|
485 |
+
assumes "\<forall>l\<in>labels \<Gamma>\<^sub>A\<^sub>O\<^sub>D\<^sub>V p. P l p"
|
486 |
+
and "\<exists>p l. P l p \<Longrightarrow> Q"
|
487 |
+
shows "Q"
|
488 |
+
using assms by (metis aodv_ex_label)
|
489 |
+
|
490 |
+
lemma aodv_simple_labels [simp]: "simple_labels \<Gamma>\<^sub>A\<^sub>O\<^sub>D\<^sub>V"
|
491 |
+
proof
|
492 |
+
fix pn p
|
493 |
+
assume "p\<in>subterms(\<Gamma>\<^sub>A\<^sub>O\<^sub>D\<^sub>V pn)"
|
494 |
+
thus "\<exists>!l. labels \<Gamma>\<^sub>A\<^sub>O\<^sub>D\<^sub>V p = {l}"
|
495 |
+
by (cases pn) (simp_all cong: seqp_congs | elim disjE)+
|
496 |
+
qed
|
497 |
+
|
498 |
+
lemma \<sigma>\<^sub>A\<^sub>O\<^sub>D\<^sub>V_labels [simp]: "(\<xi>, p) \<in> \<sigma>\<^sub>A\<^sub>O\<^sub>D\<^sub>V i \<Longrightarrow> labels \<Gamma>\<^sub>A\<^sub>O\<^sub>D\<^sub>V p = {PAodv-:0}"
|
499 |
+
unfolding \<sigma>\<^sub>A\<^sub>O\<^sub>D\<^sub>V_def by simp
|
500 |
+
|
501 |
+
lemma aodv_init_kD_empty [simp]:
|
502 |
+
"(\<xi>, p) \<in> \<sigma>\<^sub>A\<^sub>O\<^sub>D\<^sub>V i \<Longrightarrow> kD (rt \<xi>) = {}"
|
503 |
+
unfolding \<sigma>\<^sub>A\<^sub>O\<^sub>D\<^sub>V_def kD_def by simp
|
504 |
+
|
505 |
+
lemma aodv_init_sip_not_ip [simp]: "\<not>(sip (aodv_init i) = i)" by simp
|
506 |
+
|
507 |
+
lemma aodv_init_sip_not_ip' [simp]:
|
508 |
+
assumes "(\<xi>, p) \<in> \<sigma>\<^sub>A\<^sub>O\<^sub>D\<^sub>V i"
|
509 |
+
shows "sip \<xi> \<noteq> ip \<xi>"
|
510 |
+
using assms unfolding \<sigma>\<^sub>A\<^sub>O\<^sub>D\<^sub>V_def by simp
|
511 |
+
|
512 |
+
lemma aodv_init_sip_not_i [simp]:
|
513 |
+
assumes "(\<xi>, p) \<in> \<sigma>\<^sub>A\<^sub>O\<^sub>D\<^sub>V i"
|
514 |
+
shows "sip \<xi> \<noteq> i"
|
515 |
+
using assms unfolding \<sigma>\<^sub>A\<^sub>O\<^sub>D\<^sub>V_def by simp
|
516 |
+
|
517 |
+
lemma clear_locals_sip_not_ip':
|
518 |
+
assumes "ip \<xi> = i"
|
519 |
+
shows "\<not>(sip (clear_locals \<xi>) = i)"
|
520 |
+
using assms by auto
|
521 |
+
|
522 |
+
text \<open>Stop the simplifier from descending into process terms.\<close>
|
523 |
+
declare seqp_congs [cong]
|
524 |
+
|
525 |
+
text \<open>Configure the main invariant tactic for AODV.\<close>
|
526 |
+
|
527 |
+
declare
|
528 |
+
\<Gamma>\<^sub>A\<^sub>O\<^sub>D\<^sub>V_simps [cterms_env]
|
529 |
+
aodv_proc_cases [ctermsl_cases]
|
530 |
+
seq_invariant_ctermsI [OF aodv_wf aodv_control_within aodv_simple_labels aodv_trans,
|
531 |
+
cterms_intros]
|
532 |
+
seq_step_invariant_ctermsI [OF aodv_wf aodv_control_within aodv_simple_labels aodv_trans,
|
533 |
+
cterms_intros]
|
534 |
+
|
535 |
+
end
|
formal/afp/AODV/Aodv_Basic.thy
ADDED
@@ -0,0 +1,44 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
(* Title: Aodv_Basic.thy
|
2 |
+
License: BSD 2-Clause. See LICENSE.
|
3 |
+
Author: Timothy Bourke, Inria
|
4 |
+
*)
|
5 |
+
|
6 |
+
section "Basic data types and constants"
|
7 |
+
|
8 |
+
theory Aodv_Basic
|
9 |
+
imports Main AWN.AWN_SOS
|
10 |
+
begin
|
11 |
+
|
12 |
+
text \<open>These definitions are shared with all variants.\<close>
|
13 |
+
|
14 |
+
type_synonym rreqid = nat
|
15 |
+
type_synonym sqn = nat
|
16 |
+
|
17 |
+
datatype k = Known | Unknown
|
18 |
+
abbreviation kno where "kno \<equiv> Known"
|
19 |
+
abbreviation unk where "unk \<equiv> Unknown"
|
20 |
+
|
21 |
+
datatype p = NoRequestRequired | RequestRequired
|
22 |
+
abbreviation noreq where "noreq \<equiv> NoRequestRequired"
|
23 |
+
abbreviation req where "req \<equiv> RequestRequired"
|
24 |
+
|
25 |
+
datatype f = Valid | Invalid
|
26 |
+
abbreviation val where "val \<equiv> Valid"
|
27 |
+
abbreviation inv where "inv \<equiv> Invalid"
|
28 |
+
|
29 |
+
lemma not_ks [simp]:
|
30 |
+
"(x \<noteq> kno) = (x = unk)"
|
31 |
+
"(x \<noteq> unk) = (x = kno)"
|
32 |
+
by (cases x, clarsimp+)+
|
33 |
+
|
34 |
+
lemma not_ps [simp]:
|
35 |
+
"(x \<noteq> noreq) = (x = req)"
|
36 |
+
"(x \<noteq> req) = (x = noreq)"
|
37 |
+
by (cases x, clarsimp+)+
|
38 |
+
|
39 |
+
lemma not_ffs [simp]:
|
40 |
+
"(x \<noteq> val) = (x = inv)"
|
41 |
+
"(x \<noteq> inv) = (x = val)"
|
42 |
+
by (cases x, clarsimp+)+
|
43 |
+
|
44 |
+
end
|
formal/afp/AODV/Aodv_Data.thy
ADDED
@@ -0,0 +1,990 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
(* Title: Aodv_Data.thy
|
2 |
+
License: BSD 2-Clause. See LICENSE.
|
3 |
+
Author: Timothy Bourke, Inria
|
4 |
+
*)
|
5 |
+
|
6 |
+
section "Predicates and functions used in the AODV model"
|
7 |
+
|
8 |
+
theory Aodv_Data
|
9 |
+
imports Aodv_Basic
|
10 |
+
begin
|
11 |
+
|
12 |
+
subsection "Sequence Numbers"
|
13 |
+
|
14 |
+
text \<open>Sequence numbers approximate the relative freshness of routing information.\<close>
|
15 |
+
|
16 |
+
definition inc :: "sqn \<Rightarrow> sqn"
|
17 |
+
where "inc sn \<equiv> if sn = 0 then sn else sn + 1"
|
18 |
+
|
19 |
+
lemma less_than_inc [simp]: "x \<le> inc x"
|
20 |
+
unfolding inc_def by simp
|
21 |
+
|
22 |
+
lemma inc_minus_suc_0 [simp]:
|
23 |
+
"inc x - Suc 0 = x"
|
24 |
+
unfolding inc_def by simp
|
25 |
+
|
26 |
+
lemma inc_never_one' [simp, intro]: "inc x \<noteq> Suc 0"
|
27 |
+
unfolding inc_def by simp
|
28 |
+
|
29 |
+
lemma inc_never_one [simp, intro]: "inc x \<noteq> 1"
|
30 |
+
by simp
|
31 |
+
|
32 |
+
subsection "Modelling Routes"
|
33 |
+
|
34 |
+
text \<open>
|
35 |
+
A route is a 6-tuple, @{term "(dsn, dsk, flag, hops, nhip, pre)"} where
|
36 |
+
@{term dsn} is the `destination sequence number', @{term dsk} is the
|
37 |
+
`destination-sequence-number status', @{term flag} is the route status,
|
38 |
+
@{term hops} is the number of hops to the destination, @{term nhip} is the
|
39 |
+
next hop toward the destination, and @{term pre} is the set of `precursor nodes'--those
|
40 |
+
interested in hearing about changes to the route.
|
41 |
+
\<close>
|
42 |
+
|
43 |
+
type_synonym r = "sqn \<times> k \<times> f \<times> nat \<times> ip \<times> ip set"
|
44 |
+
|
45 |
+
definition proj2 :: "r \<Rightarrow> sqn" ("\<pi>\<^sub>2")
|
46 |
+
where "\<pi>\<^sub>2 \<equiv> \<lambda>(dsn, _, _, _, _, _). dsn"
|
47 |
+
|
48 |
+
definition proj3 :: "r \<Rightarrow> k" ("\<pi>\<^sub>3")
|
49 |
+
where "\<pi>\<^sub>3 \<equiv> \<lambda>(_, dsk, _, _, _, _). dsk"
|
50 |
+
|
51 |
+
definition proj4 :: "r \<Rightarrow> f" ("\<pi>\<^sub>4")
|
52 |
+
where "\<pi>\<^sub>4 \<equiv> \<lambda>(_, _, flag, _, _, _). flag"
|
53 |
+
|
54 |
+
definition proj5 :: "r \<Rightarrow> nat" ("\<pi>\<^sub>5")
|
55 |
+
where "\<pi>\<^sub>5 \<equiv> \<lambda>(_, _, _, hops, _, _). hops"
|
56 |
+
|
57 |
+
definition proj6 :: "r \<Rightarrow> ip" ("\<pi>\<^sub>6")
|
58 |
+
where "\<pi>\<^sub>6 \<equiv> \<lambda>(_, _, _, _, nhip, _). nhip"
|
59 |
+
|
60 |
+
definition proj7 :: "r \<Rightarrow> ip set" ("\<pi>\<^sub>7")
|
61 |
+
where "\<pi>\<^sub>7 \<equiv> \<lambda>(_, _, _, _, _, pre). pre"
|
62 |
+
|
63 |
+
lemma projs [simp]:
|
64 |
+
"\<pi>\<^sub>2(dsn, dsk, flag, hops, nhip, pre) = dsn"
|
65 |
+
"\<pi>\<^sub>3(dsn, dsk, flag, hops, nhip, pre) = dsk"
|
66 |
+
"\<pi>\<^sub>4(dsn, dsk, flag, hops, nhip, pre) = flag"
|
67 |
+
"\<pi>\<^sub>5(dsn, dsk, flag, hops, nhip, pre) = hops"
|
68 |
+
"\<pi>\<^sub>6(dsn, dsk, flag, hops, nhip, pre) = nhip"
|
69 |
+
"\<pi>\<^sub>7(dsn, dsk, flag, hops, nhip, pre) = pre"
|
70 |
+
by (clarsimp simp: proj2_def proj3_def proj4_def
|
71 |
+
proj5_def proj6_def proj7_def)+
|
72 |
+
|
73 |
+
lemma proj3_pred [intro]: "\<lbrakk> P kno; P unk \<rbrakk> \<Longrightarrow> P (\<pi>\<^sub>3 x)"
|
74 |
+
by (rule k.induct)
|
75 |
+
|
76 |
+
lemma proj4_pred [intro]: "\<lbrakk> P val; P inv \<rbrakk> \<Longrightarrow> P (\<pi>\<^sub>4 x)"
|
77 |
+
by (rule f.induct)
|
78 |
+
|
79 |
+
lemma proj6_pair_snd [simp]:
|
80 |
+
fixes dsn' r
|
81 |
+
shows "\<pi>\<^sub>6 (dsn', snd (r)) = \<pi>\<^sub>6(r)"
|
82 |
+
by (cases r) simp
|
83 |
+
|
84 |
+
subsection "Routing Tables"
|
85 |
+
|
86 |
+
text \<open>Routing tables map ip addresses to route entries.\<close>
|
87 |
+
|
88 |
+
type_synonym rt = "ip \<rightharpoonup> r"
|
89 |
+
|
90 |
+
syntax
|
91 |
+
"_Sigma_route" :: "rt \<Rightarrow> ip \<rightharpoonup> r" ("\<sigma>\<^bsub>route\<^esub>'(_, _')")
|
92 |
+
|
93 |
+
translations
|
94 |
+
"\<sigma>\<^bsub>route\<^esub>(rt, dip)" => "rt dip"
|
95 |
+
|
96 |
+
definition sqn :: "rt \<Rightarrow> ip \<Rightarrow> sqn"
|
97 |
+
where "sqn rt dip \<equiv> case \<sigma>\<^bsub>route\<^esub>(rt, dip) of Some r \<Rightarrow> \<pi>\<^sub>2(r) | None \<Rightarrow> 0"
|
98 |
+
|
99 |
+
definition sqnf :: "rt \<Rightarrow> ip \<Rightarrow> k"
|
100 |
+
where "sqnf rt dip \<equiv> case \<sigma>\<^bsub>route\<^esub>(rt, dip) of Some r \<Rightarrow> \<pi>\<^sub>3(r) | None \<Rightarrow> unk"
|
101 |
+
|
102 |
+
abbreviation flag :: "rt \<Rightarrow> ip \<rightharpoonup> f"
|
103 |
+
where "flag rt dip \<equiv> map_option \<pi>\<^sub>4 (\<sigma>\<^bsub>route\<^esub>(rt, dip))"
|
104 |
+
|
105 |
+
abbreviation dhops :: "rt \<Rightarrow> ip \<rightharpoonup> nat"
|
106 |
+
where "dhops rt dip \<equiv> map_option \<pi>\<^sub>5 (\<sigma>\<^bsub>route\<^esub>(rt, dip))"
|
107 |
+
|
108 |
+
abbreviation nhop :: "rt \<Rightarrow> ip \<rightharpoonup> ip"
|
109 |
+
where "nhop rt dip \<equiv> map_option \<pi>\<^sub>6 (\<sigma>\<^bsub>route\<^esub>(rt, dip))"
|
110 |
+
|
111 |
+
abbreviation precs :: "rt \<Rightarrow> ip \<rightharpoonup> ip set"
|
112 |
+
where "precs rt dip \<equiv> map_option \<pi>\<^sub>7 (\<sigma>\<^bsub>route\<^esub>(rt, dip))"
|
113 |
+
|
114 |
+
definition vD :: "rt \<Rightarrow> ip set"
|
115 |
+
where "vD rt \<equiv> {dip. flag rt dip = Some val}"
|
116 |
+
|
117 |
+
definition iD :: "rt \<Rightarrow> ip set"
|
118 |
+
where "iD rt \<equiv> {dip. flag rt dip = Some inv}"
|
119 |
+
|
120 |
+
definition kD :: "rt \<Rightarrow> ip set"
|
121 |
+
where "kD rt \<equiv> {dip. rt dip \<noteq> None}"
|
122 |
+
|
123 |
+
lemma kD_is_vD_and_iD: "kD rt = vD rt \<union> iD rt"
|
124 |
+
unfolding kD_def vD_def iD_def by auto
|
125 |
+
|
126 |
+
lemma vD_iD_gives_kD [simp]:
|
127 |
+
"\<And>ip rt. ip \<in> vD rt \<Longrightarrow> ip \<in> kD rt"
|
128 |
+
"\<And>ip rt. ip \<in> iD rt \<Longrightarrow> ip \<in> kD rt"
|
129 |
+
unfolding kD_is_vD_and_iD by simp_all
|
130 |
+
|
131 |
+
lemma kD_Some [dest]:
|
132 |
+
fixes dip rt
|
133 |
+
assumes "dip \<in> kD rt"
|
134 |
+
shows "\<exists>dsn dsk flag hops nhip pre.
|
135 |
+
\<sigma>\<^bsub>route\<^esub>(rt, dip) = Some (dsn, dsk, flag, hops, nhip, pre)"
|
136 |
+
using assms unfolding kD_def by simp
|
137 |
+
|
138 |
+
lemma kD_None [dest]:
|
139 |
+
fixes dip rt
|
140 |
+
assumes "dip \<notin> kD rt"
|
141 |
+
shows "\<sigma>\<^bsub>route\<^esub>(rt, dip) = None"
|
142 |
+
using assms unfolding kD_def
|
143 |
+
by (metis (mono_tags) mem_Collect_eq)
|
144 |
+
|
145 |
+
lemma vD_Some [dest]:
|
146 |
+
fixes dip rt
|
147 |
+
assumes "dip \<in> vD rt"
|
148 |
+
shows "\<exists>dsn dsk hops nhip pre.
|
149 |
+
\<sigma>\<^bsub>route\<^esub>(rt, dip) = Some (dsn, dsk, val, hops, nhip, pre)"
|
150 |
+
using assms unfolding vD_def by simp
|
151 |
+
|
152 |
+
lemma vD_empty [simp]: "vD Map.empty = {}"
|
153 |
+
unfolding vD_def by simp
|
154 |
+
|
155 |
+
lemma iD_Some [dest]:
|
156 |
+
fixes dip rt
|
157 |
+
assumes "dip \<in> iD rt"
|
158 |
+
shows "\<exists>dsn dsk hops nhip pre.
|
159 |
+
\<sigma>\<^bsub>route\<^esub>(rt, dip) = Some (dsn, dsk, inv, hops, nhip, pre)"
|
160 |
+
using assms unfolding iD_def by simp
|
161 |
+
|
162 |
+
lemma val_is_vD [elim]:
|
163 |
+
fixes ip rt
|
164 |
+
assumes "ip\<in>kD(rt)"
|
165 |
+
and "the (flag rt ip) = val"
|
166 |
+
shows "ip\<in>vD(rt)"
|
167 |
+
using assms unfolding vD_def by auto
|
168 |
+
|
169 |
+
lemma inv_is_iD [elim]:
|
170 |
+
fixes ip rt
|
171 |
+
assumes "ip\<in>kD(rt)"
|
172 |
+
and "the (flag rt ip) = inv"
|
173 |
+
shows "ip\<in>iD(rt)"
|
174 |
+
using assms unfolding iD_def by auto
|
175 |
+
|
176 |
+
lemma iD_flag_is_inv [elim, simp]:
|
177 |
+
fixes ip rt
|
178 |
+
assumes "ip\<in>iD(rt)"
|
179 |
+
shows "the (flag rt ip) = inv"
|
180 |
+
proof -
|
181 |
+
from \<open>ip\<in>iD(rt)\<close> have "ip\<in>kD(rt)" by auto
|
182 |
+
with assms show ?thesis unfolding iD_def by auto
|
183 |
+
qed
|
184 |
+
|
185 |
+
lemma kD_but_not_vD_is_iD [elim]:
|
186 |
+
fixes ip rt
|
187 |
+
assumes "ip\<in>kD(rt)"
|
188 |
+
and "ip\<notin>vD(rt)"
|
189 |
+
shows "ip\<in>iD(rt)"
|
190 |
+
proof -
|
191 |
+
from \<open>ip\<in>kD(rt)\<close> obtain dsn dsk f hops nhop pre
|
192 |
+
where rtip: "rt ip = Some (dsn, dsk, f, hops, nhop, pre)"
|
193 |
+
by (metis kD_Some)
|
194 |
+
from \<open>ip\<notin>vD(rt)\<close> have "f \<noteq> val"
|
195 |
+
proof (rule contrapos_nn)
|
196 |
+
assume "f = val"
|
197 |
+
with rtip have "the (flag rt ip) = val" by simp
|
198 |
+
with \<open>ip\<in>kD(rt)\<close> show "ip\<in>vD(rt)" ..
|
199 |
+
qed
|
200 |
+
with rtip have "the (flag rt ip)= inv" by simp
|
201 |
+
with \<open>ip\<in>kD(rt)\<close> show "ip\<in>iD(rt)" ..
|
202 |
+
qed
|
203 |
+
|
204 |
+
lemma vD_or_iD [elim]:
|
205 |
+
fixes ip rt
|
206 |
+
assumes "ip\<in>kD(rt)"
|
207 |
+
and "ip\<in>vD(rt) \<Longrightarrow> P rt ip"
|
208 |
+
and "ip\<in>iD(rt) \<Longrightarrow> P rt ip"
|
209 |
+
shows "P rt ip"
|
210 |
+
proof -
|
211 |
+
from \<open>ip\<in>kD(rt)\<close> have "ip\<in>vD(rt) \<union> iD(rt)"
|
212 |
+
by (simp add: kD_is_vD_and_iD)
|
213 |
+
thus ?thesis by (auto elim: assms(2-3))
|
214 |
+
qed
|
215 |
+
|
216 |
+
lemma proj5_eq_dhops: "\<And>dip rt. dip\<in>kD(rt) \<Longrightarrow> \<pi>\<^sub>5(the (rt dip)) = the (dhops rt dip)"
|
217 |
+
unfolding sqn_def by (drule kD_Some) clarsimp
|
218 |
+
|
219 |
+
lemma proj4_eq_flag: "\<And>dip rt. dip\<in>kD(rt) \<Longrightarrow> \<pi>\<^sub>4(the (rt dip)) = the (flag rt dip)"
|
220 |
+
unfolding sqn_def by (drule kD_Some) clarsimp
|
221 |
+
|
222 |
+
lemma proj2_eq_sqn: "\<And>dip rt. dip\<in>kD(rt) \<Longrightarrow> \<pi>\<^sub>2(the (rt dip)) = sqn rt dip"
|
223 |
+
unfolding sqn_def by (drule kD_Some) clarsimp
|
224 |
+
|
225 |
+
lemma kD_sqnf_is_proj3 [simp]:
|
226 |
+
"\<And>ip rt. ip\<in>kD(rt) \<Longrightarrow> sqnf rt ip = \<pi>\<^sub>3(the (rt ip))"
|
227 |
+
unfolding sqnf_def by auto
|
228 |
+
|
229 |
+
lemma vD_flag_val [simp]:
|
230 |
+
"\<And>dip rt. dip \<in> vD (rt) \<Longrightarrow> the (flag rt dip) = val"
|
231 |
+
unfolding vD_def by clarsimp
|
232 |
+
|
233 |
+
lemma kD_update [simp]:
|
234 |
+
"\<And>rt nip v. kD (rt(nip \<mapsto> v)) = insert nip (kD rt)"
|
235 |
+
unfolding kD_def by auto
|
236 |
+
|
237 |
+
lemma kD_empty [simp]: "kD Map.empty = {}"
|
238 |
+
unfolding kD_def by simp
|
239 |
+
|
240 |
+
lemma ip_equal_or_known [elim]:
|
241 |
+
fixes rt ip ip'
|
242 |
+
assumes "ip = ip' \<or> ip\<in>kD(rt)"
|
243 |
+
and "ip = ip' \<Longrightarrow> P rt ip ip'"
|
244 |
+
and "\<lbrakk> ip \<noteq> ip'; ip\<in>kD(rt)\<rbrakk> \<Longrightarrow> P rt ip ip'"
|
245 |
+
shows "P rt ip ip'"
|
246 |
+
using assms by auto
|
247 |
+
|
248 |
+
subsection "Updating Routing Tables"
|
249 |
+
|
250 |
+
text \<open>Routing table entries are modified through explicit functions.
|
251 |
+
The properties of these functions are important in invariant proofs.\<close>
|
252 |
+
|
253 |
+
subsubsection "Updating Precursor Lists"
|
254 |
+
|
255 |
+
definition addpre :: "r \<Rightarrow> ip set \<Rightarrow> r"
|
256 |
+
where "addpre r npre \<equiv> let (dsn, dsk, flag, hops, nhip, pre) = r in
|
257 |
+
(dsn, dsk, flag, hops, nhip, pre \<union> npre)"
|
258 |
+
|
259 |
+
lemma proj2_addpre:
|
260 |
+
fixes v pre
|
261 |
+
shows "\<pi>\<^sub>2(addpre v pre) = \<pi>\<^sub>2(v)"
|
262 |
+
unfolding addpre_def by (cases v) simp
|
263 |
+
|
264 |
+
lemma proj3_addpre:
|
265 |
+
fixes v pre
|
266 |
+
shows "\<pi>\<^sub>3(addpre v pre) = \<pi>\<^sub>3(v)"
|
267 |
+
unfolding addpre_def by (cases v) simp
|
268 |
+
|
269 |
+
lemma proj4_addpre:
|
270 |
+
fixes v pre
|
271 |
+
shows "\<pi>\<^sub>4(addpre v pre) = \<pi>\<^sub>4(v)"
|
272 |
+
unfolding addpre_def by (cases v) simp
|
273 |
+
|
274 |
+
lemma proj5_addpre:
|
275 |
+
fixes v pre
|
276 |
+
shows "\<pi>\<^sub>5(addpre v pre) = \<pi>\<^sub>5(v)"
|
277 |
+
unfolding addpre_def by (cases v) simp
|
278 |
+
|
279 |
+
lemma proj6_addpre:
|
280 |
+
fixes dsn dsk flag hops nhip pre npre
|
281 |
+
shows "\<pi>\<^sub>6(addpre v npre) = \<pi>\<^sub>6(v)"
|
282 |
+
unfolding addpre_def by (cases v) simp
|
283 |
+
|
284 |
+
lemma proj7_addpre:
|
285 |
+
fixes dsn dsk flag hops nhip pre npre
|
286 |
+
shows "\<pi>\<^sub>7(addpre v npre) = \<pi>\<^sub>7(v) \<union> npre"
|
287 |
+
unfolding addpre_def by (cases v) simp
|
288 |
+
|
289 |
+
lemma addpre_empty: "addpre r {} = r"
|
290 |
+
unfolding addpre_def by simp
|
291 |
+
|
292 |
+
lemma addpre_r:
|
293 |
+
"addpre (dsn, dsk, fl, hops, nhip, pre) npre = (dsn, dsk, fl, hops, nhip, pre \<union> npre)"
|
294 |
+
unfolding addpre_def by simp
|
295 |
+
|
296 |
+
lemmas addpre_simps [simp] = proj2_addpre proj3_addpre proj4_addpre proj5_addpre
|
297 |
+
proj6_addpre proj7_addpre addpre_empty addpre_r
|
298 |
+
|
299 |
+
definition addpreRT :: "rt \<Rightarrow> ip \<Rightarrow> ip set \<rightharpoonup> rt"
|
300 |
+
where "addpreRT rt dip npre \<equiv>
|
301 |
+
map_option (\<lambda>s. rt (dip \<mapsto> addpre s npre)) (\<sigma>\<^bsub>route\<^esub>(rt, dip))"
|
302 |
+
|
303 |
+
lemma snd_addpre [simp]:
|
304 |
+
"\<And>dsn dsn' v pre. (dsn, snd(addpre (dsn', v) pre)) = addpre (dsn, v) pre"
|
305 |
+
unfolding addpre_def by clarsimp
|
306 |
+
|
307 |
+
lemma proj2_addpreRT [simp]:
|
308 |
+
fixes ip rt ip' npre
|
309 |
+
assumes "ip\<in>kD rt"
|
310 |
+
and "ip'\<in>kD rt"
|
311 |
+
shows "\<pi>\<^sub>2(the (the (addpreRT rt ip' npre) ip)) = \<pi>\<^sub>2(the (rt ip))"
|
312 |
+
using assms [THEN kD_Some] unfolding addpreRT_def by clarsimp
|
313 |
+
|
314 |
+
lemma proj3_addpreRT [simp]:
|
315 |
+
fixes ip rt ip' npre
|
316 |
+
assumes "ip\<in>kD rt"
|
317 |
+
and "ip'\<in>kD rt"
|
318 |
+
shows "\<pi>\<^sub>3(the (the (addpreRT rt ip' npre) ip)) = \<pi>\<^sub>3(the (rt ip))"
|
319 |
+
using assms [THEN kD_Some] unfolding addpreRT_def by clarsimp
|
320 |
+
|
321 |
+
lemma proj5_addpreRT [simp]:
|
322 |
+
"\<And>rt dip ip npre. dip\<in>kD(rt) \<Longrightarrow> \<pi>\<^sub>5(the (the (addpreRT rt dip npre) ip)) = \<pi>\<^sub>5(the (rt ip))"
|
323 |
+
unfolding addpreRT_def by auto
|
324 |
+
|
325 |
+
lemma flag_addpreRT [simp]:
|
326 |
+
fixes rt pre ip dip
|
327 |
+
assumes "dip \<in> kD rt"
|
328 |
+
shows "flag (the (addpreRT rt dip pre)) ip = flag rt ip"
|
329 |
+
unfolding addpreRT_def
|
330 |
+
using assms [THEN kD_Some] by (clarsimp)
|
331 |
+
|
332 |
+
lemma kD_addpreRT [simp]:
|
333 |
+
fixes rt dip npre
|
334 |
+
assumes "dip \<in> kD rt"
|
335 |
+
shows "kD (the (addpreRT rt dip npre)) = kD rt"
|
336 |
+
unfolding kD_def addpreRT_def
|
337 |
+
using assms [THEN kD_Some]
|
338 |
+
by clarsimp blast
|
339 |
+
|
340 |
+
lemma vD_addpreRT [simp]:
|
341 |
+
fixes rt dip npre
|
342 |
+
assumes "dip \<in> kD rt"
|
343 |
+
shows "vD (the (addpreRT rt dip npre)) = vD rt"
|
344 |
+
unfolding vD_def addpreRT_def
|
345 |
+
using assms [THEN kD_Some] by clarsimp auto
|
346 |
+
|
347 |
+
lemma iD_addpreRT [simp]:
|
348 |
+
fixes rt dip npre
|
349 |
+
assumes "dip \<in> kD rt"
|
350 |
+
shows "iD (the (addpreRT rt dip npre)) = iD rt"
|
351 |
+
unfolding iD_def addpreRT_def
|
352 |
+
using assms [THEN kD_Some] by clarsimp auto
|
353 |
+
|
354 |
+
lemma nhop_addpreRT [simp]:
|
355 |
+
fixes rt pre ip dip
|
356 |
+
assumes "dip \<in> kD rt"
|
357 |
+
shows "nhop (the (addpreRT rt dip pre)) ip = nhop rt ip"
|
358 |
+
unfolding sqn_def addpreRT_def
|
359 |
+
using assms [THEN kD_Some] by (clarsimp)
|
360 |
+
|
361 |
+
lemma sqn_addpreRT [simp]:
|
362 |
+
fixes rt pre ip dip
|
363 |
+
assumes "dip \<in> kD rt"
|
364 |
+
shows "sqn (the (addpreRT rt dip pre)) ip = sqn rt ip"
|
365 |
+
unfolding sqn_def addpreRT_def
|
366 |
+
using assms [THEN kD_Some] by (clarsimp)
|
367 |
+
|
368 |
+
lemma dhops_addpreRT [simp]:
|
369 |
+
fixes rt pre ip dip
|
370 |
+
assumes "dip \<in> kD rt"
|
371 |
+
shows "dhops (the (addpreRT rt dip pre)) ip = dhops rt ip"
|
372 |
+
unfolding addpreRT_def
|
373 |
+
using assms [THEN kD_Some] by (clarsimp)
|
374 |
+
|
375 |
+
lemma sqnf_addpreRT [simp]:
|
376 |
+
"\<And>ip dip. ip\<in>kD(rt \<xi>) \<Longrightarrow> sqnf (the (addpreRT (rt \<xi>) ip npre)) dip = sqnf (rt \<xi>) dip"
|
377 |
+
unfolding sqnf_def addpreRT_def by auto
|
378 |
+
|
379 |
+
subsubsection "Updating route entries"
|
380 |
+
|
381 |
+
lemma in_kD_case [simp]:
|
382 |
+
fixes dip rt
|
383 |
+
assumes "dip \<in> kD(rt)"
|
384 |
+
shows "(case rt dip of None \<Rightarrow> en | Some r \<Rightarrow> es r) = es (the (rt dip))"
|
385 |
+
using assms [THEN kD_Some] by auto
|
386 |
+
|
387 |
+
lemma not_in_kD_case [simp]:
|
388 |
+
fixes dip rt
|
389 |
+
assumes "dip \<notin> kD(rt)"
|
390 |
+
shows "(case rt dip of None \<Rightarrow> en | Some r \<Rightarrow> es r) = en"
|
391 |
+
using assms [THEN kD_None] by auto
|
392 |
+
|
393 |
+
lemma rt_Some_sqn [dest]:
|
394 |
+
fixes rt and ip dsn dsk flag hops nhip pre
|
395 |
+
assumes "rt ip = Some (dsn, dsk, flag, hops, nhip, pre)"
|
396 |
+
shows "sqn rt ip = dsn"
|
397 |
+
unfolding sqn_def using assms by simp
|
398 |
+
|
399 |
+
lemma not_kD_sqn [simp]:
|
400 |
+
fixes dip rt
|
401 |
+
assumes "dip \<notin> kD(rt)"
|
402 |
+
shows "sqn rt dip = 0"
|
403 |
+
using assms unfolding sqn_def
|
404 |
+
by simp
|
405 |
+
|
406 |
+
definition update_arg_wf :: "r \<Rightarrow> bool"
|
407 |
+
where "update_arg_wf r \<equiv> \<pi>\<^sub>4(r) = val \<and>
|
408 |
+
(\<pi>\<^sub>2(r) = 0) = (\<pi>\<^sub>3(r) = unk) \<and>
|
409 |
+
(\<pi>\<^sub>3(r) = unk \<longrightarrow> \<pi>\<^sub>5(r) = 1)"
|
410 |
+
|
411 |
+
lemma update_arg_wf_gives_cases:
|
412 |
+
"\<And>r. update_arg_wf r \<Longrightarrow> (\<pi>\<^sub>2(r) = 0) = (\<pi>\<^sub>3(r) = unk)"
|
413 |
+
unfolding update_arg_wf_def by simp
|
414 |
+
|
415 |
+
lemma update_arg_wf_tuples [simp]:
|
416 |
+
"\<And>nhip pre. update_arg_wf (0, unk, val, Suc 0, nhip, pre)"
|
417 |
+
"\<And>n hops nhip pre. update_arg_wf (Suc n, kno, val, hops, nhip, pre)"
|
418 |
+
unfolding update_arg_wf_def by auto
|
419 |
+
|
420 |
+
lemma update_arg_wf_tuples' [elim]:
|
421 |
+
"\<And>n hops nhip pre. Suc 0 \<le> n \<Longrightarrow> update_arg_wf (n, kno, val, hops, nhip, pre)"
|
422 |
+
unfolding update_arg_wf_def by auto
|
423 |
+
|
424 |
+
lemma wf_r_cases [intro]:
|
425 |
+
fixes P r
|
426 |
+
assumes "update_arg_wf r"
|
427 |
+
and c1: "\<And>nhip pre. P (0, unk, val, Suc 0, nhip, pre)"
|
428 |
+
and c2: "\<And>dsn hops nhip pre. dsn > 0 \<Longrightarrow> P (dsn, kno, val, hops, nhip, pre)"
|
429 |
+
shows "P r"
|
430 |
+
proof -
|
431 |
+
obtain dsn dsk flag hops nhip pre
|
432 |
+
where *: "r = (dsn, dsk, flag, hops, nhip, pre)" by (cases r)
|
433 |
+
with \<open>update_arg_wf r\<close> have wf1: "flag = val"
|
434 |
+
and wf2: "(dsn = 0) = (dsk = unk)"
|
435 |
+
and wf3: "dsk = unk \<longrightarrow> (hops = 1)"
|
436 |
+
unfolding update_arg_wf_def by auto
|
437 |
+
have "P (dsn, dsk, flag, hops, nhip, pre)"
|
438 |
+
proof (cases dsk)
|
439 |
+
assume "dsk = unk"
|
440 |
+
moreover with wf2 wf3 have "dsn = 0" and "hops = Suc 0" by auto
|
441 |
+
ultimately show ?thesis using \<open>flag = val\<close> by simp (rule c1)
|
442 |
+
next
|
443 |
+
assume "dsk = kno"
|
444 |
+
moreover with wf2 have "dsn > 0" by simp
|
445 |
+
ultimately show ?thesis using \<open>flag = val\<close> by simp (rule c2)
|
446 |
+
qed
|
447 |
+
with * show "P r" by simp
|
448 |
+
qed
|
449 |
+
|
450 |
+
definition update :: "rt \<Rightarrow> ip \<Rightarrow> r \<Rightarrow> rt"
|
451 |
+
where
|
452 |
+
"update rt ip r \<equiv>
|
453 |
+
case \<sigma>\<^bsub>route\<^esub>(rt, ip) of
|
454 |
+
None \<Rightarrow> rt (ip \<mapsto> r)
|
455 |
+
| Some s \<Rightarrow>
|
456 |
+
if \<pi>\<^sub>2(s) < \<pi>\<^sub>2(r) then rt (ip \<mapsto> addpre r (\<pi>\<^sub>7(s)))
|
457 |
+
else if \<pi>\<^sub>2(s) = \<pi>\<^sub>2(r) \<and> (\<pi>\<^sub>5(s) > \<pi>\<^sub>5(r) \<or> \<pi>\<^sub>4(s) = inv)
|
458 |
+
then rt (ip \<mapsto> addpre r (\<pi>\<^sub>7(s)))
|
459 |
+
else if \<pi>\<^sub>3(r) = unk
|
460 |
+
then rt (ip \<mapsto> (\<pi>\<^sub>2(s), snd (addpre r (\<pi>\<^sub>7(s)))))
|
461 |
+
else rt (ip \<mapsto> addpre s (\<pi>\<^sub>7(r)))"
|
462 |
+
|
463 |
+
lemma update_simps [simp]:
|
464 |
+
fixes r s nrt nr nr' ns rt ip
|
465 |
+
defines "s \<equiv> the \<sigma>\<^bsub>route\<^esub>(rt, ip)"
|
466 |
+
and "nr \<equiv> addpre r (\<pi>\<^sub>7(s))"
|
467 |
+
and "nr' \<equiv> (\<pi>\<^sub>2(s), \<pi>\<^sub>3(nr), \<pi>\<^sub>4(nr), \<pi>\<^sub>5(nr), \<pi>\<^sub>6(nr), \<pi>\<^sub>7(nr))"
|
468 |
+
and "ns \<equiv> addpre s (\<pi>\<^sub>7(r))"
|
469 |
+
shows
|
470 |
+
"\<lbrakk>ip \<notin> kD(rt)\<rbrakk> \<Longrightarrow> update rt ip r = rt (ip \<mapsto> r)"
|
471 |
+
"\<lbrakk>ip \<in> kD(rt); sqn rt ip < \<pi>\<^sub>2(r)\<rbrakk> \<Longrightarrow> update rt ip r = rt (ip \<mapsto> nr)"
|
472 |
+
"\<lbrakk>ip \<in> kD(rt); sqn rt ip = \<pi>\<^sub>2(r);
|
473 |
+
the (dhops rt ip) > \<pi>\<^sub>5(r)\<rbrakk> \<Longrightarrow> update rt ip r = rt (ip \<mapsto> nr)"
|
474 |
+
"\<lbrakk>ip \<in> kD(rt); sqn rt ip = \<pi>\<^sub>2(r);
|
475 |
+
flag rt ip = Some inv\<rbrakk> \<Longrightarrow> update rt ip r = rt (ip \<mapsto> nr)"
|
476 |
+
"\<lbrakk>ip \<in> kD(rt); \<pi>\<^sub>3(r) = unk; (\<pi>\<^sub>2(r) = 0) = (\<pi>\<^sub>3(r) = unk)\<rbrakk> \<Longrightarrow> update rt ip r = rt (ip \<mapsto> nr')"
|
477 |
+
"\<lbrakk>ip \<in> kD(rt); sqn rt ip \<ge> \<pi>\<^sub>2(r); \<pi>\<^sub>3(r) = kno;
|
478 |
+
sqn rt ip = \<pi>\<^sub>2(r) \<Longrightarrow> the (dhops rt ip) \<le> \<pi>\<^sub>5(r) \<and> the (flag rt ip) = val \<rbrakk>
|
479 |
+
\<Longrightarrow> update rt ip r = rt (ip \<mapsto> ns)"
|
480 |
+
proof -
|
481 |
+
assume "ip\<notin>kD(rt)"
|
482 |
+
hence "\<sigma>\<^bsub>route\<^esub>(rt, ip) = None" ..
|
483 |
+
thus "update rt ip r = rt (ip \<mapsto> r)"
|
484 |
+
unfolding update_def by simp
|
485 |
+
next
|
486 |
+
assume "ip \<in> kD(rt)"
|
487 |
+
and "sqn rt ip < \<pi>\<^sub>2(r)"
|
488 |
+
from this(1) obtain dsn dsk fl hops nhip pre
|
489 |
+
where "rt ip = Some (dsn, dsk, fl, hops, nhip, pre)"
|
490 |
+
by (metis kD_Some)
|
491 |
+
with \<open>sqn rt ip < \<pi>\<^sub>2(r)\<close> show "update rt ip r = rt (ip \<mapsto> nr)"
|
492 |
+
unfolding update_def nr_def s_def by auto
|
493 |
+
next
|
494 |
+
assume "ip \<in> kD(rt)"
|
495 |
+
and "sqn rt ip = \<pi>\<^sub>2(r)"
|
496 |
+
and "the (dhops rt ip) > \<pi>\<^sub>5(r)"
|
497 |
+
from this(1) obtain dsn dsk fl hops nhip pre
|
498 |
+
where "rt ip = Some (dsn, dsk, fl, hops, nhip, pre)"
|
499 |
+
by (metis kD_Some)
|
500 |
+
with \<open>sqn rt ip = \<pi>\<^sub>2(r)\<close> and \<open>the (dhops rt ip) > \<pi>\<^sub>5(r)\<close>
|
501 |
+
show "update rt ip r = rt (ip \<mapsto> nr)"
|
502 |
+
unfolding update_def nr_def s_def by auto
|
503 |
+
next
|
504 |
+
assume "ip \<in> kD(rt)"
|
505 |
+
and "sqn rt ip = \<pi>\<^sub>2(r)"
|
506 |
+
and "flag rt ip = Some inv"
|
507 |
+
from this(1) obtain dsn dsk fl hops nhip pre
|
508 |
+
where "rt ip = Some (dsn, dsk, fl, hops, nhip, pre)"
|
509 |
+
by (metis kD_Some)
|
510 |
+
with \<open>sqn rt ip = \<pi>\<^sub>2(r)\<close> and \<open>flag rt ip = Some inv\<close>
|
511 |
+
show "update rt ip r = rt (ip \<mapsto> nr)"
|
512 |
+
unfolding update_def nr_def s_def by auto
|
513 |
+
next
|
514 |
+
assume "ip \<in> kD(rt)"
|
515 |
+
and "\<pi>\<^sub>3(r) = unk"
|
516 |
+
and "(\<pi>\<^sub>2(r) = 0) = (\<pi>\<^sub>3(r) = unk)"
|
517 |
+
from this(1) obtain dsn dsk fl hops nhip pre
|
518 |
+
where "rt ip = Some (dsn, dsk, fl, hops, nhip, pre)"
|
519 |
+
by (metis kD_Some)
|
520 |
+
with \<open>(\<pi>\<^sub>2(r) = 0) = (\<pi>\<^sub>3(r) = unk)\<close> and \<open>\<pi>\<^sub>3(r) = unk\<close>
|
521 |
+
show "update rt ip r = rt (ip \<mapsto> nr')"
|
522 |
+
unfolding update_def nr'_def nr_def s_def
|
523 |
+
by (cases r) simp
|
524 |
+
next
|
525 |
+
assume "ip \<in> kD(rt)"
|
526 |
+
and otherassms: "sqn rt ip \<ge> \<pi>\<^sub>2(r)"
|
527 |
+
"\<pi>\<^sub>3(r) = kno"
|
528 |
+
"sqn rt ip = \<pi>\<^sub>2(r) \<Longrightarrow> the (dhops rt ip) \<le> \<pi>\<^sub>5(r) \<and> the (flag rt ip) = val"
|
529 |
+
from this(1) obtain dsn dsk fl hops nhip pre
|
530 |
+
where "rt ip = Some (dsn, dsk, fl, hops, nhip, pre)"
|
531 |
+
by (metis kD_Some)
|
532 |
+
with otherassms show "update rt ip r = rt (ip \<mapsto> ns)"
|
533 |
+
unfolding update_def ns_def s_def by auto
|
534 |
+
qed
|
535 |
+
|
536 |
+
lemma update_cases [elim]:
|
537 |
+
assumes "(\<pi>\<^sub>2(r) = 0) = (\<pi>\<^sub>3(r) = unk)"
|
538 |
+
and c1: "\<lbrakk>ip \<notin> kD(rt)\<rbrakk> \<Longrightarrow> P (rt (ip \<mapsto> r))"
|
539 |
+
|
540 |
+
and c2: "\<lbrakk>ip \<in> kD(rt); sqn rt ip < \<pi>\<^sub>2(r)\<rbrakk>
|
541 |
+
\<Longrightarrow> P (rt (ip \<mapsto> addpre r (\<pi>\<^sub>7(the \<sigma>\<^bsub>route\<^esub>(rt, ip)))))"
|
542 |
+
and c3: "\<lbrakk>ip \<in> kD(rt); sqn rt ip = \<pi>\<^sub>2(r); the (dhops rt ip) > \<pi>\<^sub>5(r)\<rbrakk>
|
543 |
+
\<Longrightarrow> P (rt (ip \<mapsto> addpre r (\<pi>\<^sub>7(the \<sigma>\<^bsub>route\<^esub>(rt, ip)))))"
|
544 |
+
and c4: "\<lbrakk>ip \<in> kD(rt); sqn rt ip = \<pi>\<^sub>2(r); the (flag rt ip) = inv\<rbrakk>
|
545 |
+
\<Longrightarrow> P (rt (ip \<mapsto> addpre r (\<pi>\<^sub>7(the \<sigma>\<^bsub>route\<^esub>(rt, ip)))))"
|
546 |
+
and c5: "\<lbrakk>ip \<in> kD(rt); \<pi>\<^sub>3(r) = unk\<rbrakk>
|
547 |
+
\<Longrightarrow> P (rt (ip \<mapsto> (\<pi>\<^sub>2(the \<sigma>\<^bsub>route\<^esub>(rt, ip)), \<pi>\<^sub>3(r),
|
548 |
+
\<pi>\<^sub>4(r), \<pi>\<^sub>5(r), \<pi>\<^sub>6(r), \<pi>\<^sub>7(addpre r (\<pi>\<^sub>7(the \<sigma>\<^bsub>route\<^esub>(rt, ip)))))))"
|
549 |
+
and c6: "\<lbrakk>ip \<in> kD(rt); sqn rt ip \<ge> \<pi>\<^sub>2(r); \<pi>\<^sub>3(r) = kno;
|
550 |
+
sqn rt ip = \<pi>\<^sub>2(r) \<Longrightarrow> the (dhops rt ip) \<le> \<pi>\<^sub>5(r) \<and> the (flag rt ip) = val\<rbrakk>
|
551 |
+
\<Longrightarrow> P (rt (ip \<mapsto> addpre (the \<sigma>\<^bsub>route\<^esub>(rt, ip)) (\<pi>\<^sub>7(r))))"
|
552 |
+
shows "(P (update rt ip r))"
|
553 |
+
proof (cases "ip \<in> kD(rt)")
|
554 |
+
assume "ip \<notin> kD(rt)"
|
555 |
+
with c1 show ?thesis
|
556 |
+
by simp
|
557 |
+
next
|
558 |
+
assume "ip \<in> kD(rt)"
|
559 |
+
moreover then obtain dsn dsk fl hops nhip pre
|
560 |
+
where rteq: "rt ip = Some (dsn, dsk, fl, hops, nhip, pre)"
|
561 |
+
by (metis kD_Some)
|
562 |
+
moreover obtain dsn' dsk' fl' hops' nhip' pre'
|
563 |
+
where req: "r = (dsn', dsk', fl', hops', nhip', pre')"
|
564 |
+
by (cases r) metis
|
565 |
+
ultimately show ?thesis
|
566 |
+
using \<open>(\<pi>\<^sub>2(r) = 0) = (\<pi>\<^sub>3(r) = unk)\<close>
|
567 |
+
c2 [OF \<open>ip\<in>kD(rt)\<close>]
|
568 |
+
c3 [OF \<open>ip\<in>kD(rt)\<close>]
|
569 |
+
c4 [OF \<open>ip\<in>kD(rt)\<close>]
|
570 |
+
c5 [OF \<open>ip\<in>kD(rt)\<close>]
|
571 |
+
c6 [OF \<open>ip\<in>kD(rt)\<close>]
|
572 |
+
unfolding update_def sqn_def by auto
|
573 |
+
qed
|
574 |
+
|
575 |
+
lemma update_cases_kD:
|
576 |
+
assumes "(\<pi>\<^sub>2(r) = 0) = (\<pi>\<^sub>3(r) = unk)"
|
577 |
+
and "ip \<in> kD(rt)"
|
578 |
+
and c2: "sqn rt ip < \<pi>\<^sub>2(r) \<Longrightarrow> P (rt (ip \<mapsto> addpre r (\<pi>\<^sub>7(the \<sigma>\<^bsub>route\<^esub>(rt, ip)))))"
|
579 |
+
and c3: "\<lbrakk>sqn rt ip = \<pi>\<^sub>2(r); the (dhops rt ip) > \<pi>\<^sub>5(r)\<rbrakk>
|
580 |
+
\<Longrightarrow> P (rt (ip \<mapsto> addpre r (\<pi>\<^sub>7(the \<sigma>\<^bsub>route\<^esub>(rt, ip)))))"
|
581 |
+
and c4: "\<lbrakk>sqn rt ip = \<pi>\<^sub>2(r); the (flag rt ip) = inv\<rbrakk>
|
582 |
+
\<Longrightarrow> P (rt (ip \<mapsto> addpre r (\<pi>\<^sub>7(the \<sigma>\<^bsub>route\<^esub>(rt, ip)))))"
|
583 |
+
and c5: "\<pi>\<^sub>3(r) = unk \<Longrightarrow> P (rt (ip \<mapsto> (\<pi>\<^sub>2(the \<sigma>\<^bsub>route\<^esub>(rt, ip)), \<pi>\<^sub>3(r),
|
584 |
+
\<pi>\<^sub>4(r), \<pi>\<^sub>5(r), \<pi>\<^sub>6(r),
|
585 |
+
\<pi>\<^sub>7(addpre r (\<pi>\<^sub>7(the \<sigma>\<^bsub>route\<^esub>(rt, ip)))))))"
|
586 |
+
and c6: "\<lbrakk>sqn rt ip \<ge> \<pi>\<^sub>2(r); \<pi>\<^sub>3(r) = kno;
|
587 |
+
sqn rt ip = \<pi>\<^sub>2(r) \<Longrightarrow> the (dhops rt ip) \<le> \<pi>\<^sub>5(r) \<and> the (flag rt ip) = val\<rbrakk>
|
588 |
+
\<Longrightarrow> P (rt (ip \<mapsto> addpre (the \<sigma>\<^bsub>route\<^esub>(rt, ip)) (\<pi>\<^sub>7(r))))"
|
589 |
+
shows "(P (update rt ip r))"
|
590 |
+
using assms(1) proof (rule update_cases)
|
591 |
+
assume "sqn rt ip < \<pi>\<^sub>2(r)"
|
592 |
+
thus "P (rt(ip \<mapsto> addpre r (\<pi>\<^sub>7(the (rt ip)))))" by (rule c2)
|
593 |
+
next
|
594 |
+
assume "sqn rt ip = \<pi>\<^sub>2(r)"
|
595 |
+
and "the (dhops rt ip) > \<pi>\<^sub>5(r)"
|
596 |
+
thus "P (rt(ip \<mapsto> addpre r (\<pi>\<^sub>7 (the (rt ip)))))"
|
597 |
+
by (rule c3)
|
598 |
+
next
|
599 |
+
assume "sqn rt ip = \<pi>\<^sub>2(r)"
|
600 |
+
and "the (flag rt ip) = inv"
|
601 |
+
thus "P (rt(ip \<mapsto> addpre r (\<pi>\<^sub>7 (the (rt ip)))))"
|
602 |
+
by (rule c4)
|
603 |
+
next
|
604 |
+
assume "\<pi>\<^sub>3(r) = unk"
|
605 |
+
thus "P (rt (ip \<mapsto> (\<pi>\<^sub>2(the \<sigma>\<^bsub>route\<^esub>(rt, ip)), \<pi>\<^sub>3(r), \<pi>\<^sub>4(r), \<pi>\<^sub>5(r), \<pi>\<^sub>6(r),
|
606 |
+
\<pi>\<^sub>7(addpre r (\<pi>\<^sub>7(the (rt ip)))))))"
|
607 |
+
by (rule c5)
|
608 |
+
next
|
609 |
+
assume "sqn rt ip \<ge> \<pi>\<^sub>2(r)"
|
610 |
+
and "\<pi>\<^sub>3(r) = kno"
|
611 |
+
and "sqn rt ip = \<pi>\<^sub>2(r) \<Longrightarrow> the (dhops rt ip) \<le> \<pi>\<^sub>5(r) \<and> the (flag rt ip) = val"
|
612 |
+
thus "P (rt (ip \<mapsto> addpre (the (rt ip)) (\<pi>\<^sub>7(r))))"
|
613 |
+
by (rule c6)
|
614 |
+
qed (simp add: \<open>ip \<in> kD(rt)\<close>)
|
615 |
+
|
616 |
+
lemma in_kD_after_update [simp]:
|
617 |
+
fixes rt nip dsn dsk flag hops nhip pre
|
618 |
+
shows "kD (update rt nip (dsn, dsk, flag, hops, nhip, pre)) = insert nip (kD rt)"
|
619 |
+
unfolding update_def
|
620 |
+
by (cases "rt nip") auto
|
621 |
+
|
622 |
+
lemma nhop_of_update [simp]:
|
623 |
+
fixes rt dip dsn dsk flag hops nhip
|
624 |
+
assumes "rt \<noteq> update rt dip (dsn, dsk, flag, hops, nhip, {})"
|
625 |
+
shows "the (nhop (update rt dip (dsn, dsk, flag, hops, nhip, {})) dip) = nhip"
|
626 |
+
proof -
|
627 |
+
from assms
|
628 |
+
have update_neq: "\<And>v. rt dip = Some v \<Longrightarrow>
|
629 |
+
update rt dip (dsn, dsk, flag, hops, nhip, {})
|
630 |
+
\<noteq> rt(dip \<mapsto> addpre (the (rt dip)) (\<pi>\<^sub>7 (dsn, dsk, flag, hops, nhip, {})))"
|
631 |
+
by auto
|
632 |
+
show ?thesis
|
633 |
+
proof (cases "rt dip = None")
|
634 |
+
assume "rt dip = None"
|
635 |
+
thus "?thesis" unfolding update_def by clarsimp
|
636 |
+
next
|
637 |
+
assume "rt dip \<noteq> None"
|
638 |
+
then obtain v where "rt dip = Some v" by (metis not_None_eq)
|
639 |
+
with update_neq [OF this] show ?thesis
|
640 |
+
unfolding update_def by auto
|
641 |
+
qed
|
642 |
+
qed
|
643 |
+
|
644 |
+
lemma sqn_if_updated:
|
645 |
+
fixes rip v rt ip
|
646 |
+
shows "sqn (\<lambda>x. if x = rip then Some v else rt x) ip
|
647 |
+
= (if ip = rip then \<pi>\<^sub>2(v) else sqn rt ip)"
|
648 |
+
unfolding sqn_def by simp
|
649 |
+
|
650 |
+
lemma update_sqn [simp]:
|
651 |
+
fixes rt dip rip dsn dsk hops nhip pre
|
652 |
+
assumes "(dsn = 0) = (dsk = unk)"
|
653 |
+
shows "sqn rt dip \<le> sqn (update rt rip (dsn, dsk, val, hops, nhip, pre)) dip"
|
654 |
+
proof (rule update_cases)
|
655 |
+
show "(\<pi>\<^sub>2 (dsn, dsk, val, hops, nhip, pre) = 0) = (\<pi>\<^sub>3 (dsn, dsk, val, hops, nhip, pre) = unk)"
|
656 |
+
by simp (rule assms)
|
657 |
+
qed (clarsimp simp: sqn_if_updated sqn_def)+
|
658 |
+
|
659 |
+
lemma sqn_update_bigger [simp]:
|
660 |
+
fixes rt ip ip' dsn dsk flag hops nhip pre
|
661 |
+
assumes "1 \<le> hops"
|
662 |
+
shows "sqn rt ip \<le> sqn (update rt ip' (dsn, dsk, flag, hops, nhip, pre)) ip"
|
663 |
+
using assms unfolding update_def sqn_def
|
664 |
+
by (clarsimp split: option.split) auto
|
665 |
+
|
666 |
+
lemma dhops_update [intro]:
|
667 |
+
fixes rt dsn dsk flag hops ip rip nhip pre
|
668 |
+
assumes ex: "\<forall>ip\<in>kD rt. the (dhops rt ip) \<ge> 1"
|
669 |
+
and ip: "(ip = rip \<and> Suc 0 \<le> hops) \<or> (ip \<noteq> rip \<and> ip\<in>kD rt)"
|
670 |
+
shows "Suc 0 \<le> the (dhops (update rt rip (dsn, dsk, flag, hops, nhip, pre)) ip)"
|
671 |
+
using ip proof
|
672 |
+
assume "ip = rip \<and> Suc 0 \<le> hops" thus ?thesis
|
673 |
+
unfolding update_def using ex
|
674 |
+
by (cases "rip \<in> kD rt") (drule(1) bspec, auto)
|
675 |
+
next
|
676 |
+
assume "ip \<noteq> rip \<and> ip\<in>kD rt" thus ?thesis
|
677 |
+
using ex unfolding update_def
|
678 |
+
by (cases "rip\<in>kD rt") auto
|
679 |
+
qed
|
680 |
+
|
681 |
+
lemma update_another [simp]:
|
682 |
+
fixes dip ip rt dsn dsk flag hops nhip pre
|
683 |
+
assumes "ip \<noteq> dip"
|
684 |
+
shows "(update rt dip (dsn, dsk, flag, hops, nhip, pre)) ip = rt ip"
|
685 |
+
using assms unfolding update_def
|
686 |
+
by (clarsimp split: option.split)
|
687 |
+
|
688 |
+
lemma nhop_update_another [simp]:
|
689 |
+
fixes dip ip rt dsn dsk flag hops nhip pre
|
690 |
+
assumes "ip \<noteq> dip"
|
691 |
+
shows "nhop (update rt dip (dsn, dsk, flag, hops, nhip, pre)) ip = nhop rt ip"
|
692 |
+
using assms unfolding update_def
|
693 |
+
by (clarsimp split: option.split)
|
694 |
+
|
695 |
+
lemma dhops_update_another [simp]:
|
696 |
+
fixes dip ip rt dsn dsk flag hops nhip pre
|
697 |
+
assumes "ip \<noteq> dip"
|
698 |
+
shows "dhops (update rt dip (dsn, dsk, flag, hops, nhip, pre)) ip = dhops rt ip"
|
699 |
+
using assms unfolding update_def
|
700 |
+
by (clarsimp split: option.split)
|
701 |
+
|
702 |
+
lemma sqn_update_same [simp]:
|
703 |
+
"\<And>rt ip dsn dsk flag hops nhip pre. sqn (rt(ip \<mapsto> v)) ip = \<pi>\<^sub>2(v)"
|
704 |
+
unfolding sqn_def by simp
|
705 |
+
|
706 |
+
lemma dhops_update_changed [simp]:
|
707 |
+
fixes rt dip osn hops nhip
|
708 |
+
assumes "rt \<noteq> update rt dip (osn, kno, val, hops, nhip, {})"
|
709 |
+
shows "the (dhops (update rt dip (osn, kno, val, hops, nhip, {})) dip) = hops"
|
710 |
+
using assms unfolding update_def
|
711 |
+
by (clarsimp split: option.split_asm option.split if_split_asm) auto
|
712 |
+
|
713 |
+
lemma nhop_update_unk_val [simp]:
|
714 |
+
"\<And>rt dip ip dsn hops npre.
|
715 |
+
the (nhop (update rt dip (dsn, unk, val, hops, ip, npre)) dip) = ip"
|
716 |
+
unfolding update_def by (clarsimp split: option.split)
|
717 |
+
|
718 |
+
lemma nhop_update_changed [simp]:
|
719 |
+
fixes rt dip dsn dsk flg hops sip
|
720 |
+
assumes "update rt dip (dsn, dsk, flg, hops, sip, {}) \<noteq> rt"
|
721 |
+
shows "the (nhop (update rt dip (dsn, dsk, flg, hops, sip, {})) dip) = sip"
|
722 |
+
using assms unfolding update_def
|
723 |
+
by (clarsimp split: option.splits if_split_asm) auto
|
724 |
+
|
725 |
+
lemma update_rt_split_asm:
|
726 |
+
"\<And>rt ip dsn dsk flag hops sip.
|
727 |
+
P (update rt ip (dsn, dsk, flag, hops, sip, {}))
|
728 |
+
=
|
729 |
+
(\<not>(rt = update rt ip (dsn, dsk, flag, hops, sip, {}) \<and> \<not>P rt
|
730 |
+
\<or> rt \<noteq> update rt ip (dsn, dsk, flag, hops, sip, {})
|
731 |
+
\<and> \<not>P (update rt ip (dsn, dsk, flag, hops, sip, {}))))"
|
732 |
+
by auto
|
733 |
+
|
734 |
+
lemma sqn_update [simp]: "\<And>rt dip dsn flg hops sip.
|
735 |
+
rt \<noteq> update rt dip (dsn, kno, flg, hops, sip, {})
|
736 |
+
\<Longrightarrow> sqn (update rt dip (dsn, kno, flg, hops, sip, {})) dip = dsn"
|
737 |
+
unfolding update_def by (clarsimp split: option.split if_split_asm) auto
|
738 |
+
|
739 |
+
lemma sqnf_update [simp]: "\<And>rt dip dsn dsk flg hops sip.
|
740 |
+
rt \<noteq> update rt dip (dsn, dsk, flg, hops, sip, {})
|
741 |
+
\<Longrightarrow> sqnf (update rt dip (dsn, dsk, flg, hops, sip, {})) dip = dsk"
|
742 |
+
unfolding update_def sqnf_def
|
743 |
+
by (clarsimp split: option.splits if_split_asm) auto
|
744 |
+
|
745 |
+
lemma update_kno_dsn_greater_zero:
|
746 |
+
"\<And>rt dip ip dsn hops npre. 1 \<le> dsn \<Longrightarrow> 1 \<le> (sqn (update rt dip (dsn, kno, val, hops, ip, npre)) dip)"
|
747 |
+
unfolding update_def
|
748 |
+
by (clarsimp split: option.splits)
|
749 |
+
|
750 |
+
lemma proj3_update [simp]: "\<And>rt dip dsn dsk flg hops sip.
|
751 |
+
rt \<noteq> update rt dip (dsn, dsk, flg, hops, sip, {})
|
752 |
+
\<Longrightarrow> \<pi>\<^sub>3(the (update rt dip (dsn, dsk, flg, hops, sip, {}) dip)) = dsk"
|
753 |
+
unfolding update_def sqnf_def
|
754 |
+
by (clarsimp split: option.splits if_split_asm) auto
|
755 |
+
|
756 |
+
lemma nhop_update_changed_kno_val [simp]: "\<And>rt ip dsn dsk hops nhip.
|
757 |
+
rt \<noteq> update rt ip (dsn, kno, val, hops, nhip, {})
|
758 |
+
\<Longrightarrow> the (nhop (update rt ip (dsn, kno, val, hops, nhip, {})) ip) = nhip"
|
759 |
+
unfolding update_def
|
760 |
+
by (clarsimp split: option.split_asm option.split if_split_asm) auto
|
761 |
+
|
762 |
+
lemma flag_update [simp]: "\<And>rt dip dsn flg hops sip.
|
763 |
+
rt \<noteq> update rt dip (dsn, kno, flg, hops, sip, {})
|
764 |
+
\<Longrightarrow> the (flag (update rt dip (dsn, kno, flg, hops, sip, {})) dip) = flg"
|
765 |
+
unfolding update_def
|
766 |
+
by (clarsimp split: option.split if_split_asm) auto
|
767 |
+
|
768 |
+
lemma the_flag_Some [dest!]:
|
769 |
+
fixes ip rt
|
770 |
+
assumes "the (flag rt ip) = x"
|
771 |
+
and "ip \<in> kD rt"
|
772 |
+
shows "flag rt ip = Some x"
|
773 |
+
using assms by auto
|
774 |
+
|
775 |
+
lemma kD_update_unchanged [dest]:
|
776 |
+
fixes rt dip dsn dsk flag hops nhip pre
|
777 |
+
assumes "rt = update rt dip (dsn, dsk, flag, hops, nhip, pre)"
|
778 |
+
shows "dip\<in>kD(rt)"
|
779 |
+
proof -
|
780 |
+
have "dip\<in>kD(update rt dip (dsn, dsk, flag, hops, nhip, pre))" by simp
|
781 |
+
with assms show ?thesis by simp
|
782 |
+
qed
|
783 |
+
|
784 |
+
lemma nhop_update [simp]: "\<And>rt dip dsn dsk flg hops sip.
|
785 |
+
rt \<noteq> update rt dip (dsn, dsk, flg, hops, sip, {})
|
786 |
+
\<Longrightarrow> the (nhop (update rt dip (dsn, dsk, flg, hops, sip, {})) dip) = sip"
|
787 |
+
unfolding update_def sqnf_def
|
788 |
+
by (clarsimp split: option.splits if_split_asm) auto
|
789 |
+
|
790 |
+
lemma sqn_update_another [simp]:
|
791 |
+
fixes dip ip rt dsn dsk flag hops nhip pre
|
792 |
+
assumes "ip \<noteq> dip"
|
793 |
+
shows "sqn (update rt dip (dsn, dsk, flag, hops, nhip, pre)) ip = sqn rt ip"
|
794 |
+
using assms unfolding update_def sqn_def
|
795 |
+
by (clarsimp split: option.splits) auto
|
796 |
+
|
797 |
+
lemma sqnf_update_another [simp]:
|
798 |
+
fixes dip ip rt dsn dsk flag hops nhip pre
|
799 |
+
assumes "ip \<noteq> dip"
|
800 |
+
shows "sqnf (update rt dip (dsn, dsk, flag, hops, nhip, pre)) ip = sqnf rt ip"
|
801 |
+
using assms unfolding update_def sqnf_def
|
802 |
+
by (clarsimp split: option.splits) auto
|
803 |
+
|
804 |
+
lemma vD_update_val [dest]:
|
805 |
+
"\<And>dip rt dip' dsn dsk hops nhip pre.
|
806 |
+
dip \<in> vD(update rt dip' (dsn, dsk, val, hops, nhip, pre)) \<Longrightarrow> (dip\<in>vD(rt) \<or> dip=dip')"
|
807 |
+
unfolding update_def vD_def by (clarsimp split: option.split_asm if_split_asm)
|
808 |
+
|
809 |
+
subsubsection "Invalidating route entries"
|
810 |
+
|
811 |
+
definition invalidate :: "rt \<Rightarrow> (ip \<rightharpoonup> sqn) \<Rightarrow> rt"
|
812 |
+
where "invalidate rt dests \<equiv>
|
813 |
+
\<lambda>ip. case (rt ip, dests ip) of
|
814 |
+
(None, _) \<Rightarrow> None
|
815 |
+
| (Some s, None) \<Rightarrow> Some s
|
816 |
+
| (Some (_, dsk, _, hops, nhip, pre), Some rsn) \<Rightarrow>
|
817 |
+
Some (rsn, dsk, inv, hops, nhip, pre)"
|
818 |
+
|
819 |
+
lemma proj3_invalidate [simp]:
|
820 |
+
"\<And>dip. \<pi>\<^sub>3(the ((invalidate rt dests) dip)) = \<pi>\<^sub>3(the (rt dip))"
|
821 |
+
unfolding invalidate_def by (clarsimp split: option.split)
|
822 |
+
|
823 |
+
lemma proj5_invalidate [simp]:
|
824 |
+
"\<And>dip. \<pi>\<^sub>5(the ((invalidate rt dests) dip)) = \<pi>\<^sub>5(the (rt dip))"
|
825 |
+
unfolding invalidate_def by (clarsimp split: option.split)
|
826 |
+
|
827 |
+
lemma proj6_invalidate [simp]:
|
828 |
+
"\<And>dip. \<pi>\<^sub>6(the ((invalidate rt dests) dip)) = \<pi>\<^sub>6(the (rt dip))"
|
829 |
+
unfolding invalidate_def by (clarsimp split: option.split)
|
830 |
+
|
831 |
+
lemma proj7_invalidate [simp]:
|
832 |
+
"\<And>dip. \<pi>\<^sub>7(the ((invalidate rt dests) dip)) = \<pi>\<^sub>7(the (rt dip))"
|
833 |
+
unfolding invalidate_def by (clarsimp split: option.split)
|
834 |
+
|
835 |
+
lemma invalidate_kD_inv [simp]:
|
836 |
+
"\<And>rt dests. kD (invalidate rt dests) = kD rt"
|
837 |
+
unfolding invalidate_def kD_def
|
838 |
+
by (simp split: option.split)
|
839 |
+
|
840 |
+
lemma invalidate_sqn:
|
841 |
+
fixes rt dip dests
|
842 |
+
assumes "\<forall>rsn. dests dip = Some rsn \<longrightarrow> sqn rt dip \<le> rsn"
|
843 |
+
shows "sqn rt dip \<le> sqn (invalidate rt dests) dip"
|
844 |
+
proof (cases "dip \<notin> kD(rt)")
|
845 |
+
assume "\<not> dip \<notin> kD(rt)"
|
846 |
+
hence "dip\<in>kD(rt)" by simp
|
847 |
+
then obtain dsn dsk flag hops nhip pre where "rt dip = Some (dsn, dsk, flag, hops, nhip, pre)"
|
848 |
+
by (metis kD_Some)
|
849 |
+
with assms show "sqn rt dip \<le> sqn (invalidate rt dests) dip"
|
850 |
+
by (cases "dests dip") (auto simp add: invalidate_def sqn_def)
|
851 |
+
qed simp
|
852 |
+
|
853 |
+
lemma sqn_invalidate_in_dests [simp]:
|
854 |
+
fixes dests ipa rsn rt
|
855 |
+
assumes "dests ipa = Some rsn"
|
856 |
+
and "ipa\<in>kD(rt)"
|
857 |
+
shows "sqn (invalidate rt dests) ipa = rsn"
|
858 |
+
unfolding invalidate_def sqn_def
|
859 |
+
using assms(1) assms(2) [THEN kD_Some]
|
860 |
+
by clarsimp
|
861 |
+
|
862 |
+
lemma dhops_invalidate [simp]:
|
863 |
+
"\<And>dip. the (dhops (invalidate rt dests) dip) = the (dhops rt dip)"
|
864 |
+
unfolding invalidate_def by (clarsimp split: option.split)
|
865 |
+
|
866 |
+
lemma sqnf_invalidate [simp]:
|
867 |
+
"\<And>dip. sqnf (invalidate (rt \<xi>) (dests \<xi>)) dip = sqnf (rt \<xi>) dip"
|
868 |
+
unfolding sqnf_def invalidate_def by (clarsimp split: option.split)
|
869 |
+
|
870 |
+
lemma nhop_invalidate [simp]:
|
871 |
+
"\<And>dip. the (nhop (invalidate (rt \<xi>) (dests \<xi>)) dip) = the (nhop (rt \<xi>) dip)"
|
872 |
+
unfolding invalidate_def by (clarsimp split: option.split)
|
873 |
+
|
874 |
+
lemma invalidate_other [simp]:
|
875 |
+
fixes rt dests dip
|
876 |
+
assumes "dip\<notin>dom(dests)"
|
877 |
+
shows "invalidate rt dests dip = rt dip"
|
878 |
+
using assms unfolding invalidate_def
|
879 |
+
by (clarsimp split: option.split_asm)
|
880 |
+
|
881 |
+
lemma invalidate_none [simp]:
|
882 |
+
fixes rt dests dip
|
883 |
+
assumes "dip\<notin>kD(rt)"
|
884 |
+
shows "invalidate rt dests dip = None"
|
885 |
+
using assms unfolding invalidate_def by clarsimp
|
886 |
+
|
887 |
+
lemma vD_invalidate_vD_not_dests:
|
888 |
+
"\<And>dip rt dests. dip\<in>vD(invalidate rt dests) \<Longrightarrow> dip\<in>vD(rt) \<and> dests dip = None"
|
889 |
+
unfolding invalidate_def vD_def
|
890 |
+
by (clarsimp split: option.split_asm)
|
891 |
+
|
892 |
+
lemma sqn_invalidate_not_in_dests [simp]:
|
893 |
+
fixes dests dip rt
|
894 |
+
assumes "dip\<notin>dom(dests)"
|
895 |
+
shows "sqn (invalidate rt dests) dip = sqn rt dip"
|
896 |
+
using assms unfolding sqn_def by simp
|
897 |
+
|
898 |
+
lemma invalidate_changes:
|
899 |
+
fixes rt dests dip dsn dsk flag hops nhip pre
|
900 |
+
assumes "invalidate rt dests dip = Some (dsn, dsk, flag, hops, nhip, pre)"
|
901 |
+
shows " dsn = (case dests dip of None \<Rightarrow> \<pi>\<^sub>2(the (rt dip)) | Some rsn \<Rightarrow> rsn)
|
902 |
+
\<and> dsk = \<pi>\<^sub>3(the (rt dip))
|
903 |
+
\<and> flag = (if dests dip = None then \<pi>\<^sub>4(the (rt dip)) else inv)
|
904 |
+
\<and> hops = \<pi>\<^sub>5(the (rt dip))
|
905 |
+
\<and> nhip = \<pi>\<^sub>6(the (rt dip))
|
906 |
+
\<and> pre = \<pi>\<^sub>7(the (rt dip))"
|
907 |
+
using assms unfolding invalidate_def
|
908 |
+
by (cases "rt dip", clarsimp, cases "dests dip") auto
|
909 |
+
|
910 |
+
|
911 |
+
lemma proj3_inv: "\<And>dip rt dests. dip\<in>kD (rt)
|
912 |
+
\<Longrightarrow> \<pi>\<^sub>3(the (invalidate rt dests dip)) = \<pi>\<^sub>3(the (rt dip))"
|
913 |
+
by (clarsimp simp: invalidate_def kD_def split: option.split)
|
914 |
+
|
915 |
+
lemma dests_iD_invalidate [simp]:
|
916 |
+
assumes "dests ip = Some rsn"
|
917 |
+
and "ip\<in>kD(rt)"
|
918 |
+
shows "ip\<in>iD(invalidate rt dests)"
|
919 |
+
using assms(1) assms(2) [THEN kD_Some] unfolding invalidate_def iD_def
|
920 |
+
by (clarsimp split: option.split)
|
921 |
+
|
922 |
+
subsection "Route Requests"
|
923 |
+
|
924 |
+
text \<open>Generate a fresh route request identifier.\<close>
|
925 |
+
|
926 |
+
definition nrreqid :: "(ip \<times> rreqid) set \<Rightarrow> ip \<Rightarrow> rreqid"
|
927 |
+
where "nrreqid rreqs ip \<equiv> Max ({n. (ip, n) \<in> rreqs} \<union> {0}) + 1"
|
928 |
+
|
929 |
+
subsection "Queued Packets"
|
930 |
+
|
931 |
+
text \<open>Functions for sending data packets.\<close>
|
932 |
+
|
933 |
+
type_synonym store = "ip \<rightharpoonup> (p \<times> data list)"
|
934 |
+
|
935 |
+
definition sigma_queue :: "store \<Rightarrow> ip \<Rightarrow> data list" ("\<sigma>\<^bsub>queue\<^esub>'(_, _')")
|
936 |
+
where "\<sigma>\<^bsub>queue\<^esub>(store, dip) \<equiv> case store dip of None \<Rightarrow> [] | Some (p, q) \<Rightarrow> q"
|
937 |
+
|
938 |
+
definition qD :: "store \<Rightarrow> ip set"
|
939 |
+
where "qD \<equiv> dom"
|
940 |
+
|
941 |
+
definition add :: "data \<Rightarrow> ip \<Rightarrow> store \<Rightarrow> store"
|
942 |
+
where "add d dip store \<equiv> case store dip of
|
943 |
+
None \<Rightarrow> store (dip \<mapsto> (req, [d]))
|
944 |
+
| Some (p, q) \<Rightarrow> store (dip \<mapsto> (p, q @ [d]))"
|
945 |
+
|
946 |
+
lemma qD_add [simp]:
|
947 |
+
fixes d dip store
|
948 |
+
shows "qD(add d dip store) = insert dip (qD store)"
|
949 |
+
unfolding add_def Let_def qD_def
|
950 |
+
by (clarsimp split: option.split)
|
951 |
+
|
952 |
+
definition drop :: "ip \<Rightarrow> store \<rightharpoonup> store"
|
953 |
+
where "drop dip store \<equiv>
|
954 |
+
map_option (\<lambda>(p, q). if tl q = [] then store (dip := None)
|
955 |
+
else store (dip \<mapsto> (p, tl q))) (store dip)"
|
956 |
+
|
957 |
+
definition sigma_p_flag :: "store \<Rightarrow> ip \<rightharpoonup> p" ("\<sigma>\<^bsub>p-flag\<^esub>'(_, _')")
|
958 |
+
where "\<sigma>\<^bsub>p-flag\<^esub>(store, dip) \<equiv> map_option fst (store dip)"
|
959 |
+
|
960 |
+
definition unsetRRF :: "store \<Rightarrow> ip \<Rightarrow> store"
|
961 |
+
where "unsetRRF store dip \<equiv> case store dip of
|
962 |
+
None \<Rightarrow> store
|
963 |
+
| Some (p, q) \<Rightarrow> store (dip \<mapsto> (noreq, q))"
|
964 |
+
|
965 |
+
definition setRRF :: "store \<Rightarrow> (ip \<rightharpoonup> sqn) \<Rightarrow> store"
|
966 |
+
where "setRRF store dests \<equiv> \<lambda>dip. if dests dip = None then store dip
|
967 |
+
else map_option (\<lambda>(_, q). (req, q)) (store dip)"
|
968 |
+
|
969 |
+
subsection "Comparison with the original technical report"
|
970 |
+
|
971 |
+
text \<open>
|
972 |
+
The major differences with the AODV technical report of Fehnker et al are:
|
973 |
+
\begin{enumerate}
|
974 |
+
\item @{term nhop} is partial, thus a `@{term the}' is needed, similarly for @{term dhops}
|
975 |
+
and @{term addpreRT}.
|
976 |
+
\item @{term precs} is partial.
|
977 |
+
\item @{term "\<sigma>\<^bsub>p-flag\<^esub>(store, dip)"} is partial.
|
978 |
+
\item The routing table (@{typ rt}) is modelled as a map (@{typ "ip \<Rightarrow> r option"})
|
979 |
+
rather than a set of 7-tuples, likewise, the @{typ r} is a 6-tuple rather than
|
980 |
+
a 7-tuple, i.e., the destination ip-address (@{term "dip"}) is taken from the
|
981 |
+
argument to the function, rather than a part of the result. Well-definedness then
|
982 |
+
follows from the structure of the type and more related facts are available
|
983 |
+
automatically, rather than having to be acquired through tedious proofs.
|
984 |
+
\item Similar remarks hold for the dests mapping passed to @{term "invalidate"},
|
985 |
+
and @{term "store"}.
|
986 |
+
\end{enumerate}
|
987 |
+
\<close>
|
988 |
+
|
989 |
+
end
|
990 |
+
|
formal/afp/AODV/Aodv_Loop_Freedom.thy
ADDED
@@ -0,0 +1,369 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
(* Title: Aodv_Loop_Freedom.thy
|
2 |
+
License: BSD 2-Clause. See LICENSE.
|
3 |
+
Author: Timothy Bourke, Inria
|
4 |
+
*)
|
5 |
+
|
6 |
+
section "Lift and transfer invariants to show loop freedom"
|
7 |
+
|
8 |
+
theory Aodv_Loop_Freedom
|
9 |
+
imports AWN.OClosed_Transfer AWN.Qmsg_Lifting Global_Invariants Loop_Freedom
|
10 |
+
begin
|
11 |
+
|
12 |
+
subsection \<open>Lift to parallel processes with queues\<close>
|
13 |
+
|
14 |
+
lemma par_step_no_change_on_send_or_receive:
|
15 |
+
fixes \<sigma> s a \<sigma>' s'
|
16 |
+
assumes "((\<sigma>, s), a, (\<sigma>', s')) \<in> oparp_sos i (oseqp_sos \<Gamma>\<^sub>A\<^sub>O\<^sub>D\<^sub>V i) (seqp_sos \<Gamma>\<^sub>Q\<^sub>M\<^sub>S\<^sub>G)"
|
17 |
+
and "a \<noteq> \<tau>"
|
18 |
+
shows "\<sigma>' i = \<sigma> i"
|
19 |
+
using assms by (rule qmsg_no_change_on_send_or_receive)
|
20 |
+
|
21 |
+
lemma par_nhop_quality_increases:
|
22 |
+
shows "opaodv i \<langle>\<langle>\<^bsub>i\<^esub> qmsg \<Turnstile> (otherwith ((=)) {i} (orecvmsg (\<lambda>\<sigma> m.
|
23 |
+
msg_fresh \<sigma> m \<and> msg_zhops m)),
|
24 |
+
other quality_increases {i} \<rightarrow>)
|
25 |
+
global (\<lambda>\<sigma>. \<forall>dip. let nhip = the (nhop (rt (\<sigma> i)) dip)
|
26 |
+
in dip \<in> vD (rt (\<sigma> i)) \<inter> vD (rt (\<sigma> nhip)) \<and> nhip \<noteq> dip
|
27 |
+
\<longrightarrow> (rt (\<sigma> i)) \<sqsubset>\<^bsub>dip\<^esub> (rt (\<sigma> nhip)))"
|
28 |
+
proof (rule lift_into_qmsg [OF seq_nhop_quality_increases])
|
29 |
+
show "opaodv i \<Turnstile>\<^sub>A (otherwith ((=)) {i}
|
30 |
+
(orecvmsg (\<lambda>\<sigma> m. msg_fresh \<sigma> m \<and> msg_zhops m)),
|
31 |
+
other quality_increases {i} \<rightarrow>)
|
32 |
+
globala (\<lambda>(\<sigma>, _, \<sigma>'). quality_increases (\<sigma> i) (\<sigma>' i))"
|
33 |
+
proof (rule ostep_invariant_weakenE [OF oquality_increases], simp_all)
|
34 |
+
fix t :: "(((nat \<Rightarrow> state) \<times> (state, msg, pseqp, pseqp label) seqp), msg seq_action) transition"
|
35 |
+
assume "onll \<Gamma>\<^sub>A\<^sub>O\<^sub>D\<^sub>V (\<lambda>((\<sigma>, _), _, (\<sigma>', _)). \<forall>j. quality_increases (\<sigma> j) (\<sigma>' j)) t"
|
36 |
+
thus "quality_increases (fst (fst t) i) (fst (snd (snd t)) i)"
|
37 |
+
by (cases t) (clarsimp dest!: onllD, metis aodv_ex_label)
|
38 |
+
next
|
39 |
+
fix \<sigma> \<sigma>' a
|
40 |
+
assume "otherwith ((=)) {i}
|
41 |
+
(orecvmsg (\<lambda>\<sigma> m. msg_fresh \<sigma> m \<and> msg_zhops m)) \<sigma> \<sigma>' a"
|
42 |
+
thus "otherwith quality_increases {i} (orecvmsg (\<lambda>_. rreq_rrep_sn)) \<sigma> \<sigma>' a"
|
43 |
+
by - (erule weaken_otherwith, auto)
|
44 |
+
qed
|
45 |
+
qed auto
|
46 |
+
|
47 |
+
lemma par_rreq_rrep_sn_quality_increases:
|
48 |
+
"opaodv i \<langle>\<langle>\<^bsub>i\<^esub> qmsg \<Turnstile>\<^sub>A (\<lambda>\<sigma> _. orecvmsg (\<lambda>_. rreq_rrep_sn) \<sigma>, other (\<lambda>_ _. True) {i} \<rightarrow>)
|
49 |
+
globala (\<lambda>(\<sigma>, _, \<sigma>'). quality_increases (\<sigma> i) (\<sigma>' i))"
|
50 |
+
proof -
|
51 |
+
have "opaodv i \<Turnstile>\<^sub>A (\<lambda>\<sigma> _. orecvmsg (\<lambda>_. rreq_rrep_sn) \<sigma>, other (\<lambda>_ _. True) {i} \<rightarrow>)
|
52 |
+
globala (\<lambda>(\<sigma>, _, \<sigma>'). quality_increases (\<sigma> i) (\<sigma>' i))"
|
53 |
+
by (rule ostep_invariant_weakenE [OF olocal_quality_increases])
|
54 |
+
(auto dest!: onllD seqllD elim!: aodv_ex_labelE)
|
55 |
+
hence "opaodv i \<langle>\<langle>\<^bsub>i\<^esub> qmsg \<Turnstile>\<^sub>A (\<lambda>\<sigma> _. orecvmsg (\<lambda>_. rreq_rrep_sn) \<sigma>, other (\<lambda>_ _. True) {i} \<rightarrow>)
|
56 |
+
globala (\<lambda>(\<sigma>, _, \<sigma>'). quality_increases (\<sigma> i) (\<sigma>' i))"
|
57 |
+
by (rule lift_step_into_qmsg_statelessassm) simp_all
|
58 |
+
thus ?thesis by rule auto
|
59 |
+
qed
|
60 |
+
|
61 |
+
lemma par_rreq_rrep_nsqn_fresh_any_step:
|
62 |
+
shows "opaodv i \<langle>\<langle>\<^bsub>i\<^esub> qmsg \<Turnstile>\<^sub>A (\<lambda>\<sigma> _. orecvmsg (\<lambda>_. rreq_rrep_sn) \<sigma>,
|
63 |
+
other (\<lambda>_ _. True) {i} \<rightarrow>)
|
64 |
+
globala (\<lambda>(\<sigma>, a, \<sigma>'). anycast (msg_fresh \<sigma>) a)"
|
65 |
+
proof -
|
66 |
+
have "opaodv i \<Turnstile>\<^sub>A (\<lambda>\<sigma> _. (orecvmsg (\<lambda>_. rreq_rrep_sn)) \<sigma>, other (\<lambda>_ _. True) {i} \<rightarrow>)
|
67 |
+
globala (\<lambda>(\<sigma>, a, \<sigma>'). anycast (msg_fresh \<sigma>) a)"
|
68 |
+
proof (rule ostep_invariant_weakenE [OF rreq_rrep_nsqn_fresh_any_step_invariant])
|
69 |
+
fix t
|
70 |
+
assume "onll \<Gamma>\<^sub>A\<^sub>O\<^sub>D\<^sub>V (\<lambda>((\<sigma>, _), a, _). anycast (msg_fresh \<sigma>) a) t"
|
71 |
+
thus "globala (\<lambda>(\<sigma>, a, \<sigma>'). anycast (msg_fresh \<sigma>) a) t"
|
72 |
+
by (cases t) (clarsimp dest!: onllD, metis aodv_ex_label)
|
73 |
+
qed auto
|
74 |
+
hence "opaodv i \<langle>\<langle>\<^bsub>i\<^esub> qmsg \<Turnstile>\<^sub>A (\<lambda>\<sigma> _. (orecvmsg (\<lambda>_. rreq_rrep_sn)) \<sigma>, other (\<lambda>_ _. True) {i} \<rightarrow>)
|
75 |
+
globala (\<lambda>(\<sigma>, a, \<sigma>'). anycast (msg_fresh \<sigma>) a)"
|
76 |
+
by (rule lift_step_into_qmsg_statelessassm) simp_all
|
77 |
+
thus ?thesis by rule auto
|
78 |
+
qed
|
79 |
+
|
80 |
+
lemma par_anycast_msg_zhops:
|
81 |
+
shows "opaodv i \<langle>\<langle>\<^bsub>i\<^esub> qmsg \<Turnstile>\<^sub>A (\<lambda>\<sigma> _. orecvmsg (\<lambda>_. rreq_rrep_sn) \<sigma>, other (\<lambda>_ _. True) {i} \<rightarrow>)
|
82 |
+
globala (\<lambda>(_, a, _). anycast msg_zhops a)"
|
83 |
+
proof -
|
84 |
+
from anycast_msg_zhops initiali_aodv oaodv_trans aodv_trans
|
85 |
+
have "opaodv i \<Turnstile>\<^sub>A (act TT, other (\<lambda>_ _. True) {i} \<rightarrow>)
|
86 |
+
seqll i (onll \<Gamma>\<^sub>A\<^sub>O\<^sub>D\<^sub>V (\<lambda>(_, a, _). anycast msg_zhops a))"
|
87 |
+
by (rule open_seq_step_invariant)
|
88 |
+
hence "opaodv i \<Turnstile>\<^sub>A (\<lambda>\<sigma> _. orecvmsg (\<lambda>_. rreq_rrep_sn) \<sigma>, other (\<lambda>_ _. True) {i} \<rightarrow>)
|
89 |
+
globala (\<lambda>(_, a, _). anycast msg_zhops a)"
|
90 |
+
proof (rule ostep_invariant_weakenE)
|
91 |
+
fix t :: "(((nat \<Rightarrow> state) \<times> (state, msg, pseqp, pseqp label) seqp), msg seq_action) transition"
|
92 |
+
assume "seqll i (onll \<Gamma>\<^sub>A\<^sub>O\<^sub>D\<^sub>V (\<lambda>(_, a, _). anycast msg_zhops a)) t"
|
93 |
+
thus "globala (\<lambda>(_, a, _). anycast msg_zhops a) t"
|
94 |
+
by (cases t) (clarsimp dest!: seqllD onllD, metis aodv_ex_label)
|
95 |
+
qed simp_all
|
96 |
+
hence "opaodv i \<langle>\<langle>\<^bsub>i\<^esub> qmsg \<Turnstile>\<^sub>A (\<lambda>\<sigma> _. orecvmsg (\<lambda>_. rreq_rrep_sn) \<sigma>, other (\<lambda>_ _. True) {i} \<rightarrow>)
|
97 |
+
globala (\<lambda>(_, a, _). anycast msg_zhops a)"
|
98 |
+
by (rule lift_step_into_qmsg_statelessassm) simp_all
|
99 |
+
thus ?thesis by rule auto
|
100 |
+
qed
|
101 |
+
|
102 |
+
subsection \<open>Lift to nodes\<close>
|
103 |
+
|
104 |
+
lemma node_step_no_change_on_send_or_receive:
|
105 |
+
assumes "((\<sigma>, NodeS i P R), a, (\<sigma>', NodeS i' P' R')) \<in> onode_sos
|
106 |
+
(oparp_sos i (oseqp_sos \<Gamma>\<^sub>A\<^sub>O\<^sub>D\<^sub>V i) (seqp_sos \<Gamma>\<^sub>Q\<^sub>M\<^sub>S\<^sub>G))"
|
107 |
+
and "a \<noteq> \<tau>"
|
108 |
+
shows "\<sigma>' i = \<sigma> i"
|
109 |
+
using assms
|
110 |
+
by (cases a) (auto elim!: par_step_no_change_on_send_or_receive)
|
111 |
+
|
112 |
+
lemma node_nhop_quality_increases:
|
113 |
+
shows "\<langle> i : opaodv i \<langle>\<langle>\<^bsub>i\<^esub> qmsg : R \<rangle>\<^sub>o \<Turnstile>
|
114 |
+
(otherwith ((=)) {i}
|
115 |
+
(oarrivemsg (\<lambda>\<sigma> m. msg_fresh \<sigma> m \<and> msg_zhops m)),
|
116 |
+
other quality_increases {i}
|
117 |
+
\<rightarrow>) global (\<lambda>\<sigma>. \<forall>dip. let nhip = the (nhop (rt (\<sigma> i)) dip)
|
118 |
+
in dip \<in> vD (rt (\<sigma> i)) \<inter> vD (rt (\<sigma> nhip)) \<and> nhip \<noteq> dip
|
119 |
+
\<longrightarrow> (rt (\<sigma> i)) \<sqsubset>\<^bsub>dip\<^esub> (rt (\<sigma> nhip)))"
|
120 |
+
by (rule node_lift [OF par_nhop_quality_increases]) auto
|
121 |
+
|
122 |
+
lemma node_quality_increases:
|
123 |
+
"\<langle> i : opaodv i \<langle>\<langle>\<^bsub>i\<^esub> qmsg : R \<rangle>\<^sub>o \<Turnstile>\<^sub>A (\<lambda>\<sigma> _. oarrivemsg (\<lambda>_. rreq_rrep_sn) \<sigma>,
|
124 |
+
other (\<lambda>_ _. True) {i} \<rightarrow>)
|
125 |
+
globala (\<lambda>(\<sigma>, _, \<sigma>'). quality_increases (\<sigma> i) (\<sigma>' i))"
|
126 |
+
by (rule node_lift_step_statelessassm [OF par_rreq_rrep_sn_quality_increases]) simp
|
127 |
+
|
128 |
+
lemma node_rreq_rrep_nsqn_fresh_any_step:
|
129 |
+
shows "\<langle> i : opaodv i \<langle>\<langle>\<^bsub>i\<^esub> qmsg : R \<rangle>\<^sub>o \<Turnstile>\<^sub>A
|
130 |
+
(\<lambda>\<sigma> _. oarrivemsg (\<lambda>_. rreq_rrep_sn) \<sigma>, other (\<lambda>_ _. True) {i} \<rightarrow>)
|
131 |
+
globala (\<lambda>(\<sigma>, a, \<sigma>'). castmsg (msg_fresh \<sigma>) a)"
|
132 |
+
by (rule node_lift_anycast_statelessassm [OF par_rreq_rrep_nsqn_fresh_any_step])
|
133 |
+
|
134 |
+
lemma node_anycast_msg_zhops:
|
135 |
+
shows "\<langle> i : opaodv i \<langle>\<langle>\<^bsub>i\<^esub> qmsg : R \<rangle>\<^sub>o \<Turnstile>\<^sub>A
|
136 |
+
(\<lambda>\<sigma> _. oarrivemsg (\<lambda>_. rreq_rrep_sn) \<sigma>, other (\<lambda>_ _. True) {i} \<rightarrow>)
|
137 |
+
globala (\<lambda>(_, a, _). castmsg msg_zhops a)"
|
138 |
+
by (rule node_lift_anycast_statelessassm [OF par_anycast_msg_zhops])
|
139 |
+
|
140 |
+
lemma node_silent_change_only:
|
141 |
+
shows "\<langle> i : opaodv i \<langle>\<langle>\<^bsub>i\<^esub> qmsg : R\<^sub>i \<rangle>\<^sub>o \<Turnstile>\<^sub>A (\<lambda>\<sigma> _. oarrivemsg (\<lambda>_ _. True) \<sigma>,
|
142 |
+
other (\<lambda>_ _. True) {i} \<rightarrow>)
|
143 |
+
globala (\<lambda>(\<sigma>, a, \<sigma>'). a \<noteq> \<tau> \<longrightarrow> \<sigma>' i = \<sigma> i)"
|
144 |
+
proof (rule ostep_invariantI, simp (no_asm), rule impI)
|
145 |
+
fix \<sigma> \<zeta> a \<sigma>' \<zeta>'
|
146 |
+
assume or: "(\<sigma>, \<zeta>) \<in> oreachable (\<langle>i : opaodv i \<langle>\<langle>\<^bsub>i\<^esub> qmsg : R\<^sub>i\<rangle>\<^sub>o)
|
147 |
+
(\<lambda>\<sigma> _. oarrivemsg (\<lambda>_ _. True) \<sigma>)
|
148 |
+
(other (\<lambda>_ _. True) {i})"
|
149 |
+
and tr: "((\<sigma>, \<zeta>), a, (\<sigma>', \<zeta>')) \<in> trans (\<langle>i : opaodv i \<langle>\<langle>\<^bsub>i\<^esub> qmsg : R\<^sub>i\<rangle>\<^sub>o)"
|
150 |
+
and "a \<noteq> \<tau>\<^sub>n"
|
151 |
+
from or obtain p R where "\<zeta> = NodeS i p R"
|
152 |
+
by - (drule node_net_state, metis)
|
153 |
+
with tr have "((\<sigma>, NodeS i p R), a, (\<sigma>', \<zeta>'))
|
154 |
+
\<in> onode_sos (oparp_sos i (trans (opaodv i)) (trans qmsg))"
|
155 |
+
by simp
|
156 |
+
thus "\<sigma>' i = \<sigma> i" using \<open>a \<noteq> \<tau>\<^sub>n\<close>
|
157 |
+
by (cases rule: onode_sos.cases)
|
158 |
+
(auto elim: qmsg_no_change_on_send_or_receive)
|
159 |
+
qed
|
160 |
+
|
161 |
+
subsection \<open>Lift to partial networks\<close>
|
162 |
+
|
163 |
+
lemma arrive_rreq_rrep_nsqn_fresh_inc_sn [simp]:
|
164 |
+
assumes "oarrivemsg (\<lambda>\<sigma> m. msg_fresh \<sigma> m \<and> P \<sigma> m) \<sigma> m"
|
165 |
+
shows "oarrivemsg (\<lambda>_. rreq_rrep_sn) \<sigma> m"
|
166 |
+
using assms by (cases m) auto
|
167 |
+
|
168 |
+
lemma opnet_nhop_quality_increases:
|
169 |
+
shows "opnet (\<lambda>i. opaodv i \<langle>\<langle>\<^bsub>i\<^esub> qmsg) p \<Turnstile>
|
170 |
+
(otherwith ((=)) (net_tree_ips p)
|
171 |
+
(oarrivemsg (\<lambda>\<sigma> m. msg_fresh \<sigma> m \<and> msg_zhops m)),
|
172 |
+
other quality_increases (net_tree_ips p) \<rightarrow>)
|
173 |
+
global (\<lambda>\<sigma>. \<forall>i\<in>net_tree_ips p. \<forall>dip.
|
174 |
+
let nhip = the (nhop (rt (\<sigma> i)) dip)
|
175 |
+
in dip \<in> vD (rt (\<sigma> i)) \<inter> vD (rt (\<sigma> nhip)) \<and> nhip \<noteq> dip
|
176 |
+
\<longrightarrow> (rt (\<sigma> i)) \<sqsubset>\<^bsub>dip\<^esub> (rt (\<sigma> nhip)))"
|
177 |
+
proof (rule pnet_lift [OF node_nhop_quality_increases])
|
178 |
+
fix i R
|
179 |
+
have "\<langle>i : opaodv i \<langle>\<langle>\<^bsub>i\<^esub> qmsg : R\<rangle>\<^sub>o \<Turnstile>\<^sub>A (\<lambda>\<sigma> _. oarrivemsg (\<lambda>_. rreq_rrep_sn) \<sigma>,
|
180 |
+
other (\<lambda>_ _. True) {i} \<rightarrow>) globala (\<lambda>(\<sigma>, a, \<sigma>').
|
181 |
+
castmsg (\<lambda>m. msg_fresh \<sigma> m \<and> msg_zhops m) a)"
|
182 |
+
proof (rule ostep_invariantI, simp (no_asm))
|
183 |
+
fix \<sigma> s a \<sigma>' s'
|
184 |
+
assume or: "(\<sigma>, s) \<in> oreachable (\<langle>i : opaodv i \<langle>\<langle>\<^bsub>i\<^esub> qmsg : R\<rangle>\<^sub>o)
|
185 |
+
(\<lambda>\<sigma> _. oarrivemsg (\<lambda>_. rreq_rrep_sn) \<sigma>)
|
186 |
+
(other (\<lambda>_ _. True) {i})"
|
187 |
+
and tr: "((\<sigma>, s), a, (\<sigma>', s')) \<in> trans (\<langle>i : opaodv i \<langle>\<langle>\<^bsub>i\<^esub> qmsg : R\<rangle>\<^sub>o)"
|
188 |
+
and am: "oarrivemsg (\<lambda>_. rreq_rrep_sn) \<sigma> a"
|
189 |
+
from or tr am have "castmsg (msg_fresh \<sigma>) a"
|
190 |
+
by (auto dest!: ostep_invariantD [OF node_rreq_rrep_nsqn_fresh_any_step])
|
191 |
+
moreover from or tr am have "castmsg (msg_zhops) a"
|
192 |
+
by (auto dest!: ostep_invariantD [OF node_anycast_msg_zhops])
|
193 |
+
ultimately show "castmsg (\<lambda>m. msg_fresh \<sigma> m \<and> msg_zhops m) a"
|
194 |
+
by (case_tac a) auto
|
195 |
+
qed
|
196 |
+
thus "\<langle>i : opaodv i \<langle>\<langle>\<^bsub>i\<^esub> qmsg : R\<rangle>\<^sub>o \<Turnstile>\<^sub>A
|
197 |
+
(\<lambda>\<sigma> _. oarrivemsg (\<lambda>\<sigma> m. msg_fresh \<sigma> m \<and> msg_zhops m) \<sigma>,
|
198 |
+
other quality_increases {i} \<rightarrow>) globala (\<lambda>(\<sigma>, a, _).
|
199 |
+
castmsg (\<lambda>m. msg_fresh \<sigma> m \<and> msg_zhops m) a)"
|
200 |
+
by rule auto
|
201 |
+
next
|
202 |
+
fix i R
|
203 |
+
show "\<langle>i : opaodv i \<langle>\<langle>\<^bsub>i\<^esub> qmsg : R\<rangle>\<^sub>o \<Turnstile>\<^sub>A
|
204 |
+
(\<lambda>\<sigma> _. oarrivemsg (\<lambda>\<sigma> m. msg_fresh \<sigma> m \<and> msg_zhops m) \<sigma>,
|
205 |
+
other quality_increases {i} \<rightarrow>) globala (\<lambda>(\<sigma>, a, \<sigma>').
|
206 |
+
a \<noteq> \<tau> \<and> (\<forall>d. a \<noteq> i:deliver(d)) \<longrightarrow> \<sigma> i = \<sigma>' i)"
|
207 |
+
by (rule ostep_invariant_weakenE [OF node_silent_change_only]) auto
|
208 |
+
next
|
209 |
+
fix i R
|
210 |
+
show "\<langle>i : opaodv i \<langle>\<langle>\<^bsub>i\<^esub> qmsg : R\<rangle>\<^sub>o \<Turnstile>\<^sub>A
|
211 |
+
(\<lambda>\<sigma> _. oarrivemsg (\<lambda>\<sigma> m. msg_fresh \<sigma> m \<and> msg_zhops m) \<sigma>,
|
212 |
+
other quality_increases {i} \<rightarrow>) globala (\<lambda>(\<sigma>, a, \<sigma>').
|
213 |
+
a = \<tau> \<or> (\<exists>d. a = i:deliver(d)) \<longrightarrow> quality_increases (\<sigma> i) (\<sigma>' i))"
|
214 |
+
by (rule ostep_invariant_weakenE [OF node_quality_increases]) auto
|
215 |
+
qed simp_all
|
216 |
+
|
217 |
+
subsection \<open>Lift to closed networks\<close>
|
218 |
+
|
219 |
+
lemma onet_nhop_quality_increases:
|
220 |
+
shows "oclosed (opnet (\<lambda>i. opaodv i \<langle>\<langle>\<^bsub>i\<^esub> qmsg) p)
|
221 |
+
\<Turnstile> (\<lambda>_ _ _. True, other quality_increases (net_tree_ips p) \<rightarrow>)
|
222 |
+
global (\<lambda>\<sigma>. \<forall>i\<in>net_tree_ips p. \<forall>dip.
|
223 |
+
let nhip = the (nhop (rt (\<sigma> i)) dip)
|
224 |
+
in dip \<in> vD (rt (\<sigma> i)) \<inter> vD (rt (\<sigma> nhip)) \<and> nhip \<noteq> dip
|
225 |
+
\<longrightarrow> (rt (\<sigma> i)) \<sqsubset>\<^bsub>dip\<^esub> (rt (\<sigma> nhip)))"
|
226 |
+
(is "_ \<Turnstile> (_, ?U \<rightarrow>) ?inv")
|
227 |
+
proof (rule inclosed_closed)
|
228 |
+
from opnet_nhop_quality_increases
|
229 |
+
show "opnet (\<lambda>i. opaodv i \<langle>\<langle>\<^bsub>i\<^esub> qmsg) p
|
230 |
+
\<Turnstile> (otherwith ((=)) (net_tree_ips p) inoclosed, ?U \<rightarrow>) ?inv"
|
231 |
+
proof (rule oinvariant_weakenE)
|
232 |
+
fix \<sigma> \<sigma>' :: "ip \<Rightarrow> state" and a :: "msg node_action"
|
233 |
+
assume "otherwith ((=)) (net_tree_ips p) inoclosed \<sigma> \<sigma>' a"
|
234 |
+
thus "otherwith ((=)) (net_tree_ips p)
|
235 |
+
(oarrivemsg (\<lambda>\<sigma> m. msg_fresh \<sigma> m \<and> msg_zhops m)) \<sigma> \<sigma>' a"
|
236 |
+
proof (rule otherwithEI)
|
237 |
+
fix \<sigma> :: "ip \<Rightarrow> state" and a :: "msg node_action"
|
238 |
+
assume "inoclosed \<sigma> a"
|
239 |
+
thus "oarrivemsg (\<lambda>\<sigma> m. msg_fresh \<sigma> m \<and> msg_zhops m) \<sigma> a"
|
240 |
+
proof (cases a)
|
241 |
+
fix ii ni ms
|
242 |
+
assume "a = ii\<not>ni:arrive(ms)"
|
243 |
+
moreover with \<open>inoclosed \<sigma> a\<close> obtain d di where "ms = newpkt(d, di)"
|
244 |
+
by (cases ms) auto
|
245 |
+
ultimately show ?thesis by simp
|
246 |
+
qed simp_all
|
247 |
+
qed
|
248 |
+
qed
|
249 |
+
qed
|
250 |
+
|
251 |
+
subsection \<open>Transfer into the standard model\<close>
|
252 |
+
|
253 |
+
interpretation aodv_openproc: openproc paodv opaodv id
|
254 |
+
rewrites "aodv_openproc.initmissing = initmissing"
|
255 |
+
proof -
|
256 |
+
show "openproc paodv opaodv id"
|
257 |
+
proof unfold_locales
|
258 |
+
fix i :: ip
|
259 |
+
have "{(\<sigma>, \<zeta>). (\<sigma> i, \<zeta>) \<in> \<sigma>\<^sub>A\<^sub>O\<^sub>D\<^sub>V i \<and> (\<forall>j. j \<noteq> i \<longrightarrow> \<sigma> j \<in> fst ` \<sigma>\<^sub>A\<^sub>O\<^sub>D\<^sub>V j)} \<subseteq> \<sigma>\<^sub>A\<^sub>O\<^sub>D\<^sub>V'"
|
260 |
+
unfolding \<sigma>\<^sub>A\<^sub>O\<^sub>D\<^sub>V_def \<sigma>\<^sub>A\<^sub>O\<^sub>D\<^sub>V'_def
|
261 |
+
proof (rule equalityD1)
|
262 |
+
show "\<And>f p. {(\<sigma>, \<zeta>). (\<sigma> i, \<zeta>) \<in> {(f i, p)} \<and> (\<forall>j. j \<noteq> i
|
263 |
+
\<longrightarrow> \<sigma> j \<in> fst ` {(f j, p)})} = {(f, p)}"
|
264 |
+
by (rule set_eqI) auto
|
265 |
+
qed
|
266 |
+
thus "{ (\<sigma>, \<zeta>) |\<sigma> \<zeta> s. s \<in> init (paodv i)
|
267 |
+
\<and> (\<sigma> i, \<zeta>) = id s
|
268 |
+
\<and> (\<forall>j. j\<noteq>i \<longrightarrow> \<sigma> j \<in> (fst o id) ` init (paodv j)) } \<subseteq> init (opaodv i)"
|
269 |
+
by simp
|
270 |
+
next
|
271 |
+
show "\<forall>j. init (paodv j) \<noteq> {}"
|
272 |
+
unfolding \<sigma>\<^sub>A\<^sub>O\<^sub>D\<^sub>V_def by simp
|
273 |
+
next
|
274 |
+
fix i s a s' \<sigma> \<sigma>'
|
275 |
+
assume "\<sigma> i = fst (id s)"
|
276 |
+
and "\<sigma>' i = fst (id s')"
|
277 |
+
and "(s, a, s') \<in> trans (paodv i)"
|
278 |
+
then obtain q q' where "s = (\<sigma> i, q)"
|
279 |
+
and "s' = (\<sigma>' i, q')"
|
280 |
+
and "((\<sigma> i, q), a, (\<sigma>' i, q')) \<in> trans (paodv i)"
|
281 |
+
by (cases s, cases s') auto
|
282 |
+
from this(3) have "((\<sigma>, q), a, (\<sigma>', q')) \<in> trans (opaodv i)"
|
283 |
+
by simp (rule open_seqp_action [OF aodv_wf])
|
284 |
+
|
285 |
+
with \<open>s = (\<sigma> i, q)\<close> and \<open>s' = (\<sigma>' i, q')\<close>
|
286 |
+
show "((\<sigma>, snd (id s)), a, (\<sigma>', snd (id s'))) \<in> trans (opaodv i)"
|
287 |
+
by simp
|
288 |
+
qed
|
289 |
+
then interpret opn: openproc paodv opaodv id .
|
290 |
+
have [simp]: "\<And>i. (SOME x. x \<in> (fst o id) ` init (paodv i)) = aodv_init i"
|
291 |
+
unfolding \<sigma>\<^sub>A\<^sub>O\<^sub>D\<^sub>V_def by simp
|
292 |
+
hence "\<And>i. openproc.initmissing paodv id i = initmissing i"
|
293 |
+
unfolding opn.initmissing_def opn.someinit_def initmissing_def
|
294 |
+
by (auto split: option.split)
|
295 |
+
thus "openproc.initmissing paodv id = initmissing" ..
|
296 |
+
qed
|
297 |
+
|
298 |
+
interpretation aodv_openproc_par_qmsg: openproc_parq paodv opaodv id qmsg
|
299 |
+
rewrites "aodv_openproc_par_qmsg.netglobal = netglobal"
|
300 |
+
and "aodv_openproc_par_qmsg.initmissing = initmissing"
|
301 |
+
proof -
|
302 |
+
show "openproc_parq paodv opaodv id qmsg"
|
303 |
+
by (unfold_locales) simp
|
304 |
+
then interpret opq: openproc_parq paodv opaodv id qmsg .
|
305 |
+
|
306 |
+
have im: "\<And>\<sigma>. openproc.initmissing (\<lambda>i. paodv i \<langle>\<langle> qmsg) (\<lambda>(p, q). (fst (id p), snd (id p), q)) \<sigma>
|
307 |
+
= initmissing \<sigma>"
|
308 |
+
unfolding opq.initmissing_def opq.someinit_def initmissing_def
|
309 |
+
unfolding \<sigma>\<^sub>A\<^sub>O\<^sub>D\<^sub>V_def \<sigma>\<^sub>Q\<^sub>M\<^sub>S\<^sub>G_def by (clarsimp cong: option.case_cong)
|
310 |
+
thus "openproc.initmissing (\<lambda>i. paodv i \<langle>\<langle> qmsg) (\<lambda>(p, q). (fst (id p), snd (id p), q)) = initmissing"
|
311 |
+
by (rule ext)
|
312 |
+
have "\<And>P \<sigma>. openproc.netglobal (\<lambda>i. paodv i \<langle>\<langle> qmsg) (\<lambda>(p, q). (fst (id p), snd (id p), q)) P \<sigma>
|
313 |
+
= netglobal P \<sigma>"
|
314 |
+
unfolding opq.netglobal_def netglobal_def opq.initmissing_def initmissing_def opq.someinit_def
|
315 |
+
unfolding \<sigma>\<^sub>A\<^sub>O\<^sub>D\<^sub>V_def \<sigma>\<^sub>Q\<^sub>M\<^sub>S\<^sub>G_def
|
316 |
+
by (clarsimp cong: option.case_cong
|
317 |
+
simp del: One_nat_def
|
318 |
+
simp add: fst_initmissing_netgmap_default_aodv_init_netlift
|
319 |
+
[symmetric, unfolded initmissing_def])
|
320 |
+
thus "openproc.netglobal (\<lambda>i. paodv i \<langle>\<langle> qmsg) (\<lambda>(p, q). (fst (id p), snd (id p), q)) = netglobal"
|
321 |
+
by auto
|
322 |
+
qed
|
323 |
+
|
324 |
+
lemma net_nhop_quality_increases:
|
325 |
+
assumes "wf_net_tree n"
|
326 |
+
shows "closed (pnet (\<lambda>i. paodv i \<langle>\<langle> qmsg) n) \<TTurnstile> netglobal
|
327 |
+
(\<lambda>\<sigma>. \<forall>i dip. let nhip = the (nhop (rt (\<sigma> i)) dip)
|
328 |
+
in dip \<in> vD (rt (\<sigma> i)) \<inter> vD (rt (\<sigma> nhip)) \<and> nhip \<noteq> dip
|
329 |
+
\<longrightarrow> (rt (\<sigma> i)) \<sqsubset>\<^bsub>dip\<^esub> (rt (\<sigma> nhip)))"
|
330 |
+
(is "_ \<TTurnstile> netglobal (\<lambda>\<sigma>. \<forall>i. ?inv \<sigma> i)")
|
331 |
+
proof -
|
332 |
+
from \<open>wf_net_tree n\<close>
|
333 |
+
have proto: "closed (pnet (\<lambda>i. paodv i \<langle>\<langle> qmsg) n) \<TTurnstile> netglobal (\<lambda>\<sigma>. \<forall>i\<in>net_tree_ips n. \<forall>dip.
|
334 |
+
let nhip = the (nhop (rt (\<sigma> i)) dip)
|
335 |
+
in dip \<in> vD (rt (\<sigma> i)) \<inter> vD (rt (\<sigma> nhip)) \<and> nhip \<noteq> dip
|
336 |
+
\<longrightarrow> (rt (\<sigma> i)) \<sqsubset>\<^bsub>dip\<^esub> (rt (\<sigma> nhip)))"
|
337 |
+
by (rule aodv_openproc_par_qmsg.close_opnet [OF _ onet_nhop_quality_increases])
|
338 |
+
show ?thesis
|
339 |
+
unfolding invariant_def opnet_sos.opnet_tau1
|
340 |
+
proof (rule, simp only: aodv_openproc_par_qmsg.netglobalsimp
|
341 |
+
fst_initmissing_netgmap_pair_fst, rule allI)
|
342 |
+
fix \<sigma> i
|
343 |
+
assume sr: "\<sigma> \<in> reachable (closed (pnet (\<lambda>i. paodv i \<langle>\<langle> qmsg) n)) TT"
|
344 |
+
hence "\<forall>i\<in>net_tree_ips n. ?inv (fst (initmissing (netgmap fst \<sigma>))) i"
|
345 |
+
by - (drule invariantD [OF proto],
|
346 |
+
simp only: aodv_openproc_par_qmsg.netglobalsimp
|
347 |
+
fst_initmissing_netgmap_pair_fst)
|
348 |
+
thus "?inv (fst (initmissing (netgmap fst \<sigma>))) i"
|
349 |
+
proof (cases "i\<in>net_tree_ips n")
|
350 |
+
assume "i\<notin>net_tree_ips n"
|
351 |
+
from sr have "\<sigma> \<in> reachable (pnet (\<lambda>i. paodv i \<langle>\<langle> qmsg) n) TT" ..
|
352 |
+
hence "net_ips \<sigma> = net_tree_ips n" ..
|
353 |
+
with \<open>i\<notin>net_tree_ips n\<close> have "i\<notin>net_ips \<sigma>" by simp
|
354 |
+
hence "(fst (initmissing (netgmap fst \<sigma>))) i = aodv_init i"
|
355 |
+
by simp
|
356 |
+
thus ?thesis by simp
|
357 |
+
qed metis
|
358 |
+
qed
|
359 |
+
qed
|
360 |
+
|
361 |
+
subsection \<open>Loop freedom of AODV\<close>
|
362 |
+
|
363 |
+
theorem aodv_loop_freedom:
|
364 |
+
assumes "wf_net_tree n"
|
365 |
+
shows "closed (pnet (\<lambda>i. paodv i \<langle>\<langle> qmsg) n) \<TTurnstile> netglobal (\<lambda>\<sigma>. \<forall>dip. irrefl ((rt_graph \<sigma> dip)\<^sup>+))"
|
366 |
+
using assms by (rule aodv_openproc_par_qmsg.netglobal_weakenE
|
367 |
+
[OF net_nhop_quality_increases inv_to_loop_freedom])
|
368 |
+
|
369 |
+
end
|
formal/afp/AODV/Aodv_Message.thy
ADDED
@@ -0,0 +1,74 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
(* Title: Aodv_Message.thy
|
2 |
+
License: BSD 2-Clause. See LICENSE.
|
3 |
+
Author: Timothy Bourke, Inria
|
4 |
+
*)
|
5 |
+
|
6 |
+
section "AODV protocol messages"
|
7 |
+
|
8 |
+
theory Aodv_Message
|
9 |
+
imports Aodv_Basic
|
10 |
+
begin
|
11 |
+
|
12 |
+
datatype msg =
|
13 |
+
Rreq nat rreqid ip sqn k ip sqn ip
|
14 |
+
| Rrep nat ip sqn ip ip
|
15 |
+
| Rerr "ip \<rightharpoonup> sqn" ip
|
16 |
+
| Newpkt data ip
|
17 |
+
| Pkt data ip ip
|
18 |
+
|
19 |
+
instantiation msg :: msg
|
20 |
+
begin
|
21 |
+
definition newpkt_def [simp]: "newpkt \<equiv> \<lambda>(d, dip). Newpkt d dip"
|
22 |
+
definition eq_newpkt_def: "eq_newpkt m \<equiv> case m of Newpkt d dip \<Rightarrow> True | _ \<Rightarrow> False"
|
23 |
+
|
24 |
+
instance by intro_classes (simp add: eq_newpkt_def)
|
25 |
+
end
|
26 |
+
|
27 |
+
text \<open>The @{type msg} type models the different messages used within AODV.
|
28 |
+
The instantiation as a @{class msg} is a technicality due to the special
|
29 |
+
treatment of @{term newpkt} messages in the AWN SOS rules.
|
30 |
+
This use of classes allows a clean separation of the AWN-specific definitions
|
31 |
+
and these AODV-specific definitions.\<close>
|
32 |
+
|
33 |
+
definition rreq :: "nat \<times> rreqid \<times> ip \<times> sqn \<times> k \<times> ip \<times> sqn \<times> ip \<Rightarrow> msg"
|
34 |
+
where "rreq \<equiv> \<lambda>(hops, rreqid, dip, dsn, dsk, oip, osn, sip).
|
35 |
+
Rreq hops rreqid dip dsn dsk oip osn sip"
|
36 |
+
|
37 |
+
lemma rreq_simp [simp]:
|
38 |
+
"rreq(hops, rreqid, dip, dsn, dsk, oip, osn, sip) = Rreq hops rreqid dip dsn dsk oip osn sip"
|
39 |
+
unfolding rreq_def by simp
|
40 |
+
|
41 |
+
definition rrep :: "nat \<times> ip \<times> sqn \<times> ip \<times> ip \<Rightarrow> msg"
|
42 |
+
where "rrep \<equiv> \<lambda>(hops, dip, dsn, oip, sip). Rrep hops dip dsn oip sip"
|
43 |
+
|
44 |
+
lemma rrep_simp [simp]:
|
45 |
+
"rrep(hops, dip, dsn, oip, sip) = Rrep hops dip dsn oip sip"
|
46 |
+
unfolding rrep_def by simp
|
47 |
+
|
48 |
+
definition rerr :: "(ip \<rightharpoonup> sqn) \<times> ip \<Rightarrow> msg"
|
49 |
+
where "rerr \<equiv> \<lambda>(dests, sip). Rerr dests sip"
|
50 |
+
|
51 |
+
lemma rerr_simp [simp]:
|
52 |
+
"rerr(dests, sip) = Rerr dests sip"
|
53 |
+
unfolding rerr_def by simp
|
54 |
+
|
55 |
+
lemma not_eq_newpkt_rreq [simp]: "\<not>eq_newpkt (Rreq hops rreqid dip dsn dsk oip osn sip)"
|
56 |
+
unfolding eq_newpkt_def by simp
|
57 |
+
|
58 |
+
lemma not_eq_newpkt_rrep [simp]: "\<not>eq_newpkt (Rrep hops dip dsn oip sip)"
|
59 |
+
unfolding eq_newpkt_def by simp
|
60 |
+
|
61 |
+
lemma not_eq_newpkt_rerr [simp]: "\<not>eq_newpkt (Rerr dests sip)"
|
62 |
+
unfolding eq_newpkt_def by simp
|
63 |
+
|
64 |
+
lemma not_eq_newpkt_pkt [simp]: "\<not>eq_newpkt (Pkt d dip sip)"
|
65 |
+
unfolding eq_newpkt_def by simp
|
66 |
+
|
67 |
+
definition pkt :: "data \<times> ip \<times> ip \<Rightarrow> msg"
|
68 |
+
where "pkt \<equiv> \<lambda>(d, dip, sip). Pkt d dip sip"
|
69 |
+
|
70 |
+
lemma pkt_simp [simp]:
|
71 |
+
"pkt(d, dip, sip) = Pkt d dip sip"
|
72 |
+
unfolding pkt_def by simp
|
73 |
+
|
74 |
+
end
|
formal/afp/AODV/Aodv_Predicates.thy
ADDED
@@ -0,0 +1,136 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
(* Title: Aodv_Predicates.thy
|
2 |
+
License: BSD 2-Clause. See LICENSE.
|
3 |
+
Author: Timothy Bourke, Inria
|
4 |
+
*)
|
5 |
+
|
6 |
+
section "Invariant assumptions and properties"
|
7 |
+
|
8 |
+
theory Aodv_Predicates
|
9 |
+
imports Aodv
|
10 |
+
begin
|
11 |
+
|
12 |
+
text \<open>Definitions for expression assumptions on incoming messages and properties of
|
13 |
+
outgoing messages.\<close>
|
14 |
+
|
15 |
+
abbreviation not_Pkt :: "msg \<Rightarrow> bool"
|
16 |
+
where "not_Pkt m \<equiv> case m of Pkt _ _ _ \<Rightarrow> False | _ \<Rightarrow> True"
|
17 |
+
|
18 |
+
definition msg_sender :: "msg \<Rightarrow> ip"
|
19 |
+
where "msg_sender m \<equiv> case m of Rreq _ _ _ _ _ _ _ ipc \<Rightarrow> ipc
|
20 |
+
| Rrep _ _ _ _ ipc \<Rightarrow> ipc
|
21 |
+
| Rerr _ ipc \<Rightarrow> ipc
|
22 |
+
| Pkt _ _ ipc \<Rightarrow> ipc"
|
23 |
+
|
24 |
+
lemma msg_sender_simps [simp]:
|
25 |
+
"\<And>hops rreqid dip dsn dsk oip osn sip.
|
26 |
+
msg_sender (Rreq hops rreqid dip dsn dsk oip osn sip) = sip"
|
27 |
+
"\<And>hops dip dsn oip sip. msg_sender (Rrep hops dip dsn oip sip) = sip"
|
28 |
+
"\<And>dests sip. msg_sender (Rerr dests sip) = sip"
|
29 |
+
"\<And>d dip sip. msg_sender (Pkt d dip sip) = sip"
|
30 |
+
unfolding msg_sender_def by simp_all
|
31 |
+
|
32 |
+
definition msg_zhops :: "msg \<Rightarrow> bool"
|
33 |
+
where "msg_zhops m \<equiv> case m of
|
34 |
+
Rreq hopsc _ dipc _ _ oipc _ sipc \<Rightarrow> hopsc = 0 \<longrightarrow> oipc = sipc
|
35 |
+
| Rrep hopsc dipc _ _ sipc \<Rightarrow> hopsc = 0 \<longrightarrow> dipc = sipc
|
36 |
+
| _ \<Rightarrow> True"
|
37 |
+
|
38 |
+
lemma msg_zhops_simps [simp]:
|
39 |
+
"\<And>hops rreqid dip dsn dsk oip osn sip.
|
40 |
+
msg_zhops (Rreq hops rreqid dip dsn dsk oip osn sip) = (hops = 0 \<longrightarrow> oip = sip)"
|
41 |
+
"\<And>hops dip dsn oip sip. msg_zhops (Rrep hops dip dsn oip sip) = (hops = 0 \<longrightarrow> dip = sip)"
|
42 |
+
"\<And>dests sip. msg_zhops (Rerr dests sip) = True"
|
43 |
+
"\<And>d dip. msg_zhops (Newpkt d dip) = True"
|
44 |
+
"\<And>d dip sip. msg_zhops (Pkt d dip sip) = True"
|
45 |
+
unfolding msg_zhops_def by simp_all
|
46 |
+
|
47 |
+
definition rreq_rrep_sn :: "msg \<Rightarrow> bool"
|
48 |
+
where "rreq_rrep_sn m \<equiv> case m of Rreq _ _ _ _ _ _ osnc _ \<Rightarrow> osnc \<ge> 1
|
49 |
+
| Rrep _ _ dsnc _ _ \<Rightarrow> dsnc \<ge> 1
|
50 |
+
| _ \<Rightarrow> True"
|
51 |
+
|
52 |
+
lemma rreq_rrep_sn_simps [simp]:
|
53 |
+
"\<And>hops rreqid dip dsn dsk oip osn sip.
|
54 |
+
rreq_rrep_sn (Rreq hops rreqid dip dsn dsk oip osn sip) = (osn \<ge> 1)"
|
55 |
+
"\<And>hops dip dsn oip sip. rreq_rrep_sn (Rrep hops dip dsn oip sip) = (dsn \<ge> 1)"
|
56 |
+
"\<And>dests sip. rreq_rrep_sn (Rerr dests sip) = True"
|
57 |
+
"\<And>d dip. rreq_rrep_sn (Newpkt d dip) = True"
|
58 |
+
"\<And>d dip sip. rreq_rrep_sn (Pkt d dip sip) = True"
|
59 |
+
unfolding rreq_rrep_sn_def by simp_all
|
60 |
+
|
61 |
+
definition rreq_rrep_fresh :: "rt \<Rightarrow> msg \<Rightarrow> bool"
|
62 |
+
where "rreq_rrep_fresh crt m \<equiv> case m of Rreq hopsc _ _ _ _ oipc osnc ipcc \<Rightarrow> (ipcc \<noteq> oipc \<longrightarrow>
|
63 |
+
oipc\<in>kD(crt) \<and> (sqn crt oipc > osnc
|
64 |
+
\<or> (sqn crt oipc = osnc
|
65 |
+
\<and> the (dhops crt oipc) \<le> hopsc
|
66 |
+
\<and> the (flag crt oipc) = val)))
|
67 |
+
| Rrep hopsc dipc dsnc _ ipcc \<Rightarrow> (ipcc \<noteq> dipc \<longrightarrow>
|
68 |
+
dipc\<in>kD(crt)
|
69 |
+
\<and> sqn crt dipc = dsnc
|
70 |
+
\<and> the (dhops crt dipc) = hopsc
|
71 |
+
\<and> the (flag crt dipc) = val)
|
72 |
+
| _ \<Rightarrow> True"
|
73 |
+
|
74 |
+
lemma rreq_rrep_fresh [simp]:
|
75 |
+
"\<And>hops rreqid dip dsn dsk oip osn sip.
|
76 |
+
rreq_rrep_fresh crt (Rreq hops rreqid dip dsn dsk oip osn sip) =
|
77 |
+
(sip \<noteq> oip \<longrightarrow> oip\<in>kD(crt)
|
78 |
+
\<and> (sqn crt oip > osn
|
79 |
+
\<or> (sqn crt oip = osn
|
80 |
+
\<and> the (dhops crt oip) \<le> hops
|
81 |
+
\<and> the (flag crt oip) = val)))"
|
82 |
+
"\<And>hops dip dsn oip sip. rreq_rrep_fresh crt (Rrep hops dip dsn oip sip) =
|
83 |
+
(sip \<noteq> dip \<longrightarrow> dip\<in>kD(crt)
|
84 |
+
\<and> sqn crt dip = dsn
|
85 |
+
\<and> the (dhops crt dip) = hops
|
86 |
+
\<and> the (flag crt dip) = val)"
|
87 |
+
"\<And>dests sip. rreq_rrep_fresh crt (Rerr dests sip) = True"
|
88 |
+
"\<And>d dip. rreq_rrep_fresh crt (Newpkt d dip) = True"
|
89 |
+
"\<And>d dip sip. rreq_rrep_fresh crt (Pkt d dip sip) = True"
|
90 |
+
unfolding rreq_rrep_fresh_def by simp_all
|
91 |
+
|
92 |
+
definition rerr_invalid :: "rt \<Rightarrow> msg \<Rightarrow> bool"
|
93 |
+
where "rerr_invalid crt m \<equiv> case m of Rerr destsc _ \<Rightarrow> (\<forall>ripc\<in>dom(destsc).
|
94 |
+
(ripc\<in>iD(crt) \<and> the (destsc ripc) = sqn crt ripc))
|
95 |
+
| _ \<Rightarrow> True"
|
96 |
+
|
97 |
+
lemma rerr_invalid [simp]:
|
98 |
+
"\<And>hops rreqid dip dsn dsk oip osn sip.
|
99 |
+
rerr_invalid crt (Rreq hops rreqid dip dsn dsk oip osn sip) = True"
|
100 |
+
"\<And>hops dip dsn oip sip. rerr_invalid crt (Rrep hops dip dsn oip sip) = True"
|
101 |
+
"\<And>dests sip. rerr_invalid crt (Rerr dests sip) = (\<forall>rip\<in>dom(dests).
|
102 |
+
rip\<in>iD(crt) \<and> the (dests rip) = sqn crt rip)"
|
103 |
+
"\<And>d dip. rerr_invalid crt (Newpkt d dip) = True"
|
104 |
+
"\<And>d dip sip. rerr_invalid crt (Pkt d dip sip) = True"
|
105 |
+
unfolding rerr_invalid_def by simp_all
|
106 |
+
|
107 |
+
definition
|
108 |
+
initmissing :: "(nat \<Rightarrow> state option) \<times> 'a \<Rightarrow> (nat \<Rightarrow> state) \<times> 'a"
|
109 |
+
where
|
110 |
+
"initmissing \<sigma> = (\<lambda>i. case (fst \<sigma>) i of None \<Rightarrow> aodv_init i | Some s \<Rightarrow> s, snd \<sigma>)"
|
111 |
+
|
112 |
+
lemma not_in_net_ips_fst_init_missing [simp]:
|
113 |
+
assumes "i \<notin> net_ips \<sigma>"
|
114 |
+
shows "fst (initmissing (netgmap fst \<sigma>)) i = aodv_init i"
|
115 |
+
using assms unfolding initmissing_def by simp
|
116 |
+
|
117 |
+
lemma fst_initmissing_netgmap_pair_fst [simp]:
|
118 |
+
"fst (initmissing (netgmap (\<lambda>(p, q). (fst (id p), snd (id p), q)) s))
|
119 |
+
= fst (initmissing (netgmap fst s))"
|
120 |
+
unfolding initmissing_def by auto
|
121 |
+
|
122 |
+
text \<open>We introduce a streamlined alternative to @{term initmissing} with @{term netgmap}
|
123 |
+
to simplify invariant statements and thus facilitate their comprehension and
|
124 |
+
presentation.\<close>
|
125 |
+
|
126 |
+
lemma fst_initmissing_netgmap_default_aodv_init_netlift:
|
127 |
+
"fst (initmissing (netgmap fst s)) = default aodv_init (netlift fst s)"
|
128 |
+
unfolding initmissing_def default_def
|
129 |
+
by (simp add: fst_netgmap_netlift del: One_nat_def)
|
130 |
+
|
131 |
+
definition
|
132 |
+
netglobal :: "((nat \<Rightarrow> state) \<Rightarrow> bool) \<Rightarrow> ((state \<times> 'b) \<times> 'c) net_state \<Rightarrow> bool"
|
133 |
+
where
|
134 |
+
"netglobal P \<equiv> (\<lambda>s. P (default aodv_init (netlift fst s)))"
|
135 |
+
|
136 |
+
end
|
formal/afp/AODV/Fresher.thy
ADDED
@@ -0,0 +1,798 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
(* Title: Fresher.thy
|
2 |
+
License: BSD 2-Clause. See LICENSE.
|
3 |
+
Author: Timothy Bourke, Inria
|
4 |
+
*)
|
5 |
+
|
6 |
+
section "Quality relations between routes"
|
7 |
+
|
8 |
+
theory Fresher
|
9 |
+
imports Aodv_Data
|
10 |
+
begin
|
11 |
+
|
12 |
+
subsection "Net sequence numbers"
|
13 |
+
|
14 |
+
subsubsection "On individual routes"
|
15 |
+
|
16 |
+
definition
|
17 |
+
nsqn\<^sub>r :: "r \<Rightarrow> sqn"
|
18 |
+
where
|
19 |
+
"nsqn\<^sub>r r \<equiv> if \<pi>\<^sub>4(r) = val \<or> \<pi>\<^sub>2(r) = 0 then \<pi>\<^sub>2(r) else (\<pi>\<^sub>2(r) - 1)"
|
20 |
+
|
21 |
+
lemma nsqnr_def':
|
22 |
+
"nsqn\<^sub>r r = (if \<pi>\<^sub>4(r) = inv then \<pi>\<^sub>2(r) - 1 else \<pi>\<^sub>2(r))"
|
23 |
+
unfolding nsqn\<^sub>r_def by simp
|
24 |
+
|
25 |
+
lemma nsqn\<^sub>r_zero [simp]:
|
26 |
+
"\<And>dsn dsk flag hops nhip pre. nsqn\<^sub>r (0, dsk, flag, hops, nhip, pre) = 0"
|
27 |
+
unfolding nsqn\<^sub>r_def by clarsimp
|
28 |
+
|
29 |
+
lemma nsqn\<^sub>r_val [simp]:
|
30 |
+
"\<And>dsn dsk hops nhip pre. nsqn\<^sub>r (dsn, dsk, val, hops, nhip, pre) = dsn"
|
31 |
+
unfolding nsqn\<^sub>r_def by clarsimp
|
32 |
+
|
33 |
+
lemma nsqn\<^sub>r_inv [simp]:
|
34 |
+
"\<And>dsn dsk hops nhip pre. nsqn\<^sub>r (dsn, dsk, inv, hops, nhip, pre) = dsn - 1"
|
35 |
+
unfolding nsqn\<^sub>r_def by clarsimp
|
36 |
+
|
37 |
+
lemma nsqn\<^sub>r_lte_dsn [simp]:
|
38 |
+
"\<And>dsn dsk flag hops nhip pre. nsqn\<^sub>r (dsn, dsk, flag, hops, nhip, pre) \<le> dsn"
|
39 |
+
unfolding nsqn\<^sub>r_def by clarsimp
|
40 |
+
|
41 |
+
subsubsection "On routes in routing tables"
|
42 |
+
|
43 |
+
definition
|
44 |
+
nsqn :: "rt \<Rightarrow> ip \<Rightarrow> sqn"
|
45 |
+
where
|
46 |
+
"nsqn \<equiv> \<lambda>rt dip. case \<sigma>\<^bsub>route\<^esub>(rt, dip) of None \<Rightarrow> 0 | Some r \<Rightarrow> nsqn\<^sub>r(r)"
|
47 |
+
|
48 |
+
lemma nsqn_sqn_def:
|
49 |
+
"\<And>rt dip. nsqn rt dip = (if flag rt dip = Some val \<or> sqn rt dip = 0
|
50 |
+
then sqn rt dip else sqn rt dip - 1)"
|
51 |
+
unfolding nsqn_def sqn_def by (clarsimp split: option.split)
|
52 |
+
|
53 |
+
lemma not_in_kD_nsqn [simp]:
|
54 |
+
assumes "dip \<notin> kD(rt)"
|
55 |
+
shows "nsqn rt dip = 0"
|
56 |
+
using assms unfolding nsqn_def by simp
|
57 |
+
|
58 |
+
lemma kD_nsqn:
|
59 |
+
assumes "dip \<in> kD(rt)"
|
60 |
+
shows "nsqn rt dip = nsqn\<^sub>r(the (\<sigma>\<^bsub>route\<^esub>(rt, dip)))"
|
61 |
+
using assms [THEN kD_Some] unfolding nsqn_def by clarsimp
|
62 |
+
|
63 |
+
lemma nsqnr_r_flag_pred [simp, intro]:
|
64 |
+
fixes dsn dsk flag hops nhip pre
|
65 |
+
assumes "P (nsqn\<^sub>r (dsn, dsk, val, hops, nhip, pre))"
|
66 |
+
and "P (nsqn\<^sub>r (dsn, dsk, inv, hops, nhip, pre))"
|
67 |
+
shows "P (nsqn\<^sub>r (dsn, dsk, flag, hops, nhip, pre))"
|
68 |
+
using assms by (cases flag) auto
|
69 |
+
|
70 |
+
lemma nsqn\<^sub>r_addpreRT_inv [simp]:
|
71 |
+
"\<And>rt dip npre dip'. dip \<in> kD(rt) \<Longrightarrow>
|
72 |
+
nsqn\<^sub>r (the (the (addpreRT rt dip npre) dip')) = nsqn\<^sub>r (the (rt dip'))"
|
73 |
+
unfolding addpreRT_def nsqn\<^sub>r_def
|
74 |
+
by (frule kD_Some) (clarsimp split: option.split)
|
75 |
+
|
76 |
+
lemma sqn_nsqn:
|
77 |
+
"\<And>rt dip. sqn rt dip - 1 \<le> nsqn rt dip"
|
78 |
+
unfolding sqn_def nsqn_def by (clarsimp split: option.split)
|
79 |
+
|
80 |
+
lemma nsqn_sqn: "nsqn rt dip \<le> sqn rt dip"
|
81 |
+
unfolding sqn_def nsqn_def by (cases "rt dip") auto
|
82 |
+
|
83 |
+
lemma val_nsqn_sqn [elim, simp]:
|
84 |
+
assumes "ip\<in>kD(rt)"
|
85 |
+
and "the (flag rt ip) = val"
|
86 |
+
shows "nsqn rt ip = sqn rt ip"
|
87 |
+
using assms unfolding nsqn_sqn_def by auto
|
88 |
+
|
89 |
+
lemma vD_nsqn_sqn [elim, simp]:
|
90 |
+
assumes "ip\<in>vD(rt)"
|
91 |
+
shows "nsqn rt ip = sqn rt ip"
|
92 |
+
proof -
|
93 |
+
from \<open>ip\<in>vD(rt)\<close> have "ip\<in>kD(rt)"
|
94 |
+
and "the (flag rt ip) = val" by auto
|
95 |
+
thus ?thesis ..
|
96 |
+
qed
|
97 |
+
|
98 |
+
lemma inv_nsqn_sqn [elim, simp]:
|
99 |
+
assumes "ip\<in>kD(rt)"
|
100 |
+
and "the (flag rt ip) = inv"
|
101 |
+
shows "nsqn rt ip = sqn rt ip - 1"
|
102 |
+
using assms unfolding nsqn_sqn_def by auto
|
103 |
+
|
104 |
+
lemma iD_nsqn_sqn [elim, simp]:
|
105 |
+
assumes "ip\<in>iD(rt)"
|
106 |
+
shows "nsqn rt ip = sqn rt ip - 1"
|
107 |
+
proof -
|
108 |
+
from \<open>ip\<in>iD(rt)\<close> have "ip\<in>kD(rt)"
|
109 |
+
and "the (flag rt ip) = inv" by auto
|
110 |
+
thus ?thesis ..
|
111 |
+
qed
|
112 |
+
|
113 |
+
lemma nsqn_update_changed_kno_val [simp]: "\<And>rt ip dsn dsk hops nhip.
|
114 |
+
rt \<noteq> update rt ip (dsn, kno, val, hops, nhip, {})
|
115 |
+
\<Longrightarrow> nsqn (update rt ip (dsn, kno, val, hops, nhip, {})) ip = dsn"
|
116 |
+
unfolding nsqn\<^sub>r_def update_def
|
117 |
+
by (clarsimp simp: kD_nsqn split: option.split_asm option.split if_split_asm)
|
118 |
+
(metis fun_upd_triv)
|
119 |
+
|
120 |
+
lemma nsqn_addpreRT_inv [simp]:
|
121 |
+
"\<And>rt dip npre dip'. dip \<in> kD(rt) \<Longrightarrow>
|
122 |
+
nsqn (the (addpreRT rt dip npre)) dip' = nsqn rt dip'"
|
123 |
+
unfolding addpreRT_def nsqn_def nsqn\<^sub>r_def
|
124 |
+
by (frule kD_Some) (clarsimp split: option.split)
|
125 |
+
|
126 |
+
lemma nsqn_update_other [simp]:
|
127 |
+
fixes dsn dsk flag hops dip nhip pre rt ip
|
128 |
+
assumes "dip \<noteq> ip"
|
129 |
+
shows "nsqn (update rt ip (dsn, dsk, flag, hops, nhip, pre)) dip = nsqn rt dip"
|
130 |
+
using assms unfolding nsqn_def
|
131 |
+
by (clarsimp split: option.split)
|
132 |
+
|
133 |
+
lemma nsqn_invalidate_eq:
|
134 |
+
assumes "dip \<in> kD(rt)"
|
135 |
+
and "dests dip = Some rsn"
|
136 |
+
shows "nsqn (invalidate rt dests) dip = rsn - 1"
|
137 |
+
using assms
|
138 |
+
proof -
|
139 |
+
from assms obtain dsk hops nhip pre
|
140 |
+
where "invalidate rt dests dip = Some (rsn, dsk, inv, hops, nhip, pre)"
|
141 |
+
unfolding invalidate_def by auto
|
142 |
+
moreover from \<open>dip \<in> kD(rt)\<close> have "dip \<in> kD(invalidate rt dests)" by simp
|
143 |
+
ultimately show ?thesis
|
144 |
+
using \<open>dests dip = Some rsn\<close> by simp
|
145 |
+
qed
|
146 |
+
|
147 |
+
lemma nsqn_invalidate_other [simp]:
|
148 |
+
assumes "dip\<in>kD(rt)"
|
149 |
+
and "dip\<notin>dom dests"
|
150 |
+
shows "nsqn (invalidate rt dests) dip = nsqn rt dip"
|
151 |
+
using assms by (clarsimp simp add: kD_nsqn)
|
152 |
+
|
153 |
+
subsection "Comparing routes "
|
154 |
+
|
155 |
+
definition
|
156 |
+
fresher :: "r \<Rightarrow> r \<Rightarrow> bool" ("(_/ \<sqsubseteq> _)" [51, 51] 50)
|
157 |
+
where
|
158 |
+
"fresher r r' \<equiv> ((nsqn\<^sub>r r < nsqn\<^sub>r r') \<or> (nsqn\<^sub>r r = nsqn\<^sub>r r' \<and> \<pi>\<^sub>5(r) \<ge> \<pi>\<^sub>5(r')))"
|
159 |
+
|
160 |
+
lemma fresherI1 [intro]:
|
161 |
+
assumes "nsqn\<^sub>r r < nsqn\<^sub>r r'"
|
162 |
+
shows "r \<sqsubseteq> r'"
|
163 |
+
unfolding fresher_def using assms by simp
|
164 |
+
|
165 |
+
lemma fresherI2 [intro]:
|
166 |
+
assumes "nsqn\<^sub>r r = nsqn\<^sub>r r'"
|
167 |
+
and "\<pi>\<^sub>5(r) \<ge> \<pi>\<^sub>5(r')"
|
168 |
+
shows "r \<sqsubseteq> r'"
|
169 |
+
unfolding fresher_def using assms by simp
|
170 |
+
|
171 |
+
lemma fresherI [intro]:
|
172 |
+
assumes "(nsqn\<^sub>r r < nsqn\<^sub>r r') \<or> (nsqn\<^sub>r r = nsqn\<^sub>r r' \<and> \<pi>\<^sub>5(r) \<ge> \<pi>\<^sub>5(r'))"
|
173 |
+
shows "r \<sqsubseteq> r'"
|
174 |
+
unfolding fresher_def using assms .
|
175 |
+
|
176 |
+
lemma fresherE [elim]:
|
177 |
+
assumes "r \<sqsubseteq> r'"
|
178 |
+
and "nsqn\<^sub>r r < nsqn\<^sub>r r' \<Longrightarrow> P r r'"
|
179 |
+
and "nsqn\<^sub>r r = nsqn\<^sub>r r' \<and> \<pi>\<^sub>5(r) \<ge> \<pi>\<^sub>5(r') \<Longrightarrow> P r r'"
|
180 |
+
shows "P r r'"
|
181 |
+
using assms unfolding fresher_def by auto
|
182 |
+
|
183 |
+
lemma fresher_refl [simp]: "r \<sqsubseteq> r"
|
184 |
+
unfolding fresher_def by simp
|
185 |
+
|
186 |
+
lemma fresher_trans [elim, trans]:
|
187 |
+
"\<lbrakk> x \<sqsubseteq> y; y \<sqsubseteq> z \<rbrakk> \<Longrightarrow> x \<sqsubseteq> z"
|
188 |
+
unfolding fresher_def by auto
|
189 |
+
|
190 |
+
lemma not_fresher_trans [elim, trans]:
|
191 |
+
"\<lbrakk> \<not>(x \<sqsubseteq> y); \<not>(z \<sqsubseteq> x) \<rbrakk> \<Longrightarrow> \<not>(z \<sqsubseteq> y)"
|
192 |
+
unfolding fresher_def by auto
|
193 |
+
|
194 |
+
lemma fresher_dsn_flag_hops_const [simp]:
|
195 |
+
fixes dsn dsk dsk' flag hops nhip nhip' pre pre'
|
196 |
+
shows "(dsn, dsk, flag, hops, nhip, pre) \<sqsubseteq> (dsn, dsk', flag, hops, nhip', pre')"
|
197 |
+
unfolding fresher_def by (cases flag) simp_all
|
198 |
+
|
199 |
+
lemma addpre_fresher [simp]: "\<And>r npre. r \<sqsubseteq> (addpre r npre)"
|
200 |
+
by clarsimp
|
201 |
+
|
202 |
+
subsection "Comparing routing tables "
|
203 |
+
|
204 |
+
definition
|
205 |
+
rt_fresher :: "ip \<Rightarrow> rt \<Rightarrow> rt \<Rightarrow> bool"
|
206 |
+
where
|
207 |
+
"rt_fresher \<equiv> \<lambda>dip rt rt'. (the (\<sigma>\<^bsub>route\<^esub>(rt, dip))) \<sqsubseteq> (the (\<sigma>\<^bsub>route\<^esub>(rt', dip)))"
|
208 |
+
|
209 |
+
abbreviation
|
210 |
+
rt_fresher_syn :: "rt \<Rightarrow> ip \<Rightarrow> rt \<Rightarrow> bool" ("(_/ \<sqsubseteq>\<^bsub>_\<^esub> _)" [51, 999, 51] 50)
|
211 |
+
where
|
212 |
+
"rt1 \<sqsubseteq>\<^bsub>i\<^esub> rt2 \<equiv> rt_fresher i rt1 rt2"
|
213 |
+
|
214 |
+
lemma rt_fresher_def':
|
215 |
+
"(rt\<^sub>1 \<sqsubseteq>\<^bsub>i\<^esub> rt\<^sub>2) = (nsqn\<^sub>r (the (rt\<^sub>1 i)) < nsqn\<^sub>r (the (rt\<^sub>2 i)) \<or>
|
216 |
+
nsqn\<^sub>r (the (rt\<^sub>1 i)) = nsqn\<^sub>r (the (rt\<^sub>2 i)) \<and> \<pi>\<^sub>5 (the (rt\<^sub>2 i)) \<le> \<pi>\<^sub>5 (the (rt\<^sub>1 i)))"
|
217 |
+
unfolding rt_fresher_def fresher_def by (rule refl)
|
218 |
+
|
219 |
+
lemma single_rt_fresher [intro]:
|
220 |
+
assumes "the (rt1 ip) \<sqsubseteq> the (rt2 ip)"
|
221 |
+
shows "rt1 \<sqsubseteq>\<^bsub>ip\<^esub> rt2"
|
222 |
+
using assms unfolding rt_fresher_def .
|
223 |
+
|
224 |
+
lemma rt_fresher_single [intro]:
|
225 |
+
assumes "rt1 \<sqsubseteq>\<^bsub>ip\<^esub> rt2"
|
226 |
+
shows "the (rt1 ip) \<sqsubseteq> the (rt2 ip)"
|
227 |
+
using assms unfolding rt_fresher_def .
|
228 |
+
|
229 |
+
lemma rt_fresher_def2:
|
230 |
+
assumes "dip \<in> kD(rt1)"
|
231 |
+
and "dip \<in> kD(rt2)"
|
232 |
+
shows "(rt1 \<sqsubseteq>\<^bsub>dip\<^esub> rt2) = (nsqn rt1 dip < nsqn rt2 dip
|
233 |
+
\<or> (nsqn rt1 dip = nsqn rt2 dip
|
234 |
+
\<and> the (dhops rt1 dip) \<ge> the (dhops rt2 dip)))"
|
235 |
+
using assms unfolding rt_fresher_def fresher_def by (simp add: kD_nsqn proj5_eq_dhops)
|
236 |
+
|
237 |
+
lemma rt_fresherI1 [intro]:
|
238 |
+
assumes "dip \<in> kD(rt1)"
|
239 |
+
and "dip \<in> kD(rt2)"
|
240 |
+
and "nsqn rt1 dip < nsqn rt2 dip"
|
241 |
+
shows "rt1 \<sqsubseteq>\<^bsub>dip\<^esub> rt2"
|
242 |
+
unfolding rt_fresher_def2 [OF assms(1-2)] using assms(3) by simp
|
243 |
+
|
244 |
+
lemma rt_fresherI2 [intro]:
|
245 |
+
assumes "dip \<in> kD(rt1)"
|
246 |
+
and "dip \<in> kD(rt2)"
|
247 |
+
and "nsqn rt1 dip = nsqn rt2 dip"
|
248 |
+
and "the (dhops rt1 dip) \<ge> the (dhops rt2 dip)"
|
249 |
+
shows "rt1 \<sqsubseteq>\<^bsub>dip\<^esub> rt2"
|
250 |
+
unfolding rt_fresher_def2 [OF assms(1-2)] using assms(3-4) by simp
|
251 |
+
|
252 |
+
lemma rt_fresherE [elim]:
|
253 |
+
assumes "rt1 \<sqsubseteq>\<^bsub>dip\<^esub> rt2"
|
254 |
+
and "dip \<in> kD(rt1)"
|
255 |
+
and "dip \<in> kD(rt2)"
|
256 |
+
and "\<lbrakk> nsqn rt1 dip < nsqn rt2 dip \<rbrakk> \<Longrightarrow> P rt1 rt2 dip"
|
257 |
+
and "\<lbrakk> nsqn rt1 dip = nsqn rt2 dip;
|
258 |
+
the (dhops rt1 dip) \<ge> the (dhops rt2 dip) \<rbrakk> \<Longrightarrow> P rt1 rt2 dip"
|
259 |
+
shows "P rt1 rt2 dip"
|
260 |
+
using assms(1) unfolding rt_fresher_def2 [OF assms(2-3)]
|
261 |
+
using assms(4-5) by auto
|
262 |
+
|
263 |
+
lemma rt_fresher_refl [simp]: "rt \<sqsubseteq>\<^bsub>dip\<^esub> rt"
|
264 |
+
unfolding rt_fresher_def by simp
|
265 |
+
|
266 |
+
lemma rt_fresher_trans [elim, trans]:
|
267 |
+
assumes "rt1 \<sqsubseteq>\<^bsub>dip\<^esub> rt2"
|
268 |
+
and "rt2 \<sqsubseteq>\<^bsub>dip\<^esub> rt3"
|
269 |
+
shows "rt1 \<sqsubseteq>\<^bsub>dip\<^esub> rt3"
|
270 |
+
using assms unfolding rt_fresher_def by auto
|
271 |
+
|
272 |
+
lemma rt_fresher_if_Some [intro!]:
|
273 |
+
assumes "the (rt dip) \<sqsubseteq> r"
|
274 |
+
shows "rt \<sqsubseteq>\<^bsub>dip\<^esub> (\<lambda>ip. if ip = dip then Some r else rt ip)"
|
275 |
+
using assms unfolding rt_fresher_def by simp
|
276 |
+
|
277 |
+
definition rt_fresh_as :: "ip \<Rightarrow> rt \<Rightarrow> rt \<Rightarrow> bool"
|
278 |
+
where
|
279 |
+
"rt_fresh_as \<equiv> \<lambda>dip rt1 rt2. (rt1 \<sqsubseteq>\<^bsub>dip\<^esub> rt2) \<and> (rt2 \<sqsubseteq>\<^bsub>dip\<^esub> rt1)"
|
280 |
+
|
281 |
+
abbreviation
|
282 |
+
rt_fresh_as_syn :: "rt \<Rightarrow> ip \<Rightarrow> rt \<Rightarrow> bool" ("(_/ \<approx>\<^bsub>_\<^esub> _)" [51, 999, 51] 50)
|
283 |
+
where
|
284 |
+
"rt1 \<approx>\<^bsub>i\<^esub> rt2 \<equiv> rt_fresh_as i rt1 rt2"
|
285 |
+
|
286 |
+
lemma rt_fresh_as_refl [simp]: "\<And>rt dip. rt \<approx>\<^bsub>dip\<^esub> rt"
|
287 |
+
unfolding rt_fresh_as_def by simp
|
288 |
+
|
289 |
+
lemma rt_fresh_as_trans [simp, intro, trans]:
|
290 |
+
"\<And>rt1 rt2 rt3 dip. \<lbrakk> rt1 \<approx>\<^bsub>dip\<^esub> rt2; rt2 \<approx>\<^bsub>dip\<^esub> rt3 \<rbrakk> \<Longrightarrow> rt1 \<approx>\<^bsub>dip\<^esub> rt3"
|
291 |
+
unfolding rt_fresh_as_def rt_fresher_def
|
292 |
+
by (metis (mono_tags) fresher_trans)
|
293 |
+
|
294 |
+
lemma rt_fresh_asI [intro!]:
|
295 |
+
assumes "rt1 \<sqsubseteq>\<^bsub>dip\<^esub> rt2"
|
296 |
+
and "rt2 \<sqsubseteq>\<^bsub>dip\<^esub> rt1"
|
297 |
+
shows "rt1 \<approx>\<^bsub>dip\<^esub> rt2"
|
298 |
+
using assms unfolding rt_fresh_as_def by simp
|
299 |
+
|
300 |
+
lemma rt_fresh_as_fresherI [intro]:
|
301 |
+
assumes "dip\<in>kD(rt1)"
|
302 |
+
and "dip\<in>kD(rt2)"
|
303 |
+
and "the (rt1 dip) \<sqsubseteq> the (rt2 dip)"
|
304 |
+
and "the (rt2 dip) \<sqsubseteq> the (rt1 dip)"
|
305 |
+
shows "rt1 \<approx>\<^bsub>dip\<^esub> rt2"
|
306 |
+
using assms unfolding rt_fresh_as_def
|
307 |
+
by (clarsimp dest!: single_rt_fresher)
|
308 |
+
|
309 |
+
lemma nsqn_rt_fresh_asI:
|
310 |
+
assumes "dip \<in> kD(rt)"
|
311 |
+
and "dip \<in> kD(rt')"
|
312 |
+
and "nsqn rt dip = nsqn rt' dip"
|
313 |
+
and "\<pi>\<^sub>5(the (rt dip)) = \<pi>\<^sub>5(the (rt' dip))"
|
314 |
+
shows "rt \<approx>\<^bsub>dip\<^esub> rt'"
|
315 |
+
proof
|
316 |
+
from assms(1-2,4) have dhops': "the (dhops rt' dip) \<le> the (dhops rt dip)"
|
317 |
+
by (simp add: proj5_eq_dhops)
|
318 |
+
with assms(1-3) show "rt \<sqsubseteq>\<^bsub>dip\<^esub> rt'"
|
319 |
+
by (rule rt_fresherI2)
|
320 |
+
next
|
321 |
+
from assms(1-2,4) have dhops: "the (dhops rt dip) \<le> the (dhops rt' dip)"
|
322 |
+
by (simp add: proj5_eq_dhops)
|
323 |
+
with assms(2,1) assms(3) [symmetric] show "rt' \<sqsubseteq>\<^bsub>dip\<^esub> rt"
|
324 |
+
by (rule rt_fresherI2)
|
325 |
+
qed
|
326 |
+
|
327 |
+
lemma rt_fresh_asE [elim]:
|
328 |
+
assumes "rt1 \<approx>\<^bsub>dip\<^esub> rt2"
|
329 |
+
and "\<lbrakk> rt1 \<sqsubseteq>\<^bsub>dip\<^esub> rt2; rt2 \<sqsubseteq>\<^bsub>dip\<^esub> rt1 \<rbrakk> \<Longrightarrow> P rt1 rt2 dip"
|
330 |
+
shows "P rt1 rt2 dip"
|
331 |
+
using assms unfolding rt_fresh_as_def by simp
|
332 |
+
|
333 |
+
lemma rt_fresh_asD1 [dest]:
|
334 |
+
assumes "rt1 \<approx>\<^bsub>dip\<^esub> rt2"
|
335 |
+
shows "rt1 \<sqsubseteq>\<^bsub>dip\<^esub> rt2"
|
336 |
+
using assms unfolding rt_fresh_as_def by simp
|
337 |
+
|
338 |
+
lemma rt_fresh_asD2 [dest]:
|
339 |
+
assumes "rt1 \<approx>\<^bsub>dip\<^esub> rt2"
|
340 |
+
shows "rt2 \<sqsubseteq>\<^bsub>dip\<^esub> rt1"
|
341 |
+
using assms unfolding rt_fresh_as_def by simp
|
342 |
+
|
343 |
+
lemma rt_fresh_as_sym:
|
344 |
+
assumes "rt1 \<approx>\<^bsub>dip\<^esub> rt2"
|
345 |
+
shows "rt2 \<approx>\<^bsub>dip\<^esub> rt1"
|
346 |
+
using assms unfolding rt_fresh_as_def by simp
|
347 |
+
|
348 |
+
lemma not_rt_fresh_asI1 [intro]:
|
349 |
+
assumes "\<not> (rt1 \<sqsubseteq>\<^bsub>dip\<^esub> rt2)"
|
350 |
+
shows "\<not> (rt1 \<approx>\<^bsub>dip\<^esub> rt2)"
|
351 |
+
proof
|
352 |
+
assume "rt1 \<approx>\<^bsub>dip\<^esub> rt2"
|
353 |
+
hence "rt1 \<sqsubseteq>\<^bsub>dip\<^esub> rt2" ..
|
354 |
+
with \<open>\<not> (rt1 \<sqsubseteq>\<^bsub>dip\<^esub> rt2)\<close> show False ..
|
355 |
+
qed
|
356 |
+
|
357 |
+
lemma not_rt_fresh_asI2 [intro]:
|
358 |
+
assumes "\<not> (rt2 \<sqsubseteq>\<^bsub>dip\<^esub> rt1)"
|
359 |
+
shows "\<not> (rt1 \<approx>\<^bsub>dip\<^esub> rt2)"
|
360 |
+
proof
|
361 |
+
assume "rt1 \<approx>\<^bsub>dip\<^esub> rt2"
|
362 |
+
hence "rt2 \<sqsubseteq>\<^bsub>dip\<^esub> rt1" ..
|
363 |
+
with \<open>\<not> (rt2 \<sqsubseteq>\<^bsub>dip\<^esub> rt1)\<close> show False ..
|
364 |
+
qed
|
365 |
+
|
366 |
+
lemma not_single_rt_fresher [elim]:
|
367 |
+
assumes "\<not>(the (rt1 ip) \<sqsubseteq> the (rt2 ip))"
|
368 |
+
shows "\<not>(rt1 \<sqsubseteq>\<^bsub>ip\<^esub> rt2)"
|
369 |
+
proof
|
370 |
+
assume "rt1 \<sqsubseteq>\<^bsub>ip\<^esub> rt2"
|
371 |
+
hence "the (rt1 ip) \<sqsubseteq> the (rt2 ip)" ..
|
372 |
+
with \<open>\<not>(the (rt1 ip) \<sqsubseteq> the (rt2 ip))\<close> show False ..
|
373 |
+
qed
|
374 |
+
|
375 |
+
lemmas not_single_rt_fresh_asI1 [intro] = not_rt_fresh_asI1 [OF not_single_rt_fresher]
|
376 |
+
lemmas not_single_rt_fresh_asI2 [intro] = not_rt_fresh_asI2 [OF not_single_rt_fresher]
|
377 |
+
|
378 |
+
lemma not_rt_fresher_single [elim]:
|
379 |
+
assumes "\<not>(rt1 \<sqsubseteq>\<^bsub>ip\<^esub> rt2)"
|
380 |
+
shows "\<not>(the (rt1 ip) \<sqsubseteq> the (rt2 ip))"
|
381 |
+
proof
|
382 |
+
assume "the (rt1 ip) \<sqsubseteq> the (rt2 ip)"
|
383 |
+
hence "rt1 \<sqsubseteq>\<^bsub>ip\<^esub> rt2" ..
|
384 |
+
with \<open>\<not>(rt1 \<sqsubseteq>\<^bsub>ip\<^esub> rt2)\<close> show False ..
|
385 |
+
qed
|
386 |
+
|
387 |
+
lemma rt_fresh_as_nsqnr:
|
388 |
+
assumes "dip \<in> kD(rt1)"
|
389 |
+
and "dip \<in> kD(rt2)"
|
390 |
+
and "rt1 \<approx>\<^bsub>dip\<^esub> rt2"
|
391 |
+
shows "nsqn\<^sub>r (the (rt2 dip)) = nsqn\<^sub>r (the (rt1 dip))"
|
392 |
+
using assms(3) unfolding rt_fresh_as_def
|
393 |
+
by (auto simp: rt_fresher_def2 [OF \<open>dip \<in> kD(rt1)\<close> \<open>dip \<in> kD(rt2)\<close>]
|
394 |
+
rt_fresher_def2 [OF \<open>dip \<in> kD(rt2)\<close> \<open>dip \<in> kD(rt1)\<close>]
|
395 |
+
kD_nsqn [OF \<open>dip \<in> kD(rt1)\<close>]
|
396 |
+
kD_nsqn [OF \<open>dip \<in> kD(rt2)\<close>])
|
397 |
+
|
398 |
+
lemma rt_fresher_mapupd [intro!]:
|
399 |
+
assumes "dip\<in>kD(rt)"
|
400 |
+
and "the (rt dip) \<sqsubseteq> r"
|
401 |
+
shows "rt \<sqsubseteq>\<^bsub>dip\<^esub> rt(dip \<mapsto> r)"
|
402 |
+
using assms unfolding rt_fresher_def by simp
|
403 |
+
|
404 |
+
lemma rt_fresher_map_update_other [intro!]:
|
405 |
+
assumes "dip\<in>kD(rt)"
|
406 |
+
and "dip \<noteq> ip"
|
407 |
+
shows "rt \<sqsubseteq>\<^bsub>dip\<^esub> rt(ip \<mapsto> r)"
|
408 |
+
using assms unfolding rt_fresher_def by simp
|
409 |
+
|
410 |
+
lemma rt_fresher_update_other [simp]:
|
411 |
+
assumes inkD: "dip\<in>kD(rt)"
|
412 |
+
and "dip \<noteq> ip"
|
413 |
+
shows "rt \<sqsubseteq>\<^bsub>dip\<^esub> update rt ip r"
|
414 |
+
using assms unfolding update_def
|
415 |
+
by (clarsimp split: option.split) (fastforce)
|
416 |
+
|
417 |
+
theorem rt_fresher_update [simp]:
|
418 |
+
assumes "dip\<in>kD(rt)"
|
419 |
+
and "the (dhops rt dip) \<ge> 1"
|
420 |
+
and "update_arg_wf r"
|
421 |
+
shows "rt \<sqsubseteq>\<^bsub>dip\<^esub> update rt ip r"
|
422 |
+
proof (cases "dip = ip")
|
423 |
+
assume "dip \<noteq> ip" with \<open>dip\<in>kD(rt)\<close> show ?thesis
|
424 |
+
by (rule rt_fresher_update_other)
|
425 |
+
next
|
426 |
+
assume "dip = ip"
|
427 |
+
|
428 |
+
from \<open>dip\<in>kD(rt)\<close> obtain dsn\<^sub>n dsk\<^sub>n f\<^sub>n hops\<^sub>n nhip\<^sub>n pre\<^sub>n
|
429 |
+
where rtn [simp]: "the (rt dip) = (dsn\<^sub>n, dsk\<^sub>n, f\<^sub>n, hops\<^sub>n, nhip\<^sub>n, pre\<^sub>n)"
|
430 |
+
by (metis prod_cases6)
|
431 |
+
with \<open>the (dhops rt dip) \<ge> 1\<close> and \<open>dip\<in>kD(rt)\<close> have "hops\<^sub>n \<ge> 1"
|
432 |
+
by (metis proj5_eq_dhops projs(4))
|
433 |
+
from \<open>dip\<in>kD(rt)\<close> rtn have [simp]: "sqn rt dip = dsn\<^sub>n"
|
434 |
+
and [simp]: "the (dhops rt dip) = hops\<^sub>n"
|
435 |
+
and [simp]: "the (flag rt dip) = f\<^sub>n"
|
436 |
+
by (simp add: sqn_def proj5_eq_dhops [symmetric]
|
437 |
+
proj4_eq_flag [symmetric])+
|
438 |
+
|
439 |
+
from \<open>update_arg_wf r\<close> have "(dsn\<^sub>n, dsk\<^sub>n, f\<^sub>n, hops\<^sub>n, nhip\<^sub>n, pre\<^sub>n)
|
440 |
+
\<sqsubseteq> the ((update rt dip r) dip)"
|
441 |
+
proof (rule wf_r_cases)
|
442 |
+
fix nhip pre
|
443 |
+
from \<open>hops\<^sub>n \<ge> 1\<close> have "\<And>pre'. (dsn\<^sub>n, dsk\<^sub>n, f\<^sub>n, hops\<^sub>n, nhip\<^sub>n, pre\<^sub>n)
|
444 |
+
\<sqsubseteq> (dsn\<^sub>n, unk, val, Suc 0, nhip, pre')"
|
445 |
+
unfolding fresher_def sqn_def by (cases f\<^sub>n) auto
|
446 |
+
thus "(dsn\<^sub>n, dsk\<^sub>n, f\<^sub>n, hops\<^sub>n, nhip\<^sub>n, pre\<^sub>n)
|
447 |
+
\<sqsubseteq> the (update rt dip (0, unk, val, Suc 0, nhip, pre) dip)"
|
448 |
+
using \<open>dip\<in>kD(rt)\<close> by - (rule update_cases_kD, simp_all)
|
449 |
+
next
|
450 |
+
fix dsn :: sqn and hops nhip pre
|
451 |
+
assume "0 < dsn"
|
452 |
+
show "(dsn\<^sub>n, dsk\<^sub>n, f\<^sub>n, hops\<^sub>n, nhip\<^sub>n, pre\<^sub>n)
|
453 |
+
\<sqsubseteq> the (update rt dip (dsn, kno, val, hops, nhip, pre) dip)"
|
454 |
+
proof (rule update_cases_kD [OF _ \<open>dip\<in>kD(rt)\<close>], simp_all add: \<open>0 < dsn\<close>)
|
455 |
+
assume "dsn\<^sub>n < dsn"
|
456 |
+
thus "(dsn\<^sub>n, dsk\<^sub>n, f\<^sub>n, hops\<^sub>n, nhip\<^sub>n, pre\<^sub>n)
|
457 |
+
\<sqsubseteq> (dsn, kno, val, hops, nhip, pre \<union> pre\<^sub>n)"
|
458 |
+
unfolding fresher_def by auto
|
459 |
+
next
|
460 |
+
assume "dsn\<^sub>n = dsn"
|
461 |
+
and "hops < hops\<^sub>n"
|
462 |
+
thus "(dsn, dsk\<^sub>n, f\<^sub>n, hops\<^sub>n, nhip\<^sub>n, pre\<^sub>n)
|
463 |
+
\<sqsubseteq> (dsn, kno, val, hops, nhip, pre \<union> pre\<^sub>n)"
|
464 |
+
unfolding fresher_def nsqn\<^sub>r_def by simp
|
465 |
+
next
|
466 |
+
assume "dsn\<^sub>n = dsn"
|
467 |
+
with \<open>0 < dsn\<close>
|
468 |
+
show "(dsn, dsk\<^sub>n, inv, hops\<^sub>n, nhip\<^sub>n, pre\<^sub>n)
|
469 |
+
\<sqsubseteq> (dsn, kno, val, hops, nhip, pre \<union> pre\<^sub>n)"
|
470 |
+
unfolding fresher_def by simp
|
471 |
+
qed
|
472 |
+
qed
|
473 |
+
hence "rt \<sqsubseteq>\<^bsub>dip\<^esub> update rt dip r"
|
474 |
+
by - (rule single_rt_fresher, simp)
|
475 |
+
with \<open>dip = ip\<close> show ?thesis by simp
|
476 |
+
qed
|
477 |
+
|
478 |
+
theorem rt_fresher_invalidate [simp]:
|
479 |
+
assumes "dip\<in>kD(rt)"
|
480 |
+
and indests: "\<forall>rip\<in>dom(dests). rip\<in>vD(rt) \<and> sqn rt rip < the (dests rip)"
|
481 |
+
shows "rt \<sqsubseteq>\<^bsub>dip\<^esub> invalidate rt dests"
|
482 |
+
proof (cases "dip\<in>dom(dests)")
|
483 |
+
assume "dip\<notin>dom(dests)"
|
484 |
+
thus ?thesis using \<open>dip\<in>kD(rt)\<close>
|
485 |
+
by - (rule single_rt_fresher, simp)
|
486 |
+
next
|
487 |
+
assume "dip\<in>dom(dests)"
|
488 |
+
moreover with indests have "dip\<in>vD(rt)"
|
489 |
+
and "sqn rt dip < the (dests dip)"
|
490 |
+
by auto
|
491 |
+
ultimately show ?thesis
|
492 |
+
unfolding invalidate_def sqn_def
|
493 |
+
by - (rule single_rt_fresher, auto simp: fresher_def)
|
494 |
+
qed
|
495 |
+
|
496 |
+
lemma nsqn\<^sub>r_invalidate [simp]:
|
497 |
+
assumes "dip\<in>kD(rt)"
|
498 |
+
and "dip\<in>dom(dests)"
|
499 |
+
shows "nsqn\<^sub>r (the (invalidate rt dests dip)) = the (dests dip) - 1"
|
500 |
+
using assms unfolding invalidate_def by auto
|
501 |
+
|
502 |
+
lemma rt_fresh_as_inc_invalidate [simp]:
|
503 |
+
assumes "dip\<in>kD(rt)"
|
504 |
+
and "\<forall>rip\<in>dom(dests). rip\<in>vD(rt) \<and> the (dests rip) = inc (sqn rt rip)"
|
505 |
+
shows "rt \<approx>\<^bsub>dip\<^esub> invalidate rt dests"
|
506 |
+
proof (cases "dip\<in>dom(dests)")
|
507 |
+
assume "dip\<notin>dom(dests)"
|
508 |
+
with \<open>dip\<in>kD(rt)\<close> have "dip\<in>kD(invalidate rt dests)"
|
509 |
+
by simp
|
510 |
+
with \<open>dip\<in>kD(rt)\<close> show ?thesis
|
511 |
+
by rule (simp_all add: \<open>dip\<notin>dom(dests)\<close>)
|
512 |
+
next
|
513 |
+
assume "dip\<in>dom(dests)"
|
514 |
+
with assms(2) have "dip\<in>vD(rt)"
|
515 |
+
and "the (dests dip) = inc (sqn rt dip)" by auto
|
516 |
+
from \<open>dip\<in>vD(rt)\<close> have "dip\<in>kD(rt)" by simp
|
517 |
+
moreover then have "dip\<in>kD(invalidate rt dests)" by simp
|
518 |
+
ultimately show ?thesis
|
519 |
+
proof (rule nsqn_rt_fresh_asI)
|
520 |
+
from \<open>dip\<in>vD(rt)\<close> have "nsqn rt dip = sqn rt dip" by simp
|
521 |
+
also have "sqn rt dip = nsqn\<^sub>r (the (invalidate rt dests dip))"
|
522 |
+
proof -
|
523 |
+
from \<open>dip\<in>kD(rt)\<close> have "nsqn\<^sub>r (the (invalidate rt dests dip)) = the (dests dip) - 1"
|
524 |
+
using \<open>dip\<in>dom(dests)\<close> by (rule nsqn\<^sub>r_invalidate)
|
525 |
+
with \<open>the (dests dip) = inc (sqn rt dip)\<close>
|
526 |
+
show "sqn rt dip = nsqn\<^sub>r (the (invalidate rt dests dip))" by simp
|
527 |
+
qed
|
528 |
+
also from \<open>dip\<in>kD(invalidate rt dests)\<close>
|
529 |
+
have "nsqn\<^sub>r (the (invalidate rt dests dip)) = nsqn (invalidate rt dests) dip"
|
530 |
+
by (simp add: kD_nsqn)
|
531 |
+
finally show "nsqn rt dip = nsqn (invalidate rt dests) dip" .
|
532 |
+
qed simp
|
533 |
+
qed
|
534 |
+
|
535 |
+
lemmas rt_fresher_inc_invalidate [simp] = rt_fresh_as_inc_invalidate [THEN rt_fresh_asD1]
|
536 |
+
|
537 |
+
lemma rt_fresh_as_addpreRT [simp]:
|
538 |
+
assumes "ip\<in>kD(rt)"
|
539 |
+
shows "rt \<approx>\<^bsub>dip\<^esub> the (addpreRT rt ip npre)"
|
540 |
+
using assms [THEN kD_Some] by (auto simp: addpreRT_def)
|
541 |
+
|
542 |
+
lemmas rt_fresher_addpreRT [simp] = rt_fresh_as_addpreRT [THEN rt_fresh_asD1]
|
543 |
+
|
544 |
+
subsection "Strictly comparing routing tables "
|
545 |
+
|
546 |
+
definition rt_strictly_fresher :: "ip \<Rightarrow> rt \<Rightarrow> rt \<Rightarrow> bool"
|
547 |
+
where
|
548 |
+
"rt_strictly_fresher \<equiv> \<lambda>dip rt1 rt2. (rt1 \<sqsubseteq>\<^bsub>dip\<^esub> rt2) \<and> \<not>(rt1 \<approx>\<^bsub>dip\<^esub> rt2)"
|
549 |
+
|
550 |
+
abbreviation
|
551 |
+
rt_strictly_fresher_syn :: "rt \<Rightarrow> ip \<Rightarrow> rt \<Rightarrow> bool" ("(_/ \<sqsubset>\<^bsub>_\<^esub> _)" [51, 999, 51] 50)
|
552 |
+
where
|
553 |
+
"rt1 \<sqsubset>\<^bsub>i\<^esub> rt2 \<equiv> rt_strictly_fresher i rt1 rt2"
|
554 |
+
|
555 |
+
lemma rt_strictly_fresher_def'':
|
556 |
+
"rt1 \<sqsubset>\<^bsub>i\<^esub> rt2 = ((rt1 \<sqsubseteq>\<^bsub>i\<^esub> rt2) \<and> \<not>(rt2 \<sqsubseteq>\<^bsub>i\<^esub> rt1))"
|
557 |
+
unfolding rt_strictly_fresher_def rt_fresh_as_def by auto
|
558 |
+
|
559 |
+
lemma rt_strictly_fresherI' [intro]:
|
560 |
+
assumes "rt1 \<sqsubseteq>\<^bsub>i\<^esub> rt2"
|
561 |
+
and "\<not>(rt2 \<sqsubseteq>\<^bsub>i\<^esub> rt1)"
|
562 |
+
shows "rt1 \<sqsubset>\<^bsub>i\<^esub> rt2"
|
563 |
+
using assms unfolding rt_strictly_fresher_def'' by simp
|
564 |
+
|
565 |
+
lemma rt_strictly_fresherE' [elim]:
|
566 |
+
assumes "rt1 \<sqsubset>\<^bsub>i\<^esub> rt2"
|
567 |
+
and "\<lbrakk> rt1 \<sqsubseteq>\<^bsub>i\<^esub> rt2; \<not>(rt2 \<sqsubseteq>\<^bsub>i\<^esub> rt1) \<rbrakk> \<Longrightarrow> P rt1 rt2 i"
|
568 |
+
shows "P rt1 rt2 i"
|
569 |
+
using assms unfolding rt_strictly_fresher_def'' by simp
|
570 |
+
|
571 |
+
lemma rt_strictly_fresherI [intro]:
|
572 |
+
assumes "rt1 \<sqsubseteq>\<^bsub>i\<^esub> rt2"
|
573 |
+
and "\<not>(rt1 \<approx>\<^bsub>i\<^esub> rt2)"
|
574 |
+
shows "rt1 \<sqsubset>\<^bsub>i\<^esub> rt2"
|
575 |
+
unfolding rt_strictly_fresher_def using assms ..
|
576 |
+
|
577 |
+
lemmas rt_strictly_fresher_singleI [elim] = rt_strictly_fresherI [OF single_rt_fresher]
|
578 |
+
|
579 |
+
lemma rt_strictly_fresherE [elim]:
|
580 |
+
assumes "rt1 \<sqsubset>\<^bsub>i\<^esub> rt2"
|
581 |
+
and "\<lbrakk> rt1 \<sqsubseteq>\<^bsub>i\<^esub> rt2; \<not>(rt1 \<approx>\<^bsub>i\<^esub> rt2) \<rbrakk> \<Longrightarrow> P rt1 rt2 i"
|
582 |
+
shows "P rt1 rt2 i"
|
583 |
+
using assms(1) unfolding rt_strictly_fresher_def
|
584 |
+
by rule (erule(1) assms(2))
|
585 |
+
|
586 |
+
lemma rt_strictly_fresher_def':
|
587 |
+
"rt1 \<sqsubset>\<^bsub>i\<^esub> rt2 =
|
588 |
+
(nsqn\<^sub>r (the (rt1 i)) < nsqn\<^sub>r (the (rt2 i))
|
589 |
+
\<or> (nsqn\<^sub>r (the (rt1 i)) = nsqn\<^sub>r (the (rt2 i)) \<and> \<pi>\<^sub>5(the (rt1 i)) > \<pi>\<^sub>5(the (rt2 i))))"
|
590 |
+
unfolding rt_strictly_fresher_def'' rt_fresher_def fresher_def by auto
|
591 |
+
|
592 |
+
lemma rt_strictly_fresher_fresherD [dest]:
|
593 |
+
assumes "rt1 \<sqsubset>\<^bsub>dip\<^esub> rt2"
|
594 |
+
shows "the (rt1 dip) \<sqsubseteq> the (rt2 dip)"
|
595 |
+
using assms unfolding rt_strictly_fresher_def rt_fresher_def by auto
|
596 |
+
|
597 |
+
lemma rt_strictly_fresher_not_fresh_asD [dest]:
|
598 |
+
assumes "rt1 \<sqsubset>\<^bsub>dip\<^esub> rt2"
|
599 |
+
shows "\<not> rt1 \<approx>\<^bsub>dip\<^esub> rt2"
|
600 |
+
using assms unfolding rt_strictly_fresher_def by auto
|
601 |
+
|
602 |
+
lemma rt_strictly_fresher_trans [elim, trans]:
|
603 |
+
assumes "rt1 \<sqsubset>\<^bsub>dip\<^esub> rt2"
|
604 |
+
and "rt2 \<sqsubset>\<^bsub>dip\<^esub> rt3"
|
605 |
+
shows "rt1 \<sqsubset>\<^bsub>dip\<^esub> rt3"
|
606 |
+
using assms proof -
|
607 |
+
from \<open>rt1 \<sqsubset>\<^bsub>dip\<^esub> rt2\<close> obtain "the (rt1 dip) \<sqsubseteq> the (rt2 dip)" by auto
|
608 |
+
also from \<open>rt2 \<sqsubset>\<^bsub>dip\<^esub> rt3\<close> obtain "the (rt2 dip) \<sqsubseteq> the (rt3 dip)" by auto
|
609 |
+
finally have "the (rt1 dip) \<sqsubseteq> the (rt3 dip)" .
|
610 |
+
|
611 |
+
moreover have "\<not> (rt1 \<approx>\<^bsub>dip\<^esub> rt3)"
|
612 |
+
proof -
|
613 |
+
from \<open>rt1 \<sqsubset>\<^bsub>dip\<^esub> rt2\<close> obtain "\<not>(the (rt2 dip) \<sqsubseteq> the (rt1 dip))" by auto
|
614 |
+
also from \<open>rt2 \<sqsubset>\<^bsub>dip\<^esub> rt3\<close> obtain "\<not>(the (rt3 dip) \<sqsubseteq> the (rt2 dip))" by auto
|
615 |
+
finally have "\<not>(the (rt3 dip) \<sqsubseteq> the (rt1 dip))" .
|
616 |
+
thus ?thesis ..
|
617 |
+
qed
|
618 |
+
ultimately show "rt1 \<sqsubset>\<^bsub>dip\<^esub> rt3" ..
|
619 |
+
qed
|
620 |
+
|
621 |
+
lemma rt_strictly_fresher_irefl [simp]: "\<not> (rt \<sqsubset>\<^bsub>dip\<^esub> rt)"
|
622 |
+
unfolding rt_strictly_fresher_def
|
623 |
+
by clarsimp
|
624 |
+
|
625 |
+
lemma rt_fresher_trans_rt_strictly_fresher [elim, trans]:
|
626 |
+
assumes "rt1 \<sqsubset>\<^bsub>dip\<^esub> rt2"
|
627 |
+
and "rt2 \<sqsubseteq>\<^bsub>dip\<^esub> rt3"
|
628 |
+
shows "rt1 \<sqsubset>\<^bsub>dip\<^esub> rt3"
|
629 |
+
proof -
|
630 |
+
from \<open>rt1 \<sqsubset>\<^bsub>dip\<^esub> rt2\<close> have "rt1 \<sqsubseteq>\<^bsub>dip\<^esub> rt2"
|
631 |
+
and "\<not>(rt2 \<sqsubseteq>\<^bsub>dip\<^esub> rt1)"
|
632 |
+
unfolding rt_strictly_fresher_def'' by auto
|
633 |
+
from this(1) and \<open>rt2 \<sqsubseteq>\<^bsub>dip\<^esub> rt3\<close> have "rt1 \<sqsubseteq>\<^bsub>dip\<^esub> rt3" ..
|
634 |
+
|
635 |
+
moreover from \<open>\<not>(rt2 \<sqsubseteq>\<^bsub>dip\<^esub> rt1)\<close> have "\<not>(rt3 \<sqsubseteq>\<^bsub>dip\<^esub> rt1)"
|
636 |
+
proof (rule contrapos_nn)
|
637 |
+
assume "rt3 \<sqsubseteq>\<^bsub>dip\<^esub> rt1"
|
638 |
+
with \<open>rt2 \<sqsubseteq>\<^bsub>dip\<^esub> rt3\<close> show "rt2 \<sqsubseteq>\<^bsub>dip\<^esub> rt1" ..
|
639 |
+
qed
|
640 |
+
|
641 |
+
ultimately show "rt1 \<sqsubset>\<^bsub>dip\<^esub> rt3"
|
642 |
+
unfolding rt_strictly_fresher_def'' by auto
|
643 |
+
qed
|
644 |
+
|
645 |
+
lemma rt_fresher_trans_rt_strictly_fresher' [elim, trans]:
|
646 |
+
assumes "rt1 \<sqsubseteq>\<^bsub>dip\<^esub> rt2"
|
647 |
+
and "rt2 \<sqsubset>\<^bsub>dip\<^esub> rt3"
|
648 |
+
shows "rt1 \<sqsubset>\<^bsub>dip\<^esub> rt3"
|
649 |
+
proof -
|
650 |
+
from \<open>rt2 \<sqsubset>\<^bsub>dip\<^esub> rt3\<close> have "rt2 \<sqsubseteq>\<^bsub>dip\<^esub> rt3"
|
651 |
+
and "\<not>(rt3 \<sqsubseteq>\<^bsub>dip\<^esub> rt2)"
|
652 |
+
unfolding rt_strictly_fresher_def'' by auto
|
653 |
+
from \<open>rt1 \<sqsubseteq>\<^bsub>dip\<^esub> rt2\<close> and this(1) have "rt1 \<sqsubseteq>\<^bsub>dip\<^esub> rt3" ..
|
654 |
+
|
655 |
+
moreover from \<open>\<not>(rt3 \<sqsubseteq>\<^bsub>dip\<^esub> rt2)\<close> have "\<not>(rt3 \<sqsubseteq>\<^bsub>dip\<^esub> rt1)"
|
656 |
+
proof (rule contrapos_nn)
|
657 |
+
assume "rt3 \<sqsubseteq>\<^bsub>dip\<^esub> rt1"
|
658 |
+
thus "rt3 \<sqsubseteq>\<^bsub>dip\<^esub> rt2" using \<open>rt1 \<sqsubseteq>\<^bsub>dip\<^esub> rt2\<close> ..
|
659 |
+
qed
|
660 |
+
|
661 |
+
ultimately show "rt1 \<sqsubset>\<^bsub>dip\<^esub> rt3"
|
662 |
+
unfolding rt_strictly_fresher_def'' by auto
|
663 |
+
qed
|
664 |
+
|
665 |
+
lemma rt_fresher_imp_nsqn_le:
|
666 |
+
assumes "rt1 \<sqsubseteq>\<^bsub>ip\<^esub> rt2"
|
667 |
+
and "ip \<in> kD rt1"
|
668 |
+
and "ip \<in> kD rt2"
|
669 |
+
shows "nsqn rt1 ip \<le> nsqn rt2 ip"
|
670 |
+
using assms(1)
|
671 |
+
by (auto simp add: rt_fresher_def2 [OF assms(2-3)])
|
672 |
+
|
673 |
+
lemma rt_strictly_fresher_ltI [intro]:
|
674 |
+
assumes "dip \<in> kD(rt1)"
|
675 |
+
and "dip \<in> kD(rt2)"
|
676 |
+
and "nsqn rt1 dip < nsqn rt2 dip"
|
677 |
+
shows "rt1 \<sqsubset>\<^bsub>dip\<^esub> rt2"
|
678 |
+
proof
|
679 |
+
from assms show "rt1 \<sqsubseteq>\<^bsub>dip\<^esub> rt2" ..
|
680 |
+
next
|
681 |
+
show "\<not>(rt1 \<approx>\<^bsub>dip\<^esub> rt2)"
|
682 |
+
proof
|
683 |
+
assume "rt1 \<approx>\<^bsub>dip\<^esub> rt2"
|
684 |
+
hence "rt2 \<sqsubseteq>\<^bsub>dip\<^esub> rt1" ..
|
685 |
+
hence "nsqn rt2 dip \<le> nsqn rt1 dip"
|
686 |
+
using \<open>dip \<in> kD(rt2)\<close> \<open>dip \<in> kD(rt1)\<close>
|
687 |
+
by (rule rt_fresher_imp_nsqn_le)
|
688 |
+
with \<open>nsqn rt1 dip < nsqn rt2 dip\<close> show "False"
|
689 |
+
by simp
|
690 |
+
qed
|
691 |
+
qed
|
692 |
+
|
693 |
+
lemma rt_strictly_fresher_eqI [intro]:
|
694 |
+
assumes "i\<in>kD(rt1)"
|
695 |
+
and "i\<in>kD(rt2)"
|
696 |
+
and "nsqn rt1 i = nsqn rt2 i"
|
697 |
+
and "\<pi>\<^sub>5(the (rt2 i)) < \<pi>\<^sub>5(the (rt1 i))"
|
698 |
+
shows "rt1 \<sqsubset>\<^bsub>i\<^esub> rt2"
|
699 |
+
using assms unfolding rt_strictly_fresher_def' by (auto simp add: kD_nsqn)
|
700 |
+
|
701 |
+
lemma invalidate_rtsf_left [simp]:
|
702 |
+
"\<And>dests dip rt rt'. dests dip = None \<Longrightarrow> (invalidate rt dests \<sqsubset>\<^bsub>dip\<^esub> rt') = (rt \<sqsubset>\<^bsub>dip\<^esub> rt')"
|
703 |
+
unfolding invalidate_def rt_strictly_fresher_def'
|
704 |
+
by (rule iffI) (auto split: option.split_asm)
|
705 |
+
|
706 |
+
lemma vD_invalidate_rt_strictly_fresher [simp]:
|
707 |
+
assumes "dip \<in> vD(invalidate rt1 dests)"
|
708 |
+
shows "(invalidate rt1 dests \<sqsubset>\<^bsub>dip\<^esub> rt2) = (rt1 \<sqsubset>\<^bsub>dip\<^esub> rt2)"
|
709 |
+
proof (cases "dip \<in> dom(dests)")
|
710 |
+
assume "dip \<in> dom(dests)"
|
711 |
+
hence "dip \<notin> vD(invalidate rt1 dests)"
|
712 |
+
unfolding invalidate_def vD_def
|
713 |
+
by clarsimp (metis assms option.simps(3) vD_invalidate_vD_not_dests)
|
714 |
+
with \<open>dip \<in> vD(invalidate rt1 dests)\<close> show ?thesis by simp
|
715 |
+
next
|
716 |
+
assume "dip \<notin> dom(dests)"
|
717 |
+
hence "dests dip = None" by auto
|
718 |
+
moreover with \<open>dip \<in> vD(invalidate rt1 dests)\<close> have "dip \<in> vD(rt1)"
|
719 |
+
unfolding invalidate_def vD_def
|
720 |
+
by clarsimp (metis (opaque_lifting, no_types) assms vD_Some vD_invalidate_vD_not_dests)
|
721 |
+
ultimately show ?thesis
|
722 |
+
unfolding invalidate_def rt_strictly_fresher_def' by auto
|
723 |
+
qed
|
724 |
+
|
725 |
+
lemma rt_strictly_fresher_update_other [elim!]:
|
726 |
+
"\<And>dip ip rt r rt'. \<lbrakk> dip \<noteq> ip; rt \<sqsubset>\<^bsub>dip\<^esub> rt' \<rbrakk> \<Longrightarrow> update rt ip r \<sqsubset>\<^bsub>dip\<^esub> rt'"
|
727 |
+
unfolding rt_strictly_fresher_def' by clarsimp
|
728 |
+
|
729 |
+
lemma addpreRT_strictly_fresher [simp]:
|
730 |
+
assumes "dip \<in> kD(rt)"
|
731 |
+
shows "(the (addpreRT rt dip npre) \<sqsubset>\<^bsub>ip\<^esub> rt2) = (rt \<sqsubset>\<^bsub>ip\<^esub> rt2)"
|
732 |
+
using assms unfolding rt_strictly_fresher_def' by clarsimp
|
733 |
+
|
734 |
+
lemma lt_sqn_imp_update_strictly_fresher:
|
735 |
+
assumes "dip \<in> vD (rt2 nhip)"
|
736 |
+
and *: "osn < sqn (rt2 nhip) dip"
|
737 |
+
and **: "rt \<noteq> update rt dip (osn, kno, val, hops, nhip, {})"
|
738 |
+
shows "update rt dip (osn, kno, val, hops, nhip, {}) \<sqsubset>\<^bsub>dip\<^esub> rt2 nhip"
|
739 |
+
unfolding rt_strictly_fresher_def'
|
740 |
+
proof (rule disjI1)
|
741 |
+
from ** have "nsqn (update rt dip (osn, kno, val, hops, nhip, {})) dip = osn"
|
742 |
+
by (rule nsqn_update_changed_kno_val)
|
743 |
+
with \<open>dip\<in>vD(rt2 nhip)\<close>
|
744 |
+
have "nsqn\<^sub>r (the (update rt dip (osn, kno, val, hops, nhip, {}) dip)) = osn"
|
745 |
+
by (simp add: kD_nsqn)
|
746 |
+
also have "osn < sqn (rt2 nhip) dip" by (rule *)
|
747 |
+
also have "sqn (rt2 nhip) dip = nsqn\<^sub>r (the (rt2 nhip dip))"
|
748 |
+
unfolding nsqn\<^sub>r_def using \<open>dip \<in> vD (rt2 nhip)\<close>
|
749 |
+
by - (metis vD_flag_val proj2_eq_sqn proj4_eq_flag vD_iD_gives_kD(1))
|
750 |
+
finally show "nsqn\<^sub>r (the (update rt dip (osn, kno, val, hops, nhip, {}) dip))
|
751 |
+
< nsqn\<^sub>r (the (rt2 nhip dip))" .
|
752 |
+
qed
|
753 |
+
|
754 |
+
lemma dhops_le_hops_imp_update_strictly_fresher:
|
755 |
+
assumes "dip \<in> vD(rt2 nhip)"
|
756 |
+
and sqn: "sqn (rt2 nhip) dip = osn"
|
757 |
+
and hop: "the (dhops (rt2 nhip) dip) \<le> hops"
|
758 |
+
and **: "rt \<noteq> update rt dip (osn, kno, val, Suc hops, nhip, {})"
|
759 |
+
shows "update rt dip (osn, kno, val, Suc hops, nhip, {}) \<sqsubset>\<^bsub>dip\<^esub> rt2 nhip"
|
760 |
+
unfolding rt_strictly_fresher_def'
|
761 |
+
proof (rule disjI2, rule conjI)
|
762 |
+
from ** have "nsqn (update rt dip (osn, kno, val, Suc hops, nhip, {})) dip = osn"
|
763 |
+
by (rule nsqn_update_changed_kno_val)
|
764 |
+
with \<open>dip\<in>vD(rt2 nhip)\<close>
|
765 |
+
have "nsqn\<^sub>r (the (update rt dip (osn, kno, val, Suc hops, nhip, {}) dip)) = osn"
|
766 |
+
by (simp add: kD_nsqn)
|
767 |
+
also have "osn = sqn (rt2 nhip) dip" by (rule sqn [symmetric])
|
768 |
+
also have "sqn (rt2 nhip) dip = nsqn\<^sub>r (the (rt2 nhip dip))"
|
769 |
+
unfolding nsqn\<^sub>r_def using \<open>dip \<in> vD(rt2 nhip)\<close>
|
770 |
+
by - (metis vD_flag_val proj2_eq_sqn proj4_eq_flag vD_iD_gives_kD(1))
|
771 |
+
finally show "nsqn\<^sub>r (the (update rt dip (osn, kno, val, Suc hops, nhip, {}) dip))
|
772 |
+
= nsqn\<^sub>r (the (rt2 nhip dip))" .
|
773 |
+
next
|
774 |
+
have "the (dhops (rt2 nhip) dip) \<le> hops" by (rule hop)
|
775 |
+
also have "hops < hops + 1" by simp
|
776 |
+
also have "hops + 1 = the (dhops (update rt dip (osn, kno, val, Suc hops, nhip, {})) dip)"
|
777 |
+
using ** by simp
|
778 |
+
finally have "the (dhops (rt2 nhip) dip)
|
779 |
+
< the (dhops (update rt dip (osn, kno, val, Suc hops, nhip, {})) dip)" .
|
780 |
+
thus "\<pi>\<^sub>5 (the (rt2 nhip dip)) < \<pi>\<^sub>5 (the (update rt dip (osn, kno, val, Suc hops, nhip, {}) dip))"
|
781 |
+
using \<open>dip \<in> vD(rt2 nhip)\<close> by (simp add: proj5_eq_dhops)
|
782 |
+
qed
|
783 |
+
|
784 |
+
lemma nsqn_invalidate:
|
785 |
+
assumes "dip \<in> kD(rt)"
|
786 |
+
and "\<forall>ip\<in>dom(dests). ip \<in> vD(rt) \<and> the (dests ip) = inc (sqn rt ip)"
|
787 |
+
shows "nsqn (invalidate rt dests) dip = nsqn rt dip"
|
788 |
+
proof -
|
789 |
+
from \<open>dip \<in> kD(rt)\<close> have "dip \<in> kD(invalidate rt dests)" by simp
|
790 |
+
|
791 |
+
from assms have "rt \<approx>\<^bsub>dip\<^esub> invalidate rt dests"
|
792 |
+
by (rule rt_fresh_as_inc_invalidate)
|
793 |
+
with \<open>dip \<in> kD(rt)\<close> \<open>dip \<in> kD(invalidate rt dests)\<close> show ?thesis
|
794 |
+
by (simp add: kD_nsqn del: invalidate_kD_inv)
|
795 |
+
(erule(2) rt_fresh_as_nsqnr)
|
796 |
+
qed
|
797 |
+
|
798 |
+
end
|
formal/afp/AODV/Global_Invariants.thy
ADDED
@@ -0,0 +1,1151 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
(* Title: Global_Invariants.thy
|
2 |
+
License: BSD 2-Clause. See LICENSE.
|
3 |
+
Author: Timothy Bourke, Inria
|
4 |
+
*)
|
5 |
+
|
6 |
+
section "Global invariant proofs over sequential processes"
|
7 |
+
|
8 |
+
theory Global_Invariants
|
9 |
+
imports Seq_Invariants
|
10 |
+
Aodv_Predicates
|
11 |
+
Fresher
|
12 |
+
Quality_Increases
|
13 |
+
AWN.OAWN_Convert
|
14 |
+
OAodv
|
15 |
+
begin
|
16 |
+
|
17 |
+
lemma other_quality_increases [elim]:
|
18 |
+
assumes "other quality_increases I \<sigma> \<sigma>'"
|
19 |
+
shows "\<forall>j. quality_increases (\<sigma> j) (\<sigma>' j)"
|
20 |
+
using assms by (rule, clarsimp) (metis quality_increases_refl)
|
21 |
+
|
22 |
+
lemma weaken_otherwith [elim]:
|
23 |
+
fixes m
|
24 |
+
assumes *: "otherwith P I (orecvmsg Q) \<sigma> \<sigma>' a"
|
25 |
+
and weakenP: "\<And>\<sigma> m. P \<sigma> m \<Longrightarrow> P' \<sigma> m"
|
26 |
+
and weakenQ: "\<And>\<sigma> m. Q \<sigma> m \<Longrightarrow> Q' \<sigma> m"
|
27 |
+
shows "otherwith P' I (orecvmsg Q') \<sigma> \<sigma>' a"
|
28 |
+
proof
|
29 |
+
fix j
|
30 |
+
assume "j\<notin>I"
|
31 |
+
with * have "P (\<sigma> j) (\<sigma>' j)" by auto
|
32 |
+
thus "P' (\<sigma> j) (\<sigma>' j)" by (rule weakenP)
|
33 |
+
next
|
34 |
+
from * have "orecvmsg Q \<sigma> a" by auto
|
35 |
+
thus "orecvmsg Q' \<sigma> a"
|
36 |
+
by rule (erule weakenQ)
|
37 |
+
qed
|
38 |
+
|
39 |
+
lemma oreceived_msg_inv:
|
40 |
+
assumes other: "\<And>\<sigma> \<sigma>' m. \<lbrakk> P \<sigma> m; other Q {i} \<sigma> \<sigma>' \<rbrakk> \<Longrightarrow> P \<sigma>' m"
|
41 |
+
and local: "\<And>\<sigma> m. P \<sigma> m \<Longrightarrow> P (\<sigma>(i := \<sigma> i\<lparr>msg := m\<rparr>)) m"
|
42 |
+
shows "opaodv i \<Turnstile> (otherwith Q {i} (orecvmsg P), other Q {i} \<rightarrow>)
|
43 |
+
onl \<Gamma>\<^sub>A\<^sub>O\<^sub>D\<^sub>V (\<lambda>(\<sigma>, l). l \<in> {PAodv-:1} \<longrightarrow> P \<sigma> (msg (\<sigma> i)))"
|
44 |
+
proof (inv_cterms, intro impI)
|
45 |
+
fix \<sigma> \<sigma>' l
|
46 |
+
assume "l = PAodv-:1 \<longrightarrow> P \<sigma> (msg (\<sigma> i))"
|
47 |
+
and "l = PAodv-:1"
|
48 |
+
and "other Q {i} \<sigma> \<sigma>'"
|
49 |
+
from this(1-2) have "P \<sigma> (msg (\<sigma> i))" ..
|
50 |
+
hence "P \<sigma>' (msg (\<sigma> i))" using \<open>other Q {i} \<sigma> \<sigma>'\<close>
|
51 |
+
by (rule other)
|
52 |
+
moreover from \<open>other Q {i} \<sigma> \<sigma>'\<close> have "\<sigma>' i = \<sigma> i" ..
|
53 |
+
ultimately show "P \<sigma>' (msg (\<sigma>' i))" by simp
|
54 |
+
next
|
55 |
+
fix \<sigma> \<sigma>' msg
|
56 |
+
assume "otherwith Q {i} (orecvmsg P) \<sigma> \<sigma>' (receive msg)"
|
57 |
+
and "\<sigma>' i = \<sigma> i\<lparr>msg := msg\<rparr>"
|
58 |
+
from this(1) have "P \<sigma> msg"
|
59 |
+
and "\<forall>j. j\<noteq>i \<longrightarrow> Q (\<sigma> j) (\<sigma>' j)" by auto
|
60 |
+
from this(1) have "P (\<sigma>(i := \<sigma> i\<lparr>msg := msg\<rparr>)) msg" by (rule local)
|
61 |
+
thus "P \<sigma>' msg"
|
62 |
+
proof (rule other)
|
63 |
+
from \<open>\<sigma>' i = \<sigma> i\<lparr>msg := msg\<rparr>\<close> and \<open>\<forall>j. j\<noteq>i \<longrightarrow> Q (\<sigma> j) (\<sigma>' j)\<close>
|
64 |
+
show "other Q {i} (\<sigma>(i := \<sigma> i\<lparr>msg := msg\<rparr>)) \<sigma>'"
|
65 |
+
by - (rule otherI, auto)
|
66 |
+
qed
|
67 |
+
qed
|
68 |
+
|
69 |
+
|
70 |
+
text \<open>(Equivalent to) Proposition 7.27\<close>
|
71 |
+
|
72 |
+
lemma local_quality_increases:
|
73 |
+
"paodv i \<TTurnstile>\<^sub>A (recvmsg rreq_rrep_sn \<rightarrow>) onll \<Gamma>\<^sub>A\<^sub>O\<^sub>D\<^sub>V (\<lambda>((\<xi>, _), _, (\<xi>', _)). quality_increases \<xi> \<xi>')"
|
74 |
+
proof (rule step_invariantI)
|
75 |
+
fix s a s'
|
76 |
+
assume sr: "s \<in> reachable (paodv i) (recvmsg rreq_rrep_sn)"
|
77 |
+
and tr: "(s, a, s') \<in> trans (paodv i)"
|
78 |
+
and rm: "recvmsg rreq_rrep_sn a"
|
79 |
+
from sr have srTT: "s \<in> reachable (paodv i) TT" ..
|
80 |
+
|
81 |
+
from route_tables_fresher sr tr rm
|
82 |
+
have "onll \<Gamma>\<^sub>A\<^sub>O\<^sub>D\<^sub>V (\<lambda>((\<xi>, _), _, (\<xi>', _)). \<forall>dip\<in>kD (rt \<xi>). rt \<xi> \<sqsubseteq>\<^bsub>dip\<^esub> rt \<xi>') (s, a, s')"
|
83 |
+
by (rule step_invariantD)
|
84 |
+
|
85 |
+
moreover from known_destinations_increase srTT tr TT_True
|
86 |
+
have "onll \<Gamma>\<^sub>A\<^sub>O\<^sub>D\<^sub>V (\<lambda>((\<xi>, _), _, (\<xi>', _)). kD (rt \<xi>) \<subseteq> kD (rt \<xi>')) (s, a, s')"
|
87 |
+
by (rule step_invariantD)
|
88 |
+
|
89 |
+
moreover from sqns_increase srTT tr TT_True
|
90 |
+
have "onll \<Gamma>\<^sub>A\<^sub>O\<^sub>D\<^sub>V (\<lambda>((\<xi>, _), _, (\<xi>', _)). \<forall>ip. sqn (rt \<xi>) ip \<le> sqn (rt \<xi>') ip) (s, a, s')"
|
91 |
+
by (rule step_invariantD)
|
92 |
+
|
93 |
+
ultimately show "onll \<Gamma>\<^sub>A\<^sub>O\<^sub>D\<^sub>V (\<lambda>((\<xi>, _), _, (\<xi>', _)). quality_increases \<xi> \<xi>') (s, a, s')"
|
94 |
+
unfolding onll_def by auto
|
95 |
+
qed
|
96 |
+
|
97 |
+
lemmas olocal_quality_increases =
|
98 |
+
open_seq_step_invariant [OF local_quality_increases initiali_aodv oaodv_trans aodv_trans,
|
99 |
+
simplified seqll_onll_swap]
|
100 |
+
|
101 |
+
lemma oquality_increases:
|
102 |
+
"opaodv i \<Turnstile>\<^sub>A (otherwith quality_increases {i} (orecvmsg (\<lambda>_. rreq_rrep_sn)),
|
103 |
+
other quality_increases {i} \<rightarrow>)
|
104 |
+
onll \<Gamma>\<^sub>A\<^sub>O\<^sub>D\<^sub>V (\<lambda>((\<sigma>, _), _, (\<sigma>', _)). \<forall>j. quality_increases (\<sigma> j) (\<sigma>' j))"
|
105 |
+
(is "_ \<Turnstile>\<^sub>A (?S, _ \<rightarrow>) _")
|
106 |
+
proof (rule onll_ostep_invariantI, simp)
|
107 |
+
fix \<sigma> p l a \<sigma>' p' l'
|
108 |
+
assume or: "(\<sigma>, p) \<in> oreachable (opaodv i) ?S (other quality_increases {i})"
|
109 |
+
and ll: "l \<in> labels \<Gamma>\<^sub>A\<^sub>O\<^sub>D\<^sub>V p"
|
110 |
+
and "?S \<sigma> \<sigma>' a"
|
111 |
+
and tr: "((\<sigma>, p), a, (\<sigma>', p')) \<in> oseqp_sos \<Gamma>\<^sub>A\<^sub>O\<^sub>D\<^sub>V i"
|
112 |
+
and ll': "l' \<in> labels \<Gamma>\<^sub>A\<^sub>O\<^sub>D\<^sub>V p'"
|
113 |
+
from this(1-3) have "orecvmsg (\<lambda>_. rreq_rrep_sn) \<sigma> a"
|
114 |
+
by (auto dest!: oreachable_weakenE [where QS="act (recvmsg rreq_rrep_sn)"
|
115 |
+
and QU="other quality_increases {i}"]
|
116 |
+
otherwith_actionD)
|
117 |
+
with or have orw: "(\<sigma>, p) \<in> oreachable (opaodv i) (act (recvmsg rreq_rrep_sn))
|
118 |
+
(other quality_increases {i})"
|
119 |
+
by - (erule oreachable_weakenE, auto)
|
120 |
+
with tr ll ll' and \<open>orecvmsg (\<lambda>_. rreq_rrep_sn) \<sigma> a\<close> have "quality_increases (\<sigma> i) (\<sigma>' i)"
|
121 |
+
by - (drule onll_ostep_invariantD [OF olocal_quality_increases], auto simp: seqll_def)
|
122 |
+
with \<open>?S \<sigma> \<sigma>' a\<close> show "\<forall>j. quality_increases (\<sigma> j) (\<sigma>' j)"
|
123 |
+
by (auto dest!: otherwith_syncD)
|
124 |
+
qed
|
125 |
+
|
126 |
+
lemma rreq_rrep_nsqn_fresh_any_step_invariant:
|
127 |
+
"opaodv i \<Turnstile>\<^sub>A (act (recvmsg rreq_rrep_sn), other A {i} \<rightarrow>)
|
128 |
+
onll \<Gamma>\<^sub>A\<^sub>O\<^sub>D\<^sub>V (\<lambda>((\<sigma>, _), a, _). anycast (msg_fresh \<sigma>) a)"
|
129 |
+
proof (rule ostep_invariantI, simp del: act_simp)
|
130 |
+
fix \<sigma> p a \<sigma>' p'
|
131 |
+
assume or: "(\<sigma>, p) \<in> oreachable (opaodv i) (act (recvmsg rreq_rrep_sn)) (other A {i})"
|
132 |
+
and "((\<sigma>, p), a, (\<sigma>', p')) \<in> oseqp_sos \<Gamma>\<^sub>A\<^sub>O\<^sub>D\<^sub>V i"
|
133 |
+
and recv: "act (recvmsg rreq_rrep_sn) \<sigma> \<sigma>' a"
|
134 |
+
obtain l l' where "l\<in>labels \<Gamma>\<^sub>A\<^sub>O\<^sub>D\<^sub>V p" and "l'\<in>labels \<Gamma>\<^sub>A\<^sub>O\<^sub>D\<^sub>V p'"
|
135 |
+
by (metis aodv_ex_label)
|
136 |
+
from \<open>((\<sigma>, p), a, (\<sigma>', p')) \<in> oseqp_sos \<Gamma>\<^sub>A\<^sub>O\<^sub>D\<^sub>V i\<close>
|
137 |
+
have tr: "((\<sigma>, p), a, (\<sigma>', p')) \<in> trans (opaodv i)" by simp
|
138 |
+
|
139 |
+
have "anycast (rreq_rrep_fresh (rt (\<sigma> i))) a"
|
140 |
+
proof -
|
141 |
+
have "opaodv i \<Turnstile>\<^sub>A (act (recvmsg rreq_rrep_sn), other A {i} \<rightarrow>)
|
142 |
+
onll \<Gamma>\<^sub>A\<^sub>O\<^sub>D\<^sub>V (seqll i (\<lambda>((\<xi>, _), a, _). anycast (rreq_rrep_fresh (rt \<xi>)) a))"
|
143 |
+
by (rule ostep_invariant_weakenE [OF
|
144 |
+
open_seq_step_invariant [OF rreq_rrep_fresh_any_step_invariant initiali_aodv,
|
145 |
+
simplified seqll_onll_swap]]) auto
|
146 |
+
hence "onll \<Gamma>\<^sub>A\<^sub>O\<^sub>D\<^sub>V (seqll i (\<lambda>((\<xi>, _), a, _). anycast (rreq_rrep_fresh (rt \<xi>)) a))
|
147 |
+
((\<sigma>, p), a, (\<sigma>', p'))"
|
148 |
+
using or tr recv by - (erule(4) ostep_invariantE)
|
149 |
+
thus ?thesis
|
150 |
+
using \<open>l\<in>labels \<Gamma>\<^sub>A\<^sub>O\<^sub>D\<^sub>V p\<close> and \<open>l'\<in>labels \<Gamma>\<^sub>A\<^sub>O\<^sub>D\<^sub>V p'\<close> by auto
|
151 |
+
qed
|
152 |
+
|
153 |
+
moreover have "anycast (rerr_invalid (rt (\<sigma> i))) a"
|
154 |
+
proof -
|
155 |
+
have "opaodv i \<Turnstile>\<^sub>A (act (recvmsg rreq_rrep_sn), other A {i} \<rightarrow>)
|
156 |
+
onll \<Gamma>\<^sub>A\<^sub>O\<^sub>D\<^sub>V (seqll i (\<lambda>((\<xi>, _), a, _). anycast (rerr_invalid (rt \<xi>)) a))"
|
157 |
+
by (rule ostep_invariant_weakenE [OF
|
158 |
+
open_seq_step_invariant [OF rerr_invalid_any_step_invariant initiali_aodv,
|
159 |
+
simplified seqll_onll_swap]]) auto
|
160 |
+
hence "onll \<Gamma>\<^sub>A\<^sub>O\<^sub>D\<^sub>V (seqll i (\<lambda>((\<xi>, _), a, _). anycast (rerr_invalid (rt \<xi>)) a))
|
161 |
+
((\<sigma>, p), a, (\<sigma>', p'))"
|
162 |
+
using or tr recv by - (erule(4) ostep_invariantE)
|
163 |
+
thus ?thesis
|
164 |
+
using \<open>l\<in>labels \<Gamma>\<^sub>A\<^sub>O\<^sub>D\<^sub>V p\<close> and \<open>l'\<in>labels \<Gamma>\<^sub>A\<^sub>O\<^sub>D\<^sub>V p'\<close> by auto
|
165 |
+
qed
|
166 |
+
|
167 |
+
moreover have "anycast rreq_rrep_sn a"
|
168 |
+
proof -
|
169 |
+
from or tr recv
|
170 |
+
have "onll \<Gamma>\<^sub>A\<^sub>O\<^sub>D\<^sub>V (seqll i (\<lambda>(_, a, _). anycast rreq_rrep_sn a)) ((\<sigma>, p), a, (\<sigma>', p'))"
|
171 |
+
by (rule ostep_invariantE [OF
|
172 |
+
open_seq_step_invariant [OF rreq_rrep_sn_any_step_invariant initiali_aodv
|
173 |
+
oaodv_trans aodv_trans,
|
174 |
+
simplified seqll_onll_swap]])
|
175 |
+
thus ?thesis
|
176 |
+
using \<open>l\<in>labels \<Gamma>\<^sub>A\<^sub>O\<^sub>D\<^sub>V p\<close> and \<open>l'\<in>labels \<Gamma>\<^sub>A\<^sub>O\<^sub>D\<^sub>V p'\<close> by auto
|
177 |
+
qed
|
178 |
+
|
179 |
+
moreover have "anycast (\<lambda>m. not_Pkt m \<longrightarrow> msg_sender m = i) a"
|
180 |
+
proof -
|
181 |
+
have "opaodv i \<Turnstile>\<^sub>A (act (recvmsg rreq_rrep_sn), other A {i} \<rightarrow>)
|
182 |
+
onll \<Gamma>\<^sub>A\<^sub>O\<^sub>D\<^sub>V (seqll i (\<lambda>((\<xi>, _), a, _). anycast (\<lambda>m. not_Pkt m \<longrightarrow> msg_sender m = i) a))"
|
183 |
+
by (rule ostep_invariant_weakenE [OF
|
184 |
+
open_seq_step_invariant [OF sender_ip_valid initiali_aodv,
|
185 |
+
simplified seqll_onll_swap]]) auto
|
186 |
+
thus ?thesis using or tr recv \<open>l\<in>labels \<Gamma>\<^sub>A\<^sub>O\<^sub>D\<^sub>V p\<close> and \<open>l'\<in>labels \<Gamma>\<^sub>A\<^sub>O\<^sub>D\<^sub>V p'\<close>
|
187 |
+
by - (drule(3) onll_ostep_invariantD, auto)
|
188 |
+
qed
|
189 |
+
|
190 |
+
ultimately have "anycast (msg_fresh \<sigma>) a"
|
191 |
+
by (simp_all add: anycast_def
|
192 |
+
del: msg_fresh
|
193 |
+
split: seq_action.split_asm msg.split_asm) simp_all
|
194 |
+
thus "onll \<Gamma>\<^sub>A\<^sub>O\<^sub>D\<^sub>V (\<lambda>((\<sigma>, _), a, _). anycast (msg_fresh \<sigma>) a) ((\<sigma>, p), a, (\<sigma>', p'))"
|
195 |
+
by auto
|
196 |
+
qed
|
197 |
+
|
198 |
+
lemma oreceived_rreq_rrep_nsqn_fresh_inv:
|
199 |
+
"opaodv i \<Turnstile> (otherwith quality_increases {i} (orecvmsg msg_fresh),
|
200 |
+
other quality_increases {i} \<rightarrow>)
|
201 |
+
onl \<Gamma>\<^sub>A\<^sub>O\<^sub>D\<^sub>V (\<lambda>(\<sigma>, l). l \<in> {PAodv-:1} \<longrightarrow> msg_fresh \<sigma> (msg (\<sigma> i)))"
|
202 |
+
proof (rule oreceived_msg_inv)
|
203 |
+
fix \<sigma> \<sigma>' m
|
204 |
+
assume *: "msg_fresh \<sigma> m"
|
205 |
+
and "other quality_increases {i} \<sigma> \<sigma>'"
|
206 |
+
from this(2) have "\<forall>j. quality_increases (\<sigma> j) (\<sigma>' j)" ..
|
207 |
+
thus "msg_fresh \<sigma>' m" using * ..
|
208 |
+
next
|
209 |
+
fix \<sigma> m
|
210 |
+
assume "msg_fresh \<sigma> m"
|
211 |
+
thus "msg_fresh (\<sigma>(i := \<sigma> i\<lparr>msg := m\<rparr>)) m"
|
212 |
+
proof (cases m)
|
213 |
+
fix dests sip
|
214 |
+
assume "m = Rerr dests sip"
|
215 |
+
with \<open>msg_fresh \<sigma> m\<close> show ?thesis
|
216 |
+
by auto
|
217 |
+
qed auto
|
218 |
+
qed
|
219 |
+
|
220 |
+
lemma oquality_increases_nsqn_fresh:
|
221 |
+
"opaodv i \<Turnstile>\<^sub>A (otherwith quality_increases {i} (orecvmsg msg_fresh),
|
222 |
+
other quality_increases {i} \<rightarrow>)
|
223 |
+
onll \<Gamma>\<^sub>A\<^sub>O\<^sub>D\<^sub>V (\<lambda>((\<sigma>, _), _, (\<sigma>', _)). \<forall>j. quality_increases (\<sigma> j) (\<sigma>' j))"
|
224 |
+
by (rule ostep_invariant_weakenE [OF oquality_increases]) auto
|
225 |
+
|
226 |
+
lemma oosn_rreq:
|
227 |
+
"opaodv i \<Turnstile> (otherwith quality_increases {i} (orecvmsg msg_fresh),
|
228 |
+
other quality_increases {i} \<rightarrow>)
|
229 |
+
onl \<Gamma>\<^sub>A\<^sub>O\<^sub>D\<^sub>V (seql i (\<lambda>(\<xi>, l). l \<in> {PAodv-:4, PAodv-:5} \<union> {PRreq-:n |n. True} \<longrightarrow> 1 \<le> osn \<xi>))"
|
230 |
+
by (rule oinvariant_weakenE [OF open_seq_invariant [OF osn_rreq initiali_aodv]])
|
231 |
+
(auto simp: seql_onl_swap)
|
232 |
+
|
233 |
+
lemma rreq_sip:
|
234 |
+
"opaodv i \<Turnstile> (otherwith quality_increases {i} (orecvmsg msg_fresh),
|
235 |
+
other quality_increases {i} \<rightarrow>)
|
236 |
+
onl \<Gamma>\<^sub>A\<^sub>O\<^sub>D\<^sub>V (\<lambda>(\<sigma>, l).
|
237 |
+
(l \<in> {PAodv-:4, PAodv-:5, PRreq-:0, PRreq-:2} \<and> sip (\<sigma> i) \<noteq> oip (\<sigma> i))
|
238 |
+
\<longrightarrow> oip (\<sigma> i) \<in> kD(rt (\<sigma> (sip (\<sigma> i))))
|
239 |
+
\<and> nsqn (rt (\<sigma> (sip (\<sigma> i)))) (oip (\<sigma> i)) \<ge> osn (\<sigma> i)
|
240 |
+
\<and> (nsqn (rt (\<sigma> (sip (\<sigma> i)))) (oip (\<sigma> i)) = osn (\<sigma> i)
|
241 |
+
\<longrightarrow> (hops (\<sigma> i) \<ge> the (dhops (rt (\<sigma> (sip (\<sigma> i)))) (oip (\<sigma> i)))
|
242 |
+
\<or> the (flag (rt (\<sigma> (sip (\<sigma> i)))) (oip (\<sigma> i))) = inv)))"
|
243 |
+
(is "_ \<Turnstile> (?S, ?U \<rightarrow>) _")
|
244 |
+
proof (inv_cterms inv add: oseq_step_invariant_sterms [OF oquality_increases_nsqn_fresh
|
245 |
+
aodv_wf oaodv_trans]
|
246 |
+
onl_oinvariant_sterms [OF aodv_wf oreceived_rreq_rrep_nsqn_fresh_inv]
|
247 |
+
onl_oinvariant_sterms [OF aodv_wf oosn_rreq]
|
248 |
+
simp add: seqlsimp
|
249 |
+
simp del: One_nat_def, rule impI)
|
250 |
+
fix \<sigma> \<sigma>' p l
|
251 |
+
assume "(\<sigma>, p) \<in> oreachable (opaodv i) ?S ?U"
|
252 |
+
and "l \<in> labels \<Gamma>\<^sub>A\<^sub>O\<^sub>D\<^sub>V p"
|
253 |
+
and pre:
|
254 |
+
"(l = PAodv-:4 \<or> l = PAodv-:5 \<or> l = PRreq-:0 \<or> l = PRreq-:2) \<and> sip (\<sigma> i) \<noteq> oip (\<sigma> i)
|
255 |
+
\<longrightarrow> oip (\<sigma> i) \<in> kD (rt (\<sigma> (sip (\<sigma> i))))
|
256 |
+
\<and> osn (\<sigma> i) \<le> nsqn (rt (\<sigma> (sip (\<sigma> i)))) (oip (\<sigma> i))
|
257 |
+
\<and> (nsqn (rt (\<sigma> (sip (\<sigma> i)))) (oip (\<sigma> i)) = osn (\<sigma> i)
|
258 |
+
\<longrightarrow> the (dhops (rt (\<sigma> (sip (\<sigma> i)))) (oip (\<sigma> i))) \<le> hops (\<sigma> i)
|
259 |
+
\<or> the (flag (rt (\<sigma> (sip (\<sigma> i)))) (oip (\<sigma> i))) = inv)"
|
260 |
+
and "other quality_increases {i} \<sigma> \<sigma>'"
|
261 |
+
and hyp: "(l=PAodv-:4 \<or> l=PAodv-:5 \<or> l=PRreq-:0 \<or> l=PRreq-:2) \<and> sip (\<sigma>' i) \<noteq> oip (\<sigma>' i)"
|
262 |
+
(is "?labels \<and> sip (\<sigma>' i) \<noteq> oip (\<sigma>' i)")
|
263 |
+
from this(4) have "\<sigma>' i = \<sigma> i" ..
|
264 |
+
with hyp have hyp': "?labels \<and> sip (\<sigma> i) \<noteq> oip (\<sigma> i)" by simp
|
265 |
+
show "oip (\<sigma>' i) \<in> kD (rt (\<sigma>' (sip (\<sigma>' i))))
|
266 |
+
\<and> osn (\<sigma>' i) \<le> nsqn (rt (\<sigma>' (sip (\<sigma>' i)))) (oip (\<sigma>' i))
|
267 |
+
\<and> (nsqn (rt (\<sigma>' (sip (\<sigma>' i)))) (oip (\<sigma>' i)) = osn (\<sigma>' i)
|
268 |
+
\<longrightarrow> the (dhops (rt (\<sigma>' (sip (\<sigma>' i)))) (oip (\<sigma>' i))) \<le> hops (\<sigma>' i)
|
269 |
+
\<or> the (flag (rt (\<sigma>' (sip (\<sigma>' i)))) (oip (\<sigma>' i))) = inv)"
|
270 |
+
proof (cases "sip (\<sigma> i) = i")
|
271 |
+
assume "sip (\<sigma> i) \<noteq> i"
|
272 |
+
from \<open>other quality_increases {i} \<sigma> \<sigma>'\<close>
|
273 |
+
have "quality_increases (\<sigma> (sip (\<sigma> i))) (\<sigma>' (sip (\<sigma>' i)))"
|
274 |
+
by (rule otherE) (clarsimp simp: \<open>sip (\<sigma> i) \<noteq> i\<close>)
|
275 |
+
moreover from \<open>(\<sigma>, p) \<in> oreachable (opaodv i) ?S ?U\<close> \<open>l \<in> labels \<Gamma>\<^sub>A\<^sub>O\<^sub>D\<^sub>V p\<close> and hyp
|
276 |
+
have "1 \<le> osn (\<sigma>' i)"
|
277 |
+
by (auto dest!: onl_oinvariant_weakenD [OF oosn_rreq]
|
278 |
+
simp add: seqlsimp \<open>\<sigma>' i = \<sigma> i\<close>)
|
279 |
+
moreover from \<open>sip (\<sigma> i) \<noteq> i\<close> hyp' and pre
|
280 |
+
have "oip (\<sigma>' i) \<in> kD (rt (\<sigma> (sip (\<sigma> i))))
|
281 |
+
\<and> osn (\<sigma>' i) \<le> nsqn (rt (\<sigma> (sip (\<sigma> i)))) (oip (\<sigma>' i))
|
282 |
+
\<and> (nsqn (rt (\<sigma> (sip (\<sigma> i)))) (oip (\<sigma>' i)) = osn (\<sigma>' i)
|
283 |
+
\<longrightarrow> the (dhops (rt (\<sigma> (sip (\<sigma> i)))) (oip (\<sigma>' i))) \<le> hops (\<sigma>' i)
|
284 |
+
\<or> the (flag (rt (\<sigma> (sip (\<sigma> i)))) (oip (\<sigma>' i))) = inv)"
|
285 |
+
by (auto simp: \<open>\<sigma>' i = \<sigma> i\<close>)
|
286 |
+
ultimately show ?thesis
|
287 |
+
by (rule quality_increases_rreq_rrep_props)
|
288 |
+
next
|
289 |
+
assume "sip (\<sigma> i) = i" thus ?thesis
|
290 |
+
using \<open>\<sigma>' i = \<sigma> i\<close> hyp and pre by auto
|
291 |
+
qed
|
292 |
+
qed (auto elim!: quality_increases_rreq_rrep_props')
|
293 |
+
|
294 |
+
lemma odsn_rrep:
|
295 |
+
"opaodv i \<Turnstile> (otherwith quality_increases {i} (orecvmsg msg_fresh),
|
296 |
+
other quality_increases {i} \<rightarrow>)
|
297 |
+
onl \<Gamma>\<^sub>A\<^sub>O\<^sub>D\<^sub>V (seql i (\<lambda>(\<xi>, l). l \<in> {PAodv-:6, PAodv-:7} \<union> {PRrep-:n|n. True} \<longrightarrow> 1 \<le> dsn \<xi>))"
|
298 |
+
by (rule oinvariant_weakenE [OF open_seq_invariant [OF dsn_rrep initiali_aodv]])
|
299 |
+
(auto simp: seql_onl_swap)
|
300 |
+
|
301 |
+
lemma rrep_sip:
|
302 |
+
"opaodv i \<Turnstile> (otherwith quality_increases {i} (orecvmsg msg_fresh),
|
303 |
+
other quality_increases {i} \<rightarrow>)
|
304 |
+
onl \<Gamma>\<^sub>A\<^sub>O\<^sub>D\<^sub>V (\<lambda>(\<sigma>, l).
|
305 |
+
(l \<in> {PAodv-:6, PAodv-:7, PRrep-:0, PRrep-:1} \<and> sip (\<sigma> i) \<noteq> dip (\<sigma> i))
|
306 |
+
\<longrightarrow> dip (\<sigma> i) \<in> kD(rt (\<sigma> (sip (\<sigma> i))))
|
307 |
+
\<and> nsqn (rt (\<sigma> (sip (\<sigma> i)))) (dip (\<sigma> i)) \<ge> dsn (\<sigma> i)
|
308 |
+
\<and> (nsqn (rt (\<sigma> (sip (\<sigma> i)))) (dip (\<sigma> i)) = dsn (\<sigma> i)
|
309 |
+
\<longrightarrow> (hops (\<sigma> i) \<ge> the (dhops (rt (\<sigma> (sip (\<sigma> i)))) (dip (\<sigma> i)))
|
310 |
+
\<or> the (flag (rt (\<sigma> (sip (\<sigma> i)))) (dip (\<sigma> i))) = inv)))"
|
311 |
+
(is "_ \<Turnstile> (?S, ?U \<rightarrow>) _")
|
312 |
+
proof (inv_cterms inv add: oseq_step_invariant_sterms [OF oquality_increases_nsqn_fresh aodv_wf
|
313 |
+
oaodv_trans]
|
314 |
+
onl_oinvariant_sterms [OF aodv_wf oreceived_rreq_rrep_nsqn_fresh_inv]
|
315 |
+
onl_oinvariant_sterms [OF aodv_wf odsn_rrep]
|
316 |
+
simp del: One_nat_def, rule impI)
|
317 |
+
fix \<sigma> \<sigma>' p l
|
318 |
+
assume "(\<sigma>, p) \<in> oreachable (opaodv i) ?S ?U"
|
319 |
+
and "l \<in> labels \<Gamma>\<^sub>A\<^sub>O\<^sub>D\<^sub>V p"
|
320 |
+
and pre:
|
321 |
+
"(l = PAodv-:6 \<or> l = PAodv-:7 \<or> l = PRrep-:0 \<or> l = PRrep-:1) \<and> sip (\<sigma> i) \<noteq> dip (\<sigma> i)
|
322 |
+
\<longrightarrow> dip (\<sigma> i) \<in> kD (rt (\<sigma> (sip (\<sigma> i))))
|
323 |
+
\<and> dsn (\<sigma> i) \<le> nsqn (rt (\<sigma> (sip (\<sigma> i)))) (dip (\<sigma> i))
|
324 |
+
\<and> (nsqn (rt (\<sigma> (sip (\<sigma> i)))) (dip (\<sigma> i)) = dsn (\<sigma> i)
|
325 |
+
\<longrightarrow> the (dhops (rt (\<sigma> (sip (\<sigma> i)))) (dip (\<sigma> i))) \<le> hops (\<sigma> i)
|
326 |
+
\<or> the (flag (rt (\<sigma> (sip (\<sigma> i)))) (dip (\<sigma> i))) = inv)"
|
327 |
+
and "other quality_increases {i} \<sigma> \<sigma>'"
|
328 |
+
and hyp: "(l=PAodv-:6 \<or> l=PAodv-:7 \<or> l=PRrep-:0 \<or> l=PRrep-:1) \<and> sip (\<sigma>' i) \<noteq> dip (\<sigma>' i)"
|
329 |
+
(is "?labels \<and> sip (\<sigma>' i) \<noteq> dip (\<sigma>' i)")
|
330 |
+
from this(4) have "\<sigma>' i = \<sigma> i" ..
|
331 |
+
with hyp have hyp': "?labels \<and> sip (\<sigma> i) \<noteq> dip (\<sigma> i)" by simp
|
332 |
+
show "dip (\<sigma>' i) \<in> kD (rt (\<sigma>' (sip (\<sigma>' i))))
|
333 |
+
\<and> dsn (\<sigma>' i) \<le> nsqn (rt (\<sigma>' (sip (\<sigma>' i)))) (dip (\<sigma>' i))
|
334 |
+
\<and> (nsqn (rt (\<sigma>' (sip (\<sigma>' i)))) (dip (\<sigma>' i)) = dsn (\<sigma>' i)
|
335 |
+
\<longrightarrow> the (dhops (rt (\<sigma>' (sip (\<sigma>' i)))) (dip (\<sigma>' i))) \<le> hops (\<sigma>' i)
|
336 |
+
\<or> the (flag (rt (\<sigma>' (sip (\<sigma>' i)))) (dip (\<sigma>' i))) = inv)"
|
337 |
+
proof (cases "sip (\<sigma> i) = i")
|
338 |
+
assume "sip (\<sigma> i) \<noteq> i"
|
339 |
+
from \<open>other quality_increases {i} \<sigma> \<sigma>'\<close>
|
340 |
+
have "quality_increases (\<sigma> (sip (\<sigma> i))) (\<sigma>' (sip (\<sigma>' i)))"
|
341 |
+
by (rule otherE) (clarsimp simp: \<open>sip (\<sigma> i) \<noteq> i\<close>)
|
342 |
+
moreover from \<open>(\<sigma>, p) \<in> oreachable (opaodv i) ?S ?U\<close> \<open>l \<in> labels \<Gamma>\<^sub>A\<^sub>O\<^sub>D\<^sub>V p\<close> and hyp
|
343 |
+
have "1 \<le> dsn (\<sigma>' i)"
|
344 |
+
by (auto dest!: onl_oinvariant_weakenD [OF odsn_rrep]
|
345 |
+
simp add: seqlsimp \<open>\<sigma>' i = \<sigma> i\<close>)
|
346 |
+
moreover from \<open>sip (\<sigma> i) \<noteq> i\<close> hyp' and pre
|
347 |
+
have "dip (\<sigma>' i) \<in> kD (rt (\<sigma> (sip (\<sigma> i))))
|
348 |
+
\<and> dsn (\<sigma>' i) \<le> nsqn (rt (\<sigma> (sip (\<sigma> i)))) (dip (\<sigma>' i))
|
349 |
+
\<and> (nsqn (rt (\<sigma> (sip (\<sigma> i)))) (dip (\<sigma>' i)) = dsn (\<sigma>' i)
|
350 |
+
\<longrightarrow> the (dhops (rt (\<sigma> (sip (\<sigma> i)))) (dip (\<sigma>' i))) \<le> hops (\<sigma>' i)
|
351 |
+
\<or> the (flag (rt (\<sigma> (sip (\<sigma> i)))) (dip (\<sigma>' i))) = inv)"
|
352 |
+
by (auto simp: \<open>\<sigma>' i = \<sigma> i\<close>)
|
353 |
+
ultimately show ?thesis
|
354 |
+
by (rule quality_increases_rreq_rrep_props)
|
355 |
+
next
|
356 |
+
assume "sip (\<sigma> i) = i" thus ?thesis
|
357 |
+
using \<open>\<sigma>' i = \<sigma> i\<close> hyp and pre by auto
|
358 |
+
qed
|
359 |
+
qed (auto simp add: seqlsimp elim!: quality_increases_rreq_rrep_props')
|
360 |
+
|
361 |
+
lemma rerr_sip:
|
362 |
+
"opaodv i \<Turnstile> (otherwith quality_increases {i} (orecvmsg msg_fresh),
|
363 |
+
other quality_increases {i} \<rightarrow>)
|
364 |
+
onl \<Gamma>\<^sub>A\<^sub>O\<^sub>D\<^sub>V (\<lambda>(\<sigma>, l).
|
365 |
+
l \<in> {PAodv-:8, PAodv-:9, PRerr-:0, PRerr-:1}
|
366 |
+
\<longrightarrow> (\<forall>ripc\<in>dom(dests (\<sigma> i)). ripc\<in>kD(rt (\<sigma> (sip (\<sigma> i)))) \<and>
|
367 |
+
the (dests (\<sigma> i) ripc) - 1 \<le> nsqn (rt (\<sigma> (sip (\<sigma> i)))) ripc))"
|
368 |
+
(is "_ \<Turnstile> (?S, ?U \<rightarrow>) _")
|
369 |
+
proof -
|
370 |
+
{ fix dests rip sip rsn and \<sigma> \<sigma>' :: "ip \<Rightarrow> state"
|
371 |
+
assume qinc: "\<forall>j. quality_increases (\<sigma> j) (\<sigma>' j)"
|
372 |
+
and *: "\<forall>rip\<in>dom dests. rip \<in> kD (rt (\<sigma> sip))
|
373 |
+
\<and> the (dests rip) - 1 \<le> nsqn (rt (\<sigma> sip)) rip"
|
374 |
+
and "dests rip = Some rsn"
|
375 |
+
from this(3) have "rip\<in>dom dests" by auto
|
376 |
+
with * and \<open>dests rip = Some rsn\<close> have "rip\<in>kD(rt (\<sigma> sip))"
|
377 |
+
and "rsn - 1 \<le> nsqn (rt (\<sigma> sip)) rip"
|
378 |
+
by (auto dest!: bspec)
|
379 |
+
from qinc have "quality_increases (\<sigma> sip) (\<sigma>' sip)" ..
|
380 |
+
have "rip \<in> kD(rt (\<sigma>' sip)) \<and> rsn - 1 \<le> nsqn (rt (\<sigma>' sip)) rip"
|
381 |
+
proof
|
382 |
+
from \<open>rip\<in>kD(rt (\<sigma> sip))\<close> and \<open>quality_increases (\<sigma> sip) (\<sigma>' sip)\<close>
|
383 |
+
show "rip \<in> kD(rt (\<sigma>' sip))" ..
|
384 |
+
next
|
385 |
+
from \<open>rip\<in>kD(rt (\<sigma> sip))\<close> and \<open>quality_increases (\<sigma> sip) (\<sigma>' sip)\<close>
|
386 |
+
have "nsqn (rt (\<sigma> sip)) rip \<le> nsqn (rt (\<sigma>' sip)) rip" ..
|
387 |
+
with \<open>rsn - 1 \<le> nsqn (rt (\<sigma> sip)) rip\<close> show "rsn - 1 \<le> nsqn (rt (\<sigma>' sip)) rip"
|
388 |
+
by (rule le_trans)
|
389 |
+
qed
|
390 |
+
} note partial = this
|
391 |
+
|
392 |
+
show ?thesis
|
393 |
+
by (inv_cterms inv add: oseq_step_invariant_sterms [OF oquality_increases_nsqn_fresh aodv_wf
|
394 |
+
oaodv_trans]
|
395 |
+
onl_oinvariant_sterms [OF aodv_wf oreceived_rreq_rrep_nsqn_fresh_inv]
|
396 |
+
other_quality_increases other_localD
|
397 |
+
simp del: One_nat_def, intro conjI)
|
398 |
+
(clarsimp simp del: One_nat_def split: if_split_asm option.split_asm, erule(2) partial)+
|
399 |
+
qed
|
400 |
+
|
401 |
+
lemma prerr_guard: "paodv i \<TTurnstile>
|
402 |
+
onl \<Gamma>\<^sub>A\<^sub>O\<^sub>D\<^sub>V (\<lambda>(\<xi>, l). (l = PRerr-:1
|
403 |
+
\<longrightarrow> (\<forall>ip\<in>dom(dests \<xi>). ip\<in>vD(rt \<xi>)
|
404 |
+
\<and> the (nhop (rt \<xi>) ip) = sip \<xi>
|
405 |
+
\<and> sqn (rt \<xi>) ip < the (dests \<xi> ip))))"
|
406 |
+
by (inv_cterms) (clarsimp split: option.split_asm if_split_asm)
|
407 |
+
|
408 |
+
lemmas oaddpreRT_welldefined =
|
409 |
+
open_seq_invariant [OF addpreRT_welldefined initiali_aodv oaodv_trans aodv_trans,
|
410 |
+
simplified seql_onl_swap,
|
411 |
+
THEN oinvariant_anyact]
|
412 |
+
|
413 |
+
lemmas odests_vD_inc_sqn =
|
414 |
+
open_seq_invariant [OF dests_vD_inc_sqn initiali_aodv oaodv_trans aodv_trans,
|
415 |
+
simplified seql_onl_swap,
|
416 |
+
THEN oinvariant_anyact]
|
417 |
+
|
418 |
+
lemmas oprerr_guard =
|
419 |
+
open_seq_invariant [OF prerr_guard initiali_aodv oaodv_trans aodv_trans,
|
420 |
+
simplified seql_onl_swap,
|
421 |
+
THEN oinvariant_anyact]
|
422 |
+
|
423 |
+
text \<open>Proposition 7.28\<close>
|
424 |
+
|
425 |
+
lemma seq_compare_next_hop':
|
426 |
+
"opaodv i \<Turnstile> (otherwith quality_increases {i} (orecvmsg msg_fresh),
|
427 |
+
other quality_increases {i} \<rightarrow>) onl \<Gamma>\<^sub>A\<^sub>O\<^sub>D\<^sub>V (\<lambda>(\<sigma>, _).
|
428 |
+
\<forall>dip. let nhip = the (nhop (rt (\<sigma> i)) dip)
|
429 |
+
in dip \<in> kD(rt (\<sigma> i)) \<and> nhip \<noteq> dip \<longrightarrow>
|
430 |
+
dip \<in> kD(rt (\<sigma> nhip)) \<and> nsqn (rt (\<sigma> i)) dip \<le> nsqn (rt (\<sigma> nhip)) dip)"
|
431 |
+
(is "_ \<Turnstile> (?S, ?U \<rightarrow>) _")
|
432 |
+
proof -
|
433 |
+
|
434 |
+
{ fix nhop and \<sigma> \<sigma>' :: "ip \<Rightarrow> state"
|
435 |
+
assume pre: "\<forall>dip\<in>kD(rt (\<sigma> i)). nhop dip \<noteq> dip \<longrightarrow>
|
436 |
+
dip\<in>kD(rt (\<sigma> (nhop dip))) \<and> nsqn (rt (\<sigma> i)) dip \<le> nsqn (rt (\<sigma> (nhop dip))) dip"
|
437 |
+
and qinc: "\<forall>j. quality_increases (\<sigma> j) (\<sigma>' j)"
|
438 |
+
have "\<forall>dip\<in>kD(rt (\<sigma> i)). nhop dip \<noteq> dip \<longrightarrow>
|
439 |
+
dip\<in>kD(rt (\<sigma>' (nhop dip))) \<and> nsqn (rt (\<sigma> i)) dip \<le> nsqn (rt (\<sigma>' (nhop dip))) dip"
|
440 |
+
proof (intro ballI impI)
|
441 |
+
fix dip
|
442 |
+
assume "dip\<in>kD(rt (\<sigma> i))"
|
443 |
+
and "nhop dip \<noteq> dip"
|
444 |
+
with pre have "dip\<in>kD(rt (\<sigma> (nhop dip)))"
|
445 |
+
and "nsqn (rt (\<sigma> i)) dip \<le> nsqn (rt (\<sigma> (nhop dip))) dip"
|
446 |
+
by auto
|
447 |
+
from qinc have qinc_nhop: "quality_increases (\<sigma> (nhop dip)) (\<sigma>' (nhop dip))" ..
|
448 |
+
with \<open>dip\<in>kD(rt (\<sigma> (nhop dip)))\<close> have "dip\<in>kD (rt (\<sigma>' (nhop dip)))" ..
|
449 |
+
|
450 |
+
moreover have "nsqn (rt (\<sigma> i)) dip \<le> nsqn (rt (\<sigma>' (nhop dip))) dip"
|
451 |
+
proof -
|
452 |
+
from \<open>dip\<in>kD(rt (\<sigma> (nhop dip)))\<close> qinc_nhop
|
453 |
+
have "nsqn (rt (\<sigma> (nhop dip))) dip \<le> nsqn (rt (\<sigma>' (nhop dip))) dip" ..
|
454 |
+
with \<open>nsqn (rt (\<sigma> i)) dip \<le> nsqn (rt (\<sigma> (nhop dip))) dip\<close> show ?thesis
|
455 |
+
by simp
|
456 |
+
qed
|
457 |
+
|
458 |
+
ultimately show "dip\<in>kD(rt (\<sigma>' (nhop dip)))
|
459 |
+
\<and> nsqn (rt (\<sigma> i)) dip \<le> nsqn (rt (\<sigma>' (nhop dip))) dip" ..
|
460 |
+
qed
|
461 |
+
} note basic = this
|
462 |
+
|
463 |
+
{ fix nhop and \<sigma> \<sigma>' :: "ip \<Rightarrow> state"
|
464 |
+
assume pre: "\<forall>dip\<in>kD(rt (\<sigma> i)). nhop dip \<noteq> dip \<longrightarrow> dip\<in>kD(rt (\<sigma> (nhop dip)))
|
465 |
+
\<and> nsqn (rt (\<sigma> i)) dip \<le> nsqn (rt (\<sigma> (nhop dip))) dip"
|
466 |
+
and ndest: "\<forall>ripc\<in>dom (dests (\<sigma> i)). ripc \<in> kD (rt (\<sigma> (sip (\<sigma> i))))
|
467 |
+
\<and> the (dests (\<sigma> i) ripc) - 1 \<le> nsqn (rt (\<sigma> (sip (\<sigma> i)))) ripc"
|
468 |
+
and issip: "\<forall>ip\<in>dom (dests (\<sigma> i)). nhop ip = sip (\<sigma> i)"
|
469 |
+
and qinc: "\<forall>j. quality_increases (\<sigma> j) (\<sigma>' j)"
|
470 |
+
have "\<forall>dip\<in>kD(rt (\<sigma> i)). nhop dip \<noteq> dip \<longrightarrow> dip \<in> kD (rt (\<sigma>' (nhop dip)))
|
471 |
+
\<and> nsqn (invalidate (rt (\<sigma> i)) (dests (\<sigma> i))) dip \<le> nsqn (rt (\<sigma>' (nhop dip))) dip"
|
472 |
+
proof (intro ballI impI)
|
473 |
+
fix dip
|
474 |
+
assume "dip\<in>kD(rt (\<sigma> i))"
|
475 |
+
and "nhop dip \<noteq> dip"
|
476 |
+
with pre and qinc have "dip\<in>kD(rt (\<sigma>' (nhop dip)))"
|
477 |
+
and "nsqn (rt (\<sigma> i)) dip \<le> nsqn (rt (\<sigma>' (nhop dip))) dip"
|
478 |
+
by (auto dest!: basic)
|
479 |
+
|
480 |
+
have "nsqn (invalidate (rt (\<sigma> i)) (dests (\<sigma> i))) dip \<le> nsqn (rt (\<sigma>' (nhop dip))) dip"
|
481 |
+
proof (cases "dip\<in>dom (dests (\<sigma> i))")
|
482 |
+
assume "dip\<in>dom (dests (\<sigma> i))"
|
483 |
+
with \<open>dip\<in>kD(rt (\<sigma> i))\<close> obtain dsn where "dests (\<sigma> i) dip = Some dsn"
|
484 |
+
by auto
|
485 |
+
with \<open>dip\<in>kD(rt (\<sigma> i))\<close> have "nsqn (invalidate (rt (\<sigma> i)) (dests (\<sigma> i))) dip = dsn - 1"
|
486 |
+
by (rule nsqn_invalidate_eq)
|
487 |
+
moreover have "dsn - 1 \<le> nsqn (rt (\<sigma>' (nhop dip))) dip"
|
488 |
+
proof -
|
489 |
+
from \<open>dests (\<sigma> i) dip = Some dsn\<close> have "the (dests (\<sigma> i) dip) = dsn" by simp
|
490 |
+
with ndest and \<open>dip\<in>dom (dests (\<sigma> i))\<close> have "dip \<in> kD (rt (\<sigma> (sip (\<sigma> i))))"
|
491 |
+
"dsn - 1 \<le> nsqn (rt (\<sigma> (sip (\<sigma> i)))) dip"
|
492 |
+
by auto
|
493 |
+
moreover from issip and \<open>dip\<in>dom (dests (\<sigma> i))\<close> have "nhop dip = sip (\<sigma> i)" ..
|
494 |
+
ultimately have "dip \<in> kD (rt (\<sigma> (nhop dip)))"
|
495 |
+
and "dsn - 1 \<le> nsqn (rt (\<sigma> (nhop dip))) dip" by auto
|
496 |
+
with qinc show "dsn - 1 \<le> nsqn (rt (\<sigma>' (nhop dip))) dip"
|
497 |
+
by simp (metis kD_nsqn_quality_increases_trans)
|
498 |
+
qed
|
499 |
+
ultimately show ?thesis by simp
|
500 |
+
next
|
501 |
+
assume "dip \<notin> dom (dests (\<sigma> i))"
|
502 |
+
with \<open>dip\<in>kD(rt (\<sigma> i))\<close>
|
503 |
+
have "nsqn (invalidate (rt (\<sigma> i)) (dests (\<sigma> i))) dip = nsqn (rt (\<sigma> i)) dip"
|
504 |
+
by (rule nsqn_invalidate_other)
|
505 |
+
with \<open>nsqn (rt (\<sigma> i)) dip \<le> nsqn (rt (\<sigma>' (nhop dip))) dip\<close> show ?thesis by simp
|
506 |
+
qed
|
507 |
+
with \<open>dip\<in>kD(rt (\<sigma>' (nhop dip)))\<close>
|
508 |
+
show "dip \<in> kD (rt (\<sigma>' (nhop dip)))
|
509 |
+
\<and> nsqn (invalidate (rt (\<sigma> i)) (dests (\<sigma> i))) dip \<le> nsqn (rt (\<sigma>' (nhop dip))) dip" ..
|
510 |
+
qed
|
511 |
+
} note basic_prerr = this
|
512 |
+
|
513 |
+
{ fix \<sigma> \<sigma>' :: "ip \<Rightarrow> state"
|
514 |
+
assume a1: "\<forall>dip\<in>kD(rt (\<sigma> i)). the (nhop (rt (\<sigma> i)) dip) \<noteq> dip
|
515 |
+
\<longrightarrow> dip\<in>kD(rt (\<sigma> (the (nhop (rt (\<sigma> i)) dip))))
|
516 |
+
\<and> nsqn (rt (\<sigma> i)) dip \<le> nsqn (rt (\<sigma> (the (nhop (rt (\<sigma> i)) dip)))) dip"
|
517 |
+
and a2: "\<forall>j. quality_increases (\<sigma> j) (\<sigma>' j)"
|
518 |
+
have "\<forall>dip\<in>kD(rt (\<sigma> i)).
|
519 |
+
the (nhop (update (rt (\<sigma> i)) (sip (\<sigma> i)) (0, unk, val, Suc 0, sip (\<sigma> i), {})) dip) \<noteq> dip \<longrightarrow>
|
520 |
+
dip\<in>kD(rt (\<sigma>' (the (nhop (update (rt (\<sigma> i)) (sip (\<sigma> i))
|
521 |
+
(0, unk, val, Suc 0, sip (\<sigma> i), {}))
|
522 |
+
dip)))) \<and>
|
523 |
+
nsqn (update (rt (\<sigma> i)) (sip (\<sigma> i)) (0, unk, val, Suc 0, sip (\<sigma> i), {})) dip
|
524 |
+
\<le> nsqn (rt (\<sigma>' (the (nhop (update (rt (\<sigma> i)) (sip (\<sigma> i))
|
525 |
+
(0, unk, val, Suc 0, sip (\<sigma> i), {}))
|
526 |
+
dip))))
|
527 |
+
dip" (is "\<forall>dip\<in>kD(rt (\<sigma> i)). ?P dip")
|
528 |
+
proof
|
529 |
+
fix dip
|
530 |
+
assume "dip\<in>kD(rt (\<sigma> i))"
|
531 |
+
with a1 and a2
|
532 |
+
have "the (nhop (rt (\<sigma> i)) dip) \<noteq> dip \<longrightarrow> dip\<in>kD(rt (\<sigma>' (the (nhop (rt (\<sigma> i)) dip))))
|
533 |
+
\<and> nsqn (rt (\<sigma> i)) dip \<le> nsqn (rt (\<sigma>' (the (nhop (rt (\<sigma> i)) dip)))) dip"
|
534 |
+
by - (drule(1) basic, auto)
|
535 |
+
thus "?P dip" by (cases "dip = sip (\<sigma> i)") auto
|
536 |
+
qed
|
537 |
+
} note nhop_update_sip = this
|
538 |
+
|
539 |
+
{ fix \<sigma> \<sigma>' oip sip osn hops
|
540 |
+
assume pre: "\<forall>dip\<in>kD (rt (\<sigma> i)). the (nhop (rt (\<sigma> i)) dip) \<noteq> dip
|
541 |
+
\<longrightarrow> dip\<in>kD(rt (\<sigma> (the (nhop (rt (\<sigma> i)) dip))))
|
542 |
+
\<and> nsqn (rt (\<sigma> i)) dip \<le> nsqn (rt (\<sigma> (the (nhop (rt (\<sigma> i)) dip)))) dip"
|
543 |
+
and qinc: "\<forall>j. quality_increases (\<sigma> j) (\<sigma>' j)"
|
544 |
+
and *: "sip \<noteq> oip \<longrightarrow> oip\<in>kD(rt (\<sigma> sip))
|
545 |
+
\<and> osn \<le> nsqn (rt (\<sigma> sip)) oip
|
546 |
+
\<and> (nsqn (rt (\<sigma> sip)) oip = osn
|
547 |
+
\<longrightarrow> the (dhops (rt (\<sigma> sip)) oip) \<le> hops
|
548 |
+
\<or> the (flag (rt (\<sigma> sip)) oip) = inv)"
|
549 |
+
from pre and qinc
|
550 |
+
have pre': "\<forall>dip\<in>kD (rt (\<sigma> i)). the (nhop (rt (\<sigma> i)) dip) \<noteq> dip
|
551 |
+
\<longrightarrow> dip\<in>kD(rt (\<sigma>' (the (nhop (rt (\<sigma> i)) dip))))
|
552 |
+
\<and> nsqn (rt (\<sigma> i)) dip \<le> nsqn (rt (\<sigma>' (the (nhop (rt (\<sigma> i)) dip)))) dip"
|
553 |
+
by (rule basic)
|
554 |
+
have "(the (nhop (update (rt (\<sigma> i)) oip (osn, kno, val, Suc hops, sip, {})) oip) \<noteq> oip
|
555 |
+
\<longrightarrow> oip\<in>kD(rt (\<sigma>' (the (nhop (update (rt (\<sigma> i)) oip
|
556 |
+
(osn, kno, val, Suc hops, sip, {})) oip))))
|
557 |
+
\<and> nsqn (update (rt (\<sigma> i)) oip (osn, kno, val, Suc hops, sip, {})) oip
|
558 |
+
\<le> nsqn (rt (\<sigma>' (the (nhop (update (rt (\<sigma> i)) oip
|
559 |
+
(osn, kno, val, Suc hops, sip, {})) oip)))) oip)"
|
560 |
+
(is "?nhop_not_oip \<longrightarrow> ?oip_in_kD \<and> ?nsqn_le_nsqn")
|
561 |
+
proof (rule, split update_rt_split_asm)
|
562 |
+
assume "rt (\<sigma> i) = update (rt (\<sigma> i)) oip (osn, kno, val, Suc hops, sip, {})"
|
563 |
+
and "the (nhop (rt (\<sigma> i)) oip) \<noteq> oip"
|
564 |
+
with pre' show "?oip_in_kD \<and> ?nsqn_le_nsqn" by auto
|
565 |
+
next
|
566 |
+
assume rtnot: "rt (\<sigma> i) \<noteq> update (rt (\<sigma> i)) oip (osn, kno, val, Suc hops, sip, {})"
|
567 |
+
and notoip: ?nhop_not_oip
|
568 |
+
with * qinc have ?oip_in_kD
|
569 |
+
by auto
|
570 |
+
moreover with * pre qinc rtnot notoip have ?nsqn_le_nsqn
|
571 |
+
by simp (metis kD_nsqn_quality_increases_trans)
|
572 |
+
ultimately show "?oip_in_kD \<and> ?nsqn_le_nsqn" ..
|
573 |
+
qed
|
574 |
+
} note update1 = this
|
575 |
+
|
576 |
+
{ fix \<sigma> \<sigma>' oip sip osn hops
|
577 |
+
assume pre: "\<forall>dip\<in>kD (rt (\<sigma> i)). the (nhop (rt (\<sigma> i)) dip) \<noteq> dip
|
578 |
+
\<longrightarrow> dip\<in>kD(rt (\<sigma> (the (nhop (rt (\<sigma> i)) dip))))
|
579 |
+
\<and> nsqn (rt (\<sigma> i)) dip \<le> nsqn (rt (\<sigma> (the (nhop (rt (\<sigma> i)) dip)))) dip"
|
580 |
+
and qinc: "\<forall>j. quality_increases (\<sigma> j) (\<sigma>' j)"
|
581 |
+
and *: "sip \<noteq> oip \<longrightarrow> oip\<in>kD(rt (\<sigma> sip))
|
582 |
+
\<and> osn \<le> nsqn (rt (\<sigma> sip)) oip
|
583 |
+
\<and> (nsqn (rt (\<sigma> sip)) oip = osn
|
584 |
+
\<longrightarrow> the (dhops (rt (\<sigma> sip)) oip) \<le> hops
|
585 |
+
\<or> the (flag (rt (\<sigma> sip)) oip) = inv)"
|
586 |
+
from pre and qinc
|
587 |
+
have pre': "\<forall>dip\<in>kD (rt (\<sigma> i)). the (nhop (rt (\<sigma> i)) dip) \<noteq> dip
|
588 |
+
\<longrightarrow> dip\<in>kD(rt (\<sigma>' (the (nhop (rt (\<sigma> i)) dip))))
|
589 |
+
\<and> nsqn (rt (\<sigma> i)) dip \<le> nsqn (rt (\<sigma>' (the (nhop (rt (\<sigma> i)) dip)))) dip"
|
590 |
+
by (rule basic)
|
591 |
+
have "\<forall>dip\<in>kD(rt (\<sigma> i)).
|
592 |
+
the (nhop (update (rt (\<sigma> i)) oip (osn, kno, val, Suc hops, sip, {})) dip) \<noteq> dip
|
593 |
+
\<longrightarrow> dip\<in>kD(rt (\<sigma>' (the (nhop (update (rt (\<sigma> i)) oip
|
594 |
+
(osn, kno, val, Suc hops, sip, {})) dip))))
|
595 |
+
\<and> nsqn (update (rt (\<sigma> i)) oip (osn, kno, val, Suc hops, sip, {})) dip
|
596 |
+
\<le> nsqn (rt (\<sigma>' (the (nhop (update (rt (\<sigma> i)) oip
|
597 |
+
(osn, kno, val, Suc hops, sip, {})) dip)))) dip"
|
598 |
+
(is "\<forall>dip\<in>kD(rt (\<sigma> i)). _ \<longrightarrow> ?dip_in_kD dip \<and> ?nsqn_le_nsqn dip")
|
599 |
+
proof (intro ballI impI, split update_rt_split_asm)
|
600 |
+
fix dip
|
601 |
+
assume "dip\<in>kD(rt (\<sigma> i))"
|
602 |
+
and "the (nhop (rt (\<sigma> i)) dip) \<noteq> dip"
|
603 |
+
and "rt (\<sigma> i) = update (rt (\<sigma> i)) oip (osn, kno, val, Suc hops, sip, {})"
|
604 |
+
with pre' show "?dip_in_kD dip \<and> ?nsqn_le_nsqn dip" by simp
|
605 |
+
next
|
606 |
+
fix dip
|
607 |
+
assume "dip\<in>kD(rt (\<sigma> i))"
|
608 |
+
and notdip: "the (nhop (update (rt (\<sigma> i)) oip
|
609 |
+
(osn, kno, val, Suc hops, sip, {})) dip) \<noteq> dip"
|
610 |
+
and rtnot: "rt (\<sigma> i) \<noteq> update (rt (\<sigma> i)) oip (osn, kno, val, Suc hops, sip, {})"
|
611 |
+
show "?dip_in_kD dip \<and> ?nsqn_le_nsqn dip"
|
612 |
+
proof (cases "dip = oip")
|
613 |
+
assume "dip \<noteq> oip"
|
614 |
+
with pre' \<open>dip\<in>kD(rt (\<sigma> i))\<close> notdip
|
615 |
+
show ?thesis by clarsimp
|
616 |
+
next
|
617 |
+
assume "dip = oip"
|
618 |
+
with rtnot qinc \<open>dip\<in>kD(rt (\<sigma> i))\<close> notdip *
|
619 |
+
have "?dip_in_kD dip"
|
620 |
+
by simp (metis kD_quality_increases)
|
621 |
+
moreover from \<open>dip = oip\<close> rtnot qinc \<open>dip\<in>kD(rt (\<sigma> i))\<close> notdip *
|
622 |
+
have "?nsqn_le_nsqn dip" by simp (metis kD_nsqn_quality_increases_trans)
|
623 |
+
ultimately show ?thesis ..
|
624 |
+
qed
|
625 |
+
qed
|
626 |
+
} note update2 = this
|
627 |
+
|
628 |
+
have "opaodv i \<Turnstile> (?S, ?U \<rightarrow>) onl \<Gamma>\<^sub>A\<^sub>O\<^sub>D\<^sub>V (\<lambda>(\<sigma>, _).
|
629 |
+
\<forall>dip \<in> kD(rt (\<sigma> i)). the (nhop (rt (\<sigma> i)) dip) \<noteq> dip
|
630 |
+
\<longrightarrow> dip \<in> kD(rt (\<sigma> (the (nhop (rt (\<sigma> i)) dip))))
|
631 |
+
\<and> nsqn (rt (\<sigma> i)) dip \<le> nsqn (rt (\<sigma> (the (nhop (rt (\<sigma> i)) dip)))) dip)"
|
632 |
+
by (inv_cterms inv add: oseq_step_invariant_sterms [OF oquality_increases_nsqn_fresh aodv_wf
|
633 |
+
oaodv_trans]
|
634 |
+
onl_oinvariant_sterms [OF aodv_wf oaddpreRT_welldefined]
|
635 |
+
onl_oinvariant_sterms [OF aodv_wf odests_vD_inc_sqn]
|
636 |
+
onl_oinvariant_sterms [OF aodv_wf oprerr_guard]
|
637 |
+
onl_oinvariant_sterms [OF aodv_wf rreq_sip]
|
638 |
+
onl_oinvariant_sterms [OF aodv_wf rrep_sip]
|
639 |
+
onl_oinvariant_sterms [OF aodv_wf rerr_sip]
|
640 |
+
other_quality_increases
|
641 |
+
other_localD
|
642 |
+
solve: basic basic_prerr
|
643 |
+
simp add: seqlsimp nsqn_invalidate nhop_update_sip
|
644 |
+
simp del: One_nat_def)
|
645 |
+
(rule conjI, erule(2) update1, erule(2) update2)+
|
646 |
+
|
647 |
+
thus ?thesis unfolding Let_def by auto
|
648 |
+
qed
|
649 |
+
|
650 |
+
text \<open>Proposition 7.30\<close>
|
651 |
+
|
652 |
+
lemmas okD_unk_or_atleast_one =
|
653 |
+
open_seq_invariant [OF kD_unk_or_atleast_one initiali_aodv,
|
654 |
+
simplified seql_onl_swap]
|
655 |
+
|
656 |
+
lemmas ozero_seq_unk_hops_one =
|
657 |
+
open_seq_invariant [OF zero_seq_unk_hops_one initiali_aodv,
|
658 |
+
simplified seql_onl_swap]
|
659 |
+
|
660 |
+
lemma oreachable_fresh_okD_unk_or_atleast_one:
|
661 |
+
fixes dip
|
662 |
+
assumes "(\<sigma>, p) \<in> oreachable (opaodv i)
|
663 |
+
(otherwith ((=)) {i} (orecvmsg (\<lambda>\<sigma> m. msg_fresh \<sigma> m
|
664 |
+
\<and> msg_zhops m)))
|
665 |
+
(other quality_increases {i})"
|
666 |
+
and "dip\<in>kD(rt (\<sigma> i))"
|
667 |
+
shows "\<pi>\<^sub>3(the (rt (\<sigma> i) dip)) = unk \<or> 1 \<le> \<pi>\<^sub>2(the (rt (\<sigma> i) dip))"
|
668 |
+
(is "?P dip")
|
669 |
+
proof -
|
670 |
+
have "\<exists>l. l\<in>labels \<Gamma>\<^sub>A\<^sub>O\<^sub>D\<^sub>V p" by (metis aodv_ex_label)
|
671 |
+
with assms(1) have "\<forall>dip\<in>kD (rt (\<sigma> i)). ?P dip"
|
672 |
+
by - (drule oinvariant_weakenD [OF okD_unk_or_atleast_one [OF oaodv_trans aodv_trans]],
|
673 |
+
auto dest!: otherwith_actionD onlD simp: seqlsimp)
|
674 |
+
with \<open>dip\<in>kD(rt (\<sigma> i))\<close> show ?thesis by simp
|
675 |
+
qed
|
676 |
+
|
677 |
+
lemma oreachable_fresh_ozero_seq_unk_hops_one:
|
678 |
+
fixes dip
|
679 |
+
assumes "(\<sigma>, p) \<in> oreachable (opaodv i)
|
680 |
+
(otherwith ((=)) {i} (orecvmsg (\<lambda>\<sigma> m. msg_fresh \<sigma> m
|
681 |
+
\<and> msg_zhops m)))
|
682 |
+
(other quality_increases {i})"
|
683 |
+
and "dip\<in>kD(rt (\<sigma> i))"
|
684 |
+
shows "sqn (rt (\<sigma> i)) dip = 0 \<longrightarrow>
|
685 |
+
sqnf (rt (\<sigma> i)) dip = unk
|
686 |
+
\<and> the (dhops (rt (\<sigma> i)) dip) = 1
|
687 |
+
\<and> the (nhop (rt (\<sigma> i)) dip) = dip"
|
688 |
+
(is "?P dip")
|
689 |
+
proof -
|
690 |
+
have "\<exists>l. l\<in>labels \<Gamma>\<^sub>A\<^sub>O\<^sub>D\<^sub>V p" by (metis aodv_ex_label)
|
691 |
+
with assms(1) have "\<forall>dip\<in>kD (rt (\<sigma> i)). ?P dip"
|
692 |
+
by - (drule oinvariant_weakenD [OF ozero_seq_unk_hops_one [OF oaodv_trans aodv_trans]],
|
693 |
+
auto dest!: onlD otherwith_actionD simp: seqlsimp)
|
694 |
+
with \<open>dip\<in>kD(rt (\<sigma> i))\<close> show ?thesis by simp
|
695 |
+
qed
|
696 |
+
|
697 |
+
lemma seq_nhop_quality_increases':
|
698 |
+
shows "opaodv i \<Turnstile> (otherwith ((=)) {i}
|
699 |
+
(orecvmsg (\<lambda>\<sigma> m. msg_fresh \<sigma> m \<and> msg_zhops m)),
|
700 |
+
other quality_increases {i} \<rightarrow>)
|
701 |
+
onl \<Gamma>\<^sub>A\<^sub>O\<^sub>D\<^sub>V (\<lambda>(\<sigma>, _). \<forall>dip. let nhip = the (nhop (rt (\<sigma> i)) dip)
|
702 |
+
in dip \<in> vD (rt (\<sigma> i)) \<inter> vD (rt (\<sigma> nhip))
|
703 |
+
\<and> nhip \<noteq> dip
|
704 |
+
\<longrightarrow> (rt (\<sigma> i)) \<sqsubset>\<^bsub>dip\<^esub> (rt (\<sigma> nhip)))"
|
705 |
+
(is "_ \<Turnstile> (?S i, _ \<rightarrow>) _")
|
706 |
+
proof -
|
707 |
+
have weaken:
|
708 |
+
"\<And>p I Q R P. p \<Turnstile> (otherwith quality_increases I (orecvmsg Q), other quality_increases I \<rightarrow>) P
|
709 |
+
\<Longrightarrow> p \<Turnstile> (otherwith ((=)) I (orecvmsg (\<lambda>\<sigma> m. Q \<sigma> m \<and> R \<sigma> m)), other quality_increases I \<rightarrow>) P"
|
710 |
+
by auto
|
711 |
+
{
|
712 |
+
fix i a and \<sigma> \<sigma>' :: "ip \<Rightarrow> state"
|
713 |
+
assume a1: "\<forall>dip. dip\<in>vD(rt (\<sigma> i))
|
714 |
+
\<and> dip\<in>vD(rt (\<sigma> (the (nhop (rt (\<sigma> i)) dip))))
|
715 |
+
\<and> (the (nhop (rt (\<sigma> i)) dip)) \<noteq> dip
|
716 |
+
\<longrightarrow> rt (\<sigma> i) \<sqsubset>\<^bsub>dip\<^esub> rt (\<sigma> (the (nhop (rt (\<sigma> i)) dip)))"
|
717 |
+
and ow: "?S i \<sigma> \<sigma>' a"
|
718 |
+
have "\<forall>dip. dip\<in>vD(rt (\<sigma> i))
|
719 |
+
\<and> dip\<in>vD (rt (\<sigma>' (the (nhop (rt (\<sigma> i)) dip))))
|
720 |
+
\<and> (the (nhop (rt (\<sigma> i)) dip)) \<noteq> dip
|
721 |
+
\<longrightarrow> rt (\<sigma> i) \<sqsubset>\<^bsub>dip\<^esub> rt (\<sigma>' (the (nhop (rt (\<sigma> i)) dip)))"
|
722 |
+
proof clarify
|
723 |
+
fix dip
|
724 |
+
assume a2: "dip\<in>vD(rt (\<sigma> i))"
|
725 |
+
and a3: "dip\<in>vD (rt (\<sigma>' (the (nhop (rt (\<sigma> i)) dip))))"
|
726 |
+
and a4: "(the (nhop (rt (\<sigma> i)) dip)) \<noteq> dip"
|
727 |
+
from ow have "\<forall>j. j \<noteq> i \<longrightarrow> \<sigma> j = \<sigma>' j" by auto
|
728 |
+
show "rt (\<sigma> i) \<sqsubset>\<^bsub>dip\<^esub> rt (\<sigma>' (the (nhop (rt (\<sigma> i)) dip)))"
|
729 |
+
proof (cases "(the (nhop (rt (\<sigma> i)) dip)) = i")
|
730 |
+
assume "(the (nhop (rt (\<sigma> i)) dip)) = i"
|
731 |
+
with \<open>dip \<in> vD(rt (\<sigma> i))\<close> have "dip \<in> vD(rt (\<sigma> (the (nhop (rt (\<sigma> i)) dip))))" by simp
|
732 |
+
with a1 a2 a4 have "rt (\<sigma> i) \<sqsubset>\<^bsub>dip\<^esub> rt (\<sigma> (the (nhop (rt (\<sigma> i)) dip)))" by simp
|
733 |
+
with \<open>(the (nhop (rt (\<sigma> i)) dip)) = i\<close> have "rt (\<sigma> i) \<sqsubset>\<^bsub>dip\<^esub> rt (\<sigma> i)" by simp
|
734 |
+
hence False by simp
|
735 |
+
thus ?thesis ..
|
736 |
+
next
|
737 |
+
assume "(the (nhop (rt (\<sigma> i)) dip)) \<noteq> i"
|
738 |
+
with \<open>\<forall>j. j \<noteq> i \<longrightarrow> \<sigma> j = \<sigma>' j\<close>
|
739 |
+
have *: "\<sigma> (the (nhop (rt (\<sigma> i)) dip)) = \<sigma>' (the (nhop (rt (\<sigma> i)) dip))" by simp
|
740 |
+
with \<open>dip\<in>vD (rt (\<sigma>' (the (nhop (rt (\<sigma> i)) dip))))\<close>
|
741 |
+
have "dip\<in>vD (rt (\<sigma> (the (nhop (rt (\<sigma> i)) dip))))" by simp
|
742 |
+
with a1 a2 a4 have "rt (\<sigma> i) \<sqsubset>\<^bsub>dip\<^esub> rt (\<sigma> (the (nhop (rt (\<sigma> i)) dip)))" by simp
|
743 |
+
with * show ?thesis by simp
|
744 |
+
qed
|
745 |
+
qed
|
746 |
+
} note basic = this
|
747 |
+
|
748 |
+
{ fix \<sigma> \<sigma>' a dip sip i
|
749 |
+
assume a1: "\<forall>dip. dip\<in>vD(rt (\<sigma> i))
|
750 |
+
\<and> dip\<in>vD(rt (\<sigma> (the (nhop (rt (\<sigma> i)) dip))))
|
751 |
+
\<and> the (nhop (rt (\<sigma> i)) dip) \<noteq> dip
|
752 |
+
\<longrightarrow> rt (\<sigma> i) \<sqsubset>\<^bsub>dip\<^esub> rt (\<sigma> (the (nhop (rt (\<sigma> i)) dip)))"
|
753 |
+
and ow: "?S i \<sigma> \<sigma>' a"
|
754 |
+
have "\<forall>dip. dip\<in>vD(update (rt (\<sigma> i)) sip (0, unk, val, Suc 0, sip, {}))
|
755 |
+
\<and> dip\<in>vD(rt (\<sigma>' (the (nhop (update (rt (\<sigma> i)) sip (0, unk, val, Suc 0, sip, {})) dip))))
|
756 |
+
\<and> the (nhop (update (rt (\<sigma> i)) sip (0, unk, val, Suc 0, sip, {})) dip) \<noteq> dip
|
757 |
+
\<longrightarrow> update (rt (\<sigma> i)) sip (0, unk, val, Suc 0, sip, {})
|
758 |
+
\<sqsubset>\<^bsub>dip\<^esub> rt (\<sigma>' (the (nhop (update (rt (\<sigma> i)) sip (0, unk, val, Suc 0, sip, {})) dip)))"
|
759 |
+
proof clarify
|
760 |
+
fix dip
|
761 |
+
assume a2: "dip\<in>vD (update (rt (\<sigma> i)) sip (0, unk, val, Suc 0, sip, {}))"
|
762 |
+
and a3: "dip\<in>vD(rt (\<sigma>' (the (nhop
|
763 |
+
(update (rt (\<sigma> i)) sip (0, unk, val, Suc 0, sip, {})) dip))))"
|
764 |
+
and a4: "the (nhop (update (rt (\<sigma> i)) sip (0, unk, val, Suc 0, sip, {})) dip) \<noteq> dip"
|
765 |
+
show "update (rt (\<sigma> i)) sip (0, unk, val, Suc 0, sip, {})
|
766 |
+
\<sqsubset>\<^bsub>dip\<^esub> rt (\<sigma>' (the (nhop (update (rt (\<sigma> i)) sip (0, unk, val, Suc 0, sip, {})) dip)))"
|
767 |
+
proof (cases "dip = sip")
|
768 |
+
assume "dip = sip"
|
769 |
+
with \<open>the (nhop (update (rt (\<sigma> i)) sip (0, unk, val, Suc 0, sip, {})) dip) \<noteq> dip\<close>
|
770 |
+
have False by simp
|
771 |
+
thus ?thesis ..
|
772 |
+
next
|
773 |
+
assume [simp]: "dip \<noteq> sip"
|
774 |
+
from a2 have "dip\<in>vD(rt (\<sigma> i)) \<or> dip = sip"
|
775 |
+
by (rule vD_update_val)
|
776 |
+
with \<open>dip \<noteq> sip\<close> have "dip\<in>vD(rt (\<sigma> i))" by simp
|
777 |
+
moreover from a3 have "dip\<in>vD(rt (\<sigma>' (the (nhop (rt (\<sigma> i)) dip))))" by simp
|
778 |
+
moreover from a4 have "the (nhop (rt (\<sigma> i)) dip) \<noteq> dip" by simp
|
779 |
+
ultimately have "rt (\<sigma> i) \<sqsubset>\<^bsub>dip\<^esub> rt (\<sigma>' (the (nhop (rt (\<sigma> i)) dip)))"
|
780 |
+
using a1 ow by - (drule(1) basic, simp)
|
781 |
+
with \<open>dip \<noteq> sip\<close> show ?thesis
|
782 |
+
by - (erule rt_strictly_fresher_update_other, simp)
|
783 |
+
qed
|
784 |
+
qed
|
785 |
+
} note update_0_unk = this
|
786 |
+
|
787 |
+
{ fix \<sigma> a \<sigma>' nhop
|
788 |
+
assume pre: "\<forall>dip. dip\<in>vD(rt (\<sigma> i)) \<and> dip\<in>vD(rt (\<sigma> (nhop dip))) \<and> nhop dip \<noteq> dip
|
789 |
+
\<longrightarrow> rt (\<sigma> i) \<sqsubset>\<^bsub>dip\<^esub> rt (\<sigma> (nhop dip))"
|
790 |
+
and ow: "?S i \<sigma> \<sigma>' a"
|
791 |
+
have "\<forall>dip. dip \<in> vD (invalidate (rt (\<sigma> i)) (dests (\<sigma> i)))
|
792 |
+
\<and> dip \<in> vD (rt (\<sigma>' (nhop dip))) \<and> nhop dip \<noteq> dip
|
793 |
+
\<longrightarrow> rt (\<sigma> i) \<sqsubset>\<^bsub>dip\<^esub> rt (\<sigma>' (nhop dip))"
|
794 |
+
proof clarify
|
795 |
+
fix dip
|
796 |
+
assume "dip\<in>vD(invalidate (rt (\<sigma> i)) (dests (\<sigma> i)))"
|
797 |
+
and "dip\<in>vD(rt (\<sigma>' (nhop dip)))"
|
798 |
+
and "nhop dip \<noteq> dip"
|
799 |
+
from this(1) have "dip\<in>vD (rt (\<sigma> i))"
|
800 |
+
by (clarsimp dest!: vD_invalidate_vD_not_dests)
|
801 |
+
moreover from ow have "\<forall>j. j \<noteq> i \<longrightarrow> \<sigma> j = \<sigma>' j" by auto
|
802 |
+
ultimately have "rt (\<sigma> i) \<sqsubset>\<^bsub>dip\<^esub> rt (\<sigma> (nhop dip))"
|
803 |
+
using pre \<open>dip \<in> vD (rt (\<sigma>' (nhop dip)))\<close> \<open>nhop dip \<noteq> dip\<close>
|
804 |
+
by metis
|
805 |
+
with \<open>\<forall>j. j \<noteq> i \<longrightarrow> \<sigma> j = \<sigma>' j\<close> show "rt (\<sigma> i) \<sqsubset>\<^bsub>dip\<^esub> rt (\<sigma>' (nhop dip))"
|
806 |
+
by (metis rt_strictly_fresher_irefl)
|
807 |
+
qed
|
808 |
+
} note invalidate = this
|
809 |
+
|
810 |
+
{ fix \<sigma> a \<sigma>' dip oip osn sip hops i
|
811 |
+
assume pre: "\<forall>dip. dip \<in> vD (rt (\<sigma> i))
|
812 |
+
\<and> dip \<in> vD (rt (\<sigma> (the (nhop (rt (\<sigma> i)) dip))))
|
813 |
+
\<and> the (nhop (rt (\<sigma> i)) dip) \<noteq> dip
|
814 |
+
\<longrightarrow> rt (\<sigma> i) \<sqsubset>\<^bsub>dip\<^esub> rt (\<sigma> (the (nhop (rt (\<sigma> i)) dip)))"
|
815 |
+
and ow: "?S i \<sigma> \<sigma>' a"
|
816 |
+
and "Suc 0 \<le> osn"
|
817 |
+
and a6: "sip \<noteq> oip \<longrightarrow> oip \<in> kD (rt (\<sigma> sip))
|
818 |
+
\<and> osn \<le> nsqn (rt (\<sigma> sip)) oip
|
819 |
+
\<and> (nsqn (rt (\<sigma> sip)) oip = osn
|
820 |
+
\<longrightarrow> the (dhops (rt (\<sigma> sip)) oip) \<le> hops
|
821 |
+
\<or> the (flag (rt (\<sigma> sip)) oip) = inv)"
|
822 |
+
and after: "\<sigma>' i = \<sigma> i\<lparr>rt := update (rt (\<sigma> i)) oip (osn, kno, val, Suc hops, sip, {})\<rparr>"
|
823 |
+
have "\<forall>dip. dip \<in> vD (update (rt (\<sigma> i)) oip (osn, kno, val, Suc hops, sip, {}))
|
824 |
+
\<and> dip \<in> vD (rt (\<sigma>' (the (nhop (update (rt (\<sigma> i)) oip
|
825 |
+
(osn, kno, val, Suc hops, sip, {})) dip))))
|
826 |
+
\<and> the (nhop (update (rt (\<sigma> i)) oip (osn, kno, val, Suc hops, sip, {})) dip) \<noteq> dip
|
827 |
+
\<longrightarrow> update (rt (\<sigma> i)) oip (osn, kno, val, Suc hops, sip, {})
|
828 |
+
\<sqsubset>\<^bsub>dip\<^esub>
|
829 |
+
rt (\<sigma>' (the (nhop (update (rt (\<sigma> i)) oip (osn, kno, val, Suc hops, sip, {})) dip)))"
|
830 |
+
proof clarify
|
831 |
+
fix dip
|
832 |
+
assume a2: "dip\<in>vD(update (rt (\<sigma> i)) oip (osn, kno, val, Suc (hops), sip, {}))"
|
833 |
+
and a3: "dip\<in>vD(rt (\<sigma>' (the (nhop (update (rt (\<sigma> i)) oip
|
834 |
+
(osn, kno, val, Suc hops, sip, {})) dip))))"
|
835 |
+
and a4: "the (nhop (update (rt (\<sigma> i)) oip (osn, kno, val, Suc hops, sip, {})) dip) \<noteq> dip"
|
836 |
+
from ow have a5: "\<forall>j. j \<noteq> i \<longrightarrow> \<sigma> j = \<sigma>' j" by auto
|
837 |
+
show "update (rt (\<sigma> i)) oip (osn, kno, val, Suc hops, sip, {})
|
838 |
+
\<sqsubset>\<^bsub>dip\<^esub>
|
839 |
+
rt (\<sigma>' (the (nhop (update (rt (\<sigma> i)) oip (osn, kno, val, Suc hops, sip, {})) dip)))"
|
840 |
+
(is "?rt1 \<sqsubset>\<^bsub>dip\<^esub> ?rt2 dip")
|
841 |
+
proof (cases "?rt1 = rt (\<sigma> i)")
|
842 |
+
assume nochange [simp]:
|
843 |
+
"update (rt (\<sigma> i)) oip (osn, kno, val, Suc hops, sip, {}) = rt (\<sigma> i)"
|
844 |
+
|
845 |
+
from after have "\<sigma>' i = \<sigma> i" by simp
|
846 |
+
with a5 have "\<forall>j. \<sigma> j = \<sigma>' j" by metis
|
847 |
+
|
848 |
+
from a2 have "dip\<in>vD (rt (\<sigma> i))" by simp
|
849 |
+
moreover from a3 have "dip\<in>vD(rt (\<sigma> (the (nhop (rt (\<sigma> i)) dip))))"
|
850 |
+
using nochange and \<open>\<forall>j. \<sigma> j = \<sigma>' j\<close> by clarsimp
|
851 |
+
moreover from a4 have "the (nhop (rt (\<sigma> i)) dip) \<noteq> dip" by simp
|
852 |
+
ultimately have "rt (\<sigma> i) \<sqsubset>\<^bsub>dip\<^esub> rt (\<sigma> (the (nhop (rt (\<sigma> i)) dip)))"
|
853 |
+
using pre by simp
|
854 |
+
|
855 |
+
hence "rt (\<sigma> i) \<sqsubset>\<^bsub>dip\<^esub> rt (\<sigma>' (the (nhop (rt (\<sigma> i)) dip)))"
|
856 |
+
using \<open>\<forall>j. \<sigma> j = \<sigma>' j\<close> by simp
|
857 |
+
thus "?thesis" by simp
|
858 |
+
next
|
859 |
+
assume change: "?rt1 \<noteq> rt (\<sigma> i)"
|
860 |
+
from after a2 have "dip\<in>kD(rt (\<sigma>' i))" by auto
|
861 |
+
show ?thesis
|
862 |
+
proof (cases "dip = oip")
|
863 |
+
assume "dip \<noteq> oip"
|
864 |
+
|
865 |
+
with a2 have "dip\<in>vD (rt (\<sigma> i))" by auto
|
866 |
+
moreover with a3 a5 after and \<open>dip \<noteq> oip\<close>
|
867 |
+
have "dip\<in>vD(rt (\<sigma> (the (nhop (rt (\<sigma> i)) dip))))"
|
868 |
+
by simp metis
|
869 |
+
moreover from a4 and \<open>dip \<noteq> oip\<close> have "the (nhop (rt (\<sigma> i)) dip) \<noteq> dip" by simp
|
870 |
+
ultimately have "rt (\<sigma> i) \<sqsubset>\<^bsub>dip\<^esub> rt (\<sigma> (the (nhop (rt (\<sigma> i)) dip)))"
|
871 |
+
using pre by simp
|
872 |
+
|
873 |
+
with after and a5 and \<open>dip \<noteq> oip\<close> show ?thesis
|
874 |
+
by simp (metis rt_strictly_fresher_update_other
|
875 |
+
rt_strictly_fresher_irefl)
|
876 |
+
next
|
877 |
+
assume "dip = oip"
|
878 |
+
|
879 |
+
with a4 and change have "sip \<noteq> oip" by simp
|
880 |
+
with a6 have "oip\<in>kD(rt (\<sigma> sip))"
|
881 |
+
and "osn \<le> nsqn (rt (\<sigma> sip)) oip" by auto
|
882 |
+
|
883 |
+
from a3 change \<open>dip = oip\<close> have "oip\<in>vD(rt (\<sigma>' sip))" by simp
|
884 |
+
hence "the (flag (rt (\<sigma>' sip)) oip) = val" by simp
|
885 |
+
|
886 |
+
from \<open>oip\<in>kD(rt (\<sigma> sip))\<close>
|
887 |
+
have "osn < nsqn (rt (\<sigma>' sip)) oip \<or> (osn = nsqn (rt (\<sigma>' sip)) oip
|
888 |
+
\<and> the (dhops (rt (\<sigma>' sip)) oip) \<le> hops)"
|
889 |
+
proof
|
890 |
+
assume "oip\<in>vD(rt (\<sigma> sip))"
|
891 |
+
hence "the (flag (rt (\<sigma> sip)) oip) = val" by simp
|
892 |
+
with a6 \<open>sip \<noteq> oip\<close> have "nsqn (rt (\<sigma> sip)) oip = osn \<longrightarrow>
|
893 |
+
the (dhops (rt (\<sigma> sip)) oip) \<le> hops"
|
894 |
+
by simp
|
895 |
+
show ?thesis
|
896 |
+
proof (cases "sip = i")
|
897 |
+
assume "sip \<noteq> i"
|
898 |
+
with a5 have "\<sigma> sip = \<sigma>' sip" by simp
|
899 |
+
with \<open>osn \<le> nsqn (rt (\<sigma> sip)) oip\<close>
|
900 |
+
and \<open>nsqn (rt (\<sigma> sip)) oip = osn \<longrightarrow> the (dhops (rt (\<sigma> sip)) oip) \<le> hops\<close>
|
901 |
+
show ?thesis by auto
|
902 |
+
next
|
903 |
+
\<comment> \<open>alternative to using @{text sip_not_ip}\<close>
|
904 |
+
assume [simp]: "sip = i"
|
905 |
+
have "?rt1 = rt (\<sigma> i)"
|
906 |
+
proof (rule update_cases_kD, simp_all)
|
907 |
+
from \<open>Suc 0 \<le> osn\<close> show "0 < osn" by simp
|
908 |
+
next
|
909 |
+
from \<open>oip\<in>kD(rt (\<sigma> sip))\<close> and \<open>sip = i\<close> show "oip\<in>kD(rt (\<sigma> i))"
|
910 |
+
by simp
|
911 |
+
next
|
912 |
+
assume "sqn (rt (\<sigma> i)) oip < osn"
|
913 |
+
also from \<open>osn \<le> nsqn (rt (\<sigma> sip)) oip\<close>
|
914 |
+
have "... \<le> nsqn (rt (\<sigma> i)) oip" by simp
|
915 |
+
also have "... \<le> sqn (rt (\<sigma> i)) oip"
|
916 |
+
by (rule nsqn_sqn)
|
917 |
+
finally have "sqn (rt (\<sigma> i)) oip < sqn (rt (\<sigma> i)) oip" .
|
918 |
+
hence False by simp
|
919 |
+
thus "(\<lambda>a. if a = oip
|
920 |
+
then Some (osn, kno, val, Suc hops, i, \<pi>\<^sub>7 (the (rt (\<sigma> i) oip)))
|
921 |
+
else rt (\<sigma> i) a) = rt (\<sigma> i)" ..
|
922 |
+
next
|
923 |
+
assume "sqn (rt (\<sigma> i)) oip = osn"
|
924 |
+
and "Suc hops < the (dhops (rt (\<sigma> i)) oip)"
|
925 |
+
from this(1) and \<open>oip \<in> vD (rt (\<sigma> sip))\<close> have "nsqn (rt (\<sigma> i)) oip = osn"
|
926 |
+
by simp
|
927 |
+
with \<open>nsqn (rt (\<sigma> sip)) oip = osn \<longrightarrow> the (dhops (rt (\<sigma> sip)) oip) \<le> hops\<close>
|
928 |
+
have "the (dhops (rt (\<sigma> i)) oip) \<le> hops" by simp
|
929 |
+
with \<open>Suc hops < the (dhops (rt (\<sigma> i)) oip)\<close> have False by simp
|
930 |
+
thus "(\<lambda>a. if a = oip
|
931 |
+
then Some (osn, kno, val, Suc hops, i, \<pi>\<^sub>7 (the (rt (\<sigma> i) oip)))
|
932 |
+
else rt (\<sigma> i) a) = rt (\<sigma> i)" ..
|
933 |
+
next
|
934 |
+
assume "the (flag (rt (\<sigma> i)) oip) = inv"
|
935 |
+
with \<open>the (flag (rt (\<sigma> sip)) oip) = val\<close> have False by simp
|
936 |
+
thus "(\<lambda>a. if a = oip
|
937 |
+
then Some (osn, kno, val, Suc hops, i, \<pi>\<^sub>7 (the (rt (\<sigma> i) oip)))
|
938 |
+
else rt (\<sigma> i) a) = rt (\<sigma> i)" ..
|
939 |
+
next
|
940 |
+
from \<open>oip\<in>kD(rt (\<sigma> sip))\<close>
|
941 |
+
show "(\<lambda>a. if a = oip then Some (the (rt (\<sigma> i) oip)) else rt (\<sigma> i) a) = rt (\<sigma> i)"
|
942 |
+
by (auto dest!: kD_Some)
|
943 |
+
qed
|
944 |
+
with change have False ..
|
945 |
+
thus ?thesis ..
|
946 |
+
qed
|
947 |
+
next
|
948 |
+
assume "oip\<in>iD(rt (\<sigma> sip))"
|
949 |
+
with \<open>the (flag (rt (\<sigma>' sip)) oip) = val\<close> and a5 have "sip = i"
|
950 |
+
by (metis f.distinct(1) iD_flag_is_inv)
|
951 |
+
from \<open>oip\<in>iD(rt (\<sigma> sip))\<close> have "the (flag (rt (\<sigma> sip)) oip) = inv" by auto
|
952 |
+
with \<open>sip = i\<close> \<open>Suc 0 \<le> osn\<close> change after \<open>oip\<in>kD(rt (\<sigma> sip))\<close>
|
953 |
+
have "nsqn (rt (\<sigma> sip)) oip < nsqn (rt (\<sigma>' sip)) oip"
|
954 |
+
unfolding update_def
|
955 |
+
by (clarsimp split: option.split_asm if_split_asm)
|
956 |
+
(auto simp: sqn_def)
|
957 |
+
with \<open>osn \<le> nsqn (rt (\<sigma> sip)) oip\<close> have "osn < nsqn (rt (\<sigma>' sip)) oip"
|
958 |
+
by simp
|
959 |
+
thus ?thesis ..
|
960 |
+
qed
|
961 |
+
thus ?thesis
|
962 |
+
proof
|
963 |
+
assume osnlt: "osn < nsqn (rt (\<sigma>' sip)) oip"
|
964 |
+
from \<open>dip\<in>kD(rt (\<sigma>' i))\<close> and \<open>dip = oip\<close> have "dip \<in> kD (?rt1)" by simp
|
965 |
+
moreover from a3 have "dip \<in> kD(?rt2 dip)" by simp
|
966 |
+
moreover have "nsqn ?rt1 dip < nsqn (?rt2 dip) dip"
|
967 |
+
proof -
|
968 |
+
have "nsqn ?rt1 oip = osn"
|
969 |
+
by (simp add: \<open>dip = oip\<close> nsqn_update_changed_kno_val [OF change [THEN not_sym]])
|
970 |
+
also have "... < nsqn (rt (\<sigma>' sip)) oip" using osnlt .
|
971 |
+
also have "... = nsqn (?rt2 oip) oip" by (simp add: change)
|
972 |
+
finally show ?thesis
|
973 |
+
using \<open>dip = oip\<close> by simp
|
974 |
+
qed
|
975 |
+
ultimately show ?thesis
|
976 |
+
by (rule rt_strictly_fresher_ltI)
|
977 |
+
next
|
978 |
+
assume osneq: "osn = nsqn (rt (\<sigma>' sip)) oip \<and> the (dhops (rt (\<sigma>' sip)) oip) \<le> hops"
|
979 |
+
|
980 |
+
have "oip\<in>kD(?rt1)" by simp
|
981 |
+
moreover from a3 \<open>dip = oip\<close> have "oip\<in>kD(?rt2 oip)" by simp
|
982 |
+
|
983 |
+
moreover have "nsqn ?rt1 oip = nsqn (?rt2 oip) oip"
|
984 |
+
proof -
|
985 |
+
from osneq have "osn = nsqn (rt (\<sigma>' sip)) oip" ..
|
986 |
+
also have "osn = nsqn ?rt1 oip"
|
987 |
+
by (simp add: \<open>dip = oip\<close> nsqn_update_changed_kno_val [OF change [THEN not_sym]])
|
988 |
+
also have "nsqn (rt (\<sigma>' sip)) oip = nsqn (?rt2 oip) oip"
|
989 |
+
by (simp add: change)
|
990 |
+
finally show ?thesis .
|
991 |
+
qed
|
992 |
+
|
993 |
+
moreover have "\<pi>\<^sub>5(the (?rt2 oip oip)) < \<pi>\<^sub>5(the (?rt1 oip))"
|
994 |
+
proof -
|
995 |
+
from osneq have "the (dhops (rt (\<sigma>' sip)) oip) \<le> hops" ..
|
996 |
+
moreover from \<open>oip \<in> vD (rt (\<sigma>' sip))\<close> have "oip\<in>kD(rt (\<sigma>' sip))" by auto
|
997 |
+
ultimately have "\<pi>\<^sub>5(the (rt (\<sigma>' sip) oip)) \<le> hops"
|
998 |
+
by (auto simp add: proj5_eq_dhops)
|
999 |
+
also from change after have "hops < \<pi>\<^sub>5(the (rt (\<sigma>' i) oip))"
|
1000 |
+
by (simp add: proj5_eq_dhops) (metis dhops_update_changed lessI)
|
1001 |
+
finally have "\<pi>\<^sub>5(the (rt (\<sigma>' sip) oip)) < \<pi>\<^sub>5(the (rt (\<sigma>' i) oip))" .
|
1002 |
+
with change after show ?thesis by simp
|
1003 |
+
qed
|
1004 |
+
|
1005 |
+
ultimately have "?rt1 \<sqsubset>\<^bsub>oip\<^esub> ?rt2 oip"
|
1006 |
+
by (rule rt_strictly_fresher_eqI)
|
1007 |
+
with \<open>dip = oip\<close> show ?thesis by simp
|
1008 |
+
qed
|
1009 |
+
qed
|
1010 |
+
qed
|
1011 |
+
qed
|
1012 |
+
} note rreq_rrep_update = this
|
1013 |
+
|
1014 |
+
have "opaodv i \<Turnstile> (otherwith ((=)) {i} (orecvmsg (\<lambda>\<sigma> m. msg_fresh \<sigma> m
|
1015 |
+
\<and> msg_zhops m)),
|
1016 |
+
other quality_increases {i} \<rightarrow>)
|
1017 |
+
onl \<Gamma>\<^sub>A\<^sub>O\<^sub>D\<^sub>V
|
1018 |
+
(\<lambda>(\<sigma>, _). \<forall>dip. dip \<in> vD (rt (\<sigma> i)) \<inter> vD (rt (\<sigma> (the (nhop (rt (\<sigma> i)) dip))))
|
1019 |
+
\<and> the (nhop (rt (\<sigma> i)) dip) \<noteq> dip
|
1020 |
+
\<longrightarrow> rt (\<sigma> i) \<sqsubset>\<^bsub>dip\<^esub> rt (\<sigma> (the (nhop (rt (\<sigma> i)) dip))))"
|
1021 |
+
proof (inv_cterms inv add: onl_oinvariant_sterms [OF aodv_wf rreq_sip [THEN weaken]]
|
1022 |
+
onl_oinvariant_sterms [OF aodv_wf rrep_sip [THEN weaken]]
|
1023 |
+
onl_oinvariant_sterms [OF aodv_wf rerr_sip [THEN weaken]]
|
1024 |
+
onl_oinvariant_sterms [OF aodv_wf oosn_rreq [THEN weaken]]
|
1025 |
+
onl_oinvariant_sterms [OF aodv_wf odsn_rrep [THEN weaken]]
|
1026 |
+
onl_oinvariant_sterms [OF aodv_wf oaddpreRT_welldefined]
|
1027 |
+
solve: basic update_0_unk invalidate rreq_rrep_update
|
1028 |
+
simp add: seqlsimp)
|
1029 |
+
fix \<sigma> \<sigma>' p l
|
1030 |
+
assume or: "(\<sigma>, p) \<in> oreachable (opaodv i) (?S i) (other quality_increases {i})"
|
1031 |
+
and "other quality_increases {i} \<sigma> \<sigma>'"
|
1032 |
+
and ll: "l \<in> labels \<Gamma>\<^sub>A\<^sub>O\<^sub>D\<^sub>V p"
|
1033 |
+
and pre: "\<forall>dip. dip\<in>vD (rt (\<sigma> i))
|
1034 |
+
\<and> dip\<in>vD(rt (\<sigma> (the (nhop (rt (\<sigma> i)) dip))))
|
1035 |
+
\<and> the (nhop (rt (\<sigma> i)) dip) \<noteq> dip
|
1036 |
+
\<longrightarrow> rt (\<sigma> i) \<sqsubset>\<^bsub>dip\<^esub> rt (\<sigma> (the (nhop (rt (\<sigma> i)) dip)))"
|
1037 |
+
from this(1-2)
|
1038 |
+
have or': "(\<sigma>', p) \<in> oreachable (opaodv i) (?S i) (other quality_increases {i})"
|
1039 |
+
by - (rule oreachable_other')
|
1040 |
+
|
1041 |
+
from or and ll have next_hop: "\<forall>dip. let nhip = the (nhop (rt (\<sigma> i)) dip)
|
1042 |
+
in dip \<in> kD(rt (\<sigma> i)) \<and> nhip \<noteq> dip
|
1043 |
+
\<longrightarrow> dip \<in> kD(rt (\<sigma> nhip))
|
1044 |
+
\<and> nsqn (rt (\<sigma> i)) dip \<le> nsqn (rt (\<sigma> nhip)) dip"
|
1045 |
+
by (auto dest!: onl_oinvariant_weakenD [OF seq_compare_next_hop'])
|
1046 |
+
|
1047 |
+
from or and ll have unk_hops_one: "\<forall>dip\<in>kD (rt (\<sigma> i)). sqn (rt (\<sigma> i)) dip = 0
|
1048 |
+
\<longrightarrow> sqnf (rt (\<sigma> i)) dip = unk
|
1049 |
+
\<and> the (dhops (rt (\<sigma> i)) dip) = 1
|
1050 |
+
\<and> the (nhop (rt (\<sigma> i)) dip) = dip"
|
1051 |
+
by (auto dest!: onl_oinvariant_weakenD [OF ozero_seq_unk_hops_one
|
1052 |
+
[OF oaodv_trans aodv_trans]]
|
1053 |
+
otherwith_actionD
|
1054 |
+
simp: seqlsimp)
|
1055 |
+
|
1056 |
+
from \<open>other quality_increases {i} \<sigma> \<sigma>'\<close> have "\<sigma>' i = \<sigma> i" by auto
|
1057 |
+
hence "quality_increases (\<sigma> i) (\<sigma>' i)" by auto
|
1058 |
+
with \<open>other quality_increases {i} \<sigma> \<sigma>'\<close> have "\<forall>j. quality_increases (\<sigma> j) (\<sigma>' j)"
|
1059 |
+
by - (erule otherE, metis singleton_iff)
|
1060 |
+
|
1061 |
+
show "\<forall>dip. dip \<in> vD (rt (\<sigma>' i))
|
1062 |
+
\<and> dip \<in> vD (rt (\<sigma>' (the (nhop (rt (\<sigma>' i)) dip))))
|
1063 |
+
\<and> the (nhop (rt (\<sigma>' i)) dip) \<noteq> dip
|
1064 |
+
\<longrightarrow> rt (\<sigma>' i) \<sqsubset>\<^bsub>dip\<^esub> rt (\<sigma>' (the (nhop (rt (\<sigma>' i)) dip)))"
|
1065 |
+
proof clarify
|
1066 |
+
fix dip
|
1067 |
+
assume "dip\<in>vD(rt (\<sigma>' i))"
|
1068 |
+
and "dip\<in>vD(rt (\<sigma>' (the (nhop (rt (\<sigma>' i)) dip))))"
|
1069 |
+
and "the (nhop (rt (\<sigma>' i)) dip) \<noteq> dip"
|
1070 |
+
from this(1) and \<open>\<sigma>' i = \<sigma> i\<close> have "dip\<in>vD(rt (\<sigma> i))"
|
1071 |
+
and "dip\<in>kD(rt (\<sigma> i))"
|
1072 |
+
by auto
|
1073 |
+
|
1074 |
+
from \<open>the (nhop (rt (\<sigma>' i)) dip) \<noteq> dip\<close> and \<open>\<sigma>' i = \<sigma> i\<close>
|
1075 |
+
have "the (nhop (rt (\<sigma> i)) dip) \<noteq> dip" (is "?nhip \<noteq> _") by simp
|
1076 |
+
with \<open>dip\<in>kD(rt (\<sigma> i))\<close> and next_hop
|
1077 |
+
have "dip\<in>kD(rt (\<sigma> (?nhip)))"
|
1078 |
+
and nsqns: "nsqn (rt (\<sigma> i)) dip \<le> nsqn (rt (\<sigma> ?nhip)) dip"
|
1079 |
+
by (auto simp: Let_def)
|
1080 |
+
|
1081 |
+
have "0 < sqn (rt (\<sigma> i)) dip"
|
1082 |
+
proof (rule neq0_conv [THEN iffD1, OF notI])
|
1083 |
+
assume "sqn (rt (\<sigma> i)) dip = 0"
|
1084 |
+
with \<open>dip\<in>kD(rt (\<sigma> i))\<close> and unk_hops_one
|
1085 |
+
have "?nhip = dip" by simp
|
1086 |
+
with \<open>?nhip \<noteq> dip\<close> show False ..
|
1087 |
+
qed
|
1088 |
+
also have "... = nsqn (rt (\<sigma> i)) dip"
|
1089 |
+
by (rule vD_nsqn_sqn [OF \<open>dip\<in>vD(rt (\<sigma> i))\<close>, THEN sym])
|
1090 |
+
also have "... \<le> nsqn (rt (\<sigma> ?nhip)) dip"
|
1091 |
+
by (rule nsqns)
|
1092 |
+
also have "... \<le> sqn (rt (\<sigma> ?nhip)) dip"
|
1093 |
+
by (rule nsqn_sqn)
|
1094 |
+
finally have "0 < sqn (rt (\<sigma> ?nhip)) dip" .
|
1095 |
+
|
1096 |
+
have "rt (\<sigma> i) \<sqsubset>\<^bsub>dip\<^esub> rt (\<sigma>' ?nhip)"
|
1097 |
+
proof (cases "dip\<in>vD(rt (\<sigma> ?nhip))")
|
1098 |
+
assume "dip\<in>vD(rt (\<sigma> ?nhip))"
|
1099 |
+
with pre \<open>dip\<in>vD(rt (\<sigma> i))\<close> and \<open>?nhip \<noteq> dip\<close>
|
1100 |
+
have "rt (\<sigma> i) \<sqsubset>\<^bsub>dip\<^esub> rt (\<sigma> ?nhip)" by auto
|
1101 |
+
moreover from \<open>\<forall>j. quality_increases (\<sigma> j) (\<sigma>' j)\<close>
|
1102 |
+
have "quality_increases (\<sigma> ?nhip) (\<sigma>' ?nhip)" ..
|
1103 |
+
ultimately show ?thesis
|
1104 |
+
using \<open>dip\<in>kD(rt (\<sigma> ?nhip))\<close>
|
1105 |
+
by (rule strictly_fresher_quality_increases_right)
|
1106 |
+
next
|
1107 |
+
assume "dip\<notin>vD(rt (\<sigma> ?nhip))"
|
1108 |
+
with \<open>dip\<in>kD(rt (\<sigma> ?nhip))\<close> have "dip\<in>iD(rt (\<sigma> ?nhip))" ..
|
1109 |
+
hence "the (flag (rt (\<sigma> ?nhip)) dip) = inv"
|
1110 |
+
by auto
|
1111 |
+
have "nsqn (rt (\<sigma> i)) dip \<le> nsqn (rt (\<sigma> ?nhip)) dip"
|
1112 |
+
by (rule nsqns)
|
1113 |
+
also from \<open>dip\<in>iD(rt (\<sigma> ?nhip))\<close>
|
1114 |
+
have "... = sqn (rt (\<sigma> ?nhip)) dip - 1" ..
|
1115 |
+
also have "... < sqn (rt (\<sigma>' ?nhip)) dip"
|
1116 |
+
proof -
|
1117 |
+
from \<open>\<forall>j. quality_increases (\<sigma> j) (\<sigma>' j)\<close>
|
1118 |
+
have "quality_increases (\<sigma> ?nhip) (\<sigma>' ?nhip)" ..
|
1119 |
+
hence "\<forall>ip. sqn (rt (\<sigma> ?nhip)) ip \<le> sqn (rt (\<sigma>' ?nhip)) ip" by auto
|
1120 |
+
hence "sqn (rt (\<sigma> ?nhip)) dip \<le> sqn (rt (\<sigma>' ?nhip)) dip" ..
|
1121 |
+
with \<open>0 < sqn (rt (\<sigma> ?nhip)) dip\<close> show ?thesis by auto
|
1122 |
+
qed
|
1123 |
+
also have "... = nsqn (rt (\<sigma>' ?nhip)) dip"
|
1124 |
+
proof (rule vD_nsqn_sqn [THEN sym])
|
1125 |
+
from \<open>dip\<in>vD(rt (\<sigma>' (the (nhop (rt (\<sigma>' i)) dip))))\<close> and \<open>\<sigma>' i = \<sigma> i\<close>
|
1126 |
+
show "dip\<in>vD(rt (\<sigma>' ?nhip))" by simp
|
1127 |
+
qed
|
1128 |
+
finally have "nsqn (rt (\<sigma> i)) dip < nsqn (rt (\<sigma>' ?nhip)) dip" .
|
1129 |
+
|
1130 |
+
moreover from \<open>dip\<in>vD(rt (\<sigma>' (the (nhop (rt (\<sigma>' i)) dip))))\<close> and \<open>\<sigma>' i = \<sigma> i\<close>
|
1131 |
+
have "dip\<in>kD(rt (\<sigma>' ?nhip))" by auto
|
1132 |
+
ultimately show "rt (\<sigma> i) \<sqsubset>\<^bsub>dip\<^esub> rt (\<sigma>' ?nhip)"
|
1133 |
+
using \<open>dip\<in>kD(rt (\<sigma> i))\<close> by - (rule rt_strictly_fresher_ltI)
|
1134 |
+
qed
|
1135 |
+
with \<open>\<sigma>' i = \<sigma> i\<close> show "rt (\<sigma>' i) \<sqsubset>\<^bsub>dip\<^esub> rt (\<sigma>' (the (nhop (rt (\<sigma>' i)) dip)))"
|
1136 |
+
by simp
|
1137 |
+
qed
|
1138 |
+
qed
|
1139 |
+
thus ?thesis unfolding Let_def .
|
1140 |
+
qed
|
1141 |
+
|
1142 |
+
lemma seq_nhop_quality_increases:
|
1143 |
+
shows "opaodv i \<Turnstile> (otherwith ((=)) {i}
|
1144 |
+
(orecvmsg (\<lambda>\<sigma> m. msg_fresh \<sigma> m \<and> msg_zhops m)),
|
1145 |
+
other quality_increases {i} \<rightarrow>)
|
1146 |
+
global (\<lambda>\<sigma>. \<forall>dip. let nhip = the (nhop (rt (\<sigma> i)) dip)
|
1147 |
+
in dip \<in> vD (rt (\<sigma> i)) \<inter> vD (rt (\<sigma> nhip)) \<and> nhip \<noteq> dip
|
1148 |
+
\<longrightarrow> (rt (\<sigma> i)) \<sqsubset>\<^bsub>dip\<^esub> (rt (\<sigma> nhip)))"
|
1149 |
+
by (rule oinvariant_weakenE [OF seq_nhop_quality_increases']) (auto dest!: onlD)
|
1150 |
+
|
1151 |
+
end
|
formal/afp/AODV/Loop_Freedom.thy
ADDED
@@ -0,0 +1,123 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
(* Title: Loop_Freedom.thy
|
2 |
+
License: BSD 2-Clause. See LICENSE.
|
3 |
+
Author: Timothy Bourke, Inria
|
4 |
+
*)
|
5 |
+
|
6 |
+
section "Routing graphs and loop freedom"
|
7 |
+
|
8 |
+
theory Loop_Freedom
|
9 |
+
imports Aodv_Predicates Fresher
|
10 |
+
begin
|
11 |
+
|
12 |
+
text \<open>Define the central theorem that relates an invariant over network states to the absence
|
13 |
+
of loops in the associate routing graph.\<close>
|
14 |
+
|
15 |
+
definition
|
16 |
+
rt_graph :: "(ip \<Rightarrow> state) \<Rightarrow> ip \<Rightarrow> ip rel"
|
17 |
+
where
|
18 |
+
"rt_graph \<sigma> = (\<lambda>dip.
|
19 |
+
{(ip, ip') | ip ip' dsn dsk hops pre.
|
20 |
+
ip \<noteq> dip \<and> rt (\<sigma> ip) dip = Some (dsn, dsk, val, hops, ip', pre)})"
|
21 |
+
|
22 |
+
text \<open>Given the state of a network @{term \<sigma>}, a routing graph for a given destination
|
23 |
+
ip address @{term dip} abstracts the details of routing tables into nodes
|
24 |
+
(ip addresses) and vertices (valid routes between ip addresses).\<close>
|
25 |
+
|
26 |
+
lemma rt_graphE [elim]:
|
27 |
+
fixes n dip ip ip'
|
28 |
+
assumes "(ip, ip') \<in> rt_graph \<sigma> dip"
|
29 |
+
shows "ip \<noteq> dip \<and> (\<exists>r. rt (\<sigma> ip) = r
|
30 |
+
\<and> (\<exists>dsn dsk hops pre. r dip = Some (dsn, dsk, val, hops, ip', pre)))"
|
31 |
+
using assms unfolding rt_graph_def by auto
|
32 |
+
|
33 |
+
lemma rt_graph_vD [dest]:
|
34 |
+
"\<And>ip ip' \<sigma> dip. (ip, ip') \<in> rt_graph \<sigma> dip \<Longrightarrow> dip \<in> vD(rt (\<sigma> ip))"
|
35 |
+
unfolding rt_graph_def vD_def by auto
|
36 |
+
|
37 |
+
lemma rt_graph_vD_trans [dest]:
|
38 |
+
"\<And>ip ip' \<sigma> dip. (ip, ip') \<in> (rt_graph \<sigma> dip)\<^sup>+ \<Longrightarrow> dip \<in> vD(rt (\<sigma> ip))"
|
39 |
+
by (erule converse_tranclE) auto
|
40 |
+
|
41 |
+
lemma rt_graph_not_dip [dest]:
|
42 |
+
"\<And>ip ip' \<sigma> dip. (ip, ip') \<in> rt_graph \<sigma> dip \<Longrightarrow> ip \<noteq> dip"
|
43 |
+
unfolding rt_graph_def by auto
|
44 |
+
|
45 |
+
lemma rt_graph_not_dip_trans [dest]:
|
46 |
+
"\<And>ip ip' \<sigma> dip. (ip, ip') \<in> (rt_graph \<sigma> dip)\<^sup>+ \<Longrightarrow> ip \<noteq> dip"
|
47 |
+
by (erule converse_tranclE) auto
|
48 |
+
|
49 |
+
text "NB: the property below cannot be lifted to the transitive closure"
|
50 |
+
|
51 |
+
lemma rt_graph_nhip_is_nhop [dest]:
|
52 |
+
"\<And>ip ip' \<sigma> dip. (ip, ip') \<in> rt_graph \<sigma> dip \<Longrightarrow> ip' = the (nhop (rt (\<sigma> ip)) dip)"
|
53 |
+
unfolding rt_graph_def by auto
|
54 |
+
|
55 |
+
theorem inv_to_loop_freedom:
|
56 |
+
assumes "\<forall>i dip. let nhip = the (nhop (rt (\<sigma> i)) dip)
|
57 |
+
in dip \<in> vD (rt (\<sigma> i)) \<inter> vD (rt (\<sigma> nhip)) \<and> nhip \<noteq> dip
|
58 |
+
\<longrightarrow> (rt (\<sigma> i)) \<sqsubset>\<^bsub>dip\<^esub> (rt (\<sigma> nhip))"
|
59 |
+
shows "\<forall>dip. irrefl ((rt_graph \<sigma> dip)\<^sup>+)"
|
60 |
+
using assms proof (intro allI)
|
61 |
+
fix \<sigma> :: "ip \<Rightarrow> state" and dip
|
62 |
+
assume inv: "\<forall>ip dip.
|
63 |
+
let nhip = the (nhop (rt (\<sigma> ip)) dip)
|
64 |
+
in dip \<in> vD(rt (\<sigma> ip)) \<inter> vD(rt (\<sigma> nhip)) \<and>
|
65 |
+
nhip \<noteq> dip \<longrightarrow> rt (\<sigma> ip) \<sqsubset>\<^bsub>dip\<^esub> rt (\<sigma> nhip)"
|
66 |
+
{ fix ip ip'
|
67 |
+
assume "(ip, ip') \<in> (rt_graph \<sigma> dip)\<^sup>+"
|
68 |
+
and "dip \<in> vD(rt (\<sigma> ip'))"
|
69 |
+
and "ip' \<noteq> dip"
|
70 |
+
hence "rt (\<sigma> ip) \<sqsubset>\<^bsub>dip\<^esub> rt (\<sigma> ip')"
|
71 |
+
proof induction
|
72 |
+
fix nhip
|
73 |
+
assume "(ip, nhip) \<in> rt_graph \<sigma> dip"
|
74 |
+
and "dip \<in> vD(rt (\<sigma> nhip))"
|
75 |
+
and "nhip \<noteq> dip"
|
76 |
+
from \<open>(ip, nhip) \<in> rt_graph \<sigma> dip\<close> have "dip \<in> vD(rt (\<sigma> ip))"
|
77 |
+
and "nhip = the (nhop (rt (\<sigma> ip)) dip)"
|
78 |
+
by auto
|
79 |
+
from \<open>dip \<in> vD(rt (\<sigma> ip))\<close> and \<open>dip \<in> vD(rt (\<sigma> nhip))\<close>
|
80 |
+
have "dip \<in> vD(rt (\<sigma> ip)) \<inter> vD(rt (\<sigma> nhip))" ..
|
81 |
+
with \<open>nhip = the (nhop (rt (\<sigma> ip)) dip)\<close>
|
82 |
+
and \<open>nhip \<noteq> dip\<close>
|
83 |
+
and inv
|
84 |
+
show "rt (\<sigma> ip) \<sqsubset>\<^bsub>dip\<^esub> rt (\<sigma> nhip)"
|
85 |
+
by (clarsimp simp: Let_def)
|
86 |
+
next
|
87 |
+
fix nhip nhip'
|
88 |
+
assume "(ip, nhip) \<in> (rt_graph \<sigma> dip)\<^sup>+"
|
89 |
+
and "(nhip, nhip') \<in> rt_graph \<sigma> dip"
|
90 |
+
and IH: "\<lbrakk> dip \<in> vD(rt (\<sigma> nhip)); nhip \<noteq> dip \<rbrakk> \<Longrightarrow> rt (\<sigma> ip) \<sqsubset>\<^bsub>dip\<^esub> rt (\<sigma> nhip)"
|
91 |
+
and "dip \<in> vD(rt (\<sigma> nhip'))"
|
92 |
+
and "nhip' \<noteq> dip"
|
93 |
+
from \<open>(nhip, nhip') \<in> rt_graph \<sigma> dip\<close> have 1: "dip \<in> vD(rt (\<sigma> nhip))"
|
94 |
+
and 2: "nhip \<noteq> dip"
|
95 |
+
and "nhip' = the (nhop (rt (\<sigma> nhip)) dip)"
|
96 |
+
by auto
|
97 |
+
from 1 2 have "rt (\<sigma> ip) \<sqsubset>\<^bsub>dip\<^esub> rt (\<sigma> nhip)" by (rule IH)
|
98 |
+
also have "rt (\<sigma> nhip) \<sqsubset>\<^bsub>dip\<^esub> rt (\<sigma> nhip')"
|
99 |
+
proof -
|
100 |
+
from \<open>dip \<in> vD(rt (\<sigma> nhip))\<close> and \<open>dip \<in> vD(rt (\<sigma> nhip'))\<close>
|
101 |
+
have "dip \<in> vD(rt (\<sigma> nhip)) \<inter> vD(rt (\<sigma> nhip'))" ..
|
102 |
+
with \<open>nhip' \<noteq> dip\<close>
|
103 |
+
and \<open>nhip' = the (nhop (rt (\<sigma> nhip)) dip)\<close>
|
104 |
+
and inv
|
105 |
+
show "rt (\<sigma> nhip) \<sqsubset>\<^bsub>dip\<^esub> rt (\<sigma> nhip')"
|
106 |
+
by (clarsimp simp: Let_def)
|
107 |
+
qed
|
108 |
+
finally show "rt (\<sigma> ip) \<sqsubset>\<^bsub>dip\<^esub> rt (\<sigma> nhip')" .
|
109 |
+
qed } note fresher = this
|
110 |
+
|
111 |
+
show "irrefl ((rt_graph \<sigma> dip)\<^sup>+)"
|
112 |
+
unfolding irrefl_def proof (intro allI notI)
|
113 |
+
fix ip
|
114 |
+
assume "(ip, ip) \<in> (rt_graph \<sigma> dip)\<^sup>+"
|
115 |
+
moreover then have "dip \<in> vD(rt (\<sigma> ip))"
|
116 |
+
and "ip \<noteq> dip"
|
117 |
+
by auto
|
118 |
+
ultimately have "rt (\<sigma> ip) \<sqsubset>\<^bsub>dip\<^esub> rt (\<sigma> ip)" by (rule fresher)
|
119 |
+
thus False by simp
|
120 |
+
qed
|
121 |
+
qed
|
122 |
+
|
123 |
+
end
|
formal/afp/AODV/OAodv.thy
ADDED
@@ -0,0 +1,47 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
(* Title: OAodv.thy
|
2 |
+
License: BSD 2-Clause. See LICENSE.
|
3 |
+
Author: Timothy Bourke, Inria
|
4 |
+
*)
|
5 |
+
|
6 |
+
section "The `open' AODV model"
|
7 |
+
|
8 |
+
theory OAodv
|
9 |
+
imports Aodv AWN.OAWN_SOS_Labels AWN.OAWN_Convert
|
10 |
+
begin
|
11 |
+
|
12 |
+
text \<open>Definitions for stating and proving global network properties over individual processes.\<close>
|
13 |
+
|
14 |
+
definition \<sigma>\<^sub>A\<^sub>O\<^sub>D\<^sub>V' :: "((ip \<Rightarrow> state) \<times> ((state, msg, pseqp, pseqp label) seqp)) set"
|
15 |
+
where "\<sigma>\<^sub>A\<^sub>O\<^sub>D\<^sub>V' \<equiv> {(\<lambda>i. aodv_init i, \<Gamma>\<^sub>A\<^sub>O\<^sub>D\<^sub>V PAodv)}"
|
16 |
+
|
17 |
+
abbreviation opaodv
|
18 |
+
:: "ip \<Rightarrow> ((ip \<Rightarrow> state) \<times> (state, msg, pseqp, pseqp label) seqp, msg seq_action) automaton"
|
19 |
+
where
|
20 |
+
"opaodv i \<equiv> \<lparr> init = \<sigma>\<^sub>A\<^sub>O\<^sub>D\<^sub>V', trans = oseqp_sos \<Gamma>\<^sub>A\<^sub>O\<^sub>D\<^sub>V i \<rparr>"
|
21 |
+
|
22 |
+
lemma initiali_aodv [intro!, simp]: "initiali i (init (opaodv i)) (init (paodv i))"
|
23 |
+
unfolding \<sigma>\<^sub>A\<^sub>O\<^sub>D\<^sub>V_def \<sigma>\<^sub>A\<^sub>O\<^sub>D\<^sub>V'_def by rule simp_all
|
24 |
+
|
25 |
+
lemma oaodv_control_within [simp]: "control_within \<Gamma>\<^sub>A\<^sub>O\<^sub>D\<^sub>V (init (opaodv i))"
|
26 |
+
unfolding \<sigma>\<^sub>A\<^sub>O\<^sub>D\<^sub>V'_def by (rule control_withinI) (auto simp del: \<Gamma>\<^sub>A\<^sub>O\<^sub>D\<^sub>V_simps)
|
27 |
+
|
28 |
+
lemma \<sigma>\<^sub>A\<^sub>O\<^sub>D\<^sub>V'_labels [simp]: "(\<sigma>, p) \<in> \<sigma>\<^sub>A\<^sub>O\<^sub>D\<^sub>V' \<Longrightarrow> labels \<Gamma>\<^sub>A\<^sub>O\<^sub>D\<^sub>V p = {PAodv-:0}"
|
29 |
+
unfolding \<sigma>\<^sub>A\<^sub>O\<^sub>D\<^sub>V'_def by simp
|
30 |
+
|
31 |
+
lemma oaodv_init_kD_empty [simp]:
|
32 |
+
"(\<sigma>, p) \<in> \<sigma>\<^sub>A\<^sub>O\<^sub>D\<^sub>V' \<Longrightarrow> kD (rt (\<sigma> i)) = {}"
|
33 |
+
unfolding \<sigma>\<^sub>A\<^sub>O\<^sub>D\<^sub>V'_def kD_def by simp
|
34 |
+
|
35 |
+
lemma oaodv_init_vD_empty [simp]:
|
36 |
+
"(\<sigma>, p) \<in> \<sigma>\<^sub>A\<^sub>O\<^sub>D\<^sub>V' \<Longrightarrow> vD (rt (\<sigma> i)) = {}"
|
37 |
+
unfolding \<sigma>\<^sub>A\<^sub>O\<^sub>D\<^sub>V'_def vD_def by simp
|
38 |
+
|
39 |
+
lemma oaodv_trans: "trans (opaodv i) = oseqp_sos \<Gamma>\<^sub>A\<^sub>O\<^sub>D\<^sub>V i"
|
40 |
+
by simp
|
41 |
+
|
42 |
+
declare
|
43 |
+
oseq_invariant_ctermsI [OF aodv_wf oaodv_control_within aodv_simple_labels oaodv_trans, cterms_intros]
|
44 |
+
oseq_step_invariant_ctermsI [OF aodv_wf oaodv_control_within aodv_simple_labels oaodv_trans, cterms_intros]
|
45 |
+
|
46 |
+
end
|
47 |
+
|
formal/afp/AODV/Quality_Increases.thy
ADDED
@@ -0,0 +1,456 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
(* Title: Quality_Increases.thy
|
2 |
+
License: BSD 2-Clause. See LICENSE.
|
3 |
+
Author: Timothy Bourke, Inria
|
4 |
+
*)
|
5 |
+
|
6 |
+
section "The quality increases predicate"
|
7 |
+
|
8 |
+
theory Quality_Increases
|
9 |
+
imports Aodv_Predicates Fresher
|
10 |
+
begin
|
11 |
+
|
12 |
+
definition quality_increases :: "state \<Rightarrow> state \<Rightarrow> bool"
|
13 |
+
where "quality_increases \<xi> \<xi>' \<equiv> (\<forall>dip\<in>kD(rt \<xi>). dip \<in> kD(rt \<xi>') \<and> rt \<xi> \<sqsubseteq>\<^bsub>dip\<^esub> rt \<xi>')
|
14 |
+
\<and> (\<forall>dip. sqn (rt \<xi>) dip \<le> sqn (rt \<xi>') dip)"
|
15 |
+
|
16 |
+
lemma quality_increasesI [intro!]:
|
17 |
+
assumes "\<And>dip. dip \<in> kD(rt \<xi>) \<Longrightarrow> dip \<in> kD(rt \<xi>')"
|
18 |
+
and "\<And>dip. \<lbrakk> dip \<in> kD(rt \<xi>); dip \<in> kD(rt \<xi>') \<rbrakk> \<Longrightarrow> rt \<xi> \<sqsubseteq>\<^bsub>dip\<^esub> rt \<xi>'"
|
19 |
+
and "\<And>dip. sqn (rt \<xi>) dip \<le> sqn (rt \<xi>') dip"
|
20 |
+
shows "quality_increases \<xi> \<xi>'"
|
21 |
+
unfolding quality_increases_def using assms by clarsimp
|
22 |
+
|
23 |
+
lemma quality_increasesE [elim]:
|
24 |
+
fixes dip
|
25 |
+
assumes "quality_increases \<xi> \<xi>'"
|
26 |
+
and "dip\<in>kD(rt \<xi>)"
|
27 |
+
and "\<lbrakk> dip \<in> kD(rt \<xi>'); rt \<xi> \<sqsubseteq>\<^bsub>dip\<^esub> rt \<xi>'; sqn (rt \<xi>) dip \<le> sqn (rt \<xi>') dip \<rbrakk> \<Longrightarrow> R dip \<xi> \<xi>'"
|
28 |
+
shows "R dip \<xi> \<xi>'"
|
29 |
+
using assms unfolding quality_increases_def by clarsimp
|
30 |
+
|
31 |
+
lemma quality_increases_rt_fresherD [dest]:
|
32 |
+
fixes ip
|
33 |
+
assumes "quality_increases \<xi> \<xi>'"
|
34 |
+
and "ip\<in>kD(rt \<xi>)"
|
35 |
+
shows "rt \<xi> \<sqsubseteq>\<^bsub>ip\<^esub> rt \<xi>'"
|
36 |
+
using assms by auto
|
37 |
+
|
38 |
+
lemma quality_increases_sqnE [elim]:
|
39 |
+
fixes dip
|
40 |
+
assumes "quality_increases \<xi> \<xi>'"
|
41 |
+
and "sqn (rt \<xi>) dip \<le> sqn (rt \<xi>') dip \<Longrightarrow> R dip \<xi> \<xi>'"
|
42 |
+
shows "R dip \<xi> \<xi>'"
|
43 |
+
using assms unfolding quality_increases_def by clarsimp
|
44 |
+
|
45 |
+
lemma quality_increases_refl [intro, simp]: "quality_increases \<xi> \<xi>"
|
46 |
+
by rule simp_all
|
47 |
+
|
48 |
+
lemma strictly_fresher_quality_increases_right [elim]:
|
49 |
+
fixes \<sigma> \<sigma>' dip
|
50 |
+
assumes "rt (\<sigma> i) \<sqsubset>\<^bsub>dip\<^esub> rt (\<sigma> nhip)"
|
51 |
+
and qinc: "quality_increases (\<sigma> nhip) (\<sigma>' nhip)"
|
52 |
+
and "dip\<in>kD(rt (\<sigma> nhip))"
|
53 |
+
shows "rt (\<sigma> i) \<sqsubset>\<^bsub>dip\<^esub> rt (\<sigma>' nhip)"
|
54 |
+
proof -
|
55 |
+
from qinc have "rt (\<sigma> nhip) \<sqsubseteq>\<^bsub>dip\<^esub> rt (\<sigma>' nhip)" using \<open>dip\<in>kD(rt (\<sigma> nhip))\<close>
|
56 |
+
by auto
|
57 |
+
with \<open>rt (\<sigma> i) \<sqsubset>\<^bsub>dip\<^esub> rt (\<sigma> nhip)\<close> show ?thesis ..
|
58 |
+
qed
|
59 |
+
|
60 |
+
lemma kD_quality_increases [elim]:
|
61 |
+
assumes "i\<in>kD(rt \<xi>)"
|
62 |
+
and "quality_increases \<xi> \<xi>'"
|
63 |
+
shows "i\<in>kD(rt \<xi>')"
|
64 |
+
using assms by auto
|
65 |
+
|
66 |
+
lemma kD_nsqn_quality_increases [elim]:
|
67 |
+
assumes "i\<in>kD(rt \<xi>)"
|
68 |
+
and "quality_increases \<xi> \<xi>'"
|
69 |
+
shows "i\<in>kD(rt \<xi>') \<and> nsqn (rt \<xi>) i \<le> nsqn (rt \<xi>') i"
|
70 |
+
proof -
|
71 |
+
from assms have "i\<in>kD(rt \<xi>')" ..
|
72 |
+
moreover with assms have "rt \<xi> \<sqsubseteq>\<^bsub>i\<^esub> rt \<xi>'" by auto
|
73 |
+
ultimately have "nsqn (rt \<xi>) i \<le> nsqn (rt \<xi>') i"
|
74 |
+
using \<open>i\<in>kD(rt \<xi>)\<close> by - (erule(2) rt_fresher_imp_nsqn_le)
|
75 |
+
with \<open>i\<in>kD(rt \<xi>')\<close> show ?thesis ..
|
76 |
+
qed
|
77 |
+
|
78 |
+
lemma nsqn_quality_increases [elim]:
|
79 |
+
assumes "i\<in>kD(rt \<xi>)"
|
80 |
+
and "quality_increases \<xi> \<xi>'"
|
81 |
+
shows "nsqn (rt \<xi>) i \<le> nsqn (rt \<xi>') i"
|
82 |
+
using assms by (rule kD_nsqn_quality_increases [THEN conjunct2])
|
83 |
+
|
84 |
+
lemma kD_nsqn_quality_increases_trans [elim]:
|
85 |
+
assumes "i\<in>kD(rt \<xi>)"
|
86 |
+
and "s \<le> nsqn (rt \<xi>) i"
|
87 |
+
and "quality_increases \<xi> \<xi>'"
|
88 |
+
shows "i\<in>kD(rt \<xi>') \<and> s \<le> nsqn (rt \<xi>') i"
|
89 |
+
proof
|
90 |
+
from \<open>i\<in>kD(rt \<xi>)\<close> and \<open>quality_increases \<xi> \<xi>'\<close> show "i\<in>kD(rt \<xi>')" ..
|
91 |
+
next
|
92 |
+
from \<open>i\<in>kD(rt \<xi>)\<close> and \<open>quality_increases \<xi> \<xi>'\<close> have "nsqn (rt \<xi>) i \<le> nsqn (rt \<xi>') i" ..
|
93 |
+
with \<open>s \<le> nsqn (rt \<xi>) i\<close> show "s \<le> nsqn (rt \<xi>') i" by (rule le_trans)
|
94 |
+
qed
|
95 |
+
|
96 |
+
lemma nsqn_quality_increases_nsqn_lt_lt [elim]:
|
97 |
+
assumes "i\<in>kD(rt \<xi>)"
|
98 |
+
and "quality_increases \<xi> \<xi>'"
|
99 |
+
and "s < nsqn (rt \<xi>) i"
|
100 |
+
shows "s < nsqn (rt \<xi>') i"
|
101 |
+
proof -
|
102 |
+
from assms(1-2) have "nsqn (rt \<xi>) i \<le> nsqn (rt \<xi>') i" ..
|
103 |
+
with \<open>s < nsqn (rt \<xi>) i\<close> show "s < nsqn (rt \<xi>') i" by simp
|
104 |
+
qed
|
105 |
+
|
106 |
+
lemma nsqn_quality_increases_dhops [elim]:
|
107 |
+
assumes "i\<in>kD(rt \<xi>)"
|
108 |
+
and "quality_increases \<xi> \<xi>'"
|
109 |
+
and "nsqn (rt \<xi>) i = nsqn (rt \<xi>') i"
|
110 |
+
shows "the (dhops (rt \<xi>) i) \<ge> the (dhops (rt \<xi>') i)"
|
111 |
+
using assms unfolding quality_increases_def
|
112 |
+
by (clarsimp) (drule(1) bspec, clarsimp simp: rt_fresher_def2)
|
113 |
+
|
114 |
+
lemma nsqn_quality_increases_nsqn_eq_le [elim]:
|
115 |
+
assumes "i\<in>kD(rt \<xi>)"
|
116 |
+
and "quality_increases \<xi> \<xi>'"
|
117 |
+
and "s = nsqn (rt \<xi>) i"
|
118 |
+
shows "s < nsqn (rt \<xi>') i \<or> (s = nsqn (rt \<xi>') i \<and> the (dhops (rt \<xi>) i) \<ge> the (dhops (rt \<xi>') i))"
|
119 |
+
using assms by (metis nat_less_le nsqn_quality_increases nsqn_quality_increases_dhops)
|
120 |
+
|
121 |
+
lemma quality_increases_rreq_rrep_props [elim]:
|
122 |
+
fixes sn ip hops sip
|
123 |
+
assumes qinc: "quality_increases (\<sigma> sip) (\<sigma>' sip)"
|
124 |
+
and "1 \<le> sn"
|
125 |
+
and *: "ip\<in>kD(rt (\<sigma> sip)) \<and> sn \<le> nsqn (rt (\<sigma> sip)) ip
|
126 |
+
\<and> (nsqn (rt (\<sigma> sip)) ip = sn
|
127 |
+
\<longrightarrow> (the (dhops (rt (\<sigma> sip)) ip) \<le> hops
|
128 |
+
\<or> the (flag (rt (\<sigma> sip)) ip) = inv))"
|
129 |
+
shows "ip\<in>kD(rt (\<sigma>' sip)) \<and> sn \<le> nsqn (rt (\<sigma>' sip)) ip
|
130 |
+
\<and> (nsqn (rt (\<sigma>' sip)) ip = sn
|
131 |
+
\<longrightarrow> (the (dhops (rt (\<sigma>' sip)) ip) \<le> hops
|
132 |
+
\<or> the (flag (rt (\<sigma>' sip)) ip) = inv))"
|
133 |
+
(is "_ \<and> ?nsqnafter")
|
134 |
+
proof -
|
135 |
+
from * obtain "ip\<in>kD(rt (\<sigma> sip))" and "sn \<le> nsqn (rt (\<sigma> sip)) ip" by auto
|
136 |
+
|
137 |
+
from \<open>quality_increases (\<sigma> sip) (\<sigma>' sip)\<close>
|
138 |
+
have "sqn (rt (\<sigma> sip)) ip \<le> sqn (rt (\<sigma>' sip)) ip" ..
|
139 |
+
from \<open>quality_increases (\<sigma> sip) (\<sigma>' sip)\<close> and \<open>ip\<in>kD (rt (\<sigma> sip))\<close>
|
140 |
+
have "ip\<in>kD (rt (\<sigma>' sip))" ..
|
141 |
+
|
142 |
+
from \<open>sn \<le> nsqn (rt (\<sigma> sip)) ip\<close> have ?nsqnafter
|
143 |
+
proof
|
144 |
+
assume "sn < nsqn (rt (\<sigma> sip)) ip"
|
145 |
+
also from \<open>ip\<in>kD(rt (\<sigma> sip))\<close> and \<open>quality_increases (\<sigma> sip) (\<sigma>' sip)\<close>
|
146 |
+
have "... \<le> nsqn (rt (\<sigma>' sip)) ip" ..
|
147 |
+
finally have "sn < nsqn (rt (\<sigma>' sip)) ip" .
|
148 |
+
thus ?thesis by simp
|
149 |
+
next
|
150 |
+
assume "sn = nsqn (rt (\<sigma> sip)) ip"
|
151 |
+
with \<open>ip\<in>kD(rt (\<sigma> sip))\<close> and \<open>quality_increases (\<sigma> sip) (\<sigma>' sip)\<close>
|
152 |
+
have "sn < nsqn (rt (\<sigma>' sip)) ip
|
153 |
+
\<or> (sn = nsqn (rt (\<sigma>' sip)) ip
|
154 |
+
\<and> the (dhops (rt (\<sigma>' sip)) ip) \<le> the (dhops (rt (\<sigma> sip)) ip))" ..
|
155 |
+
hence "sn < nsqn (rt (\<sigma>' sip)) ip
|
156 |
+
\<or> (nsqn (rt (\<sigma>' sip)) ip = sn \<and> (the (dhops (rt (\<sigma>' sip)) ip) \<le> hops
|
157 |
+
\<or> the (flag (rt (\<sigma>' sip)) ip) = inv))"
|
158 |
+
proof
|
159 |
+
assume "sn < nsqn (rt (\<sigma>' sip)) ip" thus ?thesis ..
|
160 |
+
next
|
161 |
+
assume "sn = nsqn (rt (\<sigma>' sip)) ip
|
162 |
+
\<and> the (dhops (rt (\<sigma> sip)) ip) \<ge> the (dhops (rt (\<sigma>' sip)) ip)"
|
163 |
+
hence "sn = nsqn (rt (\<sigma>' sip)) ip"
|
164 |
+
and "the (dhops (rt (\<sigma>' sip)) ip) \<le> the (dhops (rt (\<sigma> sip)) ip)" by auto
|
165 |
+
|
166 |
+
from * and \<open>sn = nsqn (rt (\<sigma> sip)) ip\<close> have "the (dhops (rt (\<sigma> sip)) ip) \<le> hops
|
167 |
+
\<or> the (flag (rt (\<sigma> sip)) ip) = inv"
|
168 |
+
by simp
|
169 |
+
thus ?thesis
|
170 |
+
proof
|
171 |
+
assume "the (dhops (rt (\<sigma> sip)) ip) \<le> hops"
|
172 |
+
with \<open>the (dhops (rt (\<sigma>' sip)) ip) \<le> the (dhops (rt (\<sigma> sip)) ip)\<close>
|
173 |
+
have "the (dhops (rt (\<sigma>' sip)) ip) \<le> hops" by simp
|
174 |
+
with \<open>sn = nsqn (rt (\<sigma>' sip)) ip\<close> show ?thesis by simp
|
175 |
+
next
|
176 |
+
assume "the (flag (rt (\<sigma> sip)) ip) = inv"
|
177 |
+
with \<open>ip\<in>kD(rt (\<sigma> sip))\<close> have "nsqn (rt (\<sigma> sip)) ip = sqn (rt (\<sigma> sip)) ip - 1" ..
|
178 |
+
|
179 |
+
with \<open>sn \<ge> 1\<close> and \<open>sn = nsqn (rt (\<sigma> sip)) ip\<close>
|
180 |
+
have "sqn (rt (\<sigma> sip)) ip > 1" by simp
|
181 |
+
|
182 |
+
from \<open>ip\<in>kD(rt (\<sigma>' sip))\<close> show ?thesis
|
183 |
+
proof (rule vD_or_iD)
|
184 |
+
assume "ip\<in>iD(rt (\<sigma>' sip))"
|
185 |
+
hence "the (flag (rt (\<sigma>' sip)) ip) = inv" ..
|
186 |
+
with \<open>sn = nsqn (rt (\<sigma>' sip)) ip\<close> show ?thesis
|
187 |
+
by simp
|
188 |
+
next
|
189 |
+
(* the tricky case: sn = nsqn (rt (\<sigma>' sip)) ip
|
190 |
+
\<and> ip\<in>iD(rt (\<sigma> sip))
|
191 |
+
\<and> ip\<in>vD(rt (\<sigma>' sip)) *)
|
192 |
+
assume "ip\<in>vD(rt (\<sigma>' sip))"
|
193 |
+
hence "nsqn (rt (\<sigma>' sip)) ip = sqn (rt (\<sigma>' sip)) ip" ..
|
194 |
+
with \<open>sqn (rt (\<sigma> sip)) ip \<le> sqn (rt (\<sigma>' sip)) ip\<close>
|
195 |
+
have "nsqn (rt (\<sigma>' sip)) ip \<ge> sqn (rt (\<sigma> sip)) ip" by simp
|
196 |
+
|
197 |
+
with \<open>sqn (rt (\<sigma> sip)) ip > 1\<close>
|
198 |
+
have "nsqn (rt (\<sigma>' sip)) ip > sqn (rt (\<sigma> sip)) ip - 1" by simp
|
199 |
+
with \<open>nsqn (rt (\<sigma> sip)) ip = sqn (rt (\<sigma> sip)) ip - 1\<close>
|
200 |
+
have "nsqn (rt (\<sigma>' sip)) ip > nsqn (rt (\<sigma> sip)) ip" by simp
|
201 |
+
with \<open>sn = nsqn (rt (\<sigma> sip)) ip\<close> have "nsqn (rt (\<sigma>' sip)) ip > sn"
|
202 |
+
by simp
|
203 |
+
thus ?thesis ..
|
204 |
+
qed
|
205 |
+
qed
|
206 |
+
qed
|
207 |
+
thus ?thesis by (metis (mono_tags) le_cases not_le)
|
208 |
+
qed
|
209 |
+
with \<open>ip\<in>kD (rt (\<sigma>' sip))\<close> show "ip\<in>kD (rt (\<sigma>' sip)) \<and> ?nsqnafter" ..
|
210 |
+
qed
|
211 |
+
|
212 |
+
lemma quality_increases_rreq_rrep_props':
|
213 |
+
fixes sn ip hops sip
|
214 |
+
assumes "\<forall>j. quality_increases (\<sigma> j) (\<sigma>' j)"
|
215 |
+
and "1 \<le> sn"
|
216 |
+
and *: "ip\<in>kD(rt (\<sigma> sip)) \<and> sn \<le> nsqn (rt (\<sigma> sip)) ip
|
217 |
+
\<and> (nsqn (rt (\<sigma> sip)) ip = sn
|
218 |
+
\<longrightarrow> (the (dhops (rt (\<sigma> sip)) ip) \<le> hops
|
219 |
+
\<or> the (flag (rt (\<sigma> sip)) ip) = inv))"
|
220 |
+
shows "ip\<in>kD(rt (\<sigma>' sip)) \<and> sn \<le> nsqn (rt (\<sigma>' sip)) ip
|
221 |
+
\<and> (nsqn (rt (\<sigma>' sip)) ip = sn
|
222 |
+
\<longrightarrow> (the (dhops (rt (\<sigma>' sip)) ip) \<le> hops
|
223 |
+
\<or> the (flag (rt (\<sigma>' sip)) ip) = inv))"
|
224 |
+
proof -
|
225 |
+
from assms(1) have "quality_increases (\<sigma> sip) (\<sigma>' sip)" ..
|
226 |
+
thus ?thesis using assms(2-3) by (rule quality_increases_rreq_rrep_props)
|
227 |
+
qed
|
228 |
+
|
229 |
+
lemma rteq_quality_increases:
|
230 |
+
assumes "\<forall>j. j \<noteq> i \<longrightarrow> quality_increases (\<sigma> j) (\<sigma>' j)"
|
231 |
+
and "rt (\<sigma>' i) = rt (\<sigma> i)"
|
232 |
+
shows "\<forall>j. quality_increases (\<sigma> j) (\<sigma>' j)"
|
233 |
+
using assms by clarsimp (metis order_refl quality_increasesI rt_fresher_refl)
|
234 |
+
|
235 |
+
definition msg_fresh :: "(ip \<Rightarrow> state) \<Rightarrow> msg \<Rightarrow> bool"
|
236 |
+
where "msg_fresh \<sigma> m \<equiv>
|
237 |
+
case m of Rreq hopsc _ _ _ _ oipc osnc sipc \<Rightarrow> osnc \<ge> 1 \<and> (sipc \<noteq> oipc \<longrightarrow>
|
238 |
+
oipc\<in>kD(rt (\<sigma> sipc)) \<and> nsqn (rt (\<sigma> sipc)) oipc \<ge> osnc
|
239 |
+
\<and> (nsqn (rt (\<sigma> sipc)) oipc = osnc
|
240 |
+
\<longrightarrow> (hopsc \<ge> the (dhops (rt (\<sigma> sipc)) oipc)
|
241 |
+
\<or> the (flag (rt (\<sigma> sipc)) oipc) = inv)))
|
242 |
+
| Rrep hopsc dipc dsnc _ sipc \<Rightarrow> dsnc \<ge> 1 \<and> (sipc \<noteq> dipc \<longrightarrow>
|
243 |
+
dipc\<in>kD(rt (\<sigma> sipc)) \<and> nsqn (rt (\<sigma> sipc)) dipc \<ge> dsnc
|
244 |
+
\<and> (nsqn (rt (\<sigma> sipc)) dipc = dsnc
|
245 |
+
\<longrightarrow> (hopsc \<ge> the (dhops (rt (\<sigma> sipc)) dipc)
|
246 |
+
\<or> the (flag (rt (\<sigma> sipc)) dipc) = inv)))
|
247 |
+
| Rerr destsc sipc \<Rightarrow> (\<forall>ripc\<in>dom(destsc). (ripc\<in>kD(rt (\<sigma> sipc))
|
248 |
+
\<and> the (destsc ripc) - 1 \<le> nsqn (rt (\<sigma> sipc)) ripc))
|
249 |
+
| _ \<Rightarrow> True"
|
250 |
+
|
251 |
+
lemma msg_fresh [simp]:
|
252 |
+
"\<And>hops rreqid dip dsn dsk oip osn sip.
|
253 |
+
msg_fresh \<sigma> (Rreq hops rreqid dip dsn dsk oip osn sip) =
|
254 |
+
(osn \<ge> 1 \<and> (sip \<noteq> oip \<longrightarrow> oip\<in>kD(rt (\<sigma> sip))
|
255 |
+
\<and> nsqn (rt (\<sigma> sip)) oip \<ge> osn
|
256 |
+
\<and> (nsqn (rt (\<sigma> sip)) oip = osn
|
257 |
+
\<longrightarrow> (hops \<ge> the (dhops (rt (\<sigma> sip)) oip)
|
258 |
+
\<or> the (flag (rt (\<sigma> sip)) oip) = inv))))"
|
259 |
+
"\<And>hops dip dsn oip sip. msg_fresh \<sigma> (Rrep hops dip dsn oip sip) =
|
260 |
+
(dsn \<ge> 1 \<and> (sip \<noteq> dip \<longrightarrow> dip\<in>kD(rt (\<sigma> sip))
|
261 |
+
\<and> nsqn (rt (\<sigma> sip)) dip \<ge> dsn
|
262 |
+
\<and> (nsqn (rt (\<sigma> sip)) dip = dsn
|
263 |
+
\<longrightarrow> (hops \<ge> the (dhops (rt (\<sigma> sip)) dip))
|
264 |
+
\<or> the (flag (rt (\<sigma> sip)) dip) = inv)))"
|
265 |
+
"\<And>dests sip. msg_fresh \<sigma> (Rerr dests sip) =
|
266 |
+
(\<forall>ripc\<in>dom(dests). (ripc\<in>kD(rt (\<sigma> sip))
|
267 |
+
\<and> the (dests ripc) - 1 \<le> nsqn (rt (\<sigma> sip)) ripc))"
|
268 |
+
"\<And>d dip. msg_fresh \<sigma> (Newpkt d dip) = True"
|
269 |
+
"\<And>d dip sip. msg_fresh \<sigma> (Pkt d dip sip) = True"
|
270 |
+
unfolding msg_fresh_def by simp_all
|
271 |
+
|
272 |
+
lemma msg_fresh_inc_sn [simp, elim]:
|
273 |
+
"msg_fresh \<sigma> m \<Longrightarrow> rreq_rrep_sn m"
|
274 |
+
by (cases m) simp_all
|
275 |
+
|
276 |
+
lemma recv_msg_fresh_inc_sn [simp, elim]:
|
277 |
+
"orecvmsg (msg_fresh) \<sigma> m \<Longrightarrow> recvmsg rreq_rrep_sn m"
|
278 |
+
by (cases m) simp_all
|
279 |
+
|
280 |
+
lemma rreq_nsqn_is_fresh [simp]:
|
281 |
+
fixes \<sigma> msg hops rreqid dip dsn dsk oip osn sip
|
282 |
+
assumes "rreq_rrep_fresh (rt (\<sigma> sip)) (Rreq hops rreqid dip dsn dsk oip osn sip)"
|
283 |
+
and "rreq_rrep_sn (Rreq hops rreqid dip dsn dsk oip osn sip)"
|
284 |
+
shows "msg_fresh \<sigma> (Rreq hops rreqid dip dsn dsk oip osn sip)"
|
285 |
+
(is "msg_fresh \<sigma> ?msg")
|
286 |
+
proof -
|
287 |
+
let ?rt = "rt (\<sigma> sip)"
|
288 |
+
from assms(2) have "1 \<le> osn" by simp
|
289 |
+
thus ?thesis
|
290 |
+
unfolding msg_fresh_def
|
291 |
+
proof (simp only: msg.case, intro conjI impI)
|
292 |
+
assume "sip \<noteq> oip"
|
293 |
+
with assms(1) show "oip \<in> kD(?rt)" by simp
|
294 |
+
next
|
295 |
+
assume "sip \<noteq> oip"
|
296 |
+
and "nsqn ?rt oip = osn"
|
297 |
+
show "the (dhops ?rt oip) \<le> hops \<or> the (flag ?rt oip) = inv"
|
298 |
+
proof (cases "oip\<in>vD(?rt)")
|
299 |
+
assume "oip\<in>vD(?rt)"
|
300 |
+
hence "nsqn ?rt oip = sqn ?rt oip" ..
|
301 |
+
with \<open>nsqn ?rt oip = osn\<close> have "sqn ?rt oip = osn" by simp
|
302 |
+
with assms(1) and \<open>sip \<noteq> oip\<close> have "the (dhops ?rt oip) \<le> hops"
|
303 |
+
by simp
|
304 |
+
thus ?thesis ..
|
305 |
+
next
|
306 |
+
assume "oip\<notin>vD(?rt)"
|
307 |
+
moreover from assms(1) and \<open>sip \<noteq> oip\<close> have "oip\<in>kD(?rt)" by simp
|
308 |
+
ultimately have "oip\<in>iD(?rt)" by auto
|
309 |
+
hence "the (flag ?rt oip) = inv" ..
|
310 |
+
thus ?thesis ..
|
311 |
+
qed
|
312 |
+
next
|
313 |
+
assume "sip \<noteq> oip"
|
314 |
+
with assms(1) have "osn \<le> sqn ?rt oip" by auto
|
315 |
+
thus "osn \<le> nsqn (rt (\<sigma> sip)) oip"
|
316 |
+
proof (rule nat_le_eq_or_lt)
|
317 |
+
assume "osn < sqn ?rt oip"
|
318 |
+
hence "osn \<le> sqn ?rt oip - 1" by simp
|
319 |
+
also have "... \<le> nsqn ?rt oip" by (rule sqn_nsqn)
|
320 |
+
finally show "osn \<le> nsqn ?rt oip" .
|
321 |
+
next
|
322 |
+
assume "osn = sqn ?rt oip"
|
323 |
+
with assms(1) and \<open>sip \<noteq> oip\<close> have "oip\<in>kD(?rt)"
|
324 |
+
and "the (flag ?rt oip) = val"
|
325 |
+
by auto
|
326 |
+
hence "nsqn ?rt oip = sqn ?rt oip" ..
|
327 |
+
with \<open>osn = sqn ?rt oip\<close> have "nsqn ?rt oip = osn" by simp
|
328 |
+
thus "osn \<le> nsqn ?rt oip" by simp
|
329 |
+
qed
|
330 |
+
qed simp
|
331 |
+
qed
|
332 |
+
|
333 |
+
lemma rrep_nsqn_is_fresh [simp]:
|
334 |
+
fixes \<sigma> msg hops dip dsn oip sip
|
335 |
+
assumes "rreq_rrep_fresh (rt (\<sigma> sip)) (Rrep hops dip dsn oip sip)"
|
336 |
+
and "rreq_rrep_sn (Rrep hops dip dsn oip sip)"
|
337 |
+
shows "msg_fresh \<sigma> (Rrep hops dip dsn oip sip)"
|
338 |
+
(is "msg_fresh \<sigma> ?msg")
|
339 |
+
proof -
|
340 |
+
let ?rt = "rt (\<sigma> sip)"
|
341 |
+
from assms have "sip \<noteq> dip \<longrightarrow> dip\<in>kD(?rt) \<and> sqn ?rt dip = dsn \<and> the (flag ?rt dip) = val"
|
342 |
+
by simp
|
343 |
+
hence "sip \<noteq> dip \<longrightarrow> dip\<in>kD(?rt) \<and> nsqn ?rt dip \<ge> dsn"
|
344 |
+
by clarsimp
|
345 |
+
with assms show "msg_fresh \<sigma> ?msg"
|
346 |
+
by clarsimp
|
347 |
+
qed
|
348 |
+
|
349 |
+
lemma rerr_nsqn_is_fresh [simp]:
|
350 |
+
fixes \<sigma> msg dests sip
|
351 |
+
assumes "rerr_invalid (rt (\<sigma> sip)) (Rerr dests sip)"
|
352 |
+
shows "msg_fresh \<sigma> (Rerr dests sip)"
|
353 |
+
(is "msg_fresh \<sigma> ?msg")
|
354 |
+
proof -
|
355 |
+
let ?rt = "rt (\<sigma> sip)"
|
356 |
+
from assms have *: "(\<forall>rip\<in>dom(dests). (rip\<in>iD(rt (\<sigma> sip))
|
357 |
+
\<and> the (dests rip) = sqn (rt (\<sigma> sip)) rip))"
|
358 |
+
by clarsimp
|
359 |
+
have "(\<forall>rip\<in>dom(dests). (rip\<in>kD(rt (\<sigma> sip))
|
360 |
+
\<and> the (dests rip) - 1 \<le> nsqn (rt (\<sigma> sip)) rip))"
|
361 |
+
proof
|
362 |
+
fix rip
|
363 |
+
assume "rip \<in> dom dests"
|
364 |
+
with * have "rip\<in>iD(rt (\<sigma> sip))" and "the (dests rip) = sqn (rt (\<sigma> sip)) rip"
|
365 |
+
by auto
|
366 |
+
|
367 |
+
from this(2) have "the (dests rip) - 1 = sqn (rt (\<sigma> sip)) rip - 1" by simp
|
368 |
+
also have "... \<le> nsqn (rt (\<sigma> sip)) rip" by (rule sqn_nsqn)
|
369 |
+
finally have "the (dests rip) - 1 \<le> nsqn (rt (\<sigma> sip)) rip" .
|
370 |
+
|
371 |
+
with \<open>rip\<in>iD(rt (\<sigma> sip))\<close>
|
372 |
+
show "rip\<in>kD(rt (\<sigma> sip)) \<and> the (dests rip) - 1 \<le> nsqn (rt (\<sigma> sip)) rip"
|
373 |
+
by clarsimp
|
374 |
+
qed
|
375 |
+
thus "msg_fresh \<sigma> ?msg"
|
376 |
+
by simp
|
377 |
+
qed
|
378 |
+
|
379 |
+
lemma quality_increases_msg_fresh [elim]:
|
380 |
+
assumes qinc: "\<forall>j. quality_increases (\<sigma> j) (\<sigma>' j)"
|
381 |
+
and "msg_fresh \<sigma> m"
|
382 |
+
shows "msg_fresh \<sigma>' m"
|
383 |
+
using assms(2)
|
384 |
+
proof (cases m)
|
385 |
+
fix hops rreqid dip dsn dsk oip osn sip
|
386 |
+
assume [simp]: "m = Rreq hops rreqid dip dsn dsk oip osn sip"
|
387 |
+
and "msg_fresh \<sigma> m"
|
388 |
+
then have "osn \<ge> 1" and "sip = oip \<or> (oip\<in>kD(rt (\<sigma> sip)) \<and> osn \<le> nsqn (rt (\<sigma> sip)) oip
|
389 |
+
\<and> (nsqn (rt (\<sigma> sip)) oip = osn
|
390 |
+
\<longrightarrow> (the (dhops (rt (\<sigma> sip)) oip) \<le> hops
|
391 |
+
\<or> the (flag (rt (\<sigma> sip)) oip) = inv)))"
|
392 |
+
by auto
|
393 |
+
from this(2) show ?thesis
|
394 |
+
proof
|
395 |
+
assume "sip = oip" with \<open>osn \<ge> 1\<close> show ?thesis by simp
|
396 |
+
next
|
397 |
+
assume "oip\<in>kD(rt (\<sigma> sip)) \<and> osn \<le> nsqn (rt (\<sigma> sip)) oip
|
398 |
+
\<and> (nsqn (rt (\<sigma> sip)) oip = osn
|
399 |
+
\<longrightarrow> (the (dhops (rt (\<sigma> sip)) oip) \<le> hops
|
400 |
+
\<or> the (flag (rt (\<sigma> sip)) oip) = inv))"
|
401 |
+
moreover from qinc have "quality_increases (\<sigma> sip) (\<sigma>' sip)" ..
|
402 |
+
ultimately have "oip\<in>kD(rt (\<sigma>' sip)) \<and> osn \<le> nsqn (rt (\<sigma>' sip)) oip
|
403 |
+
\<and> (nsqn (rt (\<sigma>' sip)) oip = osn
|
404 |
+
\<longrightarrow> (the (dhops (rt (\<sigma>' sip)) oip) \<le> hops
|
405 |
+
\<or> the (flag (rt (\<sigma>' sip)) oip) = inv))"
|
406 |
+
using \<open>osn \<ge> 1\<close> by (rule quality_increases_rreq_rrep_props [rotated 2])
|
407 |
+
with \<open>osn \<ge> 1\<close> show "msg_fresh \<sigma>' m"
|
408 |
+
by (clarsimp)
|
409 |
+
qed
|
410 |
+
next
|
411 |
+
fix hops dip dsn oip sip
|
412 |
+
assume [simp]: "m = Rrep hops dip dsn oip sip"
|
413 |
+
and "msg_fresh \<sigma> m"
|
414 |
+
then have "dsn \<ge> 1" and "sip = dip \<or> (dip\<in>kD(rt (\<sigma> sip)) \<and> dsn \<le> nsqn (rt (\<sigma> sip)) dip
|
415 |
+
\<and> (nsqn (rt (\<sigma> sip)) dip = dsn
|
416 |
+
\<longrightarrow> (the (dhops (rt (\<sigma> sip)) dip) \<le> hops
|
417 |
+
\<or> the (flag (rt (\<sigma> sip)) dip) = inv)))"
|
418 |
+
by auto
|
419 |
+
from this(2) show "?thesis"
|
420 |
+
proof
|
421 |
+
assume "sip = dip" with \<open>dsn \<ge> 1\<close> show ?thesis by simp
|
422 |
+
next
|
423 |
+
assume "dip\<in>kD(rt (\<sigma> sip)) \<and> dsn \<le> nsqn (rt (\<sigma> sip)) dip
|
424 |
+
\<and> (nsqn (rt (\<sigma> sip)) dip = dsn
|
425 |
+
\<longrightarrow> (the (dhops (rt (\<sigma> sip)) dip) \<le> hops
|
426 |
+
\<or> the (flag (rt (\<sigma> sip)) dip) = inv))"
|
427 |
+
moreover from qinc have "quality_increases (\<sigma> sip) (\<sigma>' sip)" ..
|
428 |
+
ultimately have "dip\<in>kD(rt (\<sigma>' sip)) \<and> dsn \<le> nsqn (rt (\<sigma>' sip)) dip
|
429 |
+
\<and> (nsqn (rt (\<sigma>' sip)) dip = dsn
|
430 |
+
\<longrightarrow> (the (dhops (rt (\<sigma>' sip)) dip) \<le> hops
|
431 |
+
\<or> the (flag (rt (\<sigma>' sip)) dip) = inv))"
|
432 |
+
using \<open>dsn \<ge> 1\<close> by (rule quality_increases_rreq_rrep_props [rotated 2])
|
433 |
+
with \<open>dsn \<ge> 1\<close> show "msg_fresh \<sigma>' m"
|
434 |
+
by clarsimp
|
435 |
+
qed
|
436 |
+
next
|
437 |
+
fix dests sip
|
438 |
+
assume [simp]: "m = Rerr dests sip"
|
439 |
+
and "msg_fresh \<sigma> m"
|
440 |
+
then have *: "\<forall>rip\<in>dom(dests). rip\<in>kD(rt (\<sigma> sip))
|
441 |
+
\<and> the (dests rip) - 1 \<le> nsqn (rt (\<sigma> sip)) rip"
|
442 |
+
by simp
|
443 |
+
have "\<forall>rip\<in>dom(dests). rip\<in>kD(rt (\<sigma>' sip))
|
444 |
+
\<and> the (dests rip) - 1 \<le> nsqn (rt (\<sigma>' sip)) rip"
|
445 |
+
proof
|
446 |
+
fix rip
|
447 |
+
assume "rip\<in>dom(dests)"
|
448 |
+
with * have "rip\<in>kD(rt (\<sigma> sip))" and "the (dests rip) - 1 \<le> nsqn (rt (\<sigma> sip)) rip"
|
449 |
+
by - (drule(1) bspec, clarsimp)+
|
450 |
+
moreover from qinc have "quality_increases (\<sigma> sip) (\<sigma>' sip)" by simp
|
451 |
+
ultimately show "rip\<in>kD(rt (\<sigma>' sip)) \<and> the (dests rip) - 1 \<le> nsqn (rt (\<sigma>' sip)) rip" ..
|
452 |
+
qed
|
453 |
+
thus ?thesis by simp
|
454 |
+
qed simp_all
|
455 |
+
|
456 |
+
end
|
formal/afp/AODV/Seq_Invariants.thy
ADDED
@@ -0,0 +1,643 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
(* Title: Seq_Invariants.thy
|
2 |
+
License: BSD 2-Clause. See LICENSE.
|
3 |
+
Author: Timothy Bourke, Inria
|
4 |
+
*)
|
5 |
+
|
6 |
+
section "Invariant proofs on individual processes"
|
7 |
+
|
8 |
+
theory Seq_Invariants
|
9 |
+
imports AWN.Invariants Aodv Aodv_Data Aodv_Predicates Fresher
|
10 |
+
|
11 |
+
begin
|
12 |
+
|
13 |
+
text \<open>
|
14 |
+
The proposition numbers are taken from the December 2013 version of
|
15 |
+
the Fehnker et al technical report.
|
16 |
+
\<close>
|
17 |
+
|
18 |
+
text \<open>Proposition 7.2\<close>
|
19 |
+
|
20 |
+
lemma sequence_number_increases:
|
21 |
+
"paodv i \<TTurnstile>\<^sub>A onll \<Gamma>\<^sub>A\<^sub>O\<^sub>D\<^sub>V (\<lambda>((\<xi>, _), _, (\<xi>', _)). sn \<xi> \<le> sn \<xi>')"
|
22 |
+
by inv_cterms
|
23 |
+
|
24 |
+
lemma sequence_number_one_or_bigger:
|
25 |
+
"paodv i \<TTurnstile> onl \<Gamma>\<^sub>A\<^sub>O\<^sub>D\<^sub>V (\<lambda>(\<xi>, _). 1 \<le> sn \<xi>)"
|
26 |
+
by (rule onll_step_to_invariantI [OF sequence_number_increases])
|
27 |
+
(auto simp: \<sigma>\<^sub>A\<^sub>O\<^sub>D\<^sub>V_def)
|
28 |
+
|
29 |
+
text \<open>We can get rid of the onl/onll if desired...\<close>
|
30 |
+
|
31 |
+
lemma sequence_number_increases':
|
32 |
+
"paodv i \<TTurnstile>\<^sub>A (\<lambda>((\<xi>, _), _, (\<xi>', _)). sn \<xi> \<le> sn \<xi>')"
|
33 |
+
by (rule step_invariant_weakenE [OF sequence_number_increases]) (auto dest!: onllD)
|
34 |
+
|
35 |
+
lemma sequence_number_one_or_bigger':
|
36 |
+
"paodv i \<TTurnstile> (\<lambda>(\<xi>, _). 1 \<le> sn \<xi>)"
|
37 |
+
by (rule invariant_weakenE [OF sequence_number_one_or_bigger]) auto
|
38 |
+
|
39 |
+
lemma sip_in_kD:
|
40 |
+
"paodv i \<TTurnstile> onl \<Gamma>\<^sub>A\<^sub>O\<^sub>D\<^sub>V (\<lambda>(\<xi>, l). l \<in> ({PAodv-:7} \<union> {PAodv-:5} \<union> {PRrep-:0..PRrep-:1}
|
41 |
+
\<union> {PRreq-:0..PRreq-:3}) \<longrightarrow> sip \<xi> \<in> kD (rt \<xi>))"
|
42 |
+
by inv_cterms
|
43 |
+
|
44 |
+
lemma rrep_1_update_changes:
|
45 |
+
"paodv i \<TTurnstile> onl \<Gamma>\<^sub>A\<^sub>O\<^sub>D\<^sub>V (\<lambda>(\<xi>, l). (l = PRrep-:1 \<longrightarrow>
|
46 |
+
rt \<xi> \<noteq> update (rt \<xi>) (dip \<xi>) (dsn \<xi>, kno, val, hops \<xi> + 1, sip \<xi>, {})))"
|
47 |
+
by inv_cterms
|
48 |
+
|
49 |
+
lemma addpreRT_partly_welldefined:
|
50 |
+
"paodv i \<TTurnstile>
|
51 |
+
onl \<Gamma>\<^sub>A\<^sub>O\<^sub>D\<^sub>V (\<lambda>(\<xi>, l). (l \<in> {PRreq-:16..PRreq-:18} \<union> {PRrep-:2..PRrep-:6} \<longrightarrow> dip \<xi> \<in> kD (rt \<xi>))
|
52 |
+
\<and> (l \<in> {PRreq-:3..PRreq-:17} \<longrightarrow> oip \<xi> \<in> kD (rt \<xi>)))"
|
53 |
+
by inv_cterms
|
54 |
+
|
55 |
+
text \<open>Proposition 7.38\<close>
|
56 |
+
|
57 |
+
lemma includes_nhip:
|
58 |
+
"paodv i \<TTurnstile> onl \<Gamma>\<^sub>A\<^sub>O\<^sub>D\<^sub>V (\<lambda>(\<xi>, l). \<forall>dip\<in>kD(rt \<xi>). the (nhop (rt \<xi>) dip)\<in>kD(rt \<xi>))"
|
59 |
+
proof -
|
60 |
+
{ fix ip and \<xi> \<xi>' :: state
|
61 |
+
assume "\<forall>dip\<in>kD (rt \<xi>). the (nhop (rt \<xi>) dip) \<in> kD (rt \<xi>)"
|
62 |
+
and "\<xi>' = \<xi>\<lparr>rt := update (rt \<xi>) ip (0, unk, val, Suc 0, ip, {})\<rparr>"
|
63 |
+
hence "\<forall>dip\<in>kD (rt \<xi>).
|
64 |
+
the (nhop (update (rt \<xi>) ip (0, unk, val, Suc 0, ip, {})) dip) = ip
|
65 |
+
\<or> the (nhop (update (rt \<xi>) ip (0, unk, val, Suc 0, ip, {})) dip) \<in> kD (rt \<xi>)"
|
66 |
+
by clarsimp (metis nhop_update_unk_val update_another)
|
67 |
+
} note one_hop = this
|
68 |
+
{ fix ip sip sn hops and \<xi> \<xi>' :: state
|
69 |
+
assume "\<forall>dip\<in>kD (rt \<xi>). the (nhop (rt \<xi>) dip) \<in> kD (rt \<xi>)"
|
70 |
+
and "\<xi>' = \<xi>\<lparr>rt := update (rt \<xi>) ip (sn, kno, val, Suc hops, sip, {})\<rparr>"
|
71 |
+
and "sip \<in> kD (rt \<xi>)"
|
72 |
+
hence "(the (nhop (update (rt \<xi>) ip (sn, kno, val, Suc hops, sip, {})) ip) = ip
|
73 |
+
\<or> the (nhop (update (rt \<xi>) ip (sn, kno, val, Suc hops, sip, {})) ip) \<in> kD (rt \<xi>))
|
74 |
+
\<and> (\<forall>dip\<in>kD (rt \<xi>).
|
75 |
+
the (nhop (update (rt \<xi>) ip (sn, kno, val, Suc hops, sip, {})) dip) = ip
|
76 |
+
\<or> the (nhop (update (rt \<xi>) ip (sn, kno, val, Suc hops, sip, {})) dip) \<in> kD (rt \<xi>))"
|
77 |
+
by (metis kD_update_unchanged nhop_update_changed update_another)
|
78 |
+
} note nhip_is_sip = this
|
79 |
+
show ?thesis
|
80 |
+
by (inv_cterms inv add: onl_invariant_sterms [OF aodv_wf sip_in_kD]
|
81 |
+
onl_invariant_sterms [OF aodv_wf addpreRT_partly_welldefined]
|
82 |
+
solve: one_hop nhip_is_sip)
|
83 |
+
qed
|
84 |
+
|
85 |
+
text \<open>Proposition 7.22: needed in Proposition 7.4\<close>
|
86 |
+
|
87 |
+
lemma addpreRT_welldefined:
|
88 |
+
"paodv i \<TTurnstile> onl \<Gamma>\<^sub>A\<^sub>O\<^sub>D\<^sub>V (\<lambda>(\<xi>, l). (l \<in> {PRreq-:16..PRreq-:18} \<longrightarrow> dip \<xi> \<in> kD (rt \<xi>)) \<and>
|
89 |
+
(l = PRreq-:17 \<longrightarrow> oip \<xi> \<in> kD (rt \<xi>)) \<and>
|
90 |
+
(l = PRrep-:5 \<longrightarrow> dip \<xi> \<in> kD (rt \<xi>)) \<and>
|
91 |
+
(l = PRrep-:6 \<longrightarrow> (the (nhop (rt \<xi>) (dip \<xi>))) \<in> kD (rt \<xi>)))"
|
92 |
+
(is "_ \<TTurnstile> onl \<Gamma>\<^sub>A\<^sub>O\<^sub>D\<^sub>V ?P")
|
93 |
+
unfolding invariant_def
|
94 |
+
proof
|
95 |
+
fix s
|
96 |
+
assume "s \<in> reachable (paodv i) TT"
|
97 |
+
then obtain \<xi> p where "s = (\<xi>, p)"
|
98 |
+
and "(\<xi>, p) \<in> reachable (paodv i) TT"
|
99 |
+
by (metis prod.exhaust)
|
100 |
+
have "onl \<Gamma>\<^sub>A\<^sub>O\<^sub>D\<^sub>V ?P (\<xi>, p)"
|
101 |
+
proof (rule onlI)
|
102 |
+
fix l
|
103 |
+
assume "l \<in> labels \<Gamma>\<^sub>A\<^sub>O\<^sub>D\<^sub>V p"
|
104 |
+
with \<open>(\<xi>, p) \<in> reachable (paodv i) TT\<close>
|
105 |
+
have I1: "l \<in> {PRreq-:16..PRreq-:18} \<longrightarrow> dip \<xi> \<in> kD(rt \<xi>)"
|
106 |
+
and I2: "l = PRreq-:17 \<longrightarrow> oip \<xi> \<in> kD(rt \<xi>)"
|
107 |
+
and I3: "l \<in> {PRrep-:2..PRrep-:6} \<longrightarrow> dip \<xi> \<in> kD(rt \<xi>)"
|
108 |
+
by (auto dest!: invariantD [OF addpreRT_partly_welldefined])
|
109 |
+
moreover from \<open>(\<xi>, p) \<in> reachable (paodv i) TT\<close> \<open>l \<in> labels \<Gamma>\<^sub>A\<^sub>O\<^sub>D\<^sub>V p\<close> and I3
|
110 |
+
have "l = PRrep-:6 \<longrightarrow> (the (nhop (rt \<xi>) (dip \<xi>))) \<in> kD(rt \<xi>)"
|
111 |
+
by (auto dest!: invariantD [OF includes_nhip])
|
112 |
+
ultimately show "?P (\<xi>, l)"
|
113 |
+
by simp
|
114 |
+
qed
|
115 |
+
with \<open>s = (\<xi>, p)\<close> show "onl \<Gamma>\<^sub>A\<^sub>O\<^sub>D\<^sub>V ?P s"
|
116 |
+
by simp
|
117 |
+
qed
|
118 |
+
|
119 |
+
text \<open>Proposition 7.4\<close>
|
120 |
+
|
121 |
+
lemma known_destinations_increase:
|
122 |
+
"paodv i \<TTurnstile>\<^sub>A onll \<Gamma>\<^sub>A\<^sub>O\<^sub>D\<^sub>V (\<lambda>((\<xi>, _), _, (\<xi>', _)). kD (rt \<xi>) \<subseteq> kD (rt \<xi>'))"
|
123 |
+
by (inv_cterms inv add: onl_invariant_sterms [OF aodv_wf addpreRT_welldefined]
|
124 |
+
simp add: subset_insertI)
|
125 |
+
|
126 |
+
text \<open>Proposition 7.5\<close>
|
127 |
+
|
128 |
+
lemma rreqs_increase:
|
129 |
+
"paodv i \<TTurnstile>\<^sub>A onll \<Gamma>\<^sub>A\<^sub>O\<^sub>D\<^sub>V (\<lambda>((\<xi>, _), _, (\<xi>', _)). rreqs \<xi> \<subseteq> rreqs \<xi>')"
|
130 |
+
by (inv_cterms simp add: subset_insertI)
|
131 |
+
|
132 |
+
lemma dests_bigger_than_sqn:
|
133 |
+
"paodv i \<TTurnstile> onl \<Gamma>\<^sub>A\<^sub>O\<^sub>D\<^sub>V (\<lambda>(\<xi>, l). l \<in> {PAodv-:15..PAodv-:19}
|
134 |
+
\<union> {PPkt-:7..PPkt-:11}
|
135 |
+
\<union> {PRreq-:9..PRreq-:13}
|
136 |
+
\<union> {PRreq-:21..PRreq-:25}
|
137 |
+
\<union> {PRrep-:10..PRrep-:14}
|
138 |
+
\<union> {PRerr-:1..PRerr-:5}
|
139 |
+
\<longrightarrow> (\<forall>ip\<in>dom(dests \<xi>). ip\<in>kD(rt \<xi>) \<and> sqn (rt \<xi>) ip \<le> the (dests \<xi> ip)))"
|
140 |
+
proof -
|
141 |
+
have sqninv:
|
142 |
+
"\<And>dests rt rsn ip.
|
143 |
+
\<lbrakk> \<forall>ip\<in>dom(dests). ip\<in>kD(rt) \<and> sqn rt ip \<le> the (dests ip); dests ip = Some rsn \<rbrakk>
|
144 |
+
\<Longrightarrow> sqn (invalidate rt dests) ip \<le> rsn"
|
145 |
+
by (rule sqn_invalidate_in_dests [THEN eq_imp_le], assumption) auto
|
146 |
+
have indests:
|
147 |
+
"\<And>dests rt rsn ip.
|
148 |
+
\<lbrakk> \<forall>ip\<in>dom(dests). ip\<in>kD(rt) \<and> sqn rt ip \<le> the (dests ip); dests ip = Some rsn \<rbrakk>
|
149 |
+
\<Longrightarrow> ip\<in>kD(rt) \<and> sqn rt ip \<le> rsn"
|
150 |
+
by (metis domI option.sel)
|
151 |
+
show ?thesis
|
152 |
+
by inv_cterms
|
153 |
+
(clarsimp split: if_split_asm option.split_asm
|
154 |
+
elim!: sqninv indests)+
|
155 |
+
qed
|
156 |
+
|
157 |
+
text \<open>Proposition 7.6\<close>
|
158 |
+
|
159 |
+
lemma sqns_increase:
|
160 |
+
"paodv i \<TTurnstile>\<^sub>A onll \<Gamma>\<^sub>A\<^sub>O\<^sub>D\<^sub>V (\<lambda>((\<xi>, _), _, (\<xi>', _)). \<forall>ip. sqn (rt \<xi>) ip \<le> sqn (rt \<xi>') ip)"
|
161 |
+
proof -
|
162 |
+
{ fix \<xi> :: state
|
163 |
+
assume *: "\<forall>ip\<in>dom(dests \<xi>). ip \<in> kD (rt \<xi>) \<and> sqn (rt \<xi>) ip \<le> the (dests \<xi> ip)"
|
164 |
+
have "\<forall>ip. sqn (rt \<xi>) ip \<le> sqn (invalidate (rt \<xi>) (dests \<xi>)) ip"
|
165 |
+
proof
|
166 |
+
fix ip
|
167 |
+
from * have "ip\<notin>dom(dests \<xi>) \<or> sqn (rt \<xi>) ip \<le> the (dests \<xi> ip)" by simp
|
168 |
+
thus "sqn (rt \<xi>) ip \<le> sqn (invalidate (rt \<xi>) (dests \<xi>)) ip"
|
169 |
+
by (metis domI invalidate_sqn option.sel)
|
170 |
+
qed
|
171 |
+
} note solve_invalidate = this
|
172 |
+
show ?thesis
|
173 |
+
by (inv_cterms inv add: onl_invariant_sterms [OF aodv_wf addpreRT_welldefined]
|
174 |
+
onl_invariant_sterms [OF aodv_wf dests_bigger_than_sqn]
|
175 |
+
simp add: solve_invalidate)
|
176 |
+
qed
|
177 |
+
|
178 |
+
text \<open>Proposition 7.7\<close>
|
179 |
+
|
180 |
+
lemma ip_constant:
|
181 |
+
"paodv i \<TTurnstile> onl \<Gamma>\<^sub>A\<^sub>O\<^sub>D\<^sub>V (\<lambda>(\<xi>, _). ip \<xi> = i)"
|
182 |
+
by (inv_cterms simp add: \<sigma>\<^sub>A\<^sub>O\<^sub>D\<^sub>V_def)
|
183 |
+
|
184 |
+
text \<open>Proposition 7.8\<close>
|
185 |
+
|
186 |
+
lemma sender_ip_valid':
|
187 |
+
"paodv i \<TTurnstile>\<^sub>A onll \<Gamma>\<^sub>A\<^sub>O\<^sub>D\<^sub>V (\<lambda>((\<xi>, _), a, _). anycast (\<lambda>m. not_Pkt m \<longrightarrow> msg_sender m = ip \<xi>) a)"
|
188 |
+
by inv_cterms
|
189 |
+
|
190 |
+
lemma sender_ip_valid:
|
191 |
+
"paodv i \<TTurnstile>\<^sub>A onll \<Gamma>\<^sub>A\<^sub>O\<^sub>D\<^sub>V (\<lambda>((\<xi>, _), a, _). anycast (\<lambda>m. not_Pkt m \<longrightarrow> msg_sender m = i) a)"
|
192 |
+
by (rule step_invariant_weaken_with_invariantE [OF ip_constant sender_ip_valid'])
|
193 |
+
(auto dest!: onlD onllD)
|
194 |
+
|
195 |
+
lemma received_msg_inv:
|
196 |
+
"paodv i \<TTurnstile> (recvmsg P \<rightarrow>) onl \<Gamma>\<^sub>A\<^sub>O\<^sub>D\<^sub>V (\<lambda>(\<xi>, l). l \<in> {PAodv-:1} \<longrightarrow> P (msg \<xi>))"
|
197 |
+
by inv_cterms
|
198 |
+
|
199 |
+
text \<open>Proposition 7.9\<close>
|
200 |
+
|
201 |
+
lemma sip_not_ip':
|
202 |
+
"paodv i \<TTurnstile> (recvmsg (\<lambda>m. not_Pkt m \<longrightarrow> msg_sender m \<noteq> i) \<rightarrow>) onl \<Gamma>\<^sub>A\<^sub>O\<^sub>D\<^sub>V (\<lambda>(\<xi>, _). sip \<xi> \<noteq> ip \<xi>)"
|
203 |
+
by (inv_cterms inv add: onl_invariant_sterms [OF aodv_wf received_msg_inv]
|
204 |
+
onl_invariant_sterms [OF aodv_wf ip_constant [THEN invariant_restrict_inD]]
|
205 |
+
simp add: clear_locals_sip_not_ip') clarsimp+
|
206 |
+
|
207 |
+
lemma sip_not_ip:
|
208 |
+
"paodv i \<TTurnstile> (recvmsg (\<lambda>m. not_Pkt m \<longrightarrow> msg_sender m \<noteq> i) \<rightarrow>) onl \<Gamma>\<^sub>A\<^sub>O\<^sub>D\<^sub>V (\<lambda>(\<xi>, _). sip \<xi> \<noteq> i)"
|
209 |
+
by (inv_cterms inv add: onl_invariant_sterms [OF aodv_wf received_msg_inv]
|
210 |
+
onl_invariant_sterms [OF aodv_wf ip_constant [THEN invariant_restrict_inD]]
|
211 |
+
simp add: clear_locals_sip_not_ip') clarsimp+
|
212 |
+
|
213 |
+
text \<open>Neither \<open>sip_not_ip'\<close> nor \<open>sip_not_ip\<close> is needed to show loop freedom.\<close>
|
214 |
+
|
215 |
+
text \<open>Proposition 7.10\<close>
|
216 |
+
|
217 |
+
lemma hop_count_positive:
|
218 |
+
"paodv i \<TTurnstile> onl \<Gamma>\<^sub>A\<^sub>O\<^sub>D\<^sub>V (\<lambda>(\<xi>, _). \<forall>ip\<in>kD (rt \<xi>). the (dhops (rt \<xi>) ip) \<ge> 1)"
|
219 |
+
by (inv_cterms inv add: onl_invariant_sterms [OF aodv_wf addpreRT_welldefined]) auto
|
220 |
+
|
221 |
+
lemma rreq_dip_in_vD_dip_eq_ip:
|
222 |
+
"paodv i \<TTurnstile> onl \<Gamma>\<^sub>A\<^sub>O\<^sub>D\<^sub>V (\<lambda>(\<xi>, l). (l \<in> {PRreq-:16..PRreq-:18} \<longrightarrow> dip \<xi> \<in> vD(rt \<xi>))
|
223 |
+
\<and> (l \<in> {PRreq-:5, PRreq-:6} \<longrightarrow> dip \<xi> = ip \<xi>)
|
224 |
+
\<and> (l \<in> {PRreq-:15..PRreq-:18} \<longrightarrow> dip \<xi> \<noteq> ip \<xi>))"
|
225 |
+
proof (inv_cterms, elim conjE)
|
226 |
+
fix l \<xi> pp p'
|
227 |
+
assume "(\<xi>, pp) \<in> reachable (paodv i) TT"
|
228 |
+
and "{PRreq-:17}\<lbrakk>\<lambda>\<xi>. \<xi>\<lparr>rt := the (addpreRT (rt \<xi>) (oip \<xi>) {the (nhop (rt \<xi>) (dip \<xi>))})\<rparr>\<rbrakk> p'
|
229 |
+
\<in> sterms \<Gamma>\<^sub>A\<^sub>O\<^sub>D\<^sub>V pp"
|
230 |
+
and "l = PRreq-:17"
|
231 |
+
and "dip \<xi> \<in> vD (rt \<xi>)"
|
232 |
+
from this(1-3) have "oip \<xi> \<in> kD (rt \<xi>)"
|
233 |
+
by (auto dest: onl_invariant_sterms [OF aodv_wf addpreRT_welldefined, where l="PRreq-:17"])
|
234 |
+
with \<open>dip \<xi> \<in> vD (rt \<xi>)\<close>
|
235 |
+
show "dip \<xi> \<in> vD (the (addpreRT (rt \<xi>) (oip \<xi>) {the (nhop (rt \<xi>) (dip \<xi>))}))" by simp
|
236 |
+
qed
|
237 |
+
|
238 |
+
text \<open>Proposition 7.11\<close>
|
239 |
+
|
240 |
+
lemma anycast_msg_zhops:
|
241 |
+
"\<And>rreqid dip dsn dsk oip osn sip.
|
242 |
+
paodv i \<TTurnstile>\<^sub>A onll \<Gamma>\<^sub>A\<^sub>O\<^sub>D\<^sub>V (\<lambda>(_, a, _). anycast msg_zhops a)"
|
243 |
+
proof (inv_cterms inv add:
|
244 |
+
onl_invariant_sterms [OF aodv_wf rreq_dip_in_vD_dip_eq_ip [THEN invariant_restrict_inD]]
|
245 |
+
onl_invariant_sterms [OF aodv_wf hop_count_positive [THEN invariant_restrict_inD]],
|
246 |
+
elim conjE)
|
247 |
+
fix l \<xi> a pp p' pp'
|
248 |
+
assume "(\<xi>, pp) \<in> reachable (paodv i) TT"
|
249 |
+
and "{PRreq-:18}unicast(\<lambda>\<xi>. the (nhop (rt \<xi>) (oip \<xi>)),
|
250 |
+
\<lambda>\<xi>. Rrep (the (dhops (rt \<xi>) (dip \<xi>))) (dip \<xi>) (sqn (rt \<xi>) (dip \<xi>)) (oip \<xi>) (ip \<xi>)).
|
251 |
+
p' \<triangleright> pp' \<in> sterms \<Gamma>\<^sub>A\<^sub>O\<^sub>D\<^sub>V pp"
|
252 |
+
and "l = PRreq-:18"
|
253 |
+
and "a = unicast (the (nhop (rt \<xi>) (oip \<xi>)))
|
254 |
+
(Rrep (the (dhops (rt \<xi>) (dip \<xi>))) (dip \<xi>) (sqn (rt \<xi>) (dip \<xi>)) (oip \<xi>) (ip \<xi>))"
|
255 |
+
and *: "\<forall>ip\<in>kD (rt \<xi>). Suc 0 \<le> the (dhops (rt \<xi>) ip)"
|
256 |
+
and "dip \<xi> \<in> vD (rt \<xi>)"
|
257 |
+
from \<open>dip \<xi> \<in> vD (rt \<xi>)\<close> have "dip \<xi> \<in> kD (rt \<xi>)"
|
258 |
+
by (rule vD_iD_gives_kD(1))
|
259 |
+
with * have "Suc 0 \<le> the (dhops (rt \<xi>) (dip \<xi>))" ..
|
260 |
+
thus "0 < the (dhops (rt \<xi>) (dip \<xi>))" by simp
|
261 |
+
qed
|
262 |
+
|
263 |
+
lemma hop_count_zero_oip_dip_sip:
|
264 |
+
"paodv i \<TTurnstile> (recvmsg msg_zhops \<rightarrow>) onl \<Gamma>\<^sub>A\<^sub>O\<^sub>D\<^sub>V (\<lambda>(\<xi>, l).
|
265 |
+
(l\<in>{PAodv-:4..PAodv-:5} \<union> {PRreq-:n|n. True} \<longrightarrow>
|
266 |
+
(hops \<xi> = 0 \<longrightarrow> oip \<xi> = sip \<xi>))
|
267 |
+
\<and>
|
268 |
+
((l\<in>{PAodv-:6..PAodv-:7} \<union> {PRrep-:n|n. True} \<longrightarrow>
|
269 |
+
(hops \<xi> = 0 \<longrightarrow> dip \<xi> = sip \<xi>))))"
|
270 |
+
by (inv_cterms inv add: onl_invariant_sterms [OF aodv_wf received_msg_inv]) auto
|
271 |
+
|
272 |
+
lemma osn_rreq:
|
273 |
+
"paodv i \<TTurnstile> (recvmsg rreq_rrep_sn \<rightarrow>) onl \<Gamma>\<^sub>A\<^sub>O\<^sub>D\<^sub>V (\<lambda>(\<xi>, l).
|
274 |
+
l \<in> {PAodv-:4, PAodv-:5} \<union> {PRreq-:n|n. True} \<longrightarrow> 1 \<le> osn \<xi>)"
|
275 |
+
by (inv_cterms inv add: onl_invariant_sterms [OF aodv_wf received_msg_inv]) clarsimp
|
276 |
+
|
277 |
+
lemma osn_rreq':
|
278 |
+
"paodv i \<TTurnstile> (recvmsg (\<lambda>m. rreq_rrep_sn m \<and> msg_zhops m) \<rightarrow>) onl \<Gamma>\<^sub>A\<^sub>O\<^sub>D\<^sub>V (\<lambda>(\<xi>, l).
|
279 |
+
l \<in> {PAodv-:4, PAodv-:5} \<union> {PRreq-:n|n. True} \<longrightarrow> 1 \<le> osn \<xi>)"
|
280 |
+
proof (rule invariant_weakenE [OF osn_rreq])
|
281 |
+
fix a
|
282 |
+
assume "recvmsg (\<lambda>m. rreq_rrep_sn m \<and> msg_zhops m) a"
|
283 |
+
thus "recvmsg rreq_rrep_sn a"
|
284 |
+
by (cases a) simp_all
|
285 |
+
qed
|
286 |
+
|
287 |
+
lemma dsn_rrep:
|
288 |
+
"paodv i \<TTurnstile> (recvmsg rreq_rrep_sn \<rightarrow>) onl \<Gamma>\<^sub>A\<^sub>O\<^sub>D\<^sub>V (\<lambda>(\<xi>, l).
|
289 |
+
l \<in> {PAodv-:6, PAodv-:7} \<union> {PRrep-:n|n. True} \<longrightarrow> 1 \<le> dsn \<xi>)"
|
290 |
+
by (inv_cterms inv add: onl_invariant_sterms [OF aodv_wf received_msg_inv]) clarsimp
|
291 |
+
|
292 |
+
lemma dsn_rrep':
|
293 |
+
"paodv i \<TTurnstile> (recvmsg (\<lambda>m. rreq_rrep_sn m \<and> msg_zhops m) \<rightarrow>) onl \<Gamma>\<^sub>A\<^sub>O\<^sub>D\<^sub>V (\<lambda>(\<xi>, l).
|
294 |
+
l \<in> {PAodv-:6, PAodv-:7} \<union> {PRrep-:n|n. True} \<longrightarrow> 1 \<le> dsn \<xi>)"
|
295 |
+
proof (rule invariant_weakenE [OF dsn_rrep])
|
296 |
+
fix a
|
297 |
+
assume "recvmsg (\<lambda>m. rreq_rrep_sn m \<and> msg_zhops m) a"
|
298 |
+
thus "recvmsg rreq_rrep_sn a"
|
299 |
+
by (cases a) simp_all
|
300 |
+
qed
|
301 |
+
|
302 |
+
lemma hop_count_zero_oip_dip_sip':
|
303 |
+
"paodv i \<TTurnstile> (recvmsg (\<lambda>m. rreq_rrep_sn m \<and> msg_zhops m) \<rightarrow>) onl \<Gamma>\<^sub>A\<^sub>O\<^sub>D\<^sub>V (\<lambda>(\<xi>, l).
|
304 |
+
(l\<in>{PAodv-:4..PAodv-:5} \<union> {PRreq-:n|n. True} \<longrightarrow>
|
305 |
+
(hops \<xi> = 0 \<longrightarrow> oip \<xi> = sip \<xi>))
|
306 |
+
\<and>
|
307 |
+
((l\<in>{PAodv-:6..PAodv-:7} \<union> {PRrep-:n|n. True} \<longrightarrow>
|
308 |
+
(hops \<xi> = 0 \<longrightarrow> dip \<xi> = sip \<xi>))))"
|
309 |
+
proof (rule invariant_weakenE [OF hop_count_zero_oip_dip_sip])
|
310 |
+
fix a
|
311 |
+
assume "recvmsg (\<lambda>m. rreq_rrep_sn m \<and> msg_zhops m) a"
|
312 |
+
thus "recvmsg msg_zhops a"
|
313 |
+
by (cases a) simp_all
|
314 |
+
qed
|
315 |
+
|
316 |
+
text \<open>Proposition 7.12\<close>
|
317 |
+
|
318 |
+
lemma zero_seq_unk_hops_one':
|
319 |
+
"paodv i \<TTurnstile> (recvmsg (\<lambda>m. rreq_rrep_sn m \<and> msg_zhops m) \<rightarrow>) onl \<Gamma>\<^sub>A\<^sub>O\<^sub>D\<^sub>V (\<lambda>(\<xi>, _).
|
320 |
+
\<forall>dip\<in>kD(rt \<xi>). (sqn (rt \<xi>) dip = 0 \<longrightarrow> sqnf (rt \<xi>) dip = unk)
|
321 |
+
\<and> (sqnf (rt \<xi>) dip = unk \<longrightarrow> the (dhops (rt \<xi>) dip) = 1)
|
322 |
+
\<and> (the (dhops (rt \<xi>) dip) = 1 \<longrightarrow> the (nhop (rt \<xi>) dip) = dip))"
|
323 |
+
proof -
|
324 |
+
{ fix dip and \<xi> :: state and P
|
325 |
+
assume "sqn (invalidate (rt \<xi>) (dests \<xi>)) dip = 0"
|
326 |
+
and all: "\<forall>ip. sqn (rt \<xi>) ip \<le> sqn (invalidate (rt \<xi>) (dests \<xi>)) ip"
|
327 |
+
and *: "sqn (rt \<xi>) dip = 0 \<Longrightarrow> P \<xi> dip"
|
328 |
+
have "P \<xi> dip"
|
329 |
+
proof -
|
330 |
+
from all have "sqn (rt \<xi>) dip \<le> sqn (invalidate (rt \<xi>) (dests \<xi>)) dip" ..
|
331 |
+
with \<open>sqn (invalidate (rt \<xi>) (dests \<xi>)) dip = 0\<close> have "sqn (rt \<xi>) dip = 0" by simp
|
332 |
+
thus "P \<xi> dip" by (rule *)
|
333 |
+
qed
|
334 |
+
} note sqn_invalidate_zero [elim!] = this
|
335 |
+
|
336 |
+
{ fix dsn hops :: nat and sip oip rt and ip dip :: ip
|
337 |
+
assume "\<forall>dip\<in>kD(rt).
|
338 |
+
(sqn rt dip = 0 \<longrightarrow> \<pi>\<^sub>3(the (rt dip)) = unk) \<and>
|
339 |
+
(\<pi>\<^sub>3(the (rt dip)) = unk \<longrightarrow> the (dhops rt dip) = Suc 0) \<and>
|
340 |
+
(the (dhops rt dip) = Suc 0 \<longrightarrow> the (nhop rt dip) = dip)"
|
341 |
+
and "hops = 0 \<longrightarrow> sip = dip"
|
342 |
+
and "Suc 0 \<le> dsn"
|
343 |
+
and "ip \<noteq> dip \<longrightarrow> ip\<in>kD(rt)"
|
344 |
+
hence "the (dhops (update rt dip (dsn, kno, val, Suc hops, sip, {})) ip) = Suc 0 \<longrightarrow>
|
345 |
+
the (nhop (update rt dip (dsn, kno, val, Suc hops, sip, {})) ip) = ip"
|
346 |
+
by - (rule update_cases, auto simp add: sqn_def dest!: bspec)
|
347 |
+
} note prreq_ok1 [simp] = this
|
348 |
+
|
349 |
+
{ fix ip dsn hops sip oip rt dip
|
350 |
+
assume "\<forall>dip\<in>kD(rt).
|
351 |
+
(sqn rt dip = 0 \<longrightarrow> \<pi>\<^sub>3(the (rt dip)) = unk) \<and>
|
352 |
+
(\<pi>\<^sub>3(the (rt dip)) = unk \<longrightarrow> the (dhops rt dip) = Suc 0) \<and>
|
353 |
+
(the (dhops rt dip) = Suc 0 \<longrightarrow> the (nhop rt dip) = dip)"
|
354 |
+
and "Suc 0 \<le> dsn"
|
355 |
+
and "ip \<noteq> dip \<longrightarrow> ip\<in>kD(rt)"
|
356 |
+
hence "\<pi>\<^sub>3(the (update rt dip (dsn, kno, val, Suc hops, sip, {}) ip)) = unk \<longrightarrow>
|
357 |
+
the (dhops (update rt dip (dsn, kno, val, Suc hops, sip, {})) ip) = Suc 0"
|
358 |
+
by - (rule update_cases, auto simp add: sqn_def sqnf_def dest!: bspec)
|
359 |
+
} note prreq_ok2 [simp] = this
|
360 |
+
|
361 |
+
{ fix ip dsn hops sip oip rt dip
|
362 |
+
assume "\<forall>dip\<in>kD(rt).
|
363 |
+
(sqn rt dip = 0 \<longrightarrow> \<pi>\<^sub>3(the (rt dip)) = unk) \<and>
|
364 |
+
(\<pi>\<^sub>3(the (rt dip)) = unk \<longrightarrow> the (dhops rt dip) = Suc 0) \<and>
|
365 |
+
(the (dhops rt dip) = Suc 0 \<longrightarrow> the (nhop rt dip) = dip)"
|
366 |
+
and "Suc 0 \<le> dsn"
|
367 |
+
and "ip \<noteq> dip \<longrightarrow> ip\<in>kD(rt)"
|
368 |
+
hence "sqn (update rt dip (dsn, kno, val, Suc hops, sip, {})) ip = 0 \<longrightarrow>
|
369 |
+
\<pi>\<^sub>3 (the (update rt dip (dsn, kno, val, Suc hops, sip, {}) ip)) = unk"
|
370 |
+
by - (rule update_cases, auto simp add: sqn_def dest!: bspec)
|
371 |
+
} note prreq_ok3 [simp] = this
|
372 |
+
|
373 |
+
{ fix rt sip
|
374 |
+
assume "\<forall>dip\<in>kD rt.
|
375 |
+
(sqn rt dip = 0 \<longrightarrow> \<pi>\<^sub>3(the (rt dip)) = unk) \<and>
|
376 |
+
(\<pi>\<^sub>3(the (rt dip)) = unk \<longrightarrow> the (dhops rt dip) = Suc 0) \<and>
|
377 |
+
(the (dhops rt dip) = Suc 0 \<longrightarrow> the (nhop rt dip) = dip)"
|
378 |
+
hence "\<forall>dip\<in>kD rt.
|
379 |
+
(sqn (update rt sip (0, unk, val, Suc 0, sip, {})) dip = 0 \<longrightarrow>
|
380 |
+
\<pi>\<^sub>3(the (update rt sip (0, unk, val, Suc 0, sip, {}) dip)) = unk)
|
381 |
+
\<and> (\<pi>\<^sub>3(the (update rt sip (0, unk, val, Suc 0, sip, {}) dip)) = unk \<longrightarrow>
|
382 |
+
the (dhops (update rt sip (0, unk, val, Suc 0, sip, {})) dip) = Suc 0)
|
383 |
+
\<and> (the (dhops (update rt sip (0, unk, val, Suc 0, sip, {})) dip) = Suc 0 \<longrightarrow>
|
384 |
+
the (nhop (update rt sip (0, unk, val, Suc 0, sip, {})) dip) = dip)"
|
385 |
+
by - (rule update_cases, simp_all add: sqnf_def sqn_def)
|
386 |
+
} note prreq_ok4 [simp] = this
|
387 |
+
|
388 |
+
have prreq_ok5 [simp]: "\<And>sip rt.
|
389 |
+
\<pi>\<^sub>3(the (update rt sip (0, unk, val, Suc 0, sip, {}) sip)) = unk \<longrightarrow>
|
390 |
+
the (dhops (update rt sip (0, unk, val, Suc 0, sip, {})) sip) = Suc 0"
|
391 |
+
by (rule update_cases) simp_all
|
392 |
+
|
393 |
+
have prreq_ok6 [simp]: "\<And>sip rt.
|
394 |
+
sqn (update rt sip (0, unk, val, Suc 0, sip, {})) sip = 0 \<longrightarrow>
|
395 |
+
\<pi>\<^sub>3 (the (update rt sip (0, unk, val, Suc 0, sip, {}) sip)) = unk"
|
396 |
+
by (rule update_cases) simp_all
|
397 |
+
|
398 |
+
show ?thesis
|
399 |
+
by (inv_cterms inv add: onl_invariant_sterms_TT [OF aodv_wf addpreRT_welldefined]
|
400 |
+
onl_invariant_sterms [OF aodv_wf hop_count_zero_oip_dip_sip']
|
401 |
+
seq_step_invariant_sterms_TT [OF sqns_increase aodv_wf aodv_trans]
|
402 |
+
onl_invariant_sterms [OF aodv_wf osn_rreq']
|
403 |
+
onl_invariant_sterms [OF aodv_wf dsn_rrep']) clarsimp+
|
404 |
+
qed
|
405 |
+
|
406 |
+
lemma zero_seq_unk_hops_one:
|
407 |
+
"paodv i \<TTurnstile> (recvmsg (\<lambda>m. rreq_rrep_sn m \<and> msg_zhops m) \<rightarrow>) onl \<Gamma>\<^sub>A\<^sub>O\<^sub>D\<^sub>V (\<lambda>(\<xi>, _).
|
408 |
+
\<forall>dip\<in>kD(rt \<xi>). (sqn (rt \<xi>) dip = 0 \<longrightarrow> (sqnf (rt \<xi>) dip = unk
|
409 |
+
\<and> the (dhops (rt \<xi>) dip) = 1
|
410 |
+
\<and> the (nhop (rt \<xi>) dip) = dip)))"
|
411 |
+
by (rule invariant_weakenE [OF zero_seq_unk_hops_one']) auto
|
412 |
+
|
413 |
+
lemma kD_unk_or_atleast_one:
|
414 |
+
"paodv i \<TTurnstile> (recvmsg rreq_rrep_sn \<rightarrow>) onl \<Gamma>\<^sub>A\<^sub>O\<^sub>D\<^sub>V (\<lambda>(\<xi>, l).
|
415 |
+
\<forall>dip\<in>kD(rt \<xi>). \<pi>\<^sub>3(the (rt \<xi> dip)) = unk \<or> 1 \<le> \<pi>\<^sub>2(the (rt \<xi> dip)))"
|
416 |
+
proof -
|
417 |
+
{ fix sip rt dsn1 dsn2 dsk1 dsk2 flag1 flag2 hops1 hops2 nhip1 nhip2 pre1 pre2
|
418 |
+
assume "dsk1 = unk \<or> Suc 0 \<le> dsn2"
|
419 |
+
hence "\<pi>\<^sub>3(the (update rt sip (dsn1, dsk1, flag1, hops1, nhip1, pre1) sip)) = unk
|
420 |
+
\<or> Suc 0 \<le> sqn (update rt sip (dsn2, dsk2, flag2, hops2, nhip2, pre2)) sip"
|
421 |
+
unfolding update_def by (cases "dsk1 =unk") (clarsimp split: option.split)+
|
422 |
+
} note fromsip [simp] = this
|
423 |
+
|
424 |
+
{ fix dip sip rt dsn1 dsn2 dsk1 dsk2 flag1 flag2 hops1 hops2 nhip1 nhip2 pre1 pre2
|
425 |
+
assume allkd: "\<forall>dip\<in>kD(rt). \<pi>\<^sub>3(the (rt dip)) = unk \<or> Suc 0 \<le> sqn rt dip"
|
426 |
+
and **: "dsk1 = unk \<or> Suc 0 \<le> dsn2"
|
427 |
+
have "\<forall>dip\<in>kD(rt). \<pi>\<^sub>3(the (update rt sip (dsn1, dsk1, flag1, hops1, nhip1, pre1) dip)) = unk
|
428 |
+
\<or> Suc 0 \<le> sqn (update rt sip (dsn2, dsk2, flag2, hops2, nhip2, pre2)) dip"
|
429 |
+
(is "\<forall>dip\<in>kD(rt). ?prop dip")
|
430 |
+
proof
|
431 |
+
fix dip
|
432 |
+
assume "dip\<in>kD(rt)"
|
433 |
+
thus "?prop dip"
|
434 |
+
proof (cases "dip = sip")
|
435 |
+
assume "dip = sip"
|
436 |
+
with ** show ?thesis
|
437 |
+
by simp
|
438 |
+
next
|
439 |
+
assume "dip \<noteq> sip"
|
440 |
+
with \<open>dip\<in>kD(rt)\<close> allkd show ?thesis
|
441 |
+
by simp
|
442 |
+
qed
|
443 |
+
qed
|
444 |
+
} note solve_update [simp] = this
|
445 |
+
|
446 |
+
{ fix dip rt dests
|
447 |
+
assume *: "\<forall>ip\<in>dom(dests). ip\<in>kD(rt) \<and> sqn rt ip \<le> the (dests ip)"
|
448 |
+
and **: "\<forall>ip\<in>kD(rt). \<pi>\<^sub>3(the (rt ip)) = unk \<or> Suc 0 \<le> sqn rt ip"
|
449 |
+
have "\<forall>dip\<in>kD(rt). \<pi>\<^sub>3(the (rt dip)) = unk \<or> Suc 0 \<le> sqn (invalidate rt dests) dip"
|
450 |
+
proof
|
451 |
+
fix dip
|
452 |
+
assume "dip\<in>kD(rt)"
|
453 |
+
with ** have "\<pi>\<^sub>3(the (rt dip)) = unk \<or> Suc 0 \<le> sqn rt dip" ..
|
454 |
+
thus "\<pi>\<^sub>3 (the (rt dip)) = unk \<or> Suc 0 \<le> sqn (invalidate rt dests) dip"
|
455 |
+
proof
|
456 |
+
assume "\<pi>\<^sub>3(the (rt dip)) = unk" thus ?thesis ..
|
457 |
+
next
|
458 |
+
assume "Suc 0 \<le> sqn rt dip"
|
459 |
+
have "Suc 0 \<le> sqn (invalidate rt dests) dip"
|
460 |
+
proof (cases "dip\<in>dom(dests)")
|
461 |
+
assume "dip\<in>dom(dests)"
|
462 |
+
with * have "sqn rt dip \<le> the (dests dip)" by simp
|
463 |
+
with \<open>Suc 0 \<le> sqn rt dip\<close> have "Suc 0 \<le> the (dests dip)" by simp
|
464 |
+
with \<open>dip\<in>dom(dests)\<close> \<open>dip\<in>kD(rt)\<close> [THEN kD_Some] show ?thesis
|
465 |
+
unfolding invalidate_def sqn_def by auto
|
466 |
+
next
|
467 |
+
assume "dip\<notin>dom(dests)"
|
468 |
+
with \<open>Suc 0 \<le> sqn rt dip\<close> \<open>dip\<in>kD(rt)\<close> [THEN kD_Some] show ?thesis
|
469 |
+
unfolding invalidate_def sqn_def by auto
|
470 |
+
qed
|
471 |
+
thus ?thesis by (rule disjI2)
|
472 |
+
qed
|
473 |
+
qed
|
474 |
+
} note solve_invalidate [simp] = this
|
475 |
+
|
476 |
+
show ?thesis
|
477 |
+
by (inv_cterms inv add: onl_invariant_sterms_TT [OF aodv_wf addpreRT_welldefined]
|
478 |
+
onl_invariant_sterms [OF aodv_wf dests_bigger_than_sqn
|
479 |
+
[THEN invariant_restrict_inD]]
|
480 |
+
onl_invariant_sterms [OF aodv_wf osn_rreq]
|
481 |
+
onl_invariant_sterms [OF aodv_wf dsn_rrep]
|
482 |
+
simp add: proj3_inv proj2_eq_sqn)
|
483 |
+
qed
|
484 |
+
|
485 |
+
text \<open>Proposition 7.13\<close>
|
486 |
+
|
487 |
+
lemma rreq_rrep_sn_any_step_invariant:
|
488 |
+
"paodv i \<TTurnstile>\<^sub>A (recvmsg rreq_rrep_sn \<rightarrow>) onll \<Gamma>\<^sub>A\<^sub>O\<^sub>D\<^sub>V (\<lambda>(_, a, _). anycast rreq_rrep_sn a)"
|
489 |
+
proof -
|
490 |
+
have sqnf_kno: "paodv i \<TTurnstile> onl \<Gamma>\<^sub>A\<^sub>O\<^sub>D\<^sub>V (\<lambda>(\<xi>, l).
|
491 |
+
(l \<in> {PRreq-:16..PRreq-:18} \<longrightarrow> sqnf (rt \<xi>) (dip \<xi>) = kno))"
|
492 |
+
by (inv_cterms inv add: onl_invariant_sterms_TT [OF aodv_wf addpreRT_welldefined])
|
493 |
+
show ?thesis
|
494 |
+
by (inv_cterms inv add: onl_invariant_sterms_TT [OF aodv_wf addpreRT_welldefined]
|
495 |
+
onl_invariant_sterms [OF aodv_wf sequence_number_one_or_bigger
|
496 |
+
[THEN invariant_restrict_inD]]
|
497 |
+
onl_invariant_sterms [OF aodv_wf kD_unk_or_atleast_one]
|
498 |
+
onl_invariant_sterms_TT [OF aodv_wf sqnf_kno]
|
499 |
+
onl_invariant_sterms [OF aodv_wf osn_rreq]
|
500 |
+
onl_invariant_sterms [OF aodv_wf dsn_rrep])
|
501 |
+
(auto simp: proj2_eq_sqn)
|
502 |
+
qed
|
503 |
+
|
504 |
+
text \<open>Proposition 7.14\<close>
|
505 |
+
|
506 |
+
lemma rreq_rrep_fresh_any_step_invariant:
|
507 |
+
"paodv i \<TTurnstile>\<^sub>A onll \<Gamma>\<^sub>A\<^sub>O\<^sub>D\<^sub>V (\<lambda>((\<xi>, _), a, _). anycast (rreq_rrep_fresh (rt \<xi>)) a)"
|
508 |
+
proof -
|
509 |
+
have rreq_oip: "paodv i \<TTurnstile> onl \<Gamma>\<^sub>A\<^sub>O\<^sub>D\<^sub>V (\<lambda>(\<xi>, l).
|
510 |
+
(l \<in> {PRreq-:3, PRreq-:4, PRreq-:15, PRreq-:27}
|
511 |
+
\<longrightarrow> oip \<xi> \<in> kD(rt \<xi>)
|
512 |
+
\<and> (sqn (rt \<xi>) (oip \<xi>) > (osn \<xi>)
|
513 |
+
\<or> (sqn (rt \<xi>) (oip \<xi>) = (osn \<xi>)
|
514 |
+
\<and> the (dhops (rt \<xi>) (oip \<xi>)) \<le> Suc (hops \<xi>)
|
515 |
+
\<and> the (flag (rt \<xi>) (oip \<xi>)) = val))))"
|
516 |
+
proof inv_cterms
|
517 |
+
fix l \<xi> l' pp p'
|
518 |
+
assume "(\<xi>, pp) \<in> reachable (paodv i) TT"
|
519 |
+
and "{PRreq-:2}\<lbrakk>\<lambda>\<xi>. \<xi>\<lparr>rt :=
|
520 |
+
update (rt \<xi>) (oip \<xi>) (osn \<xi>, kno, val, Suc (hops \<xi>), sip \<xi>, {})\<rparr>\<rbrakk> p' \<in> sterms \<Gamma>\<^sub>A\<^sub>O\<^sub>D\<^sub>V pp"
|
521 |
+
and "l' = PRreq-:3"
|
522 |
+
show "osn \<xi> < sqn (update (rt \<xi>) (oip \<xi>) (osn \<xi>, kno, val, Suc (hops \<xi>), sip \<xi>, {})) (oip \<xi>)
|
523 |
+
\<or> (sqn (update (rt \<xi>) (oip \<xi>) (osn \<xi>, kno, val, Suc (hops \<xi>), sip \<xi>, {})) (oip \<xi>) = osn \<xi>
|
524 |
+
\<and> the (dhops (update (rt \<xi>) (oip \<xi>) (osn \<xi>, kno, val, Suc (hops \<xi>), sip \<xi>, {})) (oip \<xi>))
|
525 |
+
\<le> Suc (hops \<xi>)
|
526 |
+
\<and> the (flag (update (rt \<xi>) (oip \<xi>) (osn \<xi>, kno, val, Suc (hops \<xi>), sip \<xi>, {})) (oip \<xi>))
|
527 |
+
= val)"
|
528 |
+
unfolding update_def by (clarsimp split: option.split)
|
529 |
+
(metis linorder_neqE_nat not_less)
|
530 |
+
qed
|
531 |
+
|
532 |
+
have rrep_prrep: "paodv i \<TTurnstile> onl \<Gamma>\<^sub>A\<^sub>O\<^sub>D\<^sub>V (\<lambda>(\<xi>, l).
|
533 |
+
(l \<in> {PRrep-:2..PRrep-:7} \<longrightarrow> (dip \<xi> \<in> kD(rt \<xi>)
|
534 |
+
\<and> sqn (rt \<xi>) (dip \<xi>) = dsn \<xi>
|
535 |
+
\<and> the (dhops (rt \<xi>) (dip \<xi>)) = Suc (hops \<xi>)
|
536 |
+
\<and> the (flag (rt \<xi>) (dip \<xi>)) = val
|
537 |
+
\<and> the (nhop (rt \<xi>) (dip \<xi>)) \<in> kD (rt \<xi>))))"
|
538 |
+
by (inv_cterms inv add: onl_invariant_sterms [OF aodv_wf rrep_1_update_changes]
|
539 |
+
onl_invariant_sterms [OF aodv_wf sip_in_kD])
|
540 |
+
|
541 |
+
show ?thesis
|
542 |
+
by (inv_cterms inv add: onl_invariant_sterms [OF aodv_wf rreq_oip]
|
543 |
+
onl_invariant_sterms [OF aodv_wf rreq_dip_in_vD_dip_eq_ip]
|
544 |
+
onl_invariant_sterms [OF aodv_wf rrep_prrep])
|
545 |
+
qed
|
546 |
+
|
547 |
+
text \<open>Proposition 7.15\<close>
|
548 |
+
|
549 |
+
lemma rerr_invalid_any_step_invariant:
|
550 |
+
"paodv i \<TTurnstile>\<^sub>A onll \<Gamma>\<^sub>A\<^sub>O\<^sub>D\<^sub>V (\<lambda>((\<xi>, _), a, _). anycast (rerr_invalid (rt \<xi>)) a)"
|
551 |
+
proof -
|
552 |
+
have dests_inv: "paodv i \<TTurnstile>
|
553 |
+
onl \<Gamma>\<^sub>A\<^sub>O\<^sub>D\<^sub>V (\<lambda>(\<xi>, l). (l \<in> {PAodv-:15, PPkt-:7, PRreq-:9,
|
554 |
+
PRreq-:21, PRrep-:10, PRerr-:1}
|
555 |
+
\<longrightarrow> (\<forall>ip\<in>dom(dests \<xi>). ip\<in>vD(rt \<xi>)))
|
556 |
+
\<and> (l \<in> {PAodv-:16..PAodv-:19}
|
557 |
+
\<union> {PPkt-:8..PPkt-:11}
|
558 |
+
\<union> {PRreq-:10..PRreq-:13}
|
559 |
+
\<union> {PRreq-:22..PRreq-:25}
|
560 |
+
\<union> {PRrep-:11..PRrep-:14}
|
561 |
+
\<union> {PRerr-:2..PRerr-:5} \<longrightarrow> (\<forall>ip\<in>dom(dests \<xi>). ip\<in>iD(rt \<xi>)
|
562 |
+
\<and> the (dests \<xi> ip) = sqn (rt \<xi>) ip))
|
563 |
+
\<and> (l = PPkt-:14 \<longrightarrow> dip \<xi>\<in>iD(rt \<xi>)))"
|
564 |
+
by inv_cterms (clarsimp split: if_split_asm option.split_asm simp: domIff)+
|
565 |
+
show ?thesis
|
566 |
+
by (inv_cterms inv add: onl_invariant_sterms [OF aodv_wf dests_inv])
|
567 |
+
qed
|
568 |
+
|
569 |
+
text \<open>Proposition 7.16\<close>
|
570 |
+
|
571 |
+
text \<open>
|
572 |
+
Some well-definedness obligations are irrelevant for the Isabelle development:
|
573 |
+
|
574 |
+
\begin{enumerate}
|
575 |
+
\item In each routing table there is at most one entry for each destination: guaranteed by type.
|
576 |
+
|
577 |
+
\item In each store of queued data packets there is at most one data queue for
|
578 |
+
each destination: guaranteed by structure.
|
579 |
+
|
580 |
+
\item Whenever a set of pairs @{term "(rip, rsn)"} is assigned to the variable
|
581 |
+
@{term "dests"} of type @{typ "ip \<rightharpoonup> sqn"}, or to the first argument of
|
582 |
+
the function @{term "rerr"}, this set is a partial function, i.e., there
|
583 |
+
is at most one entry @{term "(rip, rsn)"} for each destination
|
584 |
+
@{term "rip"}: guaranteed by type.
|
585 |
+
\end{enumerate}
|
586 |
+
\<close>
|
587 |
+
|
588 |
+
lemma dests_vD_inc_sqn:
|
589 |
+
"paodv i \<TTurnstile>
|
590 |
+
onl \<Gamma>\<^sub>A\<^sub>O\<^sub>D\<^sub>V (\<lambda>(\<xi>, l). (l \<in> {PAodv-:15, PPkt-:7, PRreq-:9, PRreq-:21, PRrep-:10}
|
591 |
+
\<longrightarrow> (\<forall>ip\<in>dom(dests \<xi>). ip\<in>vD(rt \<xi>) \<and> the (dests \<xi> ip) = inc (sqn (rt \<xi>) ip)))
|
592 |
+
\<and> (l = PRerr-:1
|
593 |
+
\<longrightarrow> (\<forall>ip\<in>dom(dests \<xi>). ip\<in>vD(rt \<xi>) \<and> the (dests \<xi> ip) > sqn (rt \<xi>) ip)))"
|
594 |
+
by inv_cterms (clarsimp split: if_split_asm option.split_asm)+
|
595 |
+
|
596 |
+
text \<open>Proposition 7.27\<close>
|
597 |
+
|
598 |
+
lemma route_tables_fresher:
|
599 |
+
"paodv i \<TTurnstile>\<^sub>A (recvmsg rreq_rrep_sn \<rightarrow>) onll \<Gamma>\<^sub>A\<^sub>O\<^sub>D\<^sub>V (\<lambda>((\<xi>, _), _, (\<xi>', _)).
|
600 |
+
\<forall>dip\<in>kD(rt \<xi>). rt \<xi> \<sqsubseteq>\<^bsub>dip\<^esub> rt \<xi>')"
|
601 |
+
proof (inv_cterms inv add:
|
602 |
+
onl_invariant_sterms [OF aodv_wf dests_vD_inc_sqn [THEN invariant_restrict_inD]]
|
603 |
+
onl_invariant_sterms [OF aodv_wf hop_count_positive [THEN invariant_restrict_inD]]
|
604 |
+
onl_invariant_sterms [OF aodv_wf osn_rreq]
|
605 |
+
onl_invariant_sterms [OF aodv_wf dsn_rrep]
|
606 |
+
onl_invariant_sterms [OF aodv_wf addpreRT_welldefined [THEN invariant_restrict_inD]])
|
607 |
+
fix \<xi> pp p'
|
608 |
+
assume "(\<xi>, pp) \<in> reachable (paodv i) (recvmsg rreq_rrep_sn)"
|
609 |
+
and "{PRreq-:2}\<lbrakk>\<lambda>\<xi>. \<xi>\<lparr>rt := update (rt \<xi>) (oip \<xi>) (osn \<xi>, kno, val, Suc (hops \<xi>), sip \<xi>, {})\<rparr>\<rbrakk>
|
610 |
+
p' \<in> sterms \<Gamma>\<^sub>A\<^sub>O\<^sub>D\<^sub>V pp"
|
611 |
+
and "Suc 0 \<le> osn \<xi>"
|
612 |
+
and *: "\<forall>ip\<in>kD (rt \<xi>). Suc 0 \<le> the (dhops (rt \<xi>) ip)"
|
613 |
+
show "\<forall>ip\<in>kD (rt \<xi>). rt \<xi> \<sqsubseteq>\<^bsub>ip\<^esub> update (rt \<xi>) (oip \<xi>) (osn \<xi>, kno, val, Suc (hops \<xi>), sip \<xi>, {})"
|
614 |
+
proof
|
615 |
+
fix ip
|
616 |
+
assume "ip\<in>kD (rt \<xi>)"
|
617 |
+
moreover with * have "1 \<le> the (dhops (rt \<xi>) ip)" by simp
|
618 |
+
moreover from \<open>Suc 0 \<le> osn \<xi>\<close>
|
619 |
+
have "update_arg_wf (osn \<xi>, kno, val, Suc (hops \<xi>), sip \<xi>, {})" ..
|
620 |
+
ultimately show "rt \<xi> \<sqsubseteq>\<^bsub>ip\<^esub> update (rt \<xi>) (oip \<xi>) (osn \<xi>, kno, val, Suc (hops \<xi>), sip \<xi>, {})"
|
621 |
+
by (rule rt_fresher_update)
|
622 |
+
qed
|
623 |
+
next
|
624 |
+
fix \<xi> pp p'
|
625 |
+
assume "(\<xi>, pp) \<in> reachable (paodv i) (recvmsg rreq_rrep_sn)"
|
626 |
+
and "{PRrep-:1}\<lbrakk>\<lambda>\<xi>. \<xi>\<lparr>rt := update (rt \<xi>) (dip \<xi>) (dsn \<xi>, kno, val, Suc (hops \<xi>), sip \<xi>, {})\<rparr>\<rbrakk>
|
627 |
+
p' \<in> sterms \<Gamma>\<^sub>A\<^sub>O\<^sub>D\<^sub>V pp"
|
628 |
+
and "Suc 0 \<le> dsn \<xi>"
|
629 |
+
and *: "\<forall>ip\<in>kD (rt \<xi>). Suc 0 \<le> the (dhops (rt \<xi>) ip)"
|
630 |
+
show "\<forall>ip\<in>kD (rt \<xi>). rt \<xi> \<sqsubseteq>\<^bsub>ip\<^esub> update (rt \<xi>) (dip \<xi>) (dsn \<xi>, kno, val, Suc (hops \<xi>), sip \<xi>, {})"
|
631 |
+
proof
|
632 |
+
fix ip
|
633 |
+
assume "ip\<in>kD (rt \<xi>)"
|
634 |
+
moreover with * have "1 \<le> the (dhops (rt \<xi>) ip)" by simp
|
635 |
+
moreover from \<open>Suc 0 \<le> dsn \<xi>\<close>
|
636 |
+
have "update_arg_wf (dsn \<xi>, kno, val, Suc (hops \<xi>), sip \<xi>, {})" ..
|
637 |
+
ultimately show "rt \<xi> \<sqsubseteq>\<^bsub>ip\<^esub> update (rt \<xi>) (dip \<xi>) (dsn \<xi>, kno, val, Suc (hops \<xi>), sip \<xi>, {})"
|
638 |
+
by (rule rt_fresher_update)
|
639 |
+
qed
|
640 |
+
qed
|
641 |
+
|
642 |
+
end
|
643 |
+
|
formal/afp/AODV/document/root.tex
ADDED
@@ -0,0 +1,70 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
% vim:nojs:spelllang=en_au tw=76 sw=4 sts=4 fo+=awn fmr={-{,}-} et ts=8
|
2 |
+
\documentclass[11pt,a4paper]{report}
|
3 |
+
\usepackage[T1]{fontenc}
|
4 |
+
\usepackage{isabelle,isabellesym}
|
5 |
+
|
6 |
+
\usepackage{amssymb}
|
7 |
+
\usepackage[only,bigsqcap]{stmaryrd}
|
8 |
+
|
9 |
+
\usepackage{mathpartir}
|
10 |
+
\usepackage[margin=10mm,bottom=15mm]{geometry}
|
11 |
+
\usepackage[final]{graphicx}
|
12 |
+
|
13 |
+
% this should be the last package used
|
14 |
+
\usepackage{pdfsetup}
|
15 |
+
|
16 |
+
% urls in roman style, theory text in math-similar italics
|
17 |
+
\urlstyle{rm}
|
18 |
+
\isabellestyle{rm}
|
19 |
+
|
20 |
+
\begin{document}
|
21 |
+
|
22 |
+
\title{Loop freedom of the (untimed) AODV routing protocol}
|
23 |
+
\author{Timothy Bourke\thanks{Inria,
|
24 |
+
\'Ecole normale sup\'erieure,
|
25 |
+
and NICTA}
|
26 |
+
\and
|
27 |
+
Peter H\"ofner\thanks{NICTA
|
28 |
+
and Computer Science and Engineering, UNSW}}
|
29 |
+
\maketitle
|
30 |
+
|
31 |
+
\begin{abstract}
|
32 |
+
The Ad hoc On-demand Distance Vector (AODV) routing protocol~\cite{RFC3561}
|
33 |
+
allows the nodes in a Mobile Ad hoc Network (MANET) or a Wireless Mesh
|
34 |
+
Network (WMN) to know where to forward data packets. Such a protocol is
|
35 |
+
`loop free' if it never leads to routing decisions that forward packets in
|
36 |
+
circles.
|
37 |
+
|
38 |
+
This development mechanises an existing pen-and-paper proof of loop freedom
|
39 |
+
of AODV~\cite{FehnkerEtAl:AWN:2013}.
|
40 |
+
The protocol is modelled in the Algebra of Wireless Networks (AWN),
|
41 |
+
which is the subject of an earlier paper~\cite{BourkeEtAl:MechAWN:2014} and
|
42 |
+
mechanization~\cite{Bourke14}.
|
43 |
+
The proof relies on a novel compositional approach for lifting invariants to
|
44 |
+
networks of nodes.
|
45 |
+
|
46 |
+
We exploit the mechanization to analyse several variants of AODV and show
|
47 |
+
that Isabelle/HOL can re-establish most proof obligations automatically and
|
48 |
+
identify exactly the steps that are no longer valid.
|
49 |
+
Each of the variants is essentially a modified copy of the main development.
|
50 |
+
|
51 |
+
Further documentation is available in~\cite{BourkevGlHof:ATVA:2014}.
|
52 |
+
|
53 |
+
\centering{\includegraphics[width=\textwidth]{session_graph}}
|
54 |
+
\end{abstract}
|
55 |
+
|
56 |
+
\newpage
|
57 |
+
\tableofcontents
|
58 |
+
|
59 |
+
% sane default for proof documents
|
60 |
+
\parindent 0pt\parskip 0.5ex
|
61 |
+
|
62 |
+
% generated text of all theories
|
63 |
+
\newpage
|
64 |
+
\input{session}
|
65 |
+
|
66 |
+
% optional bibliography
|
67 |
+
\bibliographystyle{abbrv}
|
68 |
+
\bibliography{root}
|
69 |
+
|
70 |
+
\end{document}
|
formal/afp/AODV/variants/a_norreqid/A_Aodv.thy
ADDED
@@ -0,0 +1,532 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
(* Title: variants/a_norreqid/Aodv.thy
|
2 |
+
License: BSD 2-Clause. See LICENSE.
|
3 |
+
Author: Timothy Bourke, Inria
|
4 |
+
Author: Peter Höfner, NICTA
|
5 |
+
*)
|
6 |
+
|
7 |
+
section "The AODV protocol"
|
8 |
+
|
9 |
+
theory A_Aodv
|
10 |
+
imports A_Aodv_Data A_Aodv_Message
|
11 |
+
AWN.AWN_SOS_Labels AWN.AWN_Invariants
|
12 |
+
begin
|
13 |
+
|
14 |
+
subsection "Data state"
|
15 |
+
|
16 |
+
record state =
|
17 |
+
ip :: "ip"
|
18 |
+
sn :: "sqn"
|
19 |
+
rt :: "rt"
|
20 |
+
rreqs :: "(ip \<times> sqn) set"
|
21 |
+
store :: "store"
|
22 |
+
(* all locals *)
|
23 |
+
msg :: "msg"
|
24 |
+
data :: "data"
|
25 |
+
dests :: "ip \<rightharpoonup> sqn"
|
26 |
+
pre :: "ip set"
|
27 |
+
dip :: "ip"
|
28 |
+
oip :: "ip"
|
29 |
+
hops :: "nat"
|
30 |
+
dsn :: "sqn"
|
31 |
+
dsk :: "k"
|
32 |
+
osn :: "sqn"
|
33 |
+
sip :: "ip"
|
34 |
+
|
35 |
+
abbreviation aodv_init :: "ip \<Rightarrow> state"
|
36 |
+
where "aodv_init i \<equiv> \<lparr>
|
37 |
+
ip = i,
|
38 |
+
sn = 1,
|
39 |
+
rt = Map.empty,
|
40 |
+
rreqs = {},
|
41 |
+
store = Map.empty,
|
42 |
+
|
43 |
+
msg = (SOME x. True),
|
44 |
+
data = (SOME x. True),
|
45 |
+
dests = (SOME x. True),
|
46 |
+
pre = (SOME x. True),
|
47 |
+
dip = (SOME x. True),
|
48 |
+
oip = (SOME x. True),
|
49 |
+
hops = (SOME x. True),
|
50 |
+
dsn = (SOME x. True),
|
51 |
+
dsk = (SOME x. True),
|
52 |
+
osn = (SOME x. True),
|
53 |
+
sip = (SOME x. x \<noteq> i)
|
54 |
+
\<rparr>"
|
55 |
+
|
56 |
+
lemma some_neq_not_eq [simp]: "\<not>((SOME x :: nat. x \<noteq> i) = i)"
|
57 |
+
by (subst some_eq_ex) (metis zero_neq_numeral)
|
58 |
+
|
59 |
+
definition clear_locals :: "state \<Rightarrow> state"
|
60 |
+
where "clear_locals \<xi> = \<xi> \<lparr>
|
61 |
+
msg := (SOME x. True),
|
62 |
+
data := (SOME x. True),
|
63 |
+
dests := (SOME x. True),
|
64 |
+
pre := (SOME x. True),
|
65 |
+
dip := (SOME x. True),
|
66 |
+
oip := (SOME x. True),
|
67 |
+
hops := (SOME x. True),
|
68 |
+
dsn := (SOME x. True),
|
69 |
+
dsk := (SOME x. True),
|
70 |
+
osn := (SOME x. True),
|
71 |
+
sip := (SOME x. x \<noteq> ip \<xi>)
|
72 |
+
\<rparr>"
|
73 |
+
|
74 |
+
lemma clear_locals_sip_not_ip [simp]: "\<not>(sip (clear_locals \<xi>) = ip \<xi>)"
|
75 |
+
unfolding clear_locals_def by simp
|
76 |
+
|
77 |
+
lemma clear_locals_but_not_globals [simp]:
|
78 |
+
"ip (clear_locals \<xi>) = ip \<xi>"
|
79 |
+
"sn (clear_locals \<xi>) = sn \<xi>"
|
80 |
+
"rt (clear_locals \<xi>) = rt \<xi>"
|
81 |
+
"rreqs (clear_locals \<xi>) = rreqs \<xi>"
|
82 |
+
"store (clear_locals \<xi>) = store \<xi>"
|
83 |
+
unfolding clear_locals_def by auto
|
84 |
+
|
85 |
+
subsection "Auxilliary message handling definitions"
|
86 |
+
|
87 |
+
definition is_newpkt
|
88 |
+
where "is_newpkt \<xi> \<equiv> case msg \<xi> of
|
89 |
+
Newpkt data' dip' \<Rightarrow> { \<xi>\<lparr>data := data', dip := dip'\<rparr> }
|
90 |
+
| _ \<Rightarrow> {}"
|
91 |
+
|
92 |
+
definition is_pkt
|
93 |
+
where "is_pkt \<xi> \<equiv> case msg \<xi> of
|
94 |
+
Pkt data' dip' oip' \<Rightarrow> { \<xi>\<lparr> data := data', dip := dip', oip := oip' \<rparr> }
|
95 |
+
| _ \<Rightarrow> {}"
|
96 |
+
|
97 |
+
definition is_rreq
|
98 |
+
where "is_rreq \<xi> \<equiv> case msg \<xi> of
|
99 |
+
Rreq hops' dip' dsn' dsk' oip' osn' sip' \<Rightarrow>
|
100 |
+
{ \<xi>\<lparr> hops := hops', dip := dip', dsn := dsn',
|
101 |
+
dsk := dsk', oip := oip', osn := osn', sip := sip' \<rparr> }
|
102 |
+
| _ \<Rightarrow> {}"
|
103 |
+
|
104 |
+
lemma is_rreq_asm [dest!]:
|
105 |
+
assumes "\<xi>' \<in> is_rreq \<xi>"
|
106 |
+
shows "(\<exists>hops' rreqid' dip' dsn' dsk' oip' osn' sip'.
|
107 |
+
msg \<xi> = Rreq hops' dip' dsn' dsk' oip' osn' sip' \<and>
|
108 |
+
\<xi>' = \<xi>\<lparr> hops := hops', dip := dip', dsn := dsn',
|
109 |
+
dsk := dsk', oip := oip', osn := osn', sip := sip' \<rparr>)"
|
110 |
+
using assms unfolding is_rreq_def
|
111 |
+
by (cases "msg \<xi>") simp_all
|
112 |
+
|
113 |
+
definition is_rrep
|
114 |
+
where "is_rrep \<xi> \<equiv> case msg \<xi> of
|
115 |
+
Rrep hops' dip' dsn' oip' sip' \<Rightarrow>
|
116 |
+
{ \<xi>\<lparr> hops := hops', dip := dip', dsn := dsn', oip := oip', sip := sip' \<rparr> }
|
117 |
+
| _ \<Rightarrow> {}"
|
118 |
+
|
119 |
+
lemma is_rrep_asm [dest!]:
|
120 |
+
assumes "\<xi>' \<in> is_rrep \<xi>"
|
121 |
+
shows "(\<exists>hops' dip' dsn' oip' sip'.
|
122 |
+
msg \<xi> = Rrep hops' dip' dsn' oip' sip' \<and>
|
123 |
+
\<xi>' = \<xi>\<lparr> hops := hops', dip := dip', dsn := dsn', oip := oip', sip := sip' \<rparr>)"
|
124 |
+
using assms unfolding is_rrep_def
|
125 |
+
by (cases "msg \<xi>") simp_all
|
126 |
+
|
127 |
+
definition is_rerr
|
128 |
+
where "is_rerr \<xi> \<equiv> case msg \<xi> of
|
129 |
+
Rerr dests' sip' \<Rightarrow> { \<xi>\<lparr> dests := dests', sip := sip' \<rparr> }
|
130 |
+
| _ \<Rightarrow> {}"
|
131 |
+
|
132 |
+
lemma is_rerr_asm [dest!]:
|
133 |
+
assumes "\<xi>' \<in> is_rerr \<xi>"
|
134 |
+
shows "(\<exists>dests' sip'.
|
135 |
+
msg \<xi> = Rerr dests' sip' \<and>
|
136 |
+
\<xi>' = \<xi>\<lparr> dests := dests', sip := sip' \<rparr>)"
|
137 |
+
using assms unfolding is_rerr_def
|
138 |
+
by (cases "msg \<xi>") simp_all
|
139 |
+
|
140 |
+
lemmas is_msg_defs =
|
141 |
+
is_rerr_def is_rrep_def is_rreq_def is_pkt_def is_newpkt_def
|
142 |
+
|
143 |
+
lemma is_msg_inv_ip [simp]:
|
144 |
+
"\<xi>' \<in> is_rerr \<xi> \<Longrightarrow> ip \<xi>' = ip \<xi>"
|
145 |
+
"\<xi>' \<in> is_rrep \<xi> \<Longrightarrow> ip \<xi>' = ip \<xi>"
|
146 |
+
"\<xi>' \<in> is_rreq \<xi> \<Longrightarrow> ip \<xi>' = ip \<xi>"
|
147 |
+
"\<xi>' \<in> is_pkt \<xi> \<Longrightarrow> ip \<xi>' = ip \<xi>"
|
148 |
+
"\<xi>' \<in> is_newpkt \<xi> \<Longrightarrow> ip \<xi>' = ip \<xi>"
|
149 |
+
unfolding is_msg_defs
|
150 |
+
by (cases "msg \<xi>", clarsimp+)+
|
151 |
+
|
152 |
+
lemma is_msg_inv_sn [simp]:
|
153 |
+
"\<xi>' \<in> is_rerr \<xi> \<Longrightarrow> sn \<xi>' = sn \<xi>"
|
154 |
+
"\<xi>' \<in> is_rrep \<xi> \<Longrightarrow> sn \<xi>' = sn \<xi>"
|
155 |
+
"\<xi>' \<in> is_rreq \<xi> \<Longrightarrow> sn \<xi>' = sn \<xi>"
|
156 |
+
"\<xi>' \<in> is_pkt \<xi> \<Longrightarrow> sn \<xi>' = sn \<xi>"
|
157 |
+
"\<xi>' \<in> is_newpkt \<xi> \<Longrightarrow> sn \<xi>' = sn \<xi>"
|
158 |
+
unfolding is_msg_defs
|
159 |
+
by (cases "msg \<xi>", clarsimp+)+
|
160 |
+
|
161 |
+
lemma is_msg_inv_rt [simp]:
|
162 |
+
"\<xi>' \<in> is_rerr \<xi> \<Longrightarrow> rt \<xi>' = rt \<xi>"
|
163 |
+
"\<xi>' \<in> is_rrep \<xi> \<Longrightarrow> rt \<xi>' = rt \<xi>"
|
164 |
+
"\<xi>' \<in> is_rreq \<xi> \<Longrightarrow> rt \<xi>' = rt \<xi>"
|
165 |
+
"\<xi>' \<in> is_pkt \<xi> \<Longrightarrow> rt \<xi>' = rt \<xi>"
|
166 |
+
"\<xi>' \<in> is_newpkt \<xi> \<Longrightarrow> rt \<xi>' = rt \<xi>"
|
167 |
+
unfolding is_msg_defs
|
168 |
+
by (cases "msg \<xi>", clarsimp+)+
|
169 |
+
|
170 |
+
lemma is_msg_inv_rreqs [simp]:
|
171 |
+
"\<xi>' \<in> is_rerr \<xi> \<Longrightarrow> rreqs \<xi>' = rreqs \<xi>"
|
172 |
+
"\<xi>' \<in> is_rrep \<xi> \<Longrightarrow> rreqs \<xi>' = rreqs \<xi>"
|
173 |
+
"\<xi>' \<in> is_rreq \<xi> \<Longrightarrow> rreqs \<xi>' = rreqs \<xi>"
|
174 |
+
"\<xi>' \<in> is_pkt \<xi> \<Longrightarrow> rreqs \<xi>' = rreqs \<xi>"
|
175 |
+
"\<xi>' \<in> is_newpkt \<xi> \<Longrightarrow> rreqs \<xi>' = rreqs \<xi>"
|
176 |
+
unfolding is_msg_defs
|
177 |
+
by (cases "msg \<xi>", clarsimp+)+
|
178 |
+
|
179 |
+
lemma is_msg_inv_store [simp]:
|
180 |
+
"\<xi>' \<in> is_rerr \<xi> \<Longrightarrow> store \<xi>' = store \<xi>"
|
181 |
+
"\<xi>' \<in> is_rrep \<xi> \<Longrightarrow> store \<xi>' = store \<xi>"
|
182 |
+
"\<xi>' \<in> is_rreq \<xi> \<Longrightarrow> store \<xi>' = store \<xi>"
|
183 |
+
"\<xi>' \<in> is_pkt \<xi> \<Longrightarrow> store \<xi>' = store \<xi>"
|
184 |
+
"\<xi>' \<in> is_newpkt \<xi> \<Longrightarrow> store \<xi>' = store \<xi>"
|
185 |
+
unfolding is_msg_defs
|
186 |
+
by (cases "msg \<xi>", clarsimp+)+
|
187 |
+
|
188 |
+
lemma is_msg_inv_sip [simp]:
|
189 |
+
"\<xi>' \<in> is_pkt \<xi> \<Longrightarrow> sip \<xi>' = sip \<xi>"
|
190 |
+
"\<xi>' \<in> is_newpkt \<xi> \<Longrightarrow> sip \<xi>' = sip \<xi>"
|
191 |
+
unfolding is_msg_defs
|
192 |
+
by (cases "msg \<xi>", clarsimp+)+
|
193 |
+
|
194 |
+
subsection "The protocol process"
|
195 |
+
|
196 |
+
datatype pseqp =
|
197 |
+
PAodv
|
198 |
+
| PNewPkt
|
199 |
+
| PPkt
|
200 |
+
| PRreq
|
201 |
+
| PRrep
|
202 |
+
| PRerr
|
203 |
+
|
204 |
+
fun nat_of_seqp :: "pseqp \<Rightarrow> nat"
|
205 |
+
where
|
206 |
+
"nat_of_seqp PAodv = 1"
|
207 |
+
| "nat_of_seqp PPkt = 2"
|
208 |
+
| "nat_of_seqp PNewPkt = 3"
|
209 |
+
| "nat_of_seqp PRreq = 4"
|
210 |
+
| "nat_of_seqp PRrep = 5"
|
211 |
+
| "nat_of_seqp PRerr = 6"
|
212 |
+
|
213 |
+
instantiation "pseqp" :: ord
|
214 |
+
begin
|
215 |
+
definition less_eq_seqp [iff]: "l1 \<le> l2 = (nat_of_seqp l1 \<le> nat_of_seqp l2)"
|
216 |
+
definition less_seqp [iff]: "l1 < l2 = (nat_of_seqp l1 < nat_of_seqp l2)"
|
217 |
+
instance ..
|
218 |
+
end
|
219 |
+
|
220 |
+
abbreviation AODV
|
221 |
+
where
|
222 |
+
"AODV \<equiv> \<lambda>_. \<lbrakk>clear_locals\<rbrakk> call(PAodv)"
|
223 |
+
|
224 |
+
abbreviation PKT
|
225 |
+
where
|
226 |
+
"PKT args \<equiv>
|
227 |
+
|
228 |
+
\<lbrakk>\<xi>. let (data, dip, oip) = args \<xi> in
|
229 |
+
(clear_locals \<xi>) \<lparr> data := data, dip := dip, oip := oip \<rparr>\<rbrakk>
|
230 |
+
call(PPkt)"
|
231 |
+
abbreviation NEWPKT
|
232 |
+
where
|
233 |
+
"NEWPKT args \<equiv>
|
234 |
+
\<lbrakk>\<xi>. let (data, dip) = args \<xi> in
|
235 |
+
(clear_locals \<xi>) \<lparr> data := data, dip := dip \<rparr>\<rbrakk>
|
236 |
+
call(PNewPkt)"
|
237 |
+
|
238 |
+
abbreviation RREQ
|
239 |
+
where
|
240 |
+
"RREQ args \<equiv>
|
241 |
+
\<lbrakk>\<xi>. let (hops, dip, dsn, dsk, oip, osn, sip) = args \<xi> in
|
242 |
+
(clear_locals \<xi>) \<lparr> hops := hops, dip := dip,
|
243 |
+
dsn := dsn, dsk := dsk, oip := oip,
|
244 |
+
osn := osn, sip := sip \<rparr>\<rbrakk>
|
245 |
+
call(PRreq)"
|
246 |
+
|
247 |
+
abbreviation RREP
|
248 |
+
where
|
249 |
+
"RREP args \<equiv>
|
250 |
+
\<lbrakk>\<xi>. let (hops, dip, dsn, oip, sip) = args \<xi> in
|
251 |
+
(clear_locals \<xi>) \<lparr> hops := hops, dip := dip, dsn := dsn,
|
252 |
+
oip := oip, sip := sip \<rparr>\<rbrakk>
|
253 |
+
call(PRrep)"
|
254 |
+
|
255 |
+
abbreviation RERR
|
256 |
+
where
|
257 |
+
"RERR args \<equiv>
|
258 |
+
\<lbrakk>\<xi>. let (dests, sip) = args \<xi> in
|
259 |
+
(clear_locals \<xi>) \<lparr> dests := dests, sip := sip \<rparr>\<rbrakk>
|
260 |
+
call(PRerr)"
|
261 |
+
|
262 |
+
fun \<Gamma>\<^sub>A\<^sub>O\<^sub>D\<^sub>V :: "(state, msg, pseqp, pseqp label) seqp_env"
|
263 |
+
where
|
264 |
+
"\<Gamma>\<^sub>A\<^sub>O\<^sub>D\<^sub>V PAodv = labelled PAodv (
|
265 |
+
receive(\<lambda>msg' \<xi>. \<xi> \<lparr> msg := msg' \<rparr>).
|
266 |
+
( \<langle>is_newpkt\<rangle> NEWPKT(\<lambda>\<xi>. (data \<xi>, ip \<xi>))
|
267 |
+
\<oplus> \<langle>is_pkt\<rangle> PKT(\<lambda>\<xi>. (data \<xi>, dip \<xi>, oip \<xi>))
|
268 |
+
\<oplus> \<langle>is_rreq\<rangle>
|
269 |
+
\<lbrakk>\<xi>. \<xi> \<lparr>rt := update (rt \<xi>) (sip \<xi>) (0, unk, val, 1, sip \<xi>, {}) \<rparr>\<rbrakk>
|
270 |
+
RREQ(\<lambda>\<xi>. (hops \<xi>, dip \<xi>, dsn \<xi>, dsk \<xi>, oip \<xi>, osn \<xi>, sip \<xi>))
|
271 |
+
\<oplus> \<langle>is_rrep\<rangle>
|
272 |
+
\<lbrakk>\<xi>. \<xi> \<lparr>rt := update (rt \<xi>) (sip \<xi>) (0, unk, val, 1, sip \<xi>, {}) \<rparr>\<rbrakk>
|
273 |
+
RREP(\<lambda>\<xi>. (hops \<xi>, dip \<xi>, dsn \<xi>, oip \<xi>, sip \<xi>))
|
274 |
+
\<oplus> \<langle>is_rerr\<rangle>
|
275 |
+
\<lbrakk>\<xi>. \<xi> \<lparr>rt := update (rt \<xi>) (sip \<xi>) (0, unk, val, 1, sip \<xi>, {}) \<rparr>\<rbrakk>
|
276 |
+
RERR(\<lambda>\<xi>. (dests \<xi>, sip \<xi>))
|
277 |
+
)
|
278 |
+
\<oplus> \<langle>\<lambda>\<xi>. { \<xi>\<lparr> dip := dip \<rparr> | dip. dip \<in> qD(store \<xi>) \<inter> vD(rt \<xi>) }\<rangle>
|
279 |
+
\<lbrakk>\<xi>. \<xi> \<lparr> data := hd(\<sigma>\<^bsub>queue\<^esub>(store \<xi>, dip \<xi>)) \<rparr>\<rbrakk>
|
280 |
+
unicast(\<lambda>\<xi>. the (nhop (rt \<xi>) (dip \<xi>)), \<lambda>\<xi>. pkt(data \<xi>, dip \<xi>, ip \<xi>)).
|
281 |
+
\<lbrakk>\<xi>. \<xi> \<lparr> store := the (drop (dip \<xi>) (store \<xi>)) \<rparr>\<rbrakk>
|
282 |
+
AODV()
|
283 |
+
\<triangleright> \<lbrakk>\<xi>. \<xi> \<lparr> dests := (\<lambda>rip. if (rip \<in> vD (rt \<xi>) \<and> nhop (rt \<xi>) rip = nhop (rt \<xi>) (dip \<xi>))
|
284 |
+
then Some (inc (sqn (rt \<xi>) rip)) else None) \<rparr>\<rbrakk>
|
285 |
+
\<lbrakk>\<xi>. \<xi> \<lparr> rt := invalidate (rt \<xi>) (dests \<xi>) \<rparr>\<rbrakk>
|
286 |
+
\<lbrakk>\<xi>. \<xi> \<lparr> store := setRRF (store \<xi>) (dests \<xi>)\<rparr>\<rbrakk>
|
287 |
+
\<lbrakk>\<xi>. \<xi> \<lparr> pre := \<Union>{ the (precs (rt \<xi>) rip) | rip. rip \<in> dom (dests \<xi>) } \<rparr>\<rbrakk>
|
288 |
+
\<lbrakk>\<xi>. \<xi> \<lparr> dests := (\<lambda>rip. if ((dests \<xi>) rip \<noteq> None \<and> the (precs (rt \<xi>) rip) \<noteq> {})
|
289 |
+
then (dests \<xi>) rip else None) \<rparr>\<rbrakk>
|
290 |
+
groupcast(\<lambda>\<xi>. pre \<xi>, \<lambda>\<xi>. rerr(dests \<xi>, ip \<xi>)). AODV()
|
291 |
+
\<oplus> \<langle>\<lambda>\<xi>. { \<xi>\<lparr> dip := dip \<rparr>
|
292 |
+
| dip. dip \<in> qD(store \<xi>) - vD(rt \<xi>) \<and> the (\<sigma>\<^bsub>p-flag\<^esub>(store \<xi>, dip)) = req }\<rangle>
|
293 |
+
\<lbrakk>\<xi>. \<xi> \<lparr> store := unsetRRF (store \<xi>) (dip \<xi>) \<rparr>\<rbrakk>
|
294 |
+
\<lbrakk>\<xi>. \<xi> \<lparr> sn := inc (sn \<xi>) \<rparr>\<rbrakk>
|
295 |
+
\<lbrakk>\<xi>. \<xi> \<lparr> rreqs := rreqs \<xi> \<union> {(ip \<xi>, sn \<xi>)} \<rparr>\<rbrakk>
|
296 |
+
broadcast(\<lambda>\<xi>. rreq(0, dip \<xi>, sqn (rt \<xi>) (dip \<xi>), sqnf (rt \<xi>) (dip \<xi>),
|
297 |
+
ip \<xi>, sn \<xi>, ip \<xi>)). AODV())"
|
298 |
+
|
299 |
+
| "\<Gamma>\<^sub>A\<^sub>O\<^sub>D\<^sub>V PNewPkt = labelled PNewPkt (
|
300 |
+
\<langle>\<xi>. dip \<xi> = ip \<xi>\<rangle>
|
301 |
+
deliver(\<lambda>\<xi>. data \<xi>).AODV()
|
302 |
+
\<oplus> \<langle>\<xi>. dip \<xi> \<noteq> ip \<xi>\<rangle>
|
303 |
+
\<lbrakk>\<xi>. \<xi> \<lparr> store := add (data \<xi>) (dip \<xi>) (store \<xi>) \<rparr>\<rbrakk>
|
304 |
+
AODV())"
|
305 |
+
|
306 |
+
| "\<Gamma>\<^sub>A\<^sub>O\<^sub>D\<^sub>V PPkt = labelled PPkt (
|
307 |
+
\<langle>\<xi>. dip \<xi> = ip \<xi>\<rangle>
|
308 |
+
deliver(\<lambda>\<xi>. data \<xi>).AODV()
|
309 |
+
\<oplus> \<langle>\<xi>. dip \<xi> \<noteq> ip \<xi>\<rangle>
|
310 |
+
(
|
311 |
+
\<langle>\<xi>. dip \<xi> \<in> vD (rt \<xi>)\<rangle>
|
312 |
+
unicast(\<lambda>\<xi>. the (nhop (rt \<xi>) (dip \<xi>)), \<lambda>\<xi>. pkt(data \<xi>, dip \<xi>, oip \<xi>)).AODV()
|
313 |
+
\<triangleright>
|
314 |
+
\<lbrakk>\<xi>. \<xi> \<lparr> dests := (\<lambda>rip. if (rip \<in> vD (rt \<xi>) \<and> nhop (rt \<xi>) rip = nhop (rt \<xi>) (dip \<xi>))
|
315 |
+
then Some (inc (sqn (rt \<xi>) rip)) else None) \<rparr>\<rbrakk>
|
316 |
+
\<lbrakk>\<xi>. \<xi> \<lparr> rt := invalidate (rt \<xi>) (dests \<xi>) \<rparr>\<rbrakk>
|
317 |
+
\<lbrakk>\<xi>. \<xi> \<lparr> store := setRRF (store \<xi>) (dests \<xi>)\<rparr>\<rbrakk>
|
318 |
+
\<lbrakk>\<xi>. \<xi> \<lparr> pre := \<Union>{ the (precs (rt \<xi>) rip) | rip. rip \<in> dom (dests \<xi>) } \<rparr>\<rbrakk>
|
319 |
+
\<lbrakk>\<xi>. \<xi> \<lparr> dests := (\<lambda>rip. if ((dests \<xi>) rip \<noteq> None \<and> the (precs (rt \<xi>) rip) \<noteq> {})
|
320 |
+
then (dests \<xi>) rip else None) \<rparr>\<rbrakk>
|
321 |
+
groupcast(\<lambda>\<xi>. pre \<xi>, \<lambda>\<xi>. rerr(dests \<xi>, ip \<xi>)).AODV()
|
322 |
+
\<oplus> \<langle>\<xi>. dip \<xi> \<notin> vD (rt \<xi>)\<rangle>
|
323 |
+
(
|
324 |
+
\<langle>\<xi>. dip \<xi> \<in> iD (rt \<xi>)\<rangle>
|
325 |
+
groupcast(\<lambda>\<xi>. the (precs (rt \<xi>) (dip \<xi>)),
|
326 |
+
\<lambda>\<xi>. rerr([dip \<xi> \<mapsto> sqn (rt \<xi>) (dip \<xi>)], ip \<xi>)). AODV()
|
327 |
+
\<oplus> \<langle>\<xi>. dip \<xi> \<notin> iD (rt \<xi>)\<rangle>
|
328 |
+
AODV()
|
329 |
+
)
|
330 |
+
))"
|
331 |
+
|
332 |
+
| "\<Gamma>\<^sub>A\<^sub>O\<^sub>D\<^sub>V PRreq = labelled PRreq (
|
333 |
+
\<langle>\<xi>. (oip \<xi>, osn \<xi>) \<in> rreqs \<xi>\<rangle>
|
334 |
+
AODV()
|
335 |
+
\<oplus> \<langle>\<xi>. (oip \<xi>, osn \<xi>) \<notin> rreqs \<xi>\<rangle>
|
336 |
+
\<lbrakk>\<xi>. \<xi> \<lparr> rt := update (rt \<xi>) (oip \<xi>) (osn \<xi>, kno, val, hops \<xi> + 1, sip \<xi>, {}) \<rparr>\<rbrakk>
|
337 |
+
\<lbrakk>\<xi>. \<xi> \<lparr> rreqs := rreqs \<xi> \<union> {(oip \<xi>, osn \<xi>)} \<rparr>\<rbrakk>
|
338 |
+
(
|
339 |
+
\<langle>\<xi>. dip \<xi> = ip \<xi>\<rangle>
|
340 |
+
\<lbrakk>\<xi>. \<xi> \<lparr> sn := max (sn \<xi>) (dsn \<xi>) \<rparr>\<rbrakk>
|
341 |
+
unicast(\<lambda>\<xi>. the (nhop (rt \<xi>) (oip \<xi>)), \<lambda>\<xi>. rrep(0, dip \<xi>, sn \<xi>, oip \<xi>, ip \<xi>)).AODV()
|
342 |
+
\<triangleright>
|
343 |
+
\<lbrakk>\<xi>. \<xi> \<lparr> dests := (\<lambda>rip. if (rip \<in> vD (rt \<xi>) \<and> nhop (rt \<xi>) rip = nhop (rt \<xi>) (oip \<xi>))
|
344 |
+
then Some (inc (sqn (rt \<xi>) rip)) else None) \<rparr>\<rbrakk>
|
345 |
+
\<lbrakk>\<xi>. \<xi> \<lparr> rt := invalidate (rt \<xi>) (dests \<xi>) \<rparr>\<rbrakk>
|
346 |
+
\<lbrakk>\<xi>. \<xi> \<lparr> store := setRRF (store \<xi>) (dests \<xi>)\<rparr>\<rbrakk>
|
347 |
+
\<lbrakk>\<xi>. \<xi> \<lparr> pre := \<Union>{ the (precs (rt \<xi>) rip) | rip. rip \<in> dom (dests \<xi>) } \<rparr>\<rbrakk>
|
348 |
+
\<lbrakk>\<xi>. \<xi> \<lparr> dests := (\<lambda>rip. if ((dests \<xi>) rip \<noteq> None \<and> the (precs (rt \<xi>) rip) \<noteq> {})
|
349 |
+
then (dests \<xi>) rip else None) \<rparr>\<rbrakk>
|
350 |
+
groupcast(\<lambda>\<xi>. pre \<xi>, \<lambda>\<xi>. rerr(dests \<xi>, ip \<xi>)).AODV()
|
351 |
+
\<oplus> \<langle>\<xi>. dip \<xi> \<noteq> ip \<xi>\<rangle>
|
352 |
+
(
|
353 |
+
\<langle>\<xi>. dip \<xi> \<in> vD (rt \<xi>) \<and> dsn \<xi> \<le> sqn (rt \<xi>) (dip \<xi>) \<and> sqnf (rt \<xi>) (dip \<xi>) = kno\<rangle>
|
354 |
+
\<lbrakk>\<xi>. \<xi> \<lparr> rt := the (addpreRT (rt \<xi>) (dip \<xi>) {sip \<xi>}) \<rparr>\<rbrakk>
|
355 |
+
\<lbrakk>\<xi>. \<xi> \<lparr> rt := the (addpreRT (rt \<xi>) (oip \<xi>) {the (nhop (rt \<xi>) (dip \<xi>))}) \<rparr>\<rbrakk>
|
356 |
+
unicast(\<lambda>\<xi>. the (nhop (rt \<xi>) (oip \<xi>)), \<lambda>\<xi>. rrep(the (dhops (rt \<xi>) (dip \<xi>)), dip \<xi>,
|
357 |
+
sqn (rt \<xi>) (dip \<xi>), oip \<xi>, ip \<xi>)).
|
358 |
+
AODV()
|
359 |
+
\<triangleright>
|
360 |
+
\<lbrakk>\<xi>. \<xi> \<lparr> dests := (\<lambda>rip. if (rip \<in> vD (rt \<xi>) \<and> nhop (rt \<xi>) rip = nhop (rt \<xi>) (oip \<xi>))
|
361 |
+
then Some (inc (sqn (rt \<xi>) rip)) else None) \<rparr>\<rbrakk>
|
362 |
+
\<lbrakk>\<xi>. \<xi> \<lparr> rt := invalidate (rt \<xi>) (dests \<xi>) \<rparr>\<rbrakk>
|
363 |
+
\<lbrakk>\<xi>. \<xi> \<lparr> store := setRRF (store \<xi>) (dests \<xi>)\<rparr>\<rbrakk>
|
364 |
+
\<lbrakk>\<xi>. \<xi> \<lparr> pre := \<Union>{ the (precs (rt \<xi>) rip) | rip. rip \<in> dom (dests \<xi>) } \<rparr>\<rbrakk>
|
365 |
+
\<lbrakk>\<xi>. \<xi> \<lparr> dests := (\<lambda>rip. if ((dests \<xi>) rip \<noteq> None \<and> the (precs (rt \<xi>) rip) \<noteq> {})
|
366 |
+
then (dests \<xi>) rip else None) \<rparr>\<rbrakk>
|
367 |
+
groupcast(\<lambda>\<xi>. pre \<xi>, \<lambda>\<xi>. rerr(dests \<xi>, ip \<xi>)).AODV()
|
368 |
+
\<oplus> \<langle>\<xi>. dip \<xi> \<notin> vD (rt \<xi>) \<or> sqn (rt \<xi>) (dip \<xi>) < dsn \<xi> \<or> sqnf (rt \<xi>) (dip \<xi>) = unk\<rangle>
|
369 |
+
broadcast(\<lambda>\<xi>. rreq(hops \<xi> + 1, dip \<xi>, max (sqn (rt \<xi>) (dip \<xi>)) (dsn \<xi>),
|
370 |
+
dsk \<xi>, oip \<xi>, osn \<xi>, ip \<xi>)).
|
371 |
+
AODV()
|
372 |
+
)
|
373 |
+
))"
|
374 |
+
|
375 |
+
| "\<Gamma>\<^sub>A\<^sub>O\<^sub>D\<^sub>V PRrep = labelled PRrep (
|
376 |
+
\<langle>\<xi>. rt \<xi> \<noteq> update (rt \<xi>) (dip \<xi>) (dsn \<xi>, kno, val, hops \<xi> + 1, sip \<xi>, {}) \<rangle>
|
377 |
+
(
|
378 |
+
\<lbrakk>\<xi>. \<xi> \<lparr> rt := update (rt \<xi>) (dip \<xi>) (dsn \<xi>, kno, val, hops \<xi> + 1, sip \<xi>, {}) \<rparr> \<rbrakk>
|
379 |
+
(
|
380 |
+
\<langle>\<xi>. oip \<xi> = ip \<xi> \<rangle>
|
381 |
+
AODV()
|
382 |
+
\<oplus> \<langle>\<xi>. oip \<xi> \<noteq> ip \<xi> \<rangle>
|
383 |
+
(
|
384 |
+
\<langle>\<xi>. oip \<xi> \<in> vD (rt \<xi>)\<rangle>
|
385 |
+
\<lbrakk>\<xi>. \<xi> \<lparr> rt := the (addpreRT (rt \<xi>) (dip \<xi>) {the (nhop (rt \<xi>) (oip \<xi>))}) \<rparr>\<rbrakk>
|
386 |
+
\<lbrakk>\<xi>. \<xi> \<lparr> rt := the (addpreRT (rt \<xi>) (the (nhop (rt \<xi>) (dip \<xi>)))
|
387 |
+
{the (nhop (rt \<xi>) (oip \<xi>))}) \<rparr>\<rbrakk>
|
388 |
+
unicast(\<lambda>\<xi>. the (nhop (rt \<xi>) (oip \<xi>)), \<lambda>\<xi>. rrep(hops \<xi> + 1, dip \<xi>, dsn \<xi>, oip \<xi>, ip \<xi>)).
|
389 |
+
AODV()
|
390 |
+
\<triangleright>
|
391 |
+
\<lbrakk>\<xi>. \<xi> \<lparr> dests := (\<lambda>rip. if (rip \<in> vD (rt \<xi>) \<and> nhop (rt \<xi>) rip = nhop (rt \<xi>) (oip \<xi>))
|
392 |
+
then Some (inc (sqn (rt \<xi>) rip)) else None) \<rparr>\<rbrakk>
|
393 |
+
\<lbrakk>\<xi>. \<xi> \<lparr> rt := invalidate (rt \<xi>) (dests \<xi>) \<rparr>\<rbrakk>
|
394 |
+
\<lbrakk>\<xi>. \<xi> \<lparr> store := setRRF (store \<xi>) (dests \<xi>)\<rparr>\<rbrakk>
|
395 |
+
\<lbrakk>\<xi>. \<xi> \<lparr> pre := \<Union>{ the (precs (rt \<xi>) rip) | rip. rip \<in> dom (dests \<xi>) } \<rparr>\<rbrakk>
|
396 |
+
\<lbrakk>\<xi>. \<xi> \<lparr> dests := (\<lambda>rip. if ((dests \<xi>) rip \<noteq> None \<and> the (precs (rt \<xi>) rip) \<noteq> {})
|
397 |
+
then (dests \<xi>) rip else None) \<rparr>\<rbrakk>
|
398 |
+
groupcast(\<lambda>\<xi>. pre \<xi>, \<lambda>\<xi>. rerr(dests \<xi>, ip \<xi>)).AODV()
|
399 |
+
\<oplus> \<langle>\<xi>. oip \<xi> \<notin> vD (rt \<xi>)\<rangle>
|
400 |
+
AODV()
|
401 |
+
)
|
402 |
+
)
|
403 |
+
)
|
404 |
+
\<oplus> \<langle>\<xi>. rt \<xi> = update (rt \<xi>) (dip \<xi>) (dsn \<xi>, kno, val, hops \<xi> + 1, sip \<xi>, {}) \<rangle>
|
405 |
+
AODV()
|
406 |
+
)"
|
407 |
+
|
408 |
+
| "\<Gamma>\<^sub>A\<^sub>O\<^sub>D\<^sub>V PRerr = labelled PRerr (
|
409 |
+
\<lbrakk>\<xi>. \<xi> \<lparr> dests := (\<lambda>rip. case (dests \<xi>) rip of None \<Rightarrow> None
|
410 |
+
| Some rsn \<Rightarrow> if rip \<in> vD (rt \<xi>) \<and> the (nhop (rt \<xi>) rip) = sip \<xi>
|
411 |
+
\<and> sqn (rt \<xi>) rip < rsn then Some rsn else None) \<rparr>\<rbrakk>
|
412 |
+
\<lbrakk>\<xi>. \<xi> \<lparr> rt := invalidate (rt \<xi>) (dests \<xi>) \<rparr>\<rbrakk>
|
413 |
+
\<lbrakk>\<xi>. \<xi> \<lparr> store := setRRF (store \<xi>) (dests \<xi>)\<rparr>\<rbrakk>
|
414 |
+
\<lbrakk>\<xi>. \<xi> \<lparr> pre := \<Union>{ the (precs (rt \<xi>) rip) | rip. rip \<in> dom (dests \<xi>) } \<rparr>\<rbrakk>
|
415 |
+
\<lbrakk>\<xi>. \<xi> \<lparr> dests := (\<lambda>rip. if ((dests \<xi>) rip \<noteq> None \<and> the (precs (rt \<xi>) rip) \<noteq> {})
|
416 |
+
then (dests \<xi>) rip else None) \<rparr>\<rbrakk>
|
417 |
+
groupcast(\<lambda>\<xi>. pre \<xi>, \<lambda>\<xi>. rerr(dests \<xi>, ip \<xi>)). AODV())"
|
418 |
+
|
419 |
+
declare \<Gamma>\<^sub>A\<^sub>O\<^sub>D\<^sub>V.simps [simp del, code del]
|
420 |
+
lemmas \<Gamma>\<^sub>A\<^sub>O\<^sub>D\<^sub>V_simps [simp, code] = \<Gamma>\<^sub>A\<^sub>O\<^sub>D\<^sub>V.simps [simplified]
|
421 |
+
|
422 |
+
fun \<Gamma>\<^sub>A\<^sub>O\<^sub>D\<^sub>V_skeleton
|
423 |
+
where
|
424 |
+
"\<Gamma>\<^sub>A\<^sub>O\<^sub>D\<^sub>V_skeleton PAodv = seqp_skeleton (\<Gamma>\<^sub>A\<^sub>O\<^sub>D\<^sub>V PAodv)"
|
425 |
+
| "\<Gamma>\<^sub>A\<^sub>O\<^sub>D\<^sub>V_skeleton PNewPkt = seqp_skeleton (\<Gamma>\<^sub>A\<^sub>O\<^sub>D\<^sub>V PNewPkt)"
|
426 |
+
| "\<Gamma>\<^sub>A\<^sub>O\<^sub>D\<^sub>V_skeleton PPkt = seqp_skeleton (\<Gamma>\<^sub>A\<^sub>O\<^sub>D\<^sub>V PPkt)"
|
427 |
+
| "\<Gamma>\<^sub>A\<^sub>O\<^sub>D\<^sub>V_skeleton PRreq = seqp_skeleton (\<Gamma>\<^sub>A\<^sub>O\<^sub>D\<^sub>V PRreq)"
|
428 |
+
| "\<Gamma>\<^sub>A\<^sub>O\<^sub>D\<^sub>V_skeleton PRrep = seqp_skeleton (\<Gamma>\<^sub>A\<^sub>O\<^sub>D\<^sub>V PRrep)"
|
429 |
+
| "\<Gamma>\<^sub>A\<^sub>O\<^sub>D\<^sub>V_skeleton PRerr = seqp_skeleton (\<Gamma>\<^sub>A\<^sub>O\<^sub>D\<^sub>V PRerr)"
|
430 |
+
|
431 |
+
lemma \<Gamma>\<^sub>A\<^sub>O\<^sub>D\<^sub>V_skeleton_wf [simp]:
|
432 |
+
"wellformed \<Gamma>\<^sub>A\<^sub>O\<^sub>D\<^sub>V_skeleton"
|
433 |
+
proof (rule, intro allI)
|
434 |
+
fix pn pn'
|
435 |
+
show "call(pn') \<notin> stermsl (\<Gamma>\<^sub>A\<^sub>O\<^sub>D\<^sub>V_skeleton pn)"
|
436 |
+
by (cases pn) simp_all
|
437 |
+
qed
|
438 |
+
|
439 |
+
declare \<Gamma>\<^sub>A\<^sub>O\<^sub>D\<^sub>V_skeleton.simps [simp del, code del]
|
440 |
+
lemmas \<Gamma>\<^sub>A\<^sub>O\<^sub>D\<^sub>V_skeleton_simps [simp, code]
|
441 |
+
= \<Gamma>\<^sub>A\<^sub>O\<^sub>D\<^sub>V_skeleton.simps [simplified \<Gamma>\<^sub>A\<^sub>O\<^sub>D\<^sub>V_simps seqp_skeleton.simps]
|
442 |
+
|
443 |
+
lemma aodv_proc_cases [dest]:
|
444 |
+
fixes p pn
|
445 |
+
shows "p \<in> ctermsl (\<Gamma>\<^sub>A\<^sub>O\<^sub>D\<^sub>V pn) \<Longrightarrow>
|
446 |
+
(p \<in> ctermsl (\<Gamma>\<^sub>A\<^sub>O\<^sub>D\<^sub>V PAodv) \<or>
|
447 |
+
p \<in> ctermsl (\<Gamma>\<^sub>A\<^sub>O\<^sub>D\<^sub>V PNewPkt) \<or>
|
448 |
+
p \<in> ctermsl (\<Gamma>\<^sub>A\<^sub>O\<^sub>D\<^sub>V PPkt) \<or>
|
449 |
+
p \<in> ctermsl (\<Gamma>\<^sub>A\<^sub>O\<^sub>D\<^sub>V PRreq) \<or>
|
450 |
+
p \<in> ctermsl (\<Gamma>\<^sub>A\<^sub>O\<^sub>D\<^sub>V PRrep) \<or>
|
451 |
+
p \<in> ctermsl (\<Gamma>\<^sub>A\<^sub>O\<^sub>D\<^sub>V PRerr))"
|
452 |
+
by (cases pn) simp_all
|
453 |
+
|
454 |
+
definition \<sigma>\<^sub>A\<^sub>O\<^sub>D\<^sub>V :: "ip \<Rightarrow> (state \<times> (state, msg, pseqp, pseqp label) seqp) set"
|
455 |
+
where "\<sigma>\<^sub>A\<^sub>O\<^sub>D\<^sub>V i \<equiv> {(aodv_init i, \<Gamma>\<^sub>A\<^sub>O\<^sub>D\<^sub>V PAodv)}"
|
456 |
+
|
457 |
+
abbreviation paodv
|
458 |
+
:: "ip \<Rightarrow> (state \<times> (state, msg, pseqp, pseqp label) seqp, msg seq_action) automaton"
|
459 |
+
where
|
460 |
+
"paodv i \<equiv> \<lparr> init = \<sigma>\<^sub>A\<^sub>O\<^sub>D\<^sub>V i, trans = seqp_sos \<Gamma>\<^sub>A\<^sub>O\<^sub>D\<^sub>V \<rparr>"
|
461 |
+
|
462 |
+
lemma aodv_trans: "trans (paodv i) = seqp_sos \<Gamma>\<^sub>A\<^sub>O\<^sub>D\<^sub>V"
|
463 |
+
by simp
|
464 |
+
|
465 |
+
lemma aodv_control_within [simp]: "control_within \<Gamma>\<^sub>A\<^sub>O\<^sub>D\<^sub>V (init (paodv i))"
|
466 |
+
unfolding \<sigma>\<^sub>A\<^sub>O\<^sub>D\<^sub>V_def by (rule control_withinI) (auto simp del: \<Gamma>\<^sub>A\<^sub>O\<^sub>D\<^sub>V_simps)
|
467 |
+
|
468 |
+
lemma aodv_wf [simp]:
|
469 |
+
"wellformed \<Gamma>\<^sub>A\<^sub>O\<^sub>D\<^sub>V"
|
470 |
+
proof (rule, intro allI)
|
471 |
+
fix pn pn'
|
472 |
+
show "call(pn') \<notin> stermsl (\<Gamma>\<^sub>A\<^sub>O\<^sub>D\<^sub>V pn)"
|
473 |
+
by (cases pn) simp_all
|
474 |
+
qed
|
475 |
+
|
476 |
+
lemmas aodv_labels_not_empty [simp] = labels_not_empty [OF aodv_wf]
|
477 |
+
|
478 |
+
lemma aodv_ex_label [intro]: "\<exists>l. l\<in>labels \<Gamma>\<^sub>A\<^sub>O\<^sub>D\<^sub>V p"
|
479 |
+
by (metis aodv_labels_not_empty all_not_in_conv)
|
480 |
+
|
481 |
+
lemma aodv_ex_labelE [elim]:
|
482 |
+
assumes "\<forall>l\<in>labels \<Gamma>\<^sub>A\<^sub>O\<^sub>D\<^sub>V p. P l p"
|
483 |
+
and "\<exists>p l. P l p \<Longrightarrow> Q"
|
484 |
+
shows "Q"
|
485 |
+
using assms by (metis aodv_ex_label)
|
486 |
+
|
487 |
+
lemma aodv_simple_labels [simp]: "simple_labels \<Gamma>\<^sub>A\<^sub>O\<^sub>D\<^sub>V"
|
488 |
+
proof
|
489 |
+
fix pn p
|
490 |
+
assume "p\<in>subterms(\<Gamma>\<^sub>A\<^sub>O\<^sub>D\<^sub>V pn)"
|
491 |
+
thus "\<exists>!l. labels \<Gamma>\<^sub>A\<^sub>O\<^sub>D\<^sub>V p = {l}"
|
492 |
+
by (cases pn) (simp_all cong: seqp_congs | elim disjE)+
|
493 |
+
qed
|
494 |
+
|
495 |
+
lemma \<sigma>\<^sub>A\<^sub>O\<^sub>D\<^sub>V_labels [simp]: "(\<xi>, p) \<in> \<sigma>\<^sub>A\<^sub>O\<^sub>D\<^sub>V i \<Longrightarrow> labels \<Gamma>\<^sub>A\<^sub>O\<^sub>D\<^sub>V p = {PAodv-:0}"
|
496 |
+
unfolding \<sigma>\<^sub>A\<^sub>O\<^sub>D\<^sub>V_def by simp
|
497 |
+
|
498 |
+
lemma aodv_init_kD_empty [simp]:
|
499 |
+
"(\<xi>, p) \<in> \<sigma>\<^sub>A\<^sub>O\<^sub>D\<^sub>V i \<Longrightarrow> kD (rt \<xi>) = {}"
|
500 |
+
unfolding \<sigma>\<^sub>A\<^sub>O\<^sub>D\<^sub>V_def kD_def by simp
|
501 |
+
|
502 |
+
lemma aodv_init_sip_not_ip [simp]: "\<not>(sip (aodv_init i) = i)" by simp
|
503 |
+
|
504 |
+
lemma aodv_init_sip_not_ip' [simp]:
|
505 |
+
assumes "(\<xi>, p) \<in> \<sigma>\<^sub>A\<^sub>O\<^sub>D\<^sub>V i"
|
506 |
+
shows "sip \<xi> \<noteq> ip \<xi>"
|
507 |
+
using assms unfolding \<sigma>\<^sub>A\<^sub>O\<^sub>D\<^sub>V_def by simp
|
508 |
+
|
509 |
+
lemma aodv_init_sip_not_i [simp]:
|
510 |
+
assumes "(\<xi>, p) \<in> \<sigma>\<^sub>A\<^sub>O\<^sub>D\<^sub>V i"
|
511 |
+
shows "sip \<xi> \<noteq> i"
|
512 |
+
using assms unfolding \<sigma>\<^sub>A\<^sub>O\<^sub>D\<^sub>V_def by simp
|
513 |
+
|
514 |
+
lemma clear_locals_sip_not_ip':
|
515 |
+
assumes "ip \<xi> = i"
|
516 |
+
shows "\<not>(sip (clear_locals \<xi>) = i)"
|
517 |
+
using assms by auto
|
518 |
+
|
519 |
+
text \<open>Stop the simplifier from descending into process terms.\<close>
|
520 |
+
declare seqp_congs [cong]
|
521 |
+
|
522 |
+
text \<open>Configure the main invariant tactic for AODV.\<close>
|
523 |
+
|
524 |
+
declare
|
525 |
+
\<Gamma>\<^sub>A\<^sub>O\<^sub>D\<^sub>V_simps [cterms_env]
|
526 |
+
aodv_proc_cases [ctermsl_cases]
|
527 |
+
seq_invariant_ctermsI [OF aodv_wf aodv_control_within aodv_simple_labels aodv_trans,
|
528 |
+
cterms_intros]
|
529 |
+
seq_step_invariant_ctermsI [OF aodv_wf aodv_control_within aodv_simple_labels aodv_trans,
|
530 |
+
cterms_intros]
|
531 |
+
|
532 |
+
end
|
formal/afp/AODV/variants/a_norreqid/A_Aodv_Data.thy
ADDED
@@ -0,0 +1,986 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
(* Title: variants/a_norreqid/Aodv_Data.thy
|
2 |
+
License: BSD 2-Clause. See LICENSE.
|
3 |
+
Author: Timothy Bourke, Inria
|
4 |
+
Author: Peter Höfner, NICTA
|
5 |
+
*)
|
6 |
+
|
7 |
+
section "Predicates and functions used in the AODV model"
|
8 |
+
|
9 |
+
theory A_Aodv_Data
|
10 |
+
imports A_Norreqid
|
11 |
+
begin
|
12 |
+
|
13 |
+
subsection "Sequence Numbers"
|
14 |
+
|
15 |
+
text \<open>Sequence numbers approximate the relative freshness of routing information.\<close>
|
16 |
+
|
17 |
+
definition inc :: "sqn \<Rightarrow> sqn"
|
18 |
+
where "inc sn \<equiv> if sn = 0 then sn else sn + 1"
|
19 |
+
|
20 |
+
lemma less_than_inc [simp]: "x \<le> inc x"
|
21 |
+
unfolding inc_def by simp
|
22 |
+
|
23 |
+
lemma inc_minus_suc_0 [simp]:
|
24 |
+
"inc x - Suc 0 = x"
|
25 |
+
unfolding inc_def by simp
|
26 |
+
|
27 |
+
lemma inc_never_one' [simp, intro]: "inc x \<noteq> Suc 0"
|
28 |
+
unfolding inc_def by simp
|
29 |
+
|
30 |
+
lemma inc_never_one [simp, intro]: "inc x \<noteq> 1"
|
31 |
+
by simp
|
32 |
+
|
33 |
+
subsection "Modelling Routes"
|
34 |
+
|
35 |
+
text \<open>
|
36 |
+
A route is a 6-tuple, @{term "(dsn, dsk, flag, hops, nhip, pre)"} where
|
37 |
+
@{term dsn} is the `destination sequence number', @{term dsk} is the
|
38 |
+
`destination-sequence-number status', @{term flag} is the route status,
|
39 |
+
@{term hops} is the number of hops to the destination, @{term nhip} is the
|
40 |
+
next hop toward the destination, and @{term pre} is the set of `precursor nodes'--those
|
41 |
+
interested in hearing about changes to the route.
|
42 |
+
\<close>
|
43 |
+
|
44 |
+
type_synonym r = "sqn \<times> k \<times> f \<times> nat \<times> ip \<times> ip set"
|
45 |
+
|
46 |
+
definition proj2 :: "r \<Rightarrow> sqn" ("\<pi>\<^sub>2")
|
47 |
+
where "\<pi>\<^sub>2 \<equiv> \<lambda>(dsn, _, _, _, _, _). dsn"
|
48 |
+
|
49 |
+
definition proj3 :: "r \<Rightarrow> k" ("\<pi>\<^sub>3")
|
50 |
+
where "\<pi>\<^sub>3 \<equiv> \<lambda>(_, dsk, _, _, _, _). dsk"
|
51 |
+
|
52 |
+
definition proj4 :: "r \<Rightarrow> f" ("\<pi>\<^sub>4")
|
53 |
+
where "\<pi>\<^sub>4 \<equiv> \<lambda>(_, _, flag, _, _, _). flag"
|
54 |
+
|
55 |
+
definition proj5 :: "r \<Rightarrow> nat" ("\<pi>\<^sub>5")
|
56 |
+
where "\<pi>\<^sub>5 \<equiv> \<lambda>(_, _, _, hops, _, _). hops"
|
57 |
+
|
58 |
+
definition proj6 :: "r \<Rightarrow> ip" ("\<pi>\<^sub>6")
|
59 |
+
where "\<pi>\<^sub>6 \<equiv> \<lambda>(_, _, _, _, nhip, _). nhip"
|
60 |
+
|
61 |
+
definition proj7 :: "r \<Rightarrow> ip set" ("\<pi>\<^sub>7")
|
62 |
+
where "\<pi>\<^sub>7 \<equiv> \<lambda>(_, _, _, _, _, pre). pre"
|
63 |
+
|
64 |
+
lemma projs [simp]:
|
65 |
+
"\<pi>\<^sub>2(dsn, dsk, flag, hops, nhip, pre) = dsn"
|
66 |
+
"\<pi>\<^sub>3(dsn, dsk, flag, hops, nhip, pre) = dsk"
|
67 |
+
"\<pi>\<^sub>4(dsn, dsk, flag, hops, nhip, pre) = flag"
|
68 |
+
"\<pi>\<^sub>5(dsn, dsk, flag, hops, nhip, pre) = hops"
|
69 |
+
"\<pi>\<^sub>6(dsn, dsk, flag, hops, nhip, pre) = nhip"
|
70 |
+
"\<pi>\<^sub>7(dsn, dsk, flag, hops, nhip, pre) = pre"
|
71 |
+
by (clarsimp simp: proj2_def proj3_def proj4_def
|
72 |
+
proj5_def proj6_def proj7_def)+
|
73 |
+
|
74 |
+
lemma proj3_pred [intro]: "\<lbrakk> P kno; P unk \<rbrakk> \<Longrightarrow> P (\<pi>\<^sub>3 x)"
|
75 |
+
by (rule k.induct)
|
76 |
+
|
77 |
+
lemma proj4_pred [intro]: "\<lbrakk> P val; P inv \<rbrakk> \<Longrightarrow> P (\<pi>\<^sub>4 x)"
|
78 |
+
by (rule f.induct)
|
79 |
+
|
80 |
+
lemma proj6_pair_snd [simp]:
|
81 |
+
fixes dsn' r
|
82 |
+
shows "\<pi>\<^sub>6 (dsn', snd (r)) = \<pi>\<^sub>6(r)"
|
83 |
+
by (cases r) simp
|
84 |
+
|
85 |
+
subsection "Routing Tables"
|
86 |
+
|
87 |
+
text \<open>Routing tables map ip addresses to route entries.\<close>
|
88 |
+
|
89 |
+
type_synonym rt = "ip \<rightharpoonup> r"
|
90 |
+
|
91 |
+
syntax
|
92 |
+
"_Sigma_route" :: "rt \<Rightarrow> ip \<rightharpoonup> r" ("\<sigma>\<^bsub>route\<^esub>'(_, _')")
|
93 |
+
|
94 |
+
translations
|
95 |
+
"\<sigma>\<^bsub>route\<^esub>(rt, dip)" => "rt dip"
|
96 |
+
|
97 |
+
definition sqn :: "rt \<Rightarrow> ip \<Rightarrow> sqn"
|
98 |
+
where "sqn rt dip \<equiv> case \<sigma>\<^bsub>route\<^esub>(rt, dip) of Some r \<Rightarrow> \<pi>\<^sub>2(r) | None \<Rightarrow> 0"
|
99 |
+
|
100 |
+
definition sqnf :: "rt \<Rightarrow> ip \<Rightarrow> k"
|
101 |
+
where "sqnf rt dip \<equiv> case \<sigma>\<^bsub>route\<^esub>(rt, dip) of Some r \<Rightarrow> \<pi>\<^sub>3(r) | None \<Rightarrow> unk"
|
102 |
+
|
103 |
+
abbreviation flag :: "rt \<Rightarrow> ip \<rightharpoonup> f"
|
104 |
+
where "flag rt dip \<equiv> map_option \<pi>\<^sub>4 (\<sigma>\<^bsub>route\<^esub>(rt, dip))"
|
105 |
+
|
106 |
+
abbreviation dhops :: "rt \<Rightarrow> ip \<rightharpoonup> nat"
|
107 |
+
where "dhops rt dip \<equiv> map_option \<pi>\<^sub>5 (\<sigma>\<^bsub>route\<^esub>(rt, dip))"
|
108 |
+
|
109 |
+
abbreviation nhop :: "rt \<Rightarrow> ip \<rightharpoonup> ip"
|
110 |
+
where "nhop rt dip \<equiv> map_option \<pi>\<^sub>6 (\<sigma>\<^bsub>route\<^esub>(rt, dip))"
|
111 |
+
|
112 |
+
abbreviation precs :: "rt \<Rightarrow> ip \<rightharpoonup> ip set"
|
113 |
+
where "precs rt dip \<equiv> map_option \<pi>\<^sub>7 (\<sigma>\<^bsub>route\<^esub>(rt, dip))"
|
114 |
+
|
115 |
+
definition vD :: "rt \<Rightarrow> ip set"
|
116 |
+
where "vD rt \<equiv> {dip. flag rt dip = Some val}"
|
117 |
+
|
118 |
+
definition iD :: "rt \<Rightarrow> ip set"
|
119 |
+
where "iD rt \<equiv> {dip. flag rt dip = Some inv}"
|
120 |
+
|
121 |
+
definition kD :: "rt \<Rightarrow> ip set"
|
122 |
+
where "kD rt \<equiv> {dip. rt dip \<noteq> None}"
|
123 |
+
|
124 |
+
lemma kD_is_vD_and_iD: "kD rt = vD rt \<union> iD rt"
|
125 |
+
unfolding kD_def vD_def iD_def by auto
|
126 |
+
|
127 |
+
lemma vD_iD_gives_kD [simp]:
|
128 |
+
"\<And>ip rt. ip \<in> vD rt \<Longrightarrow> ip \<in> kD rt"
|
129 |
+
"\<And>ip rt. ip \<in> iD rt \<Longrightarrow> ip \<in> kD rt"
|
130 |
+
unfolding kD_is_vD_and_iD by simp_all
|
131 |
+
|
132 |
+
lemma kD_Some [dest]:
|
133 |
+
fixes dip rt
|
134 |
+
assumes "dip \<in> kD rt"
|
135 |
+
shows "\<exists>dsn dsk flag hops nhip pre.
|
136 |
+
\<sigma>\<^bsub>route\<^esub>(rt, dip) = Some (dsn, dsk, flag, hops, nhip, pre)"
|
137 |
+
using assms unfolding kD_def by simp
|
138 |
+
|
139 |
+
lemma kD_None [dest]:
|
140 |
+
fixes dip rt
|
141 |
+
assumes "dip \<notin> kD rt"
|
142 |
+
shows "\<sigma>\<^bsub>route\<^esub>(rt, dip) = None"
|
143 |
+
using assms unfolding kD_def
|
144 |
+
by (metis (mono_tags) mem_Collect_eq)
|
145 |
+
|
146 |
+
lemma vD_Some [dest]:
|
147 |
+
fixes dip rt
|
148 |
+
assumes "dip \<in> vD rt"
|
149 |
+
shows "\<exists>dsn dsk hops nhip pre.
|
150 |
+
\<sigma>\<^bsub>route\<^esub>(rt, dip) = Some (dsn, dsk, val, hops, nhip, pre)"
|
151 |
+
using assms unfolding vD_def by simp
|
152 |
+
|
153 |
+
lemma vD_empty [simp]: "vD Map.empty = {}"
|
154 |
+
unfolding vD_def by simp
|
155 |
+
|
156 |
+
lemma iD_Some [dest]:
|
157 |
+
fixes dip rt
|
158 |
+
assumes "dip \<in> iD rt"
|
159 |
+
shows "\<exists>dsn dsk hops nhip pre.
|
160 |
+
\<sigma>\<^bsub>route\<^esub>(rt, dip) = Some (dsn, dsk, inv, hops, nhip, pre)"
|
161 |
+
using assms unfolding iD_def by simp
|
162 |
+
|
163 |
+
lemma val_is_vD [elim]:
|
164 |
+
fixes ip rt
|
165 |
+
assumes "ip\<in>kD(rt)"
|
166 |
+
and "the (flag rt ip) = val"
|
167 |
+
shows "ip\<in>vD(rt)"
|
168 |
+
using assms unfolding vD_def by auto
|
169 |
+
|
170 |
+
lemma inv_is_iD [elim]:
|
171 |
+
fixes ip rt
|
172 |
+
assumes "ip\<in>kD(rt)"
|
173 |
+
and "the (flag rt ip) = inv"
|
174 |
+
shows "ip\<in>iD(rt)"
|
175 |
+
using assms unfolding iD_def by auto
|
176 |
+
|
177 |
+
lemma iD_flag_is_inv [elim, simp]:
|
178 |
+
fixes ip rt
|
179 |
+
assumes "ip\<in>iD(rt)"
|
180 |
+
shows "the (flag rt ip) = inv"
|
181 |
+
proof -
|
182 |
+
from \<open>ip\<in>iD(rt)\<close> have "ip\<in>kD(rt)" by auto
|
183 |
+
with assms show ?thesis unfolding iD_def by auto
|
184 |
+
qed
|
185 |
+
|
186 |
+
lemma kD_but_not_vD_is_iD [elim]:
|
187 |
+
fixes ip rt
|
188 |
+
assumes "ip\<in>kD(rt)"
|
189 |
+
and "ip\<notin>vD(rt)"
|
190 |
+
shows "ip\<in>iD(rt)"
|
191 |
+
proof -
|
192 |
+
from \<open>ip\<in>kD(rt)\<close> obtain dsn dsk f hops nhop pre
|
193 |
+
where rtip: "rt ip = Some (dsn, dsk, f, hops, nhop, pre)"
|
194 |
+
by (metis kD_Some)
|
195 |
+
from \<open>ip\<notin>vD(rt)\<close> have "f \<noteq> val"
|
196 |
+
proof (rule contrapos_nn)
|
197 |
+
assume "f = val"
|
198 |
+
with rtip have "the (flag rt ip) = val" by simp
|
199 |
+
with \<open>ip\<in>kD(rt)\<close> show "ip\<in>vD(rt)" ..
|
200 |
+
qed
|
201 |
+
with rtip have "the (flag rt ip)= inv" by simp
|
202 |
+
with \<open>ip\<in>kD(rt)\<close> show "ip\<in>iD(rt)" ..
|
203 |
+
qed
|
204 |
+
|
205 |
+
lemma vD_or_iD [elim]:
|
206 |
+
fixes ip rt
|
207 |
+
assumes "ip\<in>kD(rt)"
|
208 |
+
and "ip\<in>vD(rt) \<Longrightarrow> P rt ip"
|
209 |
+
and "ip\<in>iD(rt) \<Longrightarrow> P rt ip"
|
210 |
+
shows "P rt ip"
|
211 |
+
proof -
|
212 |
+
from \<open>ip\<in>kD(rt)\<close> have "ip\<in>vD(rt) \<union> iD(rt)"
|
213 |
+
by (simp add: kD_is_vD_and_iD)
|
214 |
+
thus ?thesis by (auto elim: assms(2-3))
|
215 |
+
qed
|
216 |
+
|
217 |
+
lemma proj5_eq_dhops: "\<And>dip rt. dip\<in>kD(rt) \<Longrightarrow> \<pi>\<^sub>5(the (rt dip)) = the (dhops rt dip)"
|
218 |
+
unfolding sqn_def by (drule kD_Some) clarsimp
|
219 |
+
|
220 |
+
lemma proj4_eq_flag: "\<And>dip rt. dip\<in>kD(rt) \<Longrightarrow> \<pi>\<^sub>4(the (rt dip)) = the (flag rt dip)"
|
221 |
+
unfolding sqn_def by (drule kD_Some) clarsimp
|
222 |
+
|
223 |
+
lemma proj2_eq_sqn: "\<And>dip rt. dip\<in>kD(rt) \<Longrightarrow> \<pi>\<^sub>2(the (rt dip)) = sqn rt dip"
|
224 |
+
unfolding sqn_def by (drule kD_Some) clarsimp
|
225 |
+
|
226 |
+
lemma kD_sqnf_is_proj3 [simp]:
|
227 |
+
"\<And>ip rt. ip\<in>kD(rt) \<Longrightarrow> sqnf rt ip = \<pi>\<^sub>3(the (rt ip))"
|
228 |
+
unfolding sqnf_def by auto
|
229 |
+
|
230 |
+
lemma vD_flag_val [simp]:
|
231 |
+
"\<And>dip rt. dip \<in> vD (rt) \<Longrightarrow> the (flag rt dip) = val"
|
232 |
+
unfolding vD_def by clarsimp
|
233 |
+
|
234 |
+
lemma kD_update [simp]:
|
235 |
+
"\<And>rt nip v. kD (rt(nip \<mapsto> v)) = insert nip (kD rt)"
|
236 |
+
unfolding kD_def by auto
|
237 |
+
|
238 |
+
lemma kD_empty [simp]: "kD Map.empty = {}"
|
239 |
+
unfolding kD_def by simp
|
240 |
+
|
241 |
+
lemma ip_equal_or_known [elim]:
|
242 |
+
fixes rt ip ip'
|
243 |
+
assumes "ip = ip' \<or> ip\<in>kD(rt)"
|
244 |
+
and "ip = ip' \<Longrightarrow> P rt ip ip'"
|
245 |
+
and "\<lbrakk> ip \<noteq> ip'; ip\<in>kD(rt)\<rbrakk> \<Longrightarrow> P rt ip ip'"
|
246 |
+
shows "P rt ip ip'"
|
247 |
+
using assms by auto
|
248 |
+
|
249 |
+
subsection "Updating Routing Tables"
|
250 |
+
|
251 |
+
text \<open>Routing table entries are modified through explicit functions.
|
252 |
+
The properties of these functions are important in invariant proofs.\<close>
|
253 |
+
|
254 |
+
subsubsection "Updating Precursor Lists"
|
255 |
+
|
256 |
+
definition addpre :: "r \<Rightarrow> ip set \<Rightarrow> r"
|
257 |
+
where "addpre r npre \<equiv> let (dsn, dsk, flag, hops, nhip, pre) = r in
|
258 |
+
(dsn, dsk, flag, hops, nhip, pre \<union> npre)"
|
259 |
+
|
260 |
+
lemma proj2_addpre:
|
261 |
+
fixes v pre
|
262 |
+
shows "\<pi>\<^sub>2(addpre v pre) = \<pi>\<^sub>2(v)"
|
263 |
+
unfolding addpre_def by (cases v) simp
|
264 |
+
|
265 |
+
lemma proj3_addpre:
|
266 |
+
fixes v pre
|
267 |
+
shows "\<pi>\<^sub>3(addpre v pre) = \<pi>\<^sub>3(v)"
|
268 |
+
unfolding addpre_def by (cases v) simp
|
269 |
+
|
270 |
+
lemma proj4_addpre:
|
271 |
+
fixes v pre
|
272 |
+
shows "\<pi>\<^sub>4(addpre v pre) = \<pi>\<^sub>4(v)"
|
273 |
+
unfolding addpre_def by (cases v) simp
|
274 |
+
|
275 |
+
lemma proj5_addpre:
|
276 |
+
fixes v pre
|
277 |
+
shows "\<pi>\<^sub>5(addpre v pre) = \<pi>\<^sub>5(v)"
|
278 |
+
unfolding addpre_def by (cases v) simp
|
279 |
+
|
280 |
+
lemma proj6_addpre:
|
281 |
+
fixes dsn dsk flag hops nhip pre npre
|
282 |
+
shows "\<pi>\<^sub>6(addpre v npre) = \<pi>\<^sub>6(v)"
|
283 |
+
unfolding addpre_def by (cases v) simp
|
284 |
+
|
285 |
+
lemma proj7_addpre:
|
286 |
+
fixes dsn dsk flag hops nhip pre npre
|
287 |
+
shows "\<pi>\<^sub>7(addpre v npre) = \<pi>\<^sub>7(v) \<union> npre"
|
288 |
+
unfolding addpre_def by (cases v) simp
|
289 |
+
|
290 |
+
lemma addpre_empty: "addpre r {} = r"
|
291 |
+
unfolding addpre_def by simp
|
292 |
+
|
293 |
+
lemma addpre_r:
|
294 |
+
"addpre (dsn, dsk, fl, hops, nhip, pre) npre = (dsn, dsk, fl, hops, nhip, pre \<union> npre)"
|
295 |
+
unfolding addpre_def by simp
|
296 |
+
|
297 |
+
lemmas addpre_simps [simp] = proj2_addpre proj3_addpre proj4_addpre proj5_addpre
|
298 |
+
proj6_addpre proj7_addpre addpre_empty addpre_r
|
299 |
+
|
300 |
+
definition addpreRT :: "rt \<Rightarrow> ip \<Rightarrow> ip set \<rightharpoonup> rt"
|
301 |
+
where "addpreRT rt dip npre \<equiv>
|
302 |
+
map_option (\<lambda>s. rt (dip \<mapsto> addpre s npre)) (\<sigma>\<^bsub>route\<^esub>(rt, dip))"
|
303 |
+
|
304 |
+
lemma snd_addpre [simp]:
|
305 |
+
"\<And>dsn dsn' v pre. (dsn, snd(addpre (dsn', v) pre)) = addpre (dsn, v) pre"
|
306 |
+
unfolding addpre_def by clarsimp
|
307 |
+
|
308 |
+
lemma proj2_addpreRT [simp]:
|
309 |
+
fixes ip rt ip' npre
|
310 |
+
assumes "ip\<in>kD rt"
|
311 |
+
and "ip'\<in>kD rt"
|
312 |
+
shows "\<pi>\<^sub>2(the (the (addpreRT rt ip' npre) ip)) = \<pi>\<^sub>2(the (rt ip))"
|
313 |
+
using assms [THEN kD_Some] unfolding addpreRT_def by clarsimp
|
314 |
+
|
315 |
+
lemma proj3_addpreRT [simp]:
|
316 |
+
fixes ip rt ip' npre
|
317 |
+
assumes "ip\<in>kD rt"
|
318 |
+
and "ip'\<in>kD rt"
|
319 |
+
shows "\<pi>\<^sub>3(the (the (addpreRT rt ip' npre) ip)) = \<pi>\<^sub>3(the (rt ip))"
|
320 |
+
using assms [THEN kD_Some] unfolding addpreRT_def by clarsimp
|
321 |
+
|
322 |
+
lemma proj5_addpreRT [simp]:
|
323 |
+
"\<And>rt dip ip npre. dip\<in>kD(rt) \<Longrightarrow> \<pi>\<^sub>5(the (the (addpreRT rt dip npre) ip)) = \<pi>\<^sub>5(the (rt ip))"
|
324 |
+
unfolding addpreRT_def by auto
|
325 |
+
|
326 |
+
lemma flag_addpreRT [simp]:
|
327 |
+
fixes rt pre ip dip
|
328 |
+
assumes "dip \<in> kD rt"
|
329 |
+
shows "flag (the (addpreRT rt dip pre)) ip = flag rt ip"
|
330 |
+
unfolding addpreRT_def
|
331 |
+
using assms [THEN kD_Some] by (clarsimp)
|
332 |
+
|
333 |
+
lemma kD_addpreRT [simp]:
|
334 |
+
fixes rt dip npre
|
335 |
+
assumes "dip \<in> kD rt"
|
336 |
+
shows "kD (the (addpreRT rt dip npre)) = kD rt"
|
337 |
+
unfolding kD_def addpreRT_def
|
338 |
+
using assms [THEN kD_Some]
|
339 |
+
by clarsimp blast
|
340 |
+
|
341 |
+
lemma vD_addpreRT [simp]:
|
342 |
+
fixes rt dip npre
|
343 |
+
assumes "dip \<in> kD rt"
|
344 |
+
shows "vD (the (addpreRT rt dip npre)) = vD rt"
|
345 |
+
unfolding vD_def addpreRT_def
|
346 |
+
using assms [THEN kD_Some] by clarsimp auto
|
347 |
+
|
348 |
+
lemma iD_addpreRT [simp]:
|
349 |
+
fixes rt dip npre
|
350 |
+
assumes "dip \<in> kD rt"
|
351 |
+
shows "iD (the (addpreRT rt dip npre)) = iD rt"
|
352 |
+
unfolding iD_def addpreRT_def
|
353 |
+
using assms [THEN kD_Some] by clarsimp auto
|
354 |
+
|
355 |
+
lemma nhop_addpreRT [simp]:
|
356 |
+
fixes rt pre ip dip
|
357 |
+
assumes "dip \<in> kD rt"
|
358 |
+
shows "nhop (the (addpreRT rt dip pre)) ip = nhop rt ip"
|
359 |
+
unfolding sqn_def addpreRT_def
|
360 |
+
using assms [THEN kD_Some] by (clarsimp)
|
361 |
+
|
362 |
+
lemma sqn_addpreRT [simp]:
|
363 |
+
fixes rt pre ip dip
|
364 |
+
assumes "dip \<in> kD rt"
|
365 |
+
shows "sqn (the (addpreRT rt dip pre)) ip = sqn rt ip"
|
366 |
+
unfolding sqn_def addpreRT_def
|
367 |
+
using assms [THEN kD_Some] by (clarsimp)
|
368 |
+
|
369 |
+
lemma dhops_addpreRT [simp]:
|
370 |
+
fixes rt pre ip dip
|
371 |
+
assumes "dip \<in> kD rt"
|
372 |
+
shows "dhops (the (addpreRT rt dip pre)) ip = dhops rt ip"
|
373 |
+
unfolding addpreRT_def
|
374 |
+
using assms [THEN kD_Some] by (clarsimp)
|
375 |
+
|
376 |
+
lemma sqnf_addpreRT [simp]:
|
377 |
+
"\<And>ip dip. ip\<in>kD(rt \<xi>) \<Longrightarrow> sqnf (the (addpreRT (rt \<xi>) ip npre)) dip = sqnf (rt \<xi>) dip"
|
378 |
+
unfolding sqnf_def addpreRT_def by auto
|
379 |
+
|
380 |
+
subsubsection "Updating route entries"
|
381 |
+
|
382 |
+
lemma in_kD_case [simp]:
|
383 |
+
fixes dip rt
|
384 |
+
assumes "dip \<in> kD(rt)"
|
385 |
+
shows "(case rt dip of None \<Rightarrow> en | Some r \<Rightarrow> es r) = es (the (rt dip))"
|
386 |
+
using assms [THEN kD_Some] by auto
|
387 |
+
|
388 |
+
lemma not_in_kD_case [simp]:
|
389 |
+
fixes dip rt
|
390 |
+
assumes "dip \<notin> kD(rt)"
|
391 |
+
shows "(case rt dip of None \<Rightarrow> en | Some r \<Rightarrow> es r) = en"
|
392 |
+
using assms [THEN kD_None] by auto
|
393 |
+
|
394 |
+
lemma rt_Some_sqn [dest]:
|
395 |
+
fixes rt and ip dsn dsk flag hops nhip pre
|
396 |
+
assumes "rt ip = Some (dsn, dsk, flag, hops, nhip, pre)"
|
397 |
+
shows "sqn rt ip = dsn"
|
398 |
+
unfolding sqn_def using assms by simp
|
399 |
+
|
400 |
+
lemma not_kD_sqn [simp]:
|
401 |
+
fixes dip rt
|
402 |
+
assumes "dip \<notin> kD(rt)"
|
403 |
+
shows "sqn rt dip = 0"
|
404 |
+
using assms unfolding sqn_def
|
405 |
+
by simp
|
406 |
+
|
407 |
+
definition update_arg_wf :: "r \<Rightarrow> bool"
|
408 |
+
where "update_arg_wf r \<equiv> \<pi>\<^sub>4(r) = val \<and>
|
409 |
+
(\<pi>\<^sub>2(r) = 0) = (\<pi>\<^sub>3(r) = unk) \<and>
|
410 |
+
(\<pi>\<^sub>3(r) = unk \<longrightarrow> \<pi>\<^sub>5(r) = 1)"
|
411 |
+
|
412 |
+
lemma update_arg_wf_gives_cases:
|
413 |
+
"\<And>r. update_arg_wf r \<Longrightarrow> (\<pi>\<^sub>2(r) = 0) = (\<pi>\<^sub>3(r) = unk)"
|
414 |
+
unfolding update_arg_wf_def by simp
|
415 |
+
|
416 |
+
lemma update_arg_wf_tuples [simp]:
|
417 |
+
"\<And>nhip pre. update_arg_wf (0, unk, val, Suc 0, nhip, pre)"
|
418 |
+
"\<And>n hops nhip pre. update_arg_wf (Suc n, kno, val, hops, nhip, pre)"
|
419 |
+
unfolding update_arg_wf_def by auto
|
420 |
+
|
421 |
+
lemma update_arg_wf_tuples' [elim]:
|
422 |
+
"\<And>n hops nhip pre. Suc 0 \<le> n \<Longrightarrow> update_arg_wf (n, kno, val, hops, nhip, pre)"
|
423 |
+
unfolding update_arg_wf_def by auto
|
424 |
+
|
425 |
+
lemma wf_r_cases [intro]:
|
426 |
+
fixes P r
|
427 |
+
assumes "update_arg_wf r"
|
428 |
+
and c1: "\<And>nhip pre. P (0, unk, val, Suc 0, nhip, pre)"
|
429 |
+
and c2: "\<And>dsn hops nhip pre. dsn > 0 \<Longrightarrow> P (dsn, kno, val, hops, nhip, pre)"
|
430 |
+
shows "P r"
|
431 |
+
proof -
|
432 |
+
obtain dsn dsk flag hops nhip pre
|
433 |
+
where *: "r = (dsn, dsk, flag, hops, nhip, pre)" by (cases r)
|
434 |
+
with \<open>update_arg_wf r\<close> have wf1: "flag = val"
|
435 |
+
and wf2: "(dsn = 0) = (dsk = unk)"
|
436 |
+
and wf3: "dsk = unk \<longrightarrow> (hops = 1)"
|
437 |
+
unfolding update_arg_wf_def by auto
|
438 |
+
have "P (dsn, dsk, flag, hops, nhip, pre)"
|
439 |
+
proof (cases dsk)
|
440 |
+
assume "dsk = unk"
|
441 |
+
moreover with wf2 wf3 have "dsn = 0" and "hops = Suc 0" by auto
|
442 |
+
ultimately show ?thesis using \<open>flag = val\<close> by simp (rule c1)
|
443 |
+
next
|
444 |
+
assume "dsk = kno"
|
445 |
+
moreover with wf2 have "dsn > 0" by simp
|
446 |
+
ultimately show ?thesis using \<open>flag = val\<close> by simp (rule c2)
|
447 |
+
qed
|
448 |
+
with * show "P r" by simp
|
449 |
+
qed
|
450 |
+
|
451 |
+
definition update :: "rt \<Rightarrow> ip \<Rightarrow> r \<Rightarrow> rt"
|
452 |
+
where
|
453 |
+
"update rt ip r \<equiv>
|
454 |
+
case \<sigma>\<^bsub>route\<^esub>(rt, ip) of
|
455 |
+
None \<Rightarrow> rt (ip \<mapsto> r)
|
456 |
+
| Some s \<Rightarrow>
|
457 |
+
if \<pi>\<^sub>2(s) < \<pi>\<^sub>2(r) then rt (ip \<mapsto> addpre r (\<pi>\<^sub>7(s)))
|
458 |
+
else if \<pi>\<^sub>2(s) = \<pi>\<^sub>2(r) \<and> (\<pi>\<^sub>5(s) > \<pi>\<^sub>5(r) \<or> \<pi>\<^sub>4(s) = inv)
|
459 |
+
then rt (ip \<mapsto> addpre r (\<pi>\<^sub>7(s)))
|
460 |
+
else if \<pi>\<^sub>3(r) = unk
|
461 |
+
then rt (ip \<mapsto> (\<pi>\<^sub>2(s), snd (addpre r (\<pi>\<^sub>7(s)))))
|
462 |
+
else rt (ip \<mapsto> addpre s (\<pi>\<^sub>7(r)))"
|
463 |
+
|
464 |
+
lemma update_simps [simp]:
|
465 |
+
fixes r s nrt nr nr' ns rt ip
|
466 |
+
defines "s \<equiv> the \<sigma>\<^bsub>route\<^esub>(rt, ip)"
|
467 |
+
and "nr \<equiv> addpre r (\<pi>\<^sub>7(s))"
|
468 |
+
and "nr' \<equiv> (\<pi>\<^sub>2(s), \<pi>\<^sub>3(nr), \<pi>\<^sub>4(nr), \<pi>\<^sub>5(nr), \<pi>\<^sub>6(nr), \<pi>\<^sub>7(nr))"
|
469 |
+
and "ns \<equiv> addpre s (\<pi>\<^sub>7(r))"
|
470 |
+
shows
|
471 |
+
"\<lbrakk>ip \<notin> kD(rt)\<rbrakk> \<Longrightarrow> update rt ip r = rt (ip \<mapsto> r)"
|
472 |
+
"\<lbrakk>ip \<in> kD(rt); sqn rt ip < \<pi>\<^sub>2(r)\<rbrakk> \<Longrightarrow> update rt ip r = rt (ip \<mapsto> nr)"
|
473 |
+
"\<lbrakk>ip \<in> kD(rt); sqn rt ip = \<pi>\<^sub>2(r);
|
474 |
+
the (dhops rt ip) > \<pi>\<^sub>5(r)\<rbrakk> \<Longrightarrow> update rt ip r = rt (ip \<mapsto> nr)"
|
475 |
+
"\<lbrakk>ip \<in> kD(rt); sqn rt ip = \<pi>\<^sub>2(r);
|
476 |
+
flag rt ip = Some inv\<rbrakk> \<Longrightarrow> update rt ip r = rt (ip \<mapsto> nr)"
|
477 |
+
"\<lbrakk>ip \<in> kD(rt); \<pi>\<^sub>3(r) = unk; (\<pi>\<^sub>2(r) = 0) = (\<pi>\<^sub>3(r) = unk)\<rbrakk> \<Longrightarrow> update rt ip r = rt (ip \<mapsto> nr')"
|
478 |
+
"\<lbrakk>ip \<in> kD(rt); sqn rt ip \<ge> \<pi>\<^sub>2(r); \<pi>\<^sub>3(r) = kno;
|
479 |
+
sqn rt ip = \<pi>\<^sub>2(r) \<Longrightarrow> the (dhops rt ip) \<le> \<pi>\<^sub>5(r) \<and> the (flag rt ip) = val \<rbrakk>
|
480 |
+
\<Longrightarrow> update rt ip r = rt (ip \<mapsto> ns)"
|
481 |
+
proof -
|
482 |
+
assume "ip\<notin>kD(rt)"
|
483 |
+
hence "\<sigma>\<^bsub>route\<^esub>(rt, ip) = None" ..
|
484 |
+
thus "update rt ip r = rt (ip \<mapsto> r)"
|
485 |
+
unfolding update_def by simp
|
486 |
+
next
|
487 |
+
assume "ip \<in> kD(rt)"
|
488 |
+
and "sqn rt ip < \<pi>\<^sub>2(r)"
|
489 |
+
from this(1) obtain dsn dsk fl hops nhip pre
|
490 |
+
where "rt ip = Some (dsn, dsk, fl, hops, nhip, pre)"
|
491 |
+
by (metis kD_Some)
|
492 |
+
with \<open>sqn rt ip < \<pi>\<^sub>2(r)\<close> show "update rt ip r = rt (ip \<mapsto> nr)"
|
493 |
+
unfolding update_def nr_def s_def by auto
|
494 |
+
next
|
495 |
+
assume "ip \<in> kD(rt)"
|
496 |
+
and "sqn rt ip = \<pi>\<^sub>2(r)"
|
497 |
+
and "the (dhops rt ip) > \<pi>\<^sub>5(r)"
|
498 |
+
from this(1) obtain dsn dsk fl hops nhip pre
|
499 |
+
where "rt ip = Some (dsn, dsk, fl, hops, nhip, pre)"
|
500 |
+
by (metis kD_Some)
|
501 |
+
with \<open>sqn rt ip = \<pi>\<^sub>2(r)\<close> and \<open>the (dhops rt ip) > \<pi>\<^sub>5(r)\<close>
|
502 |
+
show "update rt ip r = rt (ip \<mapsto> nr)"
|
503 |
+
unfolding update_def nr_def s_def by auto
|
504 |
+
next
|
505 |
+
assume "ip \<in> kD(rt)"
|
506 |
+
and "sqn rt ip = \<pi>\<^sub>2(r)"
|
507 |
+
and "flag rt ip = Some inv"
|
508 |
+
from this(1) obtain dsn dsk fl hops nhip pre
|
509 |
+
where "rt ip = Some (dsn, dsk, fl, hops, nhip, pre)"
|
510 |
+
by (metis kD_Some)
|
511 |
+
with \<open>sqn rt ip = \<pi>\<^sub>2(r)\<close> and \<open>flag rt ip = Some inv\<close>
|
512 |
+
show "update rt ip r = rt (ip \<mapsto> nr)"
|
513 |
+
unfolding update_def nr_def s_def by auto
|
514 |
+
next
|
515 |
+
assume "ip \<in> kD(rt)"
|
516 |
+
and "\<pi>\<^sub>3(r) = unk"
|
517 |
+
and "(\<pi>\<^sub>2(r) = 0) = (\<pi>\<^sub>3(r) = unk)"
|
518 |
+
from this(1) obtain dsn dsk fl hops nhip pre
|
519 |
+
where "rt ip = Some (dsn, dsk, fl, hops, nhip, pre)"
|
520 |
+
by (metis kD_Some)
|
521 |
+
with \<open>(\<pi>\<^sub>2(r) = 0) = (\<pi>\<^sub>3(r) = unk)\<close> and \<open>\<pi>\<^sub>3(r) = unk\<close>
|
522 |
+
show "update rt ip r = rt (ip \<mapsto> nr')"
|
523 |
+
unfolding update_def nr'_def nr_def s_def
|
524 |
+
by (cases r) simp
|
525 |
+
next
|
526 |
+
assume "ip \<in> kD(rt)"
|
527 |
+
and otherassms: "sqn rt ip \<ge> \<pi>\<^sub>2(r)"
|
528 |
+
"\<pi>\<^sub>3(r) = kno"
|
529 |
+
"sqn rt ip = \<pi>\<^sub>2(r) \<Longrightarrow> the (dhops rt ip) \<le> \<pi>\<^sub>5(r) \<and> the (flag rt ip) = val"
|
530 |
+
from this(1) obtain dsn dsk fl hops nhip pre
|
531 |
+
where "rt ip = Some (dsn, dsk, fl, hops, nhip, pre)"
|
532 |
+
by (metis kD_Some)
|
533 |
+
with otherassms show "update rt ip r = rt (ip \<mapsto> ns)"
|
534 |
+
unfolding update_def ns_def s_def by auto
|
535 |
+
qed
|
536 |
+
|
537 |
+
lemma update_cases [elim]:
|
538 |
+
assumes "(\<pi>\<^sub>2(r) = 0) = (\<pi>\<^sub>3(r) = unk)"
|
539 |
+
and c1: "\<lbrakk>ip \<notin> kD(rt)\<rbrakk> \<Longrightarrow> P (rt (ip \<mapsto> r))"
|
540 |
+
|
541 |
+
and c2: "\<lbrakk>ip \<in> kD(rt); sqn rt ip < \<pi>\<^sub>2(r)\<rbrakk>
|
542 |
+
\<Longrightarrow> P (rt (ip \<mapsto> addpre r (\<pi>\<^sub>7(the \<sigma>\<^bsub>route\<^esub>(rt, ip)))))"
|
543 |
+
and c3: "\<lbrakk>ip \<in> kD(rt); sqn rt ip = \<pi>\<^sub>2(r); the (dhops rt ip) > \<pi>\<^sub>5(r)\<rbrakk>
|
544 |
+
\<Longrightarrow> P (rt (ip \<mapsto> addpre r (\<pi>\<^sub>7(the \<sigma>\<^bsub>route\<^esub>(rt, ip)))))"
|
545 |
+
and c4: "\<lbrakk>ip \<in> kD(rt); sqn rt ip = \<pi>\<^sub>2(r); the (flag rt ip) = inv\<rbrakk>
|
546 |
+
\<Longrightarrow> P (rt (ip \<mapsto> addpre r (\<pi>\<^sub>7(the \<sigma>\<^bsub>route\<^esub>(rt, ip)))))"
|
547 |
+
and c5: "\<lbrakk>ip \<in> kD(rt); \<pi>\<^sub>3(r) = unk\<rbrakk>
|
548 |
+
\<Longrightarrow> P (rt (ip \<mapsto> (\<pi>\<^sub>2(the \<sigma>\<^bsub>route\<^esub>(rt, ip)), \<pi>\<^sub>3(r),
|
549 |
+
\<pi>\<^sub>4(r), \<pi>\<^sub>5(r), \<pi>\<^sub>6(r), \<pi>\<^sub>7(addpre r (\<pi>\<^sub>7(the \<sigma>\<^bsub>route\<^esub>(rt, ip)))))))"
|
550 |
+
and c6: "\<lbrakk>ip \<in> kD(rt); sqn rt ip \<ge> \<pi>\<^sub>2(r); \<pi>\<^sub>3(r) = kno;
|
551 |
+
sqn rt ip = \<pi>\<^sub>2(r) \<Longrightarrow> the (dhops rt ip) \<le> \<pi>\<^sub>5(r) \<and> the (flag rt ip) = val\<rbrakk>
|
552 |
+
\<Longrightarrow> P (rt (ip \<mapsto> addpre (the \<sigma>\<^bsub>route\<^esub>(rt, ip)) (\<pi>\<^sub>7(r))))"
|
553 |
+
shows "(P (update rt ip r))"
|
554 |
+
proof (cases "ip \<in> kD(rt)")
|
555 |
+
assume "ip \<notin> kD(rt)"
|
556 |
+
with c1 show ?thesis
|
557 |
+
by simp
|
558 |
+
next
|
559 |
+
assume "ip \<in> kD(rt)"
|
560 |
+
moreover then obtain dsn dsk fl hops nhip pre
|
561 |
+
where rteq: "rt ip = Some (dsn, dsk, fl, hops, nhip, pre)"
|
562 |
+
by (metis kD_Some)
|
563 |
+
moreover obtain dsn' dsk' fl' hops' nhip' pre'
|
564 |
+
where req: "r = (dsn', dsk', fl', hops', nhip', pre')"
|
565 |
+
by (cases r) metis
|
566 |
+
ultimately show ?thesis
|
567 |
+
using \<open>(\<pi>\<^sub>2(r) = 0) = (\<pi>\<^sub>3(r) = unk)\<close>
|
568 |
+
c2 [OF \<open>ip\<in>kD(rt)\<close>]
|
569 |
+
c3 [OF \<open>ip\<in>kD(rt)\<close>]
|
570 |
+
c4 [OF \<open>ip\<in>kD(rt)\<close>]
|
571 |
+
c5 [OF \<open>ip\<in>kD(rt)\<close>]
|
572 |
+
c6 [OF \<open>ip\<in>kD(rt)\<close>]
|
573 |
+
unfolding update_def sqn_def by auto
|
574 |
+
qed
|
575 |
+
|
576 |
+
lemma update_cases_kD:
|
577 |
+
assumes "(\<pi>\<^sub>2(r) = 0) = (\<pi>\<^sub>3(r) = unk)"
|
578 |
+
and "ip \<in> kD(rt)"
|
579 |
+
and c2: "sqn rt ip < \<pi>\<^sub>2(r) \<Longrightarrow> P (rt (ip \<mapsto> addpre r (\<pi>\<^sub>7(the \<sigma>\<^bsub>route\<^esub>(rt, ip)))))"
|
580 |
+
and c3: "\<lbrakk>sqn rt ip = \<pi>\<^sub>2(r); the (dhops rt ip) > \<pi>\<^sub>5(r)\<rbrakk>
|
581 |
+
\<Longrightarrow> P (rt (ip \<mapsto> addpre r (\<pi>\<^sub>7(the \<sigma>\<^bsub>route\<^esub>(rt, ip)))))"
|
582 |
+
and c4: "\<lbrakk>sqn rt ip = \<pi>\<^sub>2(r); the (flag rt ip) = inv\<rbrakk>
|
583 |
+
\<Longrightarrow> P (rt (ip \<mapsto> addpre r (\<pi>\<^sub>7(the \<sigma>\<^bsub>route\<^esub>(rt, ip)))))"
|
584 |
+
and c5: "\<pi>\<^sub>3(r) = unk \<Longrightarrow> P (rt (ip \<mapsto> (\<pi>\<^sub>2(the \<sigma>\<^bsub>route\<^esub>(rt, ip)), \<pi>\<^sub>3(r),
|
585 |
+
\<pi>\<^sub>4(r), \<pi>\<^sub>5(r), \<pi>\<^sub>6(r),
|
586 |
+
\<pi>\<^sub>7(addpre r (\<pi>\<^sub>7(the \<sigma>\<^bsub>route\<^esub>(rt, ip)))))))"
|
587 |
+
and c6: "\<lbrakk>sqn rt ip \<ge> \<pi>\<^sub>2(r); \<pi>\<^sub>3(r) = kno;
|
588 |
+
sqn rt ip = \<pi>\<^sub>2(r) \<Longrightarrow> the (dhops rt ip) \<le> \<pi>\<^sub>5(r) \<and> the (flag rt ip) = val\<rbrakk>
|
589 |
+
\<Longrightarrow> P (rt (ip \<mapsto> addpre (the \<sigma>\<^bsub>route\<^esub>(rt, ip)) (\<pi>\<^sub>7(r))))"
|
590 |
+
shows "(P (update rt ip r))"
|
591 |
+
using assms(1) proof (rule update_cases)
|
592 |
+
assume "sqn rt ip < \<pi>\<^sub>2(r)"
|
593 |
+
thus "P (rt(ip \<mapsto> addpre r (\<pi>\<^sub>7(the (rt ip)))))" by (rule c2)
|
594 |
+
next
|
595 |
+
assume "sqn rt ip = \<pi>\<^sub>2(r)"
|
596 |
+
and "the (dhops rt ip) > \<pi>\<^sub>5(r)"
|
597 |
+
thus "P (rt(ip \<mapsto> addpre r (\<pi>\<^sub>7 (the (rt ip)))))"
|
598 |
+
by (rule c3)
|
599 |
+
next
|
600 |
+
assume "sqn rt ip = \<pi>\<^sub>2(r)"
|
601 |
+
and "the (flag rt ip) = inv"
|
602 |
+
thus "P (rt(ip \<mapsto> addpre r (\<pi>\<^sub>7 (the (rt ip)))))"
|
603 |
+
by (rule c4)
|
604 |
+
next
|
605 |
+
assume "\<pi>\<^sub>3(r) = unk"
|
606 |
+
thus "P (rt (ip \<mapsto> (\<pi>\<^sub>2(the \<sigma>\<^bsub>route\<^esub>(rt, ip)), \<pi>\<^sub>3(r), \<pi>\<^sub>4(r), \<pi>\<^sub>5(r), \<pi>\<^sub>6(r),
|
607 |
+
\<pi>\<^sub>7(addpre r (\<pi>\<^sub>7(the (rt ip)))))))"
|
608 |
+
by (rule c5)
|
609 |
+
next
|
610 |
+
assume "sqn rt ip \<ge> \<pi>\<^sub>2(r)"
|
611 |
+
and "\<pi>\<^sub>3(r) = kno"
|
612 |
+
and "sqn rt ip = \<pi>\<^sub>2(r) \<Longrightarrow> the (dhops rt ip) \<le> \<pi>\<^sub>5(r) \<and> the (flag rt ip) = val"
|
613 |
+
thus "P (rt (ip \<mapsto> addpre (the (rt ip)) (\<pi>\<^sub>7(r))))"
|
614 |
+
by (rule c6)
|
615 |
+
qed (simp add: \<open>ip \<in> kD(rt)\<close>)
|
616 |
+
|
617 |
+
lemma in_kD_after_update [simp]:
|
618 |
+
fixes rt nip dsn dsk flag hops nhip pre
|
619 |
+
shows "kD (update rt nip (dsn, dsk, flag, hops, nhip, pre)) = insert nip (kD rt)"
|
620 |
+
unfolding update_def
|
621 |
+
by (cases "rt nip") auto
|
622 |
+
|
623 |
+
lemma nhop_of_update [simp]:
|
624 |
+
fixes rt dip dsn dsk flag hops nhip
|
625 |
+
assumes "rt \<noteq> update rt dip (dsn, dsk, flag, hops, nhip, {})"
|
626 |
+
shows "the (nhop (update rt dip (dsn, dsk, flag, hops, nhip, {})) dip) = nhip"
|
627 |
+
proof -
|
628 |
+
from assms
|
629 |
+
have update_neq: "\<And>v. rt dip = Some v \<Longrightarrow>
|
630 |
+
update rt dip (dsn, dsk, flag, hops, nhip, {})
|
631 |
+
\<noteq> rt(dip \<mapsto> addpre (the (rt dip)) (\<pi>\<^sub>7 (dsn, dsk, flag, hops, nhip, {})))"
|
632 |
+
by auto
|
633 |
+
show ?thesis
|
634 |
+
proof (cases "rt dip = None")
|
635 |
+
assume "rt dip = None"
|
636 |
+
thus "?thesis" unfolding update_def by clarsimp
|
637 |
+
next
|
638 |
+
assume "rt dip \<noteq> None"
|
639 |
+
then obtain v where "rt dip = Some v" by (metis not_None_eq)
|
640 |
+
with update_neq [OF this] show ?thesis
|
641 |
+
unfolding update_def by auto
|
642 |
+
qed
|
643 |
+
qed
|
644 |
+
|
645 |
+
lemma sqn_if_updated:
|
646 |
+
fixes rip v rt ip
|
647 |
+
shows "sqn (\<lambda>x. if x = rip then Some v else rt x) ip
|
648 |
+
= (if ip = rip then \<pi>\<^sub>2(v) else sqn rt ip)"
|
649 |
+
unfolding sqn_def by simp
|
650 |
+
|
651 |
+
lemma update_sqn [simp]:
|
652 |
+
fixes rt dip rip dsn dsk hops nhip pre
|
653 |
+
assumes "(dsn = 0) = (dsk = unk)"
|
654 |
+
shows "sqn rt dip \<le> sqn (update rt rip (dsn, dsk, val, hops, nhip, pre)) dip"
|
655 |
+
proof (rule update_cases)
|
656 |
+
show "(\<pi>\<^sub>2 (dsn, dsk, val, hops, nhip, pre) = 0) = (\<pi>\<^sub>3 (dsn, dsk, val, hops, nhip, pre) = unk)"
|
657 |
+
by simp (rule assms)
|
658 |
+
qed (clarsimp simp: sqn_if_updated sqn_def)+
|
659 |
+
|
660 |
+
lemma sqn_update_bigger [simp]:
|
661 |
+
fixes rt ip ip' dsn dsk flag hops nhip pre
|
662 |
+
assumes "1 \<le> hops"
|
663 |
+
shows "sqn rt ip \<le> sqn (update rt ip' (dsn, dsk, flag, hops, nhip, pre)) ip"
|
664 |
+
using assms unfolding update_def sqn_def
|
665 |
+
by (clarsimp split: option.split) auto
|
666 |
+
|
667 |
+
lemma dhops_update [intro]:
|
668 |
+
fixes rt dsn dsk flag hops ip rip nhip pre
|
669 |
+
assumes ex: "\<forall>ip\<in>kD rt. the (dhops rt ip) \<ge> 1"
|
670 |
+
and ip: "(ip = rip \<and> Suc 0 \<le> hops) \<or> (ip \<noteq> rip \<and> ip\<in>kD rt)"
|
671 |
+
shows "Suc 0 \<le> the (dhops (update rt rip (dsn, dsk, flag, hops, nhip, pre)) ip)"
|
672 |
+
using ip proof
|
673 |
+
assume "ip = rip \<and> Suc 0 \<le> hops" thus ?thesis
|
674 |
+
unfolding update_def using ex
|
675 |
+
by (cases "rip \<in> kD rt") (drule(1) bspec, auto)
|
676 |
+
next
|
677 |
+
assume "ip \<noteq> rip \<and> ip\<in>kD rt" thus ?thesis
|
678 |
+
using ex unfolding update_def
|
679 |
+
by (cases "rip\<in>kD rt") auto
|
680 |
+
qed
|
681 |
+
|
682 |
+
lemma update_another [simp]:
|
683 |
+
fixes dip ip rt dsn dsk flag hops nhip pre
|
684 |
+
assumes "ip \<noteq> dip"
|
685 |
+
shows "(update rt dip (dsn, dsk, flag, hops, nhip, pre)) ip = rt ip"
|
686 |
+
using assms unfolding update_def
|
687 |
+
by (clarsimp split: option.split)
|
688 |
+
|
689 |
+
lemma nhop_update_another [simp]:
|
690 |
+
fixes dip ip rt dsn dsk flag hops nhip pre
|
691 |
+
assumes "ip \<noteq> dip"
|
692 |
+
shows "nhop (update rt dip (dsn, dsk, flag, hops, nhip, pre)) ip = nhop rt ip"
|
693 |
+
using assms unfolding update_def
|
694 |
+
by (clarsimp split: option.split)
|
695 |
+
|
696 |
+
lemma dhops_update_another [simp]:
|
697 |
+
fixes dip ip rt dsn dsk flag hops nhip pre
|
698 |
+
assumes "ip \<noteq> dip"
|
699 |
+
shows "dhops (update rt dip (dsn, dsk, flag, hops, nhip, pre)) ip = dhops rt ip"
|
700 |
+
using assms unfolding update_def
|
701 |
+
by (clarsimp split: option.split)
|
702 |
+
|
703 |
+
lemma sqn_update_same [simp]:
|
704 |
+
"\<And>rt ip dsn dsk flag hops nhip pre. sqn (rt(ip \<mapsto> v)) ip = \<pi>\<^sub>2(v)"
|
705 |
+
unfolding sqn_def by simp
|
706 |
+
|
707 |
+
lemma dhops_update_changed [simp]:
|
708 |
+
fixes rt dip osn hops nhip
|
709 |
+
assumes "rt \<noteq> update rt dip (osn, kno, val, hops, nhip, {})"
|
710 |
+
shows "the (dhops (update rt dip (osn, kno, val, hops, nhip, {})) dip) = hops"
|
711 |
+
using assms unfolding update_def
|
712 |
+
by (clarsimp split: option.split_asm option.split if_split_asm) auto
|
713 |
+
|
714 |
+
lemma nhop_update_unk_val [simp]:
|
715 |
+
"\<And>rt dip ip dsn hops npre.
|
716 |
+
the (nhop (update rt dip (dsn, unk, val, hops, ip, npre)) dip) = ip"
|
717 |
+
unfolding update_def by (clarsimp split: option.split)
|
718 |
+
|
719 |
+
lemma nhop_update_changed [simp]:
|
720 |
+
fixes rt dip dsn dsk flg hops sip
|
721 |
+
assumes "update rt dip (dsn, dsk, flg, hops, sip, {}) \<noteq> rt"
|
722 |
+
shows "the (nhop (update rt dip (dsn, dsk, flg, hops, sip, {})) dip) = sip"
|
723 |
+
using assms unfolding update_def
|
724 |
+
by (clarsimp split: option.splits if_split_asm) auto
|
725 |
+
|
726 |
+
lemma update_rt_split_asm:
|
727 |
+
"\<And>rt ip dsn dsk flag hops sip.
|
728 |
+
P (update rt ip (dsn, dsk, flag, hops, sip, {}))
|
729 |
+
=
|
730 |
+
(\<not>(rt = update rt ip (dsn, dsk, flag, hops, sip, {}) \<and> \<not>P rt
|
731 |
+
\<or> rt \<noteq> update rt ip (dsn, dsk, flag, hops, sip, {})
|
732 |
+
\<and> \<not>P (update rt ip (dsn, dsk, flag, hops, sip, {}))))"
|
733 |
+
by auto
|
734 |
+
|
735 |
+
lemma sqn_update [simp]: "\<And>rt dip dsn flg hops sip.
|
736 |
+
rt \<noteq> update rt dip (dsn, kno, flg, hops, sip, {})
|
737 |
+
\<Longrightarrow> sqn (update rt dip (dsn, kno, flg, hops, sip, {})) dip = dsn"
|
738 |
+
unfolding update_def by (clarsimp split: option.split if_split_asm) auto
|
739 |
+
|
740 |
+
lemma sqnf_update [simp]: "\<And>rt dip dsn dsk flg hops sip.
|
741 |
+
rt \<noteq> update rt dip (dsn, dsk, flg, hops, sip, {})
|
742 |
+
\<Longrightarrow> sqnf (update rt dip (dsn, dsk, flg, hops, sip, {})) dip = dsk"
|
743 |
+
unfolding update_def sqnf_def
|
744 |
+
by (clarsimp split: option.splits if_split_asm) auto
|
745 |
+
|
746 |
+
lemma update_kno_dsn_greater_zero:
|
747 |
+
"\<And>rt dip ip dsn hops npre. 1 \<le> dsn \<Longrightarrow> 1 \<le> (sqn (update rt dip (dsn, kno, val, hops, ip, npre)) dip)"
|
748 |
+
unfolding update_def
|
749 |
+
by (clarsimp split: option.splits)
|
750 |
+
|
751 |
+
lemma proj3_update [simp]: "\<And>rt dip dsn dsk flg hops sip.
|
752 |
+
rt \<noteq> update rt dip (dsn, dsk, flg, hops, sip, {})
|
753 |
+
\<Longrightarrow> \<pi>\<^sub>3(the (update rt dip (dsn, dsk, flg, hops, sip, {}) dip)) = dsk"
|
754 |
+
unfolding update_def sqnf_def
|
755 |
+
by (clarsimp split: option.splits if_split_asm) auto
|
756 |
+
|
757 |
+
lemma nhop_update_changed_kno_val [simp]: "\<And>rt ip dsn dsk hops nhip.
|
758 |
+
rt \<noteq> update rt ip (dsn, kno, val, hops, nhip, {})
|
759 |
+
\<Longrightarrow> the (nhop (update rt ip (dsn, kno, val, hops, nhip, {})) ip) = nhip"
|
760 |
+
unfolding update_def
|
761 |
+
by (clarsimp split: option.split_asm option.split if_split_asm) auto
|
762 |
+
|
763 |
+
lemma flag_update [simp]: "\<And>rt dip dsn flg hops sip.
|
764 |
+
rt \<noteq> update rt dip (dsn, kno, flg, hops, sip, {})
|
765 |
+
\<Longrightarrow> the (flag (update rt dip (dsn, kno, flg, hops, sip, {})) dip) = flg"
|
766 |
+
unfolding update_def
|
767 |
+
by (clarsimp split: option.split if_split_asm) auto
|
768 |
+
|
769 |
+
lemma the_flag_Some [dest!]:
|
770 |
+
fixes ip rt
|
771 |
+
assumes "the (flag rt ip) = x"
|
772 |
+
and "ip \<in> kD rt"
|
773 |
+
shows "flag rt ip = Some x"
|
774 |
+
using assms by auto
|
775 |
+
|
776 |
+
lemma kD_update_unchanged [dest]:
|
777 |
+
fixes rt dip dsn dsk flag hops nhip pre
|
778 |
+
assumes "rt = update rt dip (dsn, dsk, flag, hops, nhip, pre)"
|
779 |
+
shows "dip\<in>kD(rt)"
|
780 |
+
proof -
|
781 |
+
have "dip\<in>kD(update rt dip (dsn, dsk, flag, hops, nhip, pre))" by simp
|
782 |
+
with assms show ?thesis by simp
|
783 |
+
qed
|
784 |
+
|
785 |
+
lemma nhop_update [simp]: "\<And>rt dip dsn dsk flg hops sip.
|
786 |
+
rt \<noteq> update rt dip (dsn, dsk, flg, hops, sip, {})
|
787 |
+
\<Longrightarrow> the (nhop (update rt dip (dsn, dsk, flg, hops, sip, {})) dip) = sip"
|
788 |
+
unfolding update_def sqnf_def
|
789 |
+
by (clarsimp split: option.splits if_split_asm) auto
|
790 |
+
|
791 |
+
lemma sqn_update_another [simp]:
|
792 |
+
fixes dip ip rt dsn dsk flag hops nhip pre
|
793 |
+
assumes "ip \<noteq> dip"
|
794 |
+
shows "sqn (update rt dip (dsn, dsk, flag, hops, nhip, pre)) ip = sqn rt ip"
|
795 |
+
using assms unfolding update_def sqn_def
|
796 |
+
by (clarsimp split: option.splits) auto
|
797 |
+
|
798 |
+
lemma sqnf_update_another [simp]:
|
799 |
+
fixes dip ip rt dsn dsk flag hops nhip pre
|
800 |
+
assumes "ip \<noteq> dip"
|
801 |
+
shows "sqnf (update rt dip (dsn, dsk, flag, hops, nhip, pre)) ip = sqnf rt ip"
|
802 |
+
using assms unfolding update_def sqnf_def
|
803 |
+
by (clarsimp split: option.splits) auto
|
804 |
+
|
805 |
+
lemma vD_update_val [dest]:
|
806 |
+
"\<And>dip rt dip' dsn dsk hops nhip pre.
|
807 |
+
dip \<in> vD(update rt dip' (dsn, dsk, val, hops, nhip, pre)) \<Longrightarrow> (dip\<in>vD(rt) \<or> dip=dip')"
|
808 |
+
unfolding update_def vD_def by (clarsimp split: option.split_asm if_split_asm)
|
809 |
+
|
810 |
+
subsubsection "Invalidating route entries"
|
811 |
+
|
812 |
+
definition invalidate :: "rt \<Rightarrow> (ip \<rightharpoonup> sqn) \<Rightarrow> rt"
|
813 |
+
where "invalidate rt dests \<equiv>
|
814 |
+
\<lambda>ip. case (rt ip, dests ip) of
|
815 |
+
(None, _) \<Rightarrow> None
|
816 |
+
| (Some s, None) \<Rightarrow> Some s
|
817 |
+
| (Some (_, dsk, _, hops, nhip, pre), Some rsn) \<Rightarrow>
|
818 |
+
Some (rsn, dsk, inv, hops, nhip, pre)"
|
819 |
+
|
820 |
+
lemma proj3_invalidate [simp]:
|
821 |
+
"\<And>dip. \<pi>\<^sub>3(the ((invalidate rt dests) dip)) = \<pi>\<^sub>3(the (rt dip))"
|
822 |
+
unfolding invalidate_def by (clarsimp split: option.split)
|
823 |
+
|
824 |
+
lemma proj5_invalidate [simp]:
|
825 |
+
"\<And>dip. \<pi>\<^sub>5(the ((invalidate rt dests) dip)) = \<pi>\<^sub>5(the (rt dip))"
|
826 |
+
unfolding invalidate_def by (clarsimp split: option.split)
|
827 |
+
|
828 |
+
lemma proj6_invalidate [simp]:
|
829 |
+
"\<And>dip. \<pi>\<^sub>6(the ((invalidate rt dests) dip)) = \<pi>\<^sub>6(the (rt dip))"
|
830 |
+
unfolding invalidate_def by (clarsimp split: option.split)
|
831 |
+
|
832 |
+
lemma proj7_invalidate [simp]:
|
833 |
+
"\<And>dip. \<pi>\<^sub>7(the ((invalidate rt dests) dip)) = \<pi>\<^sub>7(the (rt dip))"
|
834 |
+
unfolding invalidate_def by (clarsimp split: option.split)
|
835 |
+
|
836 |
+
subsection "Route Requests"
|
837 |
+
|
838 |
+
lemma invalidate_kD_inv [simp]:
|
839 |
+
"\<And>rt dests. kD (invalidate rt dests) = kD rt"
|
840 |
+
unfolding invalidate_def kD_def
|
841 |
+
by (simp split: option.split)
|
842 |
+
|
843 |
+
lemma invalidate_sqn:
|
844 |
+
fixes rt dip dests
|
845 |
+
assumes "\<forall>rsn. dests dip = Some rsn \<longrightarrow> sqn rt dip \<le> rsn"
|
846 |
+
shows "sqn rt dip \<le> sqn (invalidate rt dests) dip"
|
847 |
+
proof (cases "dip \<notin> kD(rt)")
|
848 |
+
assume "\<not> dip \<notin> kD(rt)"
|
849 |
+
hence "dip\<in>kD(rt)" by simp
|
850 |
+
then obtain dsn dsk flag hops nhip pre where "rt dip = Some (dsn, dsk, flag, hops, nhip, pre)"
|
851 |
+
by (metis kD_Some)
|
852 |
+
with assms show "sqn rt dip \<le> sqn (invalidate rt dests) dip"
|
853 |
+
by (cases "dests dip") (auto simp add: invalidate_def sqn_def)
|
854 |
+
qed simp
|
855 |
+
|
856 |
+
lemma sqn_invalidate_in_dests [simp]:
|
857 |
+
fixes dests ipa rsn rt
|
858 |
+
assumes "dests ipa = Some rsn"
|
859 |
+
and "ipa\<in>kD(rt)"
|
860 |
+
shows "sqn (invalidate rt dests) ipa = rsn"
|
861 |
+
unfolding invalidate_def sqn_def
|
862 |
+
using assms(1) assms(2) [THEN kD_Some]
|
863 |
+
by clarsimp
|
864 |
+
|
865 |
+
lemma dhops_invalidate [simp]:
|
866 |
+
"\<And>dip. the (dhops (invalidate rt dests) dip) = the (dhops rt dip)"
|
867 |
+
unfolding invalidate_def by (clarsimp split: option.split)
|
868 |
+
|
869 |
+
lemma sqnf_invalidate [simp]:
|
870 |
+
"\<And>dip. sqnf (invalidate (rt \<xi>) (dests \<xi>)) dip = sqnf (rt \<xi>) dip"
|
871 |
+
unfolding sqnf_def invalidate_def by (clarsimp split: option.split)
|
872 |
+
|
873 |
+
lemma nhop_invalidate [simp]:
|
874 |
+
"\<And>dip. the (nhop (invalidate (rt \<xi>) (dests \<xi>)) dip) = the (nhop (rt \<xi>) dip)"
|
875 |
+
unfolding invalidate_def by (clarsimp split: option.split)
|
876 |
+
|
877 |
+
lemma invalidate_other [simp]:
|
878 |
+
fixes rt dests dip
|
879 |
+
assumes "dip\<notin>dom(dests)"
|
880 |
+
shows "invalidate rt dests dip = rt dip"
|
881 |
+
using assms unfolding invalidate_def
|
882 |
+
by (clarsimp split: option.split_asm)
|
883 |
+
|
884 |
+
lemma invalidate_none [simp]:
|
885 |
+
fixes rt dests dip
|
886 |
+
assumes "dip\<notin>kD(rt)"
|
887 |
+
shows "invalidate rt dests dip = None"
|
888 |
+
using assms unfolding invalidate_def by clarsimp
|
889 |
+
|
890 |
+
lemma vD_invalidate_vD_not_dests:
|
891 |
+
"\<And>dip rt dests. dip\<in>vD(invalidate rt dests) \<Longrightarrow> dip\<in>vD(rt) \<and> dests dip = None"
|
892 |
+
unfolding invalidate_def vD_def
|
893 |
+
by (clarsimp split: option.split_asm)
|
894 |
+
|
895 |
+
lemma sqn_invalidate_not_in_dests [simp]:
|
896 |
+
fixes dests dip rt
|
897 |
+
assumes "dip\<notin>dom(dests)"
|
898 |
+
shows "sqn (invalidate rt dests) dip = sqn rt dip"
|
899 |
+
using assms unfolding sqn_def by simp
|
900 |
+
|
901 |
+
lemma invalidate_changes:
|
902 |
+
fixes rt dests dip dsn dsk flag hops nhip pre
|
903 |
+
assumes "invalidate rt dests dip = Some (dsn, dsk, flag, hops, nhip, pre)"
|
904 |
+
shows " dsn = (case dests dip of None \<Rightarrow> \<pi>\<^sub>2(the (rt dip)) | Some rsn \<Rightarrow> rsn)
|
905 |
+
\<and> dsk = \<pi>\<^sub>3(the (rt dip))
|
906 |
+
\<and> flag = (if dests dip = None then \<pi>\<^sub>4(the (rt dip)) else inv)
|
907 |
+
\<and> hops = \<pi>\<^sub>5(the (rt dip))
|
908 |
+
\<and> nhip = \<pi>\<^sub>6(the (rt dip))
|
909 |
+
\<and> pre = \<pi>\<^sub>7(the (rt dip))"
|
910 |
+
using assms unfolding invalidate_def
|
911 |
+
by (cases "rt dip", clarsimp, cases "dests dip") auto
|
912 |
+
|
913 |
+
|
914 |
+
lemma proj3_inv: "\<And>dip rt dests. dip\<in>kD (rt)
|
915 |
+
\<Longrightarrow> \<pi>\<^sub>3(the (invalidate rt dests dip)) = \<pi>\<^sub>3(the (rt dip))"
|
916 |
+
by (clarsimp simp: invalidate_def kD_def split: option.split)
|
917 |
+
|
918 |
+
lemma dests_iD_invalidate [simp]:
|
919 |
+
assumes "dests ip = Some rsn"
|
920 |
+
and "ip\<in>kD(rt)"
|
921 |
+
shows "ip\<in>iD(invalidate rt dests)"
|
922 |
+
using assms(1) assms(2) [THEN kD_Some] unfolding invalidate_def iD_def
|
923 |
+
by (clarsimp split: option.split)
|
924 |
+
|
925 |
+
subsection "Queued Packets"
|
926 |
+
|
927 |
+
text \<open>Functions for sending data packets.\<close>
|
928 |
+
|
929 |
+
type_synonym store = "ip \<rightharpoonup> (p \<times> data list)"
|
930 |
+
|
931 |
+
definition sigma_queue :: "store \<Rightarrow> ip \<Rightarrow> data list" ("\<sigma>\<^bsub>queue\<^esub>'(_, _')")
|
932 |
+
where "\<sigma>\<^bsub>queue\<^esub>(store, dip) \<equiv> case store dip of None \<Rightarrow> [] | Some (p, q) \<Rightarrow> q"
|
933 |
+
|
934 |
+
definition qD :: "store \<Rightarrow> ip set"
|
935 |
+
where "qD \<equiv> dom"
|
936 |
+
|
937 |
+
definition add :: "data \<Rightarrow> ip \<Rightarrow> store \<Rightarrow> store"
|
938 |
+
where "add d dip store \<equiv> case store dip of
|
939 |
+
None \<Rightarrow> store (dip \<mapsto> (req, [d]))
|
940 |
+
| Some (p, q) \<Rightarrow> store (dip \<mapsto> (p, q @ [d]))"
|
941 |
+
|
942 |
+
lemma qD_add [simp]:
|
943 |
+
fixes d dip store
|
944 |
+
shows "qD(add d dip store) = insert dip (qD store)"
|
945 |
+
unfolding add_def Let_def qD_def
|
946 |
+
by (clarsimp split: option.split)
|
947 |
+
|
948 |
+
definition drop :: "ip \<Rightarrow> store \<rightharpoonup> store"
|
949 |
+
where "drop dip store \<equiv>
|
950 |
+
map_option (\<lambda>(p, q). if tl q = [] then store (dip := None)
|
951 |
+
else store (dip \<mapsto> (p, tl q))) (store dip)"
|
952 |
+
|
953 |
+
definition sigma_p_flag :: "store \<Rightarrow> ip \<rightharpoonup> p" ("\<sigma>\<^bsub>p-flag\<^esub>'(_, _')")
|
954 |
+
where "\<sigma>\<^bsub>p-flag\<^esub>(store, dip) \<equiv> map_option fst (store dip)"
|
955 |
+
|
956 |
+
definition unsetRRF :: "store \<Rightarrow> ip \<Rightarrow> store"
|
957 |
+
where "unsetRRF store dip \<equiv> case store dip of
|
958 |
+
None \<Rightarrow> store
|
959 |
+
| Some (p, q) \<Rightarrow> store (dip \<mapsto> (noreq, q))"
|
960 |
+
|
961 |
+
definition setRRF :: "store \<Rightarrow> (ip \<rightharpoonup> sqn) \<Rightarrow> store"
|
962 |
+
where "setRRF store dests \<equiv> \<lambda>dip. if dests dip = None then store dip
|
963 |
+
else map_option (\<lambda>(_, q). (req, q)) (store dip)"
|
964 |
+
|
965 |
+
subsection "Comparison with the original technical report"
|
966 |
+
|
967 |
+
text \<open>
|
968 |
+
The major differences with the AODV technical report of Fehnker et al are:
|
969 |
+
\begin{enumerate}
|
970 |
+
\item @{term nhop} is partial, thus a `@{term the}' is needed, similarly for @{term dhops}
|
971 |
+
and @{term addpreRT}.
|
972 |
+
\item @{term precs} is partial.
|
973 |
+
\item @{term "\<sigma>\<^bsub>p-flag\<^esub>(store, dip)"} is partial.
|
974 |
+
\item The routing table (@{typ rt}) is modelled as a map (@{typ "ip \<Rightarrow> r option"})
|
975 |
+
rather than a set of 7-tuples, likewise, the @{typ r} is a 6-tuple rather than
|
976 |
+
a 7-tuple, i.e., the destination ip-address (@{term "dip"}) is taken from the
|
977 |
+
argument to the function, rather than a part of the result. Well-definedness then
|
978 |
+
follows from the structure of the type and more related facts are available
|
979 |
+
automatically, rather than having to be acquired through tedious proofs.
|
980 |
+
\item Similar remarks hold for the dests mapping passed to @{term "invalidate"},
|
981 |
+
and @{term "store"}.
|
982 |
+
\end{enumerate}
|
983 |
+
\<close>
|
984 |
+
|
985 |
+
end
|
986 |
+
|
formal/afp/AODV/variants/a_norreqid/A_Aodv_Loop_Freedom.thy
ADDED
@@ -0,0 +1,369 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
(* Title: variants/a_norreqid/Aodv_Loop_Freedom.thy
|
2 |
+
License: BSD 2-Clause. See LICENSE.
|
3 |
+
Author: Timothy Bourke, Inria
|
4 |
+
*)
|
5 |
+
|
6 |
+
section "Lift and transfer invariants to show loop freedom"
|
7 |
+
|
8 |
+
theory A_Aodv_Loop_Freedom
|
9 |
+
imports AWN.OClosed_Transfer AWN.Qmsg_Lifting A_Global_Invariants A_Loop_Freedom
|
10 |
+
begin
|
11 |
+
|
12 |
+
text \<open>lift to parallel processes with queues\<close>
|
13 |
+
|
14 |
+
lemma par_step_no_change_on_send_or_receive:
|
15 |
+
fixes \<sigma> s a \<sigma>' s'
|
16 |
+
assumes "((\<sigma>, s), a, (\<sigma>', s')) \<in> oparp_sos i (oseqp_sos \<Gamma>\<^sub>A\<^sub>O\<^sub>D\<^sub>V i) (seqp_sos \<Gamma>\<^sub>Q\<^sub>M\<^sub>S\<^sub>G)"
|
17 |
+
and "a \<noteq> \<tau>"
|
18 |
+
shows "\<sigma>' i = \<sigma> i"
|
19 |
+
using assms by (rule qmsg_no_change_on_send_or_receive)
|
20 |
+
|
21 |
+
lemma par_nhop_quality_increases:
|
22 |
+
shows "opaodv i \<langle>\<langle>\<^bsub>i\<^esub> qmsg \<Turnstile> (otherwith ((=)) {i} (orecvmsg (\<lambda>\<sigma> m.
|
23 |
+
msg_fresh \<sigma> m \<and> msg_zhops m)),
|
24 |
+
other quality_increases {i} \<rightarrow>)
|
25 |
+
global (\<lambda>\<sigma>. \<forall>dip. let nhip = the (nhop (rt (\<sigma> i)) dip)
|
26 |
+
in dip \<in> vD (rt (\<sigma> i)) \<inter> vD (rt (\<sigma> nhip)) \<and> nhip \<noteq> dip
|
27 |
+
\<longrightarrow> (rt (\<sigma> i)) \<sqsubset>\<^bsub>dip\<^esub> (rt (\<sigma> nhip)))"
|
28 |
+
proof (rule lift_into_qmsg [OF seq_nhop_quality_increases])
|
29 |
+
show "opaodv i \<Turnstile>\<^sub>A (otherwith ((=)) {i}
|
30 |
+
(orecvmsg (\<lambda>\<sigma> m. msg_fresh \<sigma> m \<and> msg_zhops m)),
|
31 |
+
other quality_increases {i} \<rightarrow>)
|
32 |
+
globala (\<lambda>(\<sigma>, _, \<sigma>'). quality_increases (\<sigma> i) (\<sigma>' i))"
|
33 |
+
proof (rule ostep_invariant_weakenE [OF oquality_increases], simp_all)
|
34 |
+
fix t :: "(((nat \<Rightarrow> state) \<times> (state, msg, pseqp, pseqp label) seqp), msg seq_action) transition"
|
35 |
+
assume "onll \<Gamma>\<^sub>A\<^sub>O\<^sub>D\<^sub>V (\<lambda>((\<sigma>, _), _, (\<sigma>', _)). \<forall>j. quality_increases (\<sigma> j) (\<sigma>' j)) t"
|
36 |
+
thus "quality_increases (fst (fst t) i) (fst (snd (snd t)) i)"
|
37 |
+
by (cases t) (clarsimp dest!: onllD, metis aodv_ex_label)
|
38 |
+
next
|
39 |
+
fix \<sigma> \<sigma>' a
|
40 |
+
assume "otherwith ((=)) {i}
|
41 |
+
(orecvmsg (\<lambda>\<sigma> m. msg_fresh \<sigma> m \<and> msg_zhops m)) \<sigma> \<sigma>' a"
|
42 |
+
thus "otherwith quality_increases {i} (orecvmsg (\<lambda>_. rreq_rrep_sn)) \<sigma> \<sigma>' a"
|
43 |
+
by - (erule weaken_otherwith, auto)
|
44 |
+
qed
|
45 |
+
qed auto
|
46 |
+
|
47 |
+
lemma par_rreq_rrep_sn_quality_increases:
|
48 |
+
"opaodv i \<langle>\<langle>\<^bsub>i\<^esub> qmsg \<Turnstile>\<^sub>A (\<lambda>\<sigma> _. orecvmsg (\<lambda>_. rreq_rrep_sn) \<sigma>, other (\<lambda>_ _. True) {i} \<rightarrow>)
|
49 |
+
globala (\<lambda>(\<sigma>, _, \<sigma>'). quality_increases (\<sigma> i) (\<sigma>' i))"
|
50 |
+
proof -
|
51 |
+
have "opaodv i \<Turnstile>\<^sub>A (\<lambda>\<sigma> _. orecvmsg (\<lambda>_. rreq_rrep_sn) \<sigma>, other (\<lambda>_ _. True) {i} \<rightarrow>)
|
52 |
+
globala (\<lambda>(\<sigma>, _, \<sigma>'). quality_increases (\<sigma> i) (\<sigma>' i))"
|
53 |
+
by (rule ostep_invariant_weakenE [OF olocal_quality_increases])
|
54 |
+
(auto dest!: onllD seqllD elim!: aodv_ex_labelE)
|
55 |
+
hence "opaodv i \<langle>\<langle>\<^bsub>i\<^esub> qmsg \<Turnstile>\<^sub>A (\<lambda>\<sigma> _. orecvmsg (\<lambda>_. rreq_rrep_sn) \<sigma>, other (\<lambda>_ _. True) {i} \<rightarrow>)
|
56 |
+
globala (\<lambda>(\<sigma>, _, \<sigma>'). quality_increases (\<sigma> i) (\<sigma>' i))"
|
57 |
+
by (rule lift_step_into_qmsg_statelessassm) simp_all
|
58 |
+
thus ?thesis by rule auto
|
59 |
+
qed
|
60 |
+
|
61 |
+
lemma par_rreq_rrep_nsqn_fresh_any_step:
|
62 |
+
shows "opaodv i \<langle>\<langle>\<^bsub>i\<^esub> qmsg \<Turnstile>\<^sub>A (\<lambda>\<sigma> _. orecvmsg (\<lambda>_. rreq_rrep_sn) \<sigma>,
|
63 |
+
other (\<lambda>_ _. True) {i} \<rightarrow>)
|
64 |
+
globala (\<lambda>(\<sigma>, a, \<sigma>'). anycast (msg_fresh \<sigma>) a)"
|
65 |
+
proof -
|
66 |
+
have "opaodv i \<Turnstile>\<^sub>A (\<lambda>\<sigma> _. (orecvmsg (\<lambda>_. rreq_rrep_sn)) \<sigma>, other (\<lambda>_ _. True) {i} \<rightarrow>)
|
67 |
+
globala (\<lambda>(\<sigma>, a, \<sigma>'). anycast (msg_fresh \<sigma>) a)"
|
68 |
+
proof (rule ostep_invariant_weakenE [OF rreq_rrep_nsqn_fresh_any_step_invariant])
|
69 |
+
fix t
|
70 |
+
assume "onll \<Gamma>\<^sub>A\<^sub>O\<^sub>D\<^sub>V (\<lambda>((\<sigma>, _), a, _). anycast (msg_fresh \<sigma>) a) t"
|
71 |
+
thus "globala (\<lambda>(\<sigma>, a, \<sigma>'). anycast (msg_fresh \<sigma>) a) t"
|
72 |
+
by (cases t) (clarsimp dest!: onllD, metis aodv_ex_label)
|
73 |
+
qed auto
|
74 |
+
hence "opaodv i \<langle>\<langle>\<^bsub>i\<^esub> qmsg \<Turnstile>\<^sub>A (\<lambda>\<sigma> _. (orecvmsg (\<lambda>_. rreq_rrep_sn)) \<sigma>, other (\<lambda>_ _. True) {i} \<rightarrow>)
|
75 |
+
globala (\<lambda>(\<sigma>, a, \<sigma>'). anycast (msg_fresh \<sigma>) a)"
|
76 |
+
by (rule lift_step_into_qmsg_statelessassm) simp_all
|
77 |
+
thus ?thesis by rule auto
|
78 |
+
qed
|
79 |
+
|
80 |
+
lemma par_anycast_msg_zhops:
|
81 |
+
shows "opaodv i \<langle>\<langle>\<^bsub>i\<^esub> qmsg \<Turnstile>\<^sub>A (\<lambda>\<sigma> _. orecvmsg (\<lambda>_. rreq_rrep_sn) \<sigma>, other (\<lambda>_ _. True) {i} \<rightarrow>)
|
82 |
+
globala (\<lambda>(_, a, _). anycast msg_zhops a)"
|
83 |
+
proof -
|
84 |
+
from anycast_msg_zhops initiali_aodv oaodv_trans aodv_trans
|
85 |
+
have "opaodv i \<Turnstile>\<^sub>A (act TT, other (\<lambda>_ _. True) {i} \<rightarrow>)
|
86 |
+
seqll i (onll \<Gamma>\<^sub>A\<^sub>O\<^sub>D\<^sub>V (\<lambda>(_, a, _). anycast msg_zhops a))"
|
87 |
+
by (rule open_seq_step_invariant)
|
88 |
+
hence "opaodv i \<Turnstile>\<^sub>A (\<lambda>\<sigma> _. orecvmsg (\<lambda>_. rreq_rrep_sn) \<sigma>, other (\<lambda>_ _. True) {i} \<rightarrow>)
|
89 |
+
globala (\<lambda>(_, a, _). anycast msg_zhops a)"
|
90 |
+
proof (rule ostep_invariant_weakenE)
|
91 |
+
fix t :: "(((nat \<Rightarrow> state) \<times> (state, msg, pseqp, pseqp label) seqp), msg seq_action) transition"
|
92 |
+
assume "seqll i (onll \<Gamma>\<^sub>A\<^sub>O\<^sub>D\<^sub>V (\<lambda>(_, a, _). anycast msg_zhops a)) t"
|
93 |
+
thus "globala (\<lambda>(_, a, _). anycast msg_zhops a) t"
|
94 |
+
by (cases t) (clarsimp dest!: seqllD onllD, metis aodv_ex_label)
|
95 |
+
qed simp_all
|
96 |
+
hence "opaodv i \<langle>\<langle>\<^bsub>i\<^esub> qmsg \<Turnstile>\<^sub>A (\<lambda>\<sigma> _. orecvmsg (\<lambda>_. rreq_rrep_sn) \<sigma>, other (\<lambda>_ _. True) {i} \<rightarrow>)
|
97 |
+
globala (\<lambda>(_, a, _). anycast msg_zhops a)"
|
98 |
+
by (rule lift_step_into_qmsg_statelessassm) simp_all
|
99 |
+
thus ?thesis by rule auto
|
100 |
+
qed
|
101 |
+
|
102 |
+
subsection \<open>Lift to nodes\<close>
|
103 |
+
|
104 |
+
lemma node_step_no_change_on_send_or_receive:
|
105 |
+
assumes "((\<sigma>, NodeS i P R), a, (\<sigma>', NodeS i' P' R')) \<in> onode_sos
|
106 |
+
(oparp_sos i (oseqp_sos \<Gamma>\<^sub>A\<^sub>O\<^sub>D\<^sub>V i) (seqp_sos \<Gamma>\<^sub>Q\<^sub>M\<^sub>S\<^sub>G))"
|
107 |
+
and "a \<noteq> \<tau>"
|
108 |
+
shows "\<sigma>' i = \<sigma> i"
|
109 |
+
using assms
|
110 |
+
by (cases a) (auto elim!: par_step_no_change_on_send_or_receive)
|
111 |
+
|
112 |
+
lemma node_nhop_quality_increases:
|
113 |
+
shows "\<langle> i : opaodv i \<langle>\<langle>\<^bsub>i\<^esub> qmsg : R \<rangle>\<^sub>o \<Turnstile>
|
114 |
+
(otherwith ((=)) {i}
|
115 |
+
(oarrivemsg (\<lambda>\<sigma> m. msg_fresh \<sigma> m \<and> msg_zhops m)),
|
116 |
+
other quality_increases {i}
|
117 |
+
\<rightarrow>) global (\<lambda>\<sigma>. \<forall>dip. let nhip = the (nhop (rt (\<sigma> i)) dip)
|
118 |
+
in dip \<in> vD (rt (\<sigma> i)) \<inter> vD (rt (\<sigma> nhip)) \<and> nhip \<noteq> dip
|
119 |
+
\<longrightarrow> (rt (\<sigma> i)) \<sqsubset>\<^bsub>dip\<^esub> (rt (\<sigma> nhip)))"
|
120 |
+
by (rule node_lift [OF par_nhop_quality_increases]) auto
|
121 |
+
|
122 |
+
lemma node_quality_increases:
|
123 |
+
"\<langle> i : opaodv i \<langle>\<langle>\<^bsub>i\<^esub> qmsg : R \<rangle>\<^sub>o \<Turnstile>\<^sub>A (\<lambda>\<sigma> _. oarrivemsg (\<lambda>_. rreq_rrep_sn) \<sigma>,
|
124 |
+
other (\<lambda>_ _. True) {i} \<rightarrow>)
|
125 |
+
globala (\<lambda>(\<sigma>, _, \<sigma>'). quality_increases (\<sigma> i) (\<sigma>' i))"
|
126 |
+
by (rule node_lift_step_statelessassm [OF par_rreq_rrep_sn_quality_increases]) simp
|
127 |
+
|
128 |
+
lemma node_rreq_rrep_nsqn_fresh_any_step:
|
129 |
+
shows "\<langle> i : opaodv i \<langle>\<langle>\<^bsub>i\<^esub> qmsg : R \<rangle>\<^sub>o \<Turnstile>\<^sub>A
|
130 |
+
(\<lambda>\<sigma> _. oarrivemsg (\<lambda>_. rreq_rrep_sn) \<sigma>, other (\<lambda>_ _. True) {i} \<rightarrow>)
|
131 |
+
globala (\<lambda>(\<sigma>, a, \<sigma>'). castmsg (msg_fresh \<sigma>) a)"
|
132 |
+
by (rule node_lift_anycast_statelessassm [OF par_rreq_rrep_nsqn_fresh_any_step])
|
133 |
+
|
134 |
+
lemma node_anycast_msg_zhops:
|
135 |
+
shows "\<langle> i : opaodv i \<langle>\<langle>\<^bsub>i\<^esub> qmsg : R \<rangle>\<^sub>o \<Turnstile>\<^sub>A
|
136 |
+
(\<lambda>\<sigma> _. oarrivemsg (\<lambda>_. rreq_rrep_sn) \<sigma>, other (\<lambda>_ _. True) {i} \<rightarrow>)
|
137 |
+
globala (\<lambda>(_, a, _). castmsg msg_zhops a)"
|
138 |
+
by (rule node_lift_anycast_statelessassm [OF par_anycast_msg_zhops])
|
139 |
+
|
140 |
+
lemma node_silent_change_only:
|
141 |
+
shows "\<langle> i : opaodv i \<langle>\<langle>\<^bsub>i\<^esub> qmsg : R\<^sub>i \<rangle>\<^sub>o \<Turnstile>\<^sub>A (\<lambda>\<sigma> _. oarrivemsg (\<lambda>_ _. True) \<sigma>,
|
142 |
+
other (\<lambda>_ _. True) {i} \<rightarrow>)
|
143 |
+
globala (\<lambda>(\<sigma>, a, \<sigma>'). a \<noteq> \<tau> \<longrightarrow> \<sigma>' i = \<sigma> i)"
|
144 |
+
proof (rule ostep_invariantI, simp (no_asm), rule impI)
|
145 |
+
fix \<sigma> \<zeta> a \<sigma>' \<zeta>'
|
146 |
+
assume or: "(\<sigma>, \<zeta>) \<in> oreachable (\<langle>i : opaodv i \<langle>\<langle>\<^bsub>i\<^esub> qmsg : R\<^sub>i\<rangle>\<^sub>o)
|
147 |
+
(\<lambda>\<sigma> _. oarrivemsg (\<lambda>_ _. True) \<sigma>)
|
148 |
+
(other (\<lambda>_ _. True) {i})"
|
149 |
+
and tr: "((\<sigma>, \<zeta>), a, (\<sigma>', \<zeta>')) \<in> trans (\<langle>i : opaodv i \<langle>\<langle>\<^bsub>i\<^esub> qmsg : R\<^sub>i\<rangle>\<^sub>o)"
|
150 |
+
and "a \<noteq> \<tau>\<^sub>n"
|
151 |
+
from or obtain p R where "\<zeta> = NodeS i p R"
|
152 |
+
by - (drule node_net_state, metis)
|
153 |
+
with tr have "((\<sigma>, NodeS i p R), a, (\<sigma>', \<zeta>'))
|
154 |
+
\<in> onode_sos (oparp_sos i (trans (opaodv i)) (trans qmsg))"
|
155 |
+
by simp
|
156 |
+
thus "\<sigma>' i = \<sigma> i" using \<open>a \<noteq> \<tau>\<^sub>n\<close>
|
157 |
+
by (cases rule: onode_sos.cases)
|
158 |
+
(auto elim: qmsg_no_change_on_send_or_receive)
|
159 |
+
qed
|
160 |
+
|
161 |
+
subsection \<open>Lift to partial networks\<close>
|
162 |
+
|
163 |
+
lemma arrive_rreq_rrep_nsqn_fresh_inc_sn [simp]:
|
164 |
+
assumes "oarrivemsg (\<lambda>\<sigma> m. msg_fresh \<sigma> m \<and> P \<sigma> m) \<sigma> m"
|
165 |
+
shows "oarrivemsg (\<lambda>_. rreq_rrep_sn) \<sigma> m"
|
166 |
+
using assms by (cases m) auto
|
167 |
+
|
168 |
+
lemma opnet_nhop_quality_increases:
|
169 |
+
shows "opnet (\<lambda>i. opaodv i \<langle>\<langle>\<^bsub>i\<^esub> qmsg) p \<Turnstile>
|
170 |
+
(otherwith ((=)) (net_tree_ips p)
|
171 |
+
(oarrivemsg (\<lambda>\<sigma> m. msg_fresh \<sigma> m \<and> msg_zhops m)),
|
172 |
+
other quality_increases (net_tree_ips p) \<rightarrow>)
|
173 |
+
global (\<lambda>\<sigma>. \<forall>i\<in>net_tree_ips p. \<forall>dip.
|
174 |
+
let nhip = the (nhop (rt (\<sigma> i)) dip)
|
175 |
+
in dip \<in> vD (rt (\<sigma> i)) \<inter> vD (rt (\<sigma> nhip)) \<and> nhip \<noteq> dip
|
176 |
+
\<longrightarrow> (rt (\<sigma> i)) \<sqsubset>\<^bsub>dip\<^esub> (rt (\<sigma> nhip)))"
|
177 |
+
proof (rule pnet_lift [OF node_nhop_quality_increases])
|
178 |
+
fix i R
|
179 |
+
have "\<langle>i : opaodv i \<langle>\<langle>\<^bsub>i\<^esub> qmsg : R\<rangle>\<^sub>o \<Turnstile>\<^sub>A (\<lambda>\<sigma> _. oarrivemsg (\<lambda>_. rreq_rrep_sn) \<sigma>,
|
180 |
+
other (\<lambda>_ _. True) {i} \<rightarrow>) globala (\<lambda>(\<sigma>, a, \<sigma>').
|
181 |
+
castmsg (\<lambda>m. msg_fresh \<sigma> m \<and> msg_zhops m) a)"
|
182 |
+
proof (rule ostep_invariantI, simp (no_asm))
|
183 |
+
fix \<sigma> s a \<sigma>' s'
|
184 |
+
assume or: "(\<sigma>, s) \<in> oreachable (\<langle>i : opaodv i \<langle>\<langle>\<^bsub>i\<^esub> qmsg : R\<rangle>\<^sub>o)
|
185 |
+
(\<lambda>\<sigma> _. oarrivemsg (\<lambda>_. rreq_rrep_sn) \<sigma>)
|
186 |
+
(other (\<lambda>_ _. True) {i})"
|
187 |
+
and tr: "((\<sigma>, s), a, (\<sigma>', s')) \<in> trans (\<langle>i : opaodv i \<langle>\<langle>\<^bsub>i\<^esub> qmsg : R\<rangle>\<^sub>o)"
|
188 |
+
and am: "oarrivemsg (\<lambda>_. rreq_rrep_sn) \<sigma> a"
|
189 |
+
from or tr am have "castmsg (msg_fresh \<sigma>) a"
|
190 |
+
by (auto dest!: ostep_invariantD [OF node_rreq_rrep_nsqn_fresh_any_step])
|
191 |
+
moreover from or tr am have "castmsg (msg_zhops) a"
|
192 |
+
by (auto dest!: ostep_invariantD [OF node_anycast_msg_zhops])
|
193 |
+
ultimately show "castmsg (\<lambda>m. msg_fresh \<sigma> m \<and> msg_zhops m) a"
|
194 |
+
by (case_tac a) auto
|
195 |
+
qed
|
196 |
+
thus "\<langle>i : opaodv i \<langle>\<langle>\<^bsub>i\<^esub> qmsg : R\<rangle>\<^sub>o \<Turnstile>\<^sub>A
|
197 |
+
(\<lambda>\<sigma> _. oarrivemsg (\<lambda>\<sigma> m. msg_fresh \<sigma> m \<and> msg_zhops m) \<sigma>,
|
198 |
+
other quality_increases {i} \<rightarrow>) globala (\<lambda>(\<sigma>, a, _).
|
199 |
+
castmsg (\<lambda>m. msg_fresh \<sigma> m \<and> msg_zhops m) a)"
|
200 |
+
by rule auto
|
201 |
+
next
|
202 |
+
fix i R
|
203 |
+
show "\<langle>i : opaodv i \<langle>\<langle>\<^bsub>i\<^esub> qmsg : R\<rangle>\<^sub>o \<Turnstile>\<^sub>A
|
204 |
+
(\<lambda>\<sigma> _. oarrivemsg (\<lambda>\<sigma> m. msg_fresh \<sigma> m \<and> msg_zhops m) \<sigma>,
|
205 |
+
other quality_increases {i} \<rightarrow>) globala (\<lambda>(\<sigma>, a, \<sigma>').
|
206 |
+
a \<noteq> \<tau> \<and> (\<forall>d. a \<noteq> i:deliver(d)) \<longrightarrow> \<sigma> i = \<sigma>' i)"
|
207 |
+
by (rule ostep_invariant_weakenE [OF node_silent_change_only]) auto
|
208 |
+
next
|
209 |
+
fix i R
|
210 |
+
show "\<langle>i : opaodv i \<langle>\<langle>\<^bsub>i\<^esub> qmsg : R\<rangle>\<^sub>o \<Turnstile>\<^sub>A
|
211 |
+
(\<lambda>\<sigma> _. oarrivemsg (\<lambda>\<sigma> m. msg_fresh \<sigma> m \<and> msg_zhops m) \<sigma>,
|
212 |
+
other quality_increases {i} \<rightarrow>) globala (\<lambda>(\<sigma>, a, \<sigma>').
|
213 |
+
a = \<tau> \<or> (\<exists>d. a = i:deliver(d)) \<longrightarrow> quality_increases (\<sigma> i) (\<sigma>' i))"
|
214 |
+
by (rule ostep_invariant_weakenE [OF node_quality_increases]) auto
|
215 |
+
qed simp_all
|
216 |
+
|
217 |
+
subsection \<open>Lift to closed networks\<close>
|
218 |
+
|
219 |
+
lemma onet_nhop_quality_increases:
|
220 |
+
shows "oclosed (opnet (\<lambda>i. opaodv i \<langle>\<langle>\<^bsub>i\<^esub> qmsg) p)
|
221 |
+
\<Turnstile> (\<lambda>_ _ _. True, other quality_increases (net_tree_ips p) \<rightarrow>)
|
222 |
+
global (\<lambda>\<sigma>. \<forall>i\<in>net_tree_ips p. \<forall>dip.
|
223 |
+
let nhip = the (nhop (rt (\<sigma> i)) dip)
|
224 |
+
in dip \<in> vD (rt (\<sigma> i)) \<inter> vD (rt (\<sigma> nhip)) \<and> nhip \<noteq> dip
|
225 |
+
\<longrightarrow> (rt (\<sigma> i)) \<sqsubset>\<^bsub>dip\<^esub> (rt (\<sigma> nhip)))"
|
226 |
+
(is "_ \<Turnstile> (_, ?U \<rightarrow>) ?inv")
|
227 |
+
proof (rule inclosed_closed)
|
228 |
+
from opnet_nhop_quality_increases
|
229 |
+
show "opnet (\<lambda>i. opaodv i \<langle>\<langle>\<^bsub>i\<^esub> qmsg) p
|
230 |
+
\<Turnstile> (otherwith ((=)) (net_tree_ips p) inoclosed, ?U \<rightarrow>) ?inv"
|
231 |
+
proof (rule oinvariant_weakenE)
|
232 |
+
fix \<sigma> \<sigma>' :: "ip \<Rightarrow> state" and a :: "msg node_action"
|
233 |
+
assume "otherwith ((=)) (net_tree_ips p) inoclosed \<sigma> \<sigma>' a"
|
234 |
+
thus "otherwith ((=)) (net_tree_ips p)
|
235 |
+
(oarrivemsg (\<lambda>\<sigma> m. msg_fresh \<sigma> m \<and> msg_zhops m)) \<sigma> \<sigma>' a"
|
236 |
+
proof (rule otherwithEI)
|
237 |
+
fix \<sigma> :: "ip \<Rightarrow> state" and a :: "msg node_action"
|
238 |
+
assume "inoclosed \<sigma> a"
|
239 |
+
thus "oarrivemsg (\<lambda>\<sigma> m. msg_fresh \<sigma> m \<and> msg_zhops m) \<sigma> a"
|
240 |
+
proof (cases a)
|
241 |
+
fix ii ni ms
|
242 |
+
assume "a = ii\<not>ni:arrive(ms)"
|
243 |
+
moreover with \<open>inoclosed \<sigma> a\<close> obtain d di where "ms = newpkt(d, di)"
|
244 |
+
by (cases ms) auto
|
245 |
+
ultimately show ?thesis by simp
|
246 |
+
qed simp_all
|
247 |
+
qed
|
248 |
+
qed
|
249 |
+
qed
|
250 |
+
|
251 |
+
subsection \<open>Transfer into the standard model\<close>
|
252 |
+
|
253 |
+
interpretation aodv_openproc: openproc paodv opaodv id
|
254 |
+
rewrites "aodv_openproc.initmissing = initmissing"
|
255 |
+
proof -
|
256 |
+
show "openproc paodv opaodv id"
|
257 |
+
proof unfold_locales
|
258 |
+
fix i :: ip
|
259 |
+
have "{(\<sigma>, \<zeta>). (\<sigma> i, \<zeta>) \<in> \<sigma>\<^sub>A\<^sub>O\<^sub>D\<^sub>V i \<and> (\<forall>j. j \<noteq> i \<longrightarrow> \<sigma> j \<in> fst ` \<sigma>\<^sub>A\<^sub>O\<^sub>D\<^sub>V j)} \<subseteq> \<sigma>\<^sub>A\<^sub>O\<^sub>D\<^sub>V'"
|
260 |
+
unfolding \<sigma>\<^sub>A\<^sub>O\<^sub>D\<^sub>V_def \<sigma>\<^sub>A\<^sub>O\<^sub>D\<^sub>V'_def
|
261 |
+
proof (rule equalityD1)
|
262 |
+
show "\<And>f p. {(\<sigma>, \<zeta>). (\<sigma> i, \<zeta>) \<in> {(f i, p)} \<and> (\<forall>j. j \<noteq> i
|
263 |
+
\<longrightarrow> \<sigma> j \<in> fst ` {(f j, p)})} = {(f, p)}"
|
264 |
+
by (rule set_eqI) auto
|
265 |
+
qed
|
266 |
+
thus "{ (\<sigma>, \<zeta>) |\<sigma> \<zeta> s. s \<in> init (paodv i)
|
267 |
+
\<and> (\<sigma> i, \<zeta>) = id s
|
268 |
+
\<and> (\<forall>j. j\<noteq>i \<longrightarrow> \<sigma> j \<in> (fst o id) ` init (paodv j)) } \<subseteq> init (opaodv i)"
|
269 |
+
by simp
|
270 |
+
next
|
271 |
+
show "\<forall>j. init (paodv j) \<noteq> {}"
|
272 |
+
unfolding \<sigma>\<^sub>A\<^sub>O\<^sub>D\<^sub>V_def by simp
|
273 |
+
next
|
274 |
+
fix i s a s' \<sigma> \<sigma>'
|
275 |
+
assume "\<sigma> i = fst (id s)"
|
276 |
+
and "\<sigma>' i = fst (id s')"
|
277 |
+
and "(s, a, s') \<in> trans (paodv i)"
|
278 |
+
then obtain q q' where "s = (\<sigma> i, q)"
|
279 |
+
and "s' = (\<sigma>' i, q')"
|
280 |
+
and "((\<sigma> i, q), a, (\<sigma>' i, q')) \<in> trans (paodv i)"
|
281 |
+
by (cases s, cases s') auto
|
282 |
+
from this(3) have "((\<sigma>, q), a, (\<sigma>', q')) \<in> trans (opaodv i)"
|
283 |
+
by simp (rule open_seqp_action [OF aodv_wf])
|
284 |
+
|
285 |
+
with \<open>s = (\<sigma> i, q)\<close> and \<open>s' = (\<sigma>' i, q')\<close>
|
286 |
+
show "((\<sigma>, snd (id s)), a, (\<sigma>', snd (id s'))) \<in> trans (opaodv i)"
|
287 |
+
by simp
|
288 |
+
qed
|
289 |
+
then interpret opn: openproc paodv opaodv id .
|
290 |
+
have [simp]: "\<And>i. (SOME x. x \<in> (fst o id) ` init (paodv i)) = aodv_init i"
|
291 |
+
unfolding \<sigma>\<^sub>A\<^sub>O\<^sub>D\<^sub>V_def by simp
|
292 |
+
hence "\<And>i. openproc.initmissing paodv id i = initmissing i"
|
293 |
+
unfolding opn.initmissing_def opn.someinit_def initmissing_def
|
294 |
+
by (auto split: option.split)
|
295 |
+
thus "openproc.initmissing paodv id = initmissing" ..
|
296 |
+
qed
|
297 |
+
|
298 |
+
interpretation aodv_openproc_par_qmsg: openproc_parq paodv opaodv id qmsg
|
299 |
+
rewrites "aodv_openproc_par_qmsg.netglobal = netglobal"
|
300 |
+
and "aodv_openproc_par_qmsg.initmissing = initmissing"
|
301 |
+
proof -
|
302 |
+
show "openproc_parq paodv opaodv id qmsg"
|
303 |
+
by (unfold_locales) simp
|
304 |
+
then interpret opq: openproc_parq paodv opaodv id qmsg .
|
305 |
+
|
306 |
+
have im: "\<And>\<sigma>. openproc.initmissing (\<lambda>i. paodv i \<langle>\<langle> qmsg) (\<lambda>(p, q). (fst (id p), snd (id p), q)) \<sigma>
|
307 |
+
= initmissing \<sigma>"
|
308 |
+
unfolding opq.initmissing_def opq.someinit_def initmissing_def
|
309 |
+
unfolding \<sigma>\<^sub>A\<^sub>O\<^sub>D\<^sub>V_def \<sigma>\<^sub>Q\<^sub>M\<^sub>S\<^sub>G_def by (clarsimp cong: option.case_cong)
|
310 |
+
thus "openproc.initmissing (\<lambda>i. paodv i \<langle>\<langle> qmsg) (\<lambda>(p, q). (fst (id p), snd (id p), q)) = initmissing"
|
311 |
+
by (rule ext)
|
312 |
+
have "\<And>P \<sigma>. openproc.netglobal (\<lambda>i. paodv i \<langle>\<langle> qmsg) (\<lambda>(p, q). (fst (id p), snd (id p), q)) P \<sigma>
|
313 |
+
= netglobal P \<sigma>"
|
314 |
+
unfolding opq.netglobal_def netglobal_def opq.initmissing_def initmissing_def opq.someinit_def
|
315 |
+
unfolding \<sigma>\<^sub>A\<^sub>O\<^sub>D\<^sub>V_def \<sigma>\<^sub>Q\<^sub>M\<^sub>S\<^sub>G_def
|
316 |
+
by (clarsimp cong: option.case_cong
|
317 |
+
simp del: One_nat_def
|
318 |
+
simp add: fst_initmissing_netgmap_default_aodv_init_netlift
|
319 |
+
[symmetric, unfolded initmissing_def])
|
320 |
+
thus "openproc.netglobal (\<lambda>i. paodv i \<langle>\<langle> qmsg) (\<lambda>(p, q). (fst (id p), snd (id p), q)) = netglobal"
|
321 |
+
by auto
|
322 |
+
qed
|
323 |
+
|
324 |
+
lemma net_nhop_quality_increases:
|
325 |
+
assumes "wf_net_tree n"
|
326 |
+
shows "closed (pnet (\<lambda>i. paodv i \<langle>\<langle> qmsg) n) \<TTurnstile> netglobal
|
327 |
+
(\<lambda>\<sigma>. \<forall>i dip. let nhip = the (nhop (rt (\<sigma> i)) dip)
|
328 |
+
in dip \<in> vD (rt (\<sigma> i)) \<inter> vD (rt (\<sigma> nhip)) \<and> nhip \<noteq> dip
|
329 |
+
\<longrightarrow> (rt (\<sigma> i)) \<sqsubset>\<^bsub>dip\<^esub> (rt (\<sigma> nhip)))"
|
330 |
+
(is "_ \<TTurnstile> netglobal (\<lambda>\<sigma>. \<forall>i. ?inv \<sigma> i)")
|
331 |
+
proof -
|
332 |
+
from \<open>wf_net_tree n\<close>
|
333 |
+
have proto: "closed (pnet (\<lambda>i. paodv i \<langle>\<langle> qmsg) n) \<TTurnstile> netglobal (\<lambda>\<sigma>. \<forall>i\<in>net_tree_ips n. \<forall>dip.
|
334 |
+
let nhip = the (nhop (rt (\<sigma> i)) dip)
|
335 |
+
in dip \<in> vD (rt (\<sigma> i)) \<inter> vD (rt (\<sigma> nhip)) \<and> nhip \<noteq> dip
|
336 |
+
\<longrightarrow> (rt (\<sigma> i)) \<sqsubset>\<^bsub>dip\<^esub> (rt (\<sigma> nhip)))"
|
337 |
+
by (rule aodv_openproc_par_qmsg.close_opnet [OF _ onet_nhop_quality_increases])
|
338 |
+
show ?thesis
|
339 |
+
unfolding invariant_def opnet_sos.opnet_tau1
|
340 |
+
proof (rule, simp only: aodv_openproc_par_qmsg.netglobalsimp
|
341 |
+
fst_initmissing_netgmap_pair_fst, rule allI)
|
342 |
+
fix \<sigma> i
|
343 |
+
assume sr: "\<sigma> \<in> reachable (closed (pnet (\<lambda>i. paodv i \<langle>\<langle> qmsg) n)) TT"
|
344 |
+
hence "\<forall>i\<in>net_tree_ips n. ?inv (fst (initmissing (netgmap fst \<sigma>))) i"
|
345 |
+
by - (drule invariantD [OF proto],
|
346 |
+
simp only: aodv_openproc_par_qmsg.netglobalsimp
|
347 |
+
fst_initmissing_netgmap_pair_fst)
|
348 |
+
thus "?inv (fst (initmissing (netgmap fst \<sigma>))) i"
|
349 |
+
proof (cases "i\<in>net_tree_ips n")
|
350 |
+
assume "i\<notin>net_tree_ips n"
|
351 |
+
from sr have "\<sigma> \<in> reachable (pnet (\<lambda>i. paodv i \<langle>\<langle> qmsg) n) TT" ..
|
352 |
+
hence "net_ips \<sigma> = net_tree_ips n" ..
|
353 |
+
with \<open>i\<notin>net_tree_ips n\<close> have "i\<notin>net_ips \<sigma>" by simp
|
354 |
+
hence "(fst (initmissing (netgmap fst \<sigma>))) i = aodv_init i"
|
355 |
+
by simp
|
356 |
+
thus ?thesis by simp
|
357 |
+
qed metis
|
358 |
+
qed
|
359 |
+
qed
|
360 |
+
|
361 |
+
subsection \<open>Loop freedom of AODV\<close>
|
362 |
+
|
363 |
+
theorem aodv_loop_freedom:
|
364 |
+
assumes "wf_net_tree n"
|
365 |
+
shows "closed (pnet (\<lambda>i. paodv i \<langle>\<langle> qmsg) n) \<TTurnstile> netglobal (\<lambda>\<sigma>. \<forall>dip. irrefl ((rt_graph \<sigma> dip)\<^sup>+))"
|
366 |
+
using assms by (rule aodv_openproc_par_qmsg.netglobal_weakenE
|
367 |
+
[OF net_nhop_quality_increases inv_to_loop_freedom])
|
368 |
+
|
369 |
+
end
|
formal/afp/AODV/variants/a_norreqid/A_Aodv_Message.thy
ADDED
@@ -0,0 +1,75 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
(* Title: variants/a_norreqid/Aodv_Message.thy
|
2 |
+
License: BSD 2-Clause. See LICENSE.
|
3 |
+
Author: Timothy Bourke, Inria
|
4 |
+
Author: Peter Höfner, NICTA
|
5 |
+
*)
|
6 |
+
|
7 |
+
section "AODV protocol messages"
|
8 |
+
|
9 |
+
theory A_Aodv_Message
|
10 |
+
imports A_Norreqid
|
11 |
+
begin
|
12 |
+
|
13 |
+
datatype msg =
|
14 |
+
Rreq nat ip sqn k ip sqn ip
|
15 |
+
| Rrep nat ip sqn ip ip
|
16 |
+
| Rerr "ip \<rightharpoonup> sqn" ip
|
17 |
+
| Newpkt data ip
|
18 |
+
| Pkt data ip ip
|
19 |
+
|
20 |
+
instantiation msg :: msg
|
21 |
+
begin
|
22 |
+
definition newpkt_def [simp]: "newpkt \<equiv> \<lambda>(d, dip). Newpkt d dip"
|
23 |
+
definition eq_newpkt_def: "eq_newpkt m \<equiv> case m of Newpkt d dip \<Rightarrow> True | _ \<Rightarrow> False"
|
24 |
+
|
25 |
+
instance by intro_classes (simp add: eq_newpkt_def)
|
26 |
+
end
|
27 |
+
|
28 |
+
text \<open>The @{type msg} type models the different messages used within AODV.
|
29 |
+
The instantiation as a @{class msg} is a technicality due to the special
|
30 |
+
treatment of @{term newpkt} messages in the AWN SOS rules.
|
31 |
+
This use of classes allows a clean separation of the AWN-specific definitions
|
32 |
+
and these AODV-specific definitions.\<close>
|
33 |
+
|
34 |
+
definition rreq :: "nat \<times> ip \<times> sqn \<times> k \<times> ip \<times> sqn \<times> ip \<Rightarrow> msg"
|
35 |
+
where "rreq \<equiv> \<lambda>(hops, dip, dsn, dsk, oip, osn, sip).
|
36 |
+
Rreq hops dip dsn dsk oip osn sip"
|
37 |
+
|
38 |
+
lemma rreq_simp [simp]:
|
39 |
+
"rreq(hops, dip, dsn, dsk, oip, osn, sip) = Rreq hops dip dsn dsk oip osn sip"
|
40 |
+
unfolding rreq_def by simp
|
41 |
+
|
42 |
+
definition rrep :: "nat \<times> ip \<times> sqn \<times> ip \<times> ip \<Rightarrow> msg"
|
43 |
+
where "rrep \<equiv> \<lambda>(hops, dip, dsn, oip, sip). Rrep hops dip dsn oip sip"
|
44 |
+
|
45 |
+
lemma rrep_simp [simp]:
|
46 |
+
"rrep(hops, dip, dsn, oip, sip) = Rrep hops dip dsn oip sip"
|
47 |
+
unfolding rrep_def by simp
|
48 |
+
|
49 |
+
definition rerr :: "(ip \<rightharpoonup> sqn) \<times> ip \<Rightarrow> msg"
|
50 |
+
where "rerr \<equiv> \<lambda>(dests, sip). Rerr dests sip"
|
51 |
+
|
52 |
+
lemma rerr_simp [simp]:
|
53 |
+
"rerr(dests, sip) = Rerr dests sip"
|
54 |
+
unfolding rerr_def by simp
|
55 |
+
|
56 |
+
lemma not_eq_newpkt_rreq [simp]: "\<not>eq_newpkt (Rreq hops dip dsn dsk oip osn sip)"
|
57 |
+
unfolding eq_newpkt_def by simp
|
58 |
+
|
59 |
+
lemma not_eq_newpkt_rrep [simp]: "\<not>eq_newpkt (Rrep hops dip dsn oip sip)"
|
60 |
+
unfolding eq_newpkt_def by simp
|
61 |
+
|
62 |
+
lemma not_eq_newpkt_rerr [simp]: "\<not>eq_newpkt (Rerr dests sip)"
|
63 |
+
unfolding eq_newpkt_def by simp
|
64 |
+
|
65 |
+
lemma not_eq_newpkt_pkt [simp]: "\<not>eq_newpkt (Pkt d dip sip)"
|
66 |
+
unfolding eq_newpkt_def by simp
|
67 |
+
|
68 |
+
definition pkt :: "data \<times> ip \<times> ip \<Rightarrow> msg"
|
69 |
+
where "pkt \<equiv> \<lambda>(d, dip, sip). Pkt d dip sip"
|
70 |
+
|
71 |
+
lemma pkt_simp [simp]:
|
72 |
+
"pkt(d, dip, sip) = Pkt d dip sip"
|
73 |
+
unfolding pkt_def by simp
|
74 |
+
|
75 |
+
end
|
formal/afp/AODV/variants/a_norreqid/A_Aodv_Predicates.thy
ADDED
@@ -0,0 +1,137 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
(* Title: variants/a_norreqid/Aodv_Predicates.thy
|
2 |
+
License: BSD 2-Clause. See LICENSE.
|
3 |
+
Author: Timothy Bourke, Inria
|
4 |
+
Author: Peter Höfner, NICTA
|
5 |
+
*)
|
6 |
+
|
7 |
+
section "Invariant assumptions and properties"
|
8 |
+
|
9 |
+
theory A_Aodv_Predicates
|
10 |
+
imports A_Aodv
|
11 |
+
begin
|
12 |
+
|
13 |
+
text \<open>Definitions for expression assumptions on incoming messages and properties of
|
14 |
+
outgoing messages.\<close>
|
15 |
+
|
16 |
+
abbreviation not_Pkt :: "msg \<Rightarrow> bool"
|
17 |
+
where "not_Pkt m \<equiv> case m of Pkt _ _ _ \<Rightarrow> False | _ \<Rightarrow> True"
|
18 |
+
|
19 |
+
definition msg_sender :: "msg \<Rightarrow> ip"
|
20 |
+
where "msg_sender m \<equiv> case m of Rreq _ _ _ _ _ _ ipc \<Rightarrow> ipc
|
21 |
+
| Rrep _ _ _ _ ipc \<Rightarrow> ipc
|
22 |
+
| Rerr _ ipc \<Rightarrow> ipc
|
23 |
+
| Pkt _ _ ipc \<Rightarrow> ipc"
|
24 |
+
|
25 |
+
lemma msg_sender_simps [simp]:
|
26 |
+
"\<And>hops dip dsn dsk oip osn sip.
|
27 |
+
msg_sender (Rreq hops dip dsn dsk oip osn sip) = sip"
|
28 |
+
"\<And>hops dip dsn oip sip. msg_sender (Rrep hops dip dsn oip sip) = sip"
|
29 |
+
"\<And>dests sip. msg_sender (Rerr dests sip) = sip"
|
30 |
+
"\<And>d dip sip. msg_sender (Pkt d dip sip) = sip"
|
31 |
+
unfolding msg_sender_def by simp_all
|
32 |
+
|
33 |
+
definition msg_zhops :: "msg \<Rightarrow> bool"
|
34 |
+
where "msg_zhops m \<equiv> case m of
|
35 |
+
Rreq hopsc dipc _ _ oipc _ sipc \<Rightarrow> hopsc = 0 \<longrightarrow> oipc = sipc
|
36 |
+
| Rrep hopsc dipc _ _ sipc \<Rightarrow> hopsc = 0 \<longrightarrow> dipc = sipc
|
37 |
+
| _ \<Rightarrow> True"
|
38 |
+
|
39 |
+
lemma msg_zhops_simps [simp]:
|
40 |
+
"\<And>hops dip dsn dsk oip osn sip.
|
41 |
+
msg_zhops (Rreq hops dip dsn dsk oip osn sip) = (hops = 0 \<longrightarrow> oip = sip)"
|
42 |
+
"\<And>hops dip dsn oip sip. msg_zhops (Rrep hops dip dsn oip sip) = (hops = 0 \<longrightarrow> dip = sip)"
|
43 |
+
"\<And>dests sip. msg_zhops (Rerr dests sip) = True"
|
44 |
+
"\<And>d dip. msg_zhops (Newpkt d dip) = True"
|
45 |
+
"\<And>d dip sip. msg_zhops (Pkt d dip sip) = True"
|
46 |
+
unfolding msg_zhops_def by simp_all
|
47 |
+
|
48 |
+
definition rreq_rrep_sn :: "msg \<Rightarrow> bool"
|
49 |
+
where "rreq_rrep_sn m \<equiv> case m of Rreq _ _ _ _ _ osnc _ \<Rightarrow> osnc \<ge> 1
|
50 |
+
| Rrep _ _ dsnc _ _ \<Rightarrow> dsnc \<ge> 1
|
51 |
+
| _ \<Rightarrow> True"
|
52 |
+
|
53 |
+
lemma rreq_rrep_sn_simps [simp]:
|
54 |
+
"\<And>hops dip dsn dsk oip osn sip.
|
55 |
+
rreq_rrep_sn (Rreq hops dip dsn dsk oip osn sip) = (osn \<ge> 1)"
|
56 |
+
"\<And>hops dip dsn oip sip. rreq_rrep_sn (Rrep hops dip dsn oip sip) = (dsn \<ge> 1)"
|
57 |
+
"\<And>dests sip. rreq_rrep_sn (Rerr dests sip) = True"
|
58 |
+
"\<And>d dip. rreq_rrep_sn (Newpkt d dip) = True"
|
59 |
+
"\<And>d dip sip. rreq_rrep_sn (Pkt d dip sip) = True"
|
60 |
+
unfolding rreq_rrep_sn_def by simp_all
|
61 |
+
|
62 |
+
definition rreq_rrep_fresh :: "rt \<Rightarrow> msg \<Rightarrow> bool"
|
63 |
+
where "rreq_rrep_fresh crt m \<equiv> case m of Rreq hopsc _ _ _ oipc osnc ipcc \<Rightarrow> (ipcc \<noteq> oipc \<longrightarrow>
|
64 |
+
oipc\<in>kD(crt) \<and> (sqn crt oipc > osnc
|
65 |
+
\<or> (sqn crt oipc = osnc
|
66 |
+
\<and> the (dhops crt oipc) \<le> hopsc
|
67 |
+
\<and> the (flag crt oipc) = val)))
|
68 |
+
| Rrep hopsc dipc dsnc _ ipcc \<Rightarrow> (ipcc \<noteq> dipc \<longrightarrow>
|
69 |
+
dipc\<in>kD(crt)
|
70 |
+
\<and> sqn crt dipc = dsnc
|
71 |
+
\<and> the (dhops crt dipc) = hopsc
|
72 |
+
\<and> the (flag crt dipc) = val)
|
73 |
+
| _ \<Rightarrow> True"
|
74 |
+
|
75 |
+
lemma rreq_rrep_fresh [simp]:
|
76 |
+
"\<And>hops dip dsn dsk oip osn sip.
|
77 |
+
rreq_rrep_fresh crt (Rreq hops dip dsn dsk oip osn sip) =
|
78 |
+
(sip \<noteq> oip \<longrightarrow> oip\<in>kD(crt)
|
79 |
+
\<and> (sqn crt oip > osn
|
80 |
+
\<or> (sqn crt oip = osn
|
81 |
+
\<and> the (dhops crt oip) \<le> hops
|
82 |
+
\<and> the (flag crt oip) = val)))"
|
83 |
+
"\<And>hops dip dsn oip sip. rreq_rrep_fresh crt (Rrep hops dip dsn oip sip) =
|
84 |
+
(sip \<noteq> dip \<longrightarrow> dip\<in>kD(crt)
|
85 |
+
\<and> sqn crt dip = dsn
|
86 |
+
\<and> the (dhops crt dip) = hops
|
87 |
+
\<and> the (flag crt dip) = val)"
|
88 |
+
"\<And>dests sip. rreq_rrep_fresh crt (Rerr dests sip) = True"
|
89 |
+
"\<And>d dip. rreq_rrep_fresh crt (Newpkt d dip) = True"
|
90 |
+
"\<And>d dip sip. rreq_rrep_fresh crt (Pkt d dip sip) = True"
|
91 |
+
unfolding rreq_rrep_fresh_def by simp_all
|
92 |
+
|
93 |
+
definition rerr_invalid :: "rt \<Rightarrow> msg \<Rightarrow> bool"
|
94 |
+
where "rerr_invalid crt m \<equiv> case m of Rerr destsc _ \<Rightarrow> (\<forall>ripc\<in>dom(destsc).
|
95 |
+
(ripc\<in>iD(crt) \<and> the (destsc ripc) = sqn crt ripc))
|
96 |
+
| _ \<Rightarrow> True"
|
97 |
+
|
98 |
+
lemma rerr_invalid [simp]:
|
99 |
+
"\<And>hops dip dsn dsk oip osn sip.
|
100 |
+
rerr_invalid crt (Rreq hops dip dsn dsk oip osn sip) = True"
|
101 |
+
"\<And>hops dip dsn oip sip. rerr_invalid crt (Rrep hops dip dsn oip sip) = True"
|
102 |
+
"\<And>dests sip. rerr_invalid crt (Rerr dests sip) = (\<forall>rip\<in>dom(dests).
|
103 |
+
rip\<in>iD(crt) \<and> the (dests rip) = sqn crt rip)"
|
104 |
+
"\<And>d dip. rerr_invalid crt (Newpkt d dip) = True"
|
105 |
+
"\<And>d dip sip. rerr_invalid crt (Pkt d dip sip) = True"
|
106 |
+
unfolding rerr_invalid_def by simp_all
|
107 |
+
|
108 |
+
definition
|
109 |
+
initmissing :: "(nat \<Rightarrow> state option) \<times> 'a \<Rightarrow> (nat \<Rightarrow> state) \<times> 'a"
|
110 |
+
where
|
111 |
+
"initmissing \<sigma> = (\<lambda>i. case (fst \<sigma>) i of None \<Rightarrow> aodv_init i | Some s \<Rightarrow> s, snd \<sigma>)"
|
112 |
+
|
113 |
+
lemma not_in_net_ips_fst_init_missing [simp]:
|
114 |
+
assumes "i \<notin> net_ips \<sigma>"
|
115 |
+
shows "fst (initmissing (netgmap fst \<sigma>)) i = aodv_init i"
|
116 |
+
using assms unfolding initmissing_def by simp
|
117 |
+
|
118 |
+
lemma fst_initmissing_netgmap_pair_fst [simp]:
|
119 |
+
"fst (initmissing (netgmap (\<lambda>(p, q). (fst (id p), snd (id p), q)) s))
|
120 |
+
= fst (initmissing (netgmap fst s))"
|
121 |
+
unfolding initmissing_def by auto
|
122 |
+
|
123 |
+
text \<open>We introduce a streamlined alternative to @{term initmissing} with @{term netgmap}
|
124 |
+
to simplify invariant statements and thus facilitate their comprehension and
|
125 |
+
presentation.\<close>
|
126 |
+
|
127 |
+
lemma fst_initmissing_netgmap_default_aodv_init_netlift:
|
128 |
+
"fst (initmissing (netgmap fst s)) = default aodv_init (netlift fst s)"
|
129 |
+
unfolding initmissing_def default_def
|
130 |
+
by (simp add: fst_netgmap_netlift del: One_nat_def)
|
131 |
+
|
132 |
+
definition
|
133 |
+
netglobal :: "((nat \<Rightarrow> state) \<Rightarrow> bool) \<Rightarrow> ((state \<times> 'b) \<times> 'c) net_state \<Rightarrow> bool"
|
134 |
+
where
|
135 |
+
"netglobal P \<equiv> (\<lambda>s. P (default aodv_init (netlift fst s)))"
|
136 |
+
|
137 |
+
end
|
formal/afp/AODV/variants/a_norreqid/A_Fresher.thy
ADDED
@@ -0,0 +1,799 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
(* Title: variants/a_norreqid/Fresher.thy
|
2 |
+
License: BSD 2-Clause. See LICENSE.
|
3 |
+
Author: Timothy Bourke, Inria
|
4 |
+
*)
|
5 |
+
|
6 |
+
section "Quality relations between routes"
|
7 |
+
|
8 |
+
theory A_Fresher
|
9 |
+
imports A_Aodv_Data
|
10 |
+
begin
|
11 |
+
|
12 |
+
subsection "Net sequence numbers"
|
13 |
+
|
14 |
+
subsubsection "On individual routes"
|
15 |
+
|
16 |
+
definition
|
17 |
+
nsqn\<^sub>r :: "r \<Rightarrow> sqn"
|
18 |
+
where
|
19 |
+
"nsqn\<^sub>r r \<equiv> if \<pi>\<^sub>4(r) = val \<or> \<pi>\<^sub>2(r) = 0 then \<pi>\<^sub>2(r) else (\<pi>\<^sub>2(r) - 1)"
|
20 |
+
|
21 |
+
lemma nsqnr_def':
|
22 |
+
"nsqn\<^sub>r r = (if \<pi>\<^sub>4(r) = inv then \<pi>\<^sub>2(r) - 1 else \<pi>\<^sub>2(r))"
|
23 |
+
unfolding nsqn\<^sub>r_def by simp
|
24 |
+
|
25 |
+
lemma nsqn\<^sub>r_zero [simp]:
|
26 |
+
"\<And>dsn dsk flag hops nhip pre. nsqn\<^sub>r (0, dsk, flag, hops, nhip, pre) = 0"
|
27 |
+
unfolding nsqn\<^sub>r_def by clarsimp
|
28 |
+
|
29 |
+
lemma nsqn\<^sub>r_val [simp]:
|
30 |
+
"\<And>dsn dsk hops nhip pre. nsqn\<^sub>r (dsn, dsk, val, hops, nhip, pre) = dsn"
|
31 |
+
unfolding nsqn\<^sub>r_def by clarsimp
|
32 |
+
|
33 |
+
lemma nsqn\<^sub>r_inv [simp]:
|
34 |
+
"\<And>dsn dsk hops nhip pre. nsqn\<^sub>r (dsn, dsk, inv, hops, nhip, pre) = dsn - 1"
|
35 |
+
unfolding nsqn\<^sub>r_def by clarsimp
|
36 |
+
|
37 |
+
lemma nsqn\<^sub>r_lte_dsn [simp]:
|
38 |
+
"\<And>dsn dsk flag hops nhip pre. nsqn\<^sub>r (dsn, dsk, flag, hops, nhip, pre) \<le> dsn"
|
39 |
+
unfolding nsqn\<^sub>r_def by clarsimp
|
40 |
+
|
41 |
+
subsubsection "On routes in routing tables"
|
42 |
+
|
43 |
+
definition
|
44 |
+
nsqn :: "rt \<Rightarrow> ip \<Rightarrow> sqn"
|
45 |
+
where
|
46 |
+
"nsqn \<equiv> \<lambda>rt dip. case \<sigma>\<^bsub>route\<^esub>(rt, dip) of None \<Rightarrow> 0 | Some r \<Rightarrow> nsqn\<^sub>r(r)"
|
47 |
+
|
48 |
+
lemma nsqn_sqn_def:
|
49 |
+
"\<And>rt dip. nsqn rt dip = (if flag rt dip = Some val \<or> sqn rt dip = 0
|
50 |
+
then sqn rt dip else sqn rt dip - 1)"
|
51 |
+
unfolding nsqn_def sqn_def by (clarsimp split: option.split)
|
52 |
+
|
53 |
+
lemma not_in_kD_nsqn [simp]:
|
54 |
+
assumes "dip \<notin> kD(rt)"
|
55 |
+
shows "nsqn rt dip = 0"
|
56 |
+
using assms unfolding nsqn_def by simp
|
57 |
+
|
58 |
+
lemma kD_nsqn:
|
59 |
+
assumes "dip \<in> kD(rt)"
|
60 |
+
shows "nsqn rt dip = nsqn\<^sub>r(the (\<sigma>\<^bsub>route\<^esub>(rt, dip)))"
|
61 |
+
using assms [THEN kD_Some] unfolding nsqn_def by clarsimp
|
62 |
+
|
63 |
+
lemma nsqnr_r_flag_pred [simp, intro]:
|
64 |
+
fixes dsn dsk flag hops nhip pre
|
65 |
+
assumes "P (nsqn\<^sub>r (dsn, dsk, val, hops, nhip, pre))"
|
66 |
+
and "P (nsqn\<^sub>r (dsn, dsk, inv, hops, nhip, pre))"
|
67 |
+
shows "P (nsqn\<^sub>r (dsn, dsk, flag, hops, nhip, pre))"
|
68 |
+
using assms by (cases flag) auto
|
69 |
+
|
70 |
+
lemma nsqn\<^sub>r_addpreRT_inv [simp]:
|
71 |
+
"\<And>rt dip npre dip'. dip \<in> kD(rt) \<Longrightarrow>
|
72 |
+
nsqn\<^sub>r (the (the (addpreRT rt dip npre) dip')) = nsqn\<^sub>r (the (rt dip'))"
|
73 |
+
unfolding addpreRT_def nsqn\<^sub>r_def
|
74 |
+
by (frule kD_Some) (clarsimp split: option.split)
|
75 |
+
|
76 |
+
lemma sqn_nsqn:
|
77 |
+
"\<And>rt dip. sqn rt dip - 1 \<le> nsqn rt dip"
|
78 |
+
unfolding sqn_def nsqn_def by (clarsimp split: option.split)
|
79 |
+
|
80 |
+
lemma nsqn_sqn: "nsqn rt dip \<le> sqn rt dip"
|
81 |
+
unfolding sqn_def nsqn_def by (cases "rt dip") auto
|
82 |
+
|
83 |
+
lemma val_nsqn_sqn [elim, simp]:
|
84 |
+
assumes "ip\<in>kD(rt)"
|
85 |
+
and "the (flag rt ip) = val"
|
86 |
+
shows "nsqn rt ip = sqn rt ip"
|
87 |
+
using assms unfolding nsqn_sqn_def by auto
|
88 |
+
|
89 |
+
lemma vD_nsqn_sqn [elim, simp]:
|
90 |
+
assumes "ip\<in>vD(rt)"
|
91 |
+
shows "nsqn rt ip = sqn rt ip"
|
92 |
+
proof -
|
93 |
+
from \<open>ip\<in>vD(rt)\<close> have "ip\<in>kD(rt)"
|
94 |
+
and "the (flag rt ip) = val" by auto
|
95 |
+
thus ?thesis ..
|
96 |
+
qed
|
97 |
+
|
98 |
+
lemma inv_nsqn_sqn [elim, simp]:
|
99 |
+
assumes "ip\<in>kD(rt)"
|
100 |
+
and "the (flag rt ip) = inv"
|
101 |
+
shows "nsqn rt ip = sqn rt ip - 1"
|
102 |
+
using assms unfolding nsqn_sqn_def by auto
|
103 |
+
|
104 |
+
lemma iD_nsqn_sqn [elim, simp]:
|
105 |
+
assumes "ip\<in>iD(rt)"
|
106 |
+
shows "nsqn rt ip = sqn rt ip - 1"
|
107 |
+
proof -
|
108 |
+
from \<open>ip\<in>iD(rt)\<close> have "ip\<in>kD(rt)"
|
109 |
+
and "the (flag rt ip) = inv" by auto
|
110 |
+
thus ?thesis ..
|
111 |
+
qed
|
112 |
+
|
113 |
+
lemma nsqn_update_changed_kno_val [simp]: "\<And>rt ip dsn dsk hops nhip.
|
114 |
+
rt \<noteq> update rt ip (dsn, kno, val, hops, nhip, {})
|
115 |
+
\<Longrightarrow> nsqn (update rt ip (dsn, kno, val, hops, nhip, {})) ip = dsn"
|
116 |
+
unfolding nsqn\<^sub>r_def update_def
|
117 |
+
by (clarsimp simp: kD_nsqn split: option.split_asm option.split if_split_asm)
|
118 |
+
(metis fun_upd_triv)
|
119 |
+
|
120 |
+
lemma nsqn_addpreRT_inv [simp]:
|
121 |
+
"\<And>rt dip npre dip'. dip \<in> kD(rt) \<Longrightarrow>
|
122 |
+
nsqn (the (addpreRT rt dip npre)) dip' = nsqn rt dip'"
|
123 |
+
unfolding addpreRT_def nsqn_def nsqn\<^sub>r_def
|
124 |
+
by (frule kD_Some) (clarsimp split: option.split)
|
125 |
+
|
126 |
+
lemma nsqn_update_other [simp]:
|
127 |
+
fixes dsn dsk flag hops dip nhip pre rt ip
|
128 |
+
assumes "dip \<noteq> ip"
|
129 |
+
shows "nsqn (update rt ip (dsn, dsk, flag, hops, nhip, pre)) dip = nsqn rt dip"
|
130 |
+
using assms unfolding nsqn_def
|
131 |
+
by (clarsimp split: option.split)
|
132 |
+
|
133 |
+
lemma nsqn_invalidate_eq:
|
134 |
+
assumes "dip \<in> kD(rt)"
|
135 |
+
and "dests dip = Some rsn"
|
136 |
+
shows "nsqn (invalidate rt dests) dip = rsn - 1"
|
137 |
+
using assms
|
138 |
+
proof -
|
139 |
+
from assms obtain dsk hops nhip pre
|
140 |
+
where "invalidate rt dests dip = Some (rsn, dsk, inv, hops, nhip, pre)"
|
141 |
+
unfolding invalidate_def
|
142 |
+
by auto
|
143 |
+
moreover from \<open>dip \<in> kD(rt)\<close> have "dip \<in> kD(invalidate rt dests)" by simp
|
144 |
+
ultimately show ?thesis
|
145 |
+
using \<open>dests dip = Some rsn\<close> by simp
|
146 |
+
qed
|
147 |
+
|
148 |
+
lemma nsqn_invalidate_other [simp]:
|
149 |
+
assumes "dip\<in>kD(rt)"
|
150 |
+
and "dip\<notin>dom dests"
|
151 |
+
shows "nsqn (invalidate rt dests) dip = nsqn rt dip"
|
152 |
+
using assms by (clarsimp simp add: kD_nsqn)
|
153 |
+
|
154 |
+
subsection "Comparing routes "
|
155 |
+
|
156 |
+
definition
|
157 |
+
fresher :: "r \<Rightarrow> r \<Rightarrow> bool" ("(_/ \<sqsubseteq> _)" [51, 51] 50)
|
158 |
+
where
|
159 |
+
"fresher r r' \<equiv> ((nsqn\<^sub>r r < nsqn\<^sub>r r') \<or> (nsqn\<^sub>r r = nsqn\<^sub>r r' \<and> \<pi>\<^sub>5(r) \<ge> \<pi>\<^sub>5(r')))"
|
160 |
+
|
161 |
+
lemma fresherI1 [intro]:
|
162 |
+
assumes "nsqn\<^sub>r r < nsqn\<^sub>r r'"
|
163 |
+
shows "r \<sqsubseteq> r'"
|
164 |
+
unfolding fresher_def using assms by simp
|
165 |
+
|
166 |
+
lemma fresherI2 [intro]:
|
167 |
+
assumes "nsqn\<^sub>r r = nsqn\<^sub>r r'"
|
168 |
+
and "\<pi>\<^sub>5(r) \<ge> \<pi>\<^sub>5(r')"
|
169 |
+
shows "r \<sqsubseteq> r'"
|
170 |
+
unfolding fresher_def using assms by simp
|
171 |
+
|
172 |
+
lemma fresherI [intro]:
|
173 |
+
assumes "(nsqn\<^sub>r r < nsqn\<^sub>r r') \<or> (nsqn\<^sub>r r = nsqn\<^sub>r r' \<and> \<pi>\<^sub>5(r) \<ge> \<pi>\<^sub>5(r'))"
|
174 |
+
shows "r \<sqsubseteq> r'"
|
175 |
+
unfolding fresher_def using assms .
|
176 |
+
|
177 |
+
lemma fresherE [elim]:
|
178 |
+
assumes "r \<sqsubseteq> r'"
|
179 |
+
and "nsqn\<^sub>r r < nsqn\<^sub>r r' \<Longrightarrow> P r r'"
|
180 |
+
and "nsqn\<^sub>r r = nsqn\<^sub>r r' \<and> \<pi>\<^sub>5(r) \<ge> \<pi>\<^sub>5(r') \<Longrightarrow> P r r'"
|
181 |
+
shows "P r r'"
|
182 |
+
using assms unfolding fresher_def by auto
|
183 |
+
|
184 |
+
lemma fresher_refl [simp]: "r \<sqsubseteq> r"
|
185 |
+
unfolding fresher_def by simp
|
186 |
+
|
187 |
+
lemma fresher_trans [elim, trans]:
|
188 |
+
"\<lbrakk> x \<sqsubseteq> y; y \<sqsubseteq> z \<rbrakk> \<Longrightarrow> x \<sqsubseteq> z"
|
189 |
+
unfolding fresher_def by auto
|
190 |
+
|
191 |
+
lemma not_fresher_trans [elim, trans]:
|
192 |
+
"\<lbrakk> \<not>(x \<sqsubseteq> y); \<not>(z \<sqsubseteq> x) \<rbrakk> \<Longrightarrow> \<not>(z \<sqsubseteq> y)"
|
193 |
+
unfolding fresher_def by auto
|
194 |
+
|
195 |
+
lemma fresher_dsn_flag_hops_const [simp]:
|
196 |
+
fixes dsn dsk dsk' flag hops nhip nhip' pre pre'
|
197 |
+
shows "(dsn, dsk, flag, hops, nhip, pre) \<sqsubseteq> (dsn, dsk', flag, hops, nhip', pre')"
|
198 |
+
unfolding fresher_def by (cases flag) simp_all
|
199 |
+
|
200 |
+
lemma addpre_fresher [simp]: "\<And>r npre. r \<sqsubseteq> (addpre r npre)"
|
201 |
+
by clarsimp
|
202 |
+
|
203 |
+
subsection "Comparing routing tables "
|
204 |
+
|
205 |
+
definition
|
206 |
+
rt_fresher :: "ip \<Rightarrow> rt \<Rightarrow> rt \<Rightarrow> bool"
|
207 |
+
where
|
208 |
+
"rt_fresher \<equiv> \<lambda>dip rt rt'. (the (\<sigma>\<^bsub>route\<^esub>(rt, dip))) \<sqsubseteq> (the (\<sigma>\<^bsub>route\<^esub>(rt', dip)))"
|
209 |
+
|
210 |
+
abbreviation
|
211 |
+
rt_fresher_syn :: "rt \<Rightarrow> ip \<Rightarrow> rt \<Rightarrow> bool" ("(_/ \<sqsubseteq>\<^bsub>_\<^esub> _)" [51, 999, 51] 50)
|
212 |
+
where
|
213 |
+
"rt1 \<sqsubseteq>\<^bsub>i\<^esub> rt2 \<equiv> rt_fresher i rt1 rt2"
|
214 |
+
|
215 |
+
lemma rt_fresher_def':
|
216 |
+
"(rt\<^sub>1 \<sqsubseteq>\<^bsub>i\<^esub> rt\<^sub>2) = (nsqn\<^sub>r (the (rt\<^sub>1 i)) < nsqn\<^sub>r (the (rt\<^sub>2 i)) \<or>
|
217 |
+
nsqn\<^sub>r (the (rt\<^sub>1 i)) = nsqn\<^sub>r (the (rt\<^sub>2 i)) \<and> \<pi>\<^sub>5 (the (rt\<^sub>2 i)) \<le> \<pi>\<^sub>5 (the (rt\<^sub>1 i)))"
|
218 |
+
unfolding rt_fresher_def fresher_def by (rule refl)
|
219 |
+
|
220 |
+
lemma single_rt_fresher [intro]:
|
221 |
+
assumes "the (rt1 ip) \<sqsubseteq> the (rt2 ip)"
|
222 |
+
shows "rt1 \<sqsubseteq>\<^bsub>ip\<^esub> rt2"
|
223 |
+
using assms unfolding rt_fresher_def .
|
224 |
+
|
225 |
+
lemma rt_fresher_single [intro]:
|
226 |
+
assumes "rt1 \<sqsubseteq>\<^bsub>ip\<^esub> rt2"
|
227 |
+
shows "the (rt1 ip) \<sqsubseteq> the (rt2 ip)"
|
228 |
+
using assms unfolding rt_fresher_def .
|
229 |
+
|
230 |
+
lemma rt_fresher_def2:
|
231 |
+
assumes "dip \<in> kD(rt1)"
|
232 |
+
and "dip \<in> kD(rt2)"
|
233 |
+
shows "(rt1 \<sqsubseteq>\<^bsub>dip\<^esub> rt2) = (nsqn rt1 dip < nsqn rt2 dip
|
234 |
+
\<or> (nsqn rt1 dip = nsqn rt2 dip
|
235 |
+
\<and> the (dhops rt1 dip) \<ge> the (dhops rt2 dip)))"
|
236 |
+
using assms unfolding rt_fresher_def fresher_def by (simp add: kD_nsqn proj5_eq_dhops)
|
237 |
+
|
238 |
+
lemma rt_fresherI1 [intro]:
|
239 |
+
assumes "dip \<in> kD(rt1)"
|
240 |
+
and "dip \<in> kD(rt2)"
|
241 |
+
and "nsqn rt1 dip < nsqn rt2 dip"
|
242 |
+
shows "rt1 \<sqsubseteq>\<^bsub>dip\<^esub> rt2"
|
243 |
+
unfolding rt_fresher_def2 [OF assms(1-2)] using assms(3) by simp
|
244 |
+
|
245 |
+
lemma rt_fresherI2 [intro]:
|
246 |
+
assumes "dip \<in> kD(rt1)"
|
247 |
+
and "dip \<in> kD(rt2)"
|
248 |
+
and "nsqn rt1 dip = nsqn rt2 dip"
|
249 |
+
and "the (dhops rt1 dip) \<ge> the (dhops rt2 dip)"
|
250 |
+
shows "rt1 \<sqsubseteq>\<^bsub>dip\<^esub> rt2"
|
251 |
+
unfolding rt_fresher_def2 [OF assms(1-2)] using assms(3-4) by simp
|
252 |
+
|
253 |
+
lemma rt_fresherE [elim]:
|
254 |
+
assumes "rt1 \<sqsubseteq>\<^bsub>dip\<^esub> rt2"
|
255 |
+
and "dip \<in> kD(rt1)"
|
256 |
+
and "dip \<in> kD(rt2)"
|
257 |
+
and "\<lbrakk> nsqn rt1 dip < nsqn rt2 dip \<rbrakk> \<Longrightarrow> P rt1 rt2 dip"
|
258 |
+
and "\<lbrakk> nsqn rt1 dip = nsqn rt2 dip;
|
259 |
+
the (dhops rt1 dip) \<ge> the (dhops rt2 dip) \<rbrakk> \<Longrightarrow> P rt1 rt2 dip"
|
260 |
+
shows "P rt1 rt2 dip"
|
261 |
+
using assms(1) unfolding rt_fresher_def2 [OF assms(2-3)]
|
262 |
+
using assms(4-5) by auto
|
263 |
+
|
264 |
+
lemma rt_fresher_refl [simp]: "rt \<sqsubseteq>\<^bsub>dip\<^esub> rt"
|
265 |
+
unfolding rt_fresher_def by simp
|
266 |
+
|
267 |
+
lemma rt_fresher_trans [elim, trans]:
|
268 |
+
assumes "rt1 \<sqsubseteq>\<^bsub>dip\<^esub> rt2"
|
269 |
+
and "rt2 \<sqsubseteq>\<^bsub>dip\<^esub> rt3"
|
270 |
+
shows "rt1 \<sqsubseteq>\<^bsub>dip\<^esub> rt3"
|
271 |
+
using assms unfolding rt_fresher_def by auto
|
272 |
+
|
273 |
+
lemma rt_fresher_if_Some [intro!]:
|
274 |
+
assumes "the (rt dip) \<sqsubseteq> r"
|
275 |
+
shows "rt \<sqsubseteq>\<^bsub>dip\<^esub> (\<lambda>ip. if ip = dip then Some r else rt ip)"
|
276 |
+
using assms unfolding rt_fresher_def by simp
|
277 |
+
|
278 |
+
definition rt_fresh_as :: "ip \<Rightarrow> rt \<Rightarrow> rt \<Rightarrow> bool"
|
279 |
+
where
|
280 |
+
"rt_fresh_as \<equiv> \<lambda>dip rt1 rt2. (rt1 \<sqsubseteq>\<^bsub>dip\<^esub> rt2) \<and> (rt2 \<sqsubseteq>\<^bsub>dip\<^esub> rt1)"
|
281 |
+
|
282 |
+
abbreviation
|
283 |
+
rt_fresh_as_syn :: "rt \<Rightarrow> ip \<Rightarrow> rt \<Rightarrow> bool" ("(_/ \<approx>\<^bsub>_\<^esub> _)" [51, 999, 51] 50)
|
284 |
+
where
|
285 |
+
"rt1 \<approx>\<^bsub>i\<^esub> rt2 \<equiv> rt_fresh_as i rt1 rt2"
|
286 |
+
|
287 |
+
lemma rt_fresh_as_refl [simp]: "\<And>rt dip. rt \<approx>\<^bsub>dip\<^esub> rt"
|
288 |
+
unfolding rt_fresh_as_def by simp
|
289 |
+
|
290 |
+
lemma rt_fresh_as_trans [simp, intro, trans]:
|
291 |
+
"\<And>rt1 rt2 rt3 dip. \<lbrakk> rt1 \<approx>\<^bsub>dip\<^esub> rt2; rt2 \<approx>\<^bsub>dip\<^esub> rt3 \<rbrakk> \<Longrightarrow> rt1 \<approx>\<^bsub>dip\<^esub> rt3"
|
292 |
+
unfolding rt_fresh_as_def rt_fresher_def
|
293 |
+
by (metis (mono_tags) fresher_trans)
|
294 |
+
|
295 |
+
lemma rt_fresh_asI [intro!]:
|
296 |
+
assumes "rt1 \<sqsubseteq>\<^bsub>dip\<^esub> rt2"
|
297 |
+
and "rt2 \<sqsubseteq>\<^bsub>dip\<^esub> rt1"
|
298 |
+
shows "rt1 \<approx>\<^bsub>dip\<^esub> rt2"
|
299 |
+
using assms unfolding rt_fresh_as_def by simp
|
300 |
+
|
301 |
+
lemma rt_fresh_as_fresherI [intro]:
|
302 |
+
assumes "dip\<in>kD(rt1)"
|
303 |
+
and "dip\<in>kD(rt2)"
|
304 |
+
and "the (rt1 dip) \<sqsubseteq> the (rt2 dip)"
|
305 |
+
and "the (rt2 dip) \<sqsubseteq> the (rt1 dip)"
|
306 |
+
shows "rt1 \<approx>\<^bsub>dip\<^esub> rt2"
|
307 |
+
using assms unfolding rt_fresh_as_def
|
308 |
+
by (clarsimp dest!: single_rt_fresher)
|
309 |
+
|
310 |
+
lemma nsqn_rt_fresh_asI:
|
311 |
+
assumes "dip \<in> kD(rt)"
|
312 |
+
and "dip \<in> kD(rt')"
|
313 |
+
and "nsqn rt dip = nsqn rt' dip"
|
314 |
+
and "\<pi>\<^sub>5(the (rt dip)) = \<pi>\<^sub>5(the (rt' dip))"
|
315 |
+
shows "rt \<approx>\<^bsub>dip\<^esub> rt'"
|
316 |
+
proof
|
317 |
+
from assms(1-2,4) have dhops': "the (dhops rt' dip) \<le> the (dhops rt dip)"
|
318 |
+
by (simp add: proj5_eq_dhops)
|
319 |
+
with assms(1-3) show "rt \<sqsubseteq>\<^bsub>dip\<^esub> rt'"
|
320 |
+
by (rule rt_fresherI2)
|
321 |
+
next
|
322 |
+
from assms(1-2,4) have dhops: "the (dhops rt dip) \<le> the (dhops rt' dip)"
|
323 |
+
by (simp add: proj5_eq_dhops)
|
324 |
+
with assms(2,1) assms(3) [symmetric] show "rt' \<sqsubseteq>\<^bsub>dip\<^esub> rt"
|
325 |
+
by (rule rt_fresherI2)
|
326 |
+
qed
|
327 |
+
|
328 |
+
lemma rt_fresh_asE [elim]:
|
329 |
+
assumes "rt1 \<approx>\<^bsub>dip\<^esub> rt2"
|
330 |
+
and "\<lbrakk> rt1 \<sqsubseteq>\<^bsub>dip\<^esub> rt2; rt2 \<sqsubseteq>\<^bsub>dip\<^esub> rt1 \<rbrakk> \<Longrightarrow> P rt1 rt2 dip"
|
331 |
+
shows "P rt1 rt2 dip"
|
332 |
+
using assms unfolding rt_fresh_as_def by simp
|
333 |
+
|
334 |
+
lemma rt_fresh_asD1 [dest]:
|
335 |
+
assumes "rt1 \<approx>\<^bsub>dip\<^esub> rt2"
|
336 |
+
shows "rt1 \<sqsubseteq>\<^bsub>dip\<^esub> rt2"
|
337 |
+
using assms unfolding rt_fresh_as_def by simp
|
338 |
+
|
339 |
+
lemma rt_fresh_asD2 [dest]:
|
340 |
+
assumes "rt1 \<approx>\<^bsub>dip\<^esub> rt2"
|
341 |
+
shows "rt2 \<sqsubseteq>\<^bsub>dip\<^esub> rt1"
|
342 |
+
using assms unfolding rt_fresh_as_def by simp
|
343 |
+
|
344 |
+
lemma rt_fresh_as_sym:
|
345 |
+
assumes "rt1 \<approx>\<^bsub>dip\<^esub> rt2"
|
346 |
+
shows "rt2 \<approx>\<^bsub>dip\<^esub> rt1"
|
347 |
+
using assms unfolding rt_fresh_as_def by simp
|
348 |
+
|
349 |
+
lemma not_rt_fresh_asI1 [intro]:
|
350 |
+
assumes "\<not> (rt1 \<sqsubseteq>\<^bsub>dip\<^esub> rt2)"
|
351 |
+
shows "\<not> (rt1 \<approx>\<^bsub>dip\<^esub> rt2)"
|
352 |
+
proof
|
353 |
+
assume "rt1 \<approx>\<^bsub>dip\<^esub> rt2"
|
354 |
+
hence "rt1 \<sqsubseteq>\<^bsub>dip\<^esub> rt2" ..
|
355 |
+
with \<open>\<not> (rt1 \<sqsubseteq>\<^bsub>dip\<^esub> rt2)\<close> show False ..
|
356 |
+
qed
|
357 |
+
|
358 |
+
lemma not_rt_fresh_asI2 [intro]:
|
359 |
+
assumes "\<not> (rt2 \<sqsubseteq>\<^bsub>dip\<^esub> rt1)"
|
360 |
+
shows "\<not> (rt1 \<approx>\<^bsub>dip\<^esub> rt2)"
|
361 |
+
proof
|
362 |
+
assume "rt1 \<approx>\<^bsub>dip\<^esub> rt2"
|
363 |
+
hence "rt2 \<sqsubseteq>\<^bsub>dip\<^esub> rt1" ..
|
364 |
+
with \<open>\<not> (rt2 \<sqsubseteq>\<^bsub>dip\<^esub> rt1)\<close> show False ..
|
365 |
+
qed
|
366 |
+
|
367 |
+
lemma not_single_rt_fresher [elim]:
|
368 |
+
assumes "\<not>(the (rt1 ip) \<sqsubseteq> the (rt2 ip))"
|
369 |
+
shows "\<not>(rt1 \<sqsubseteq>\<^bsub>ip\<^esub> rt2)"
|
370 |
+
proof
|
371 |
+
assume "rt1 \<sqsubseteq>\<^bsub>ip\<^esub> rt2"
|
372 |
+
hence "the (rt1 ip) \<sqsubseteq> the (rt2 ip)" ..
|
373 |
+
with \<open>\<not>(the (rt1 ip) \<sqsubseteq> the (rt2 ip))\<close> show False ..
|
374 |
+
qed
|
375 |
+
|
376 |
+
lemmas not_single_rt_fresh_asI1 [intro] = not_rt_fresh_asI1 [OF not_single_rt_fresher]
|
377 |
+
lemmas not_single_rt_fresh_asI2 [intro] = not_rt_fresh_asI2 [OF not_single_rt_fresher]
|
378 |
+
|
379 |
+
lemma not_rt_fresher_single [elim]:
|
380 |
+
assumes "\<not>(rt1 \<sqsubseteq>\<^bsub>ip\<^esub> rt2)"
|
381 |
+
shows "\<not>(the (rt1 ip) \<sqsubseteq> the (rt2 ip))"
|
382 |
+
proof
|
383 |
+
assume "the (rt1 ip) \<sqsubseteq> the (rt2 ip)"
|
384 |
+
hence "rt1 \<sqsubseteq>\<^bsub>ip\<^esub> rt2" ..
|
385 |
+
with \<open>\<not>(rt1 \<sqsubseteq>\<^bsub>ip\<^esub> rt2)\<close> show False ..
|
386 |
+
qed
|
387 |
+
|
388 |
+
lemma rt_fresh_as_nsqnr:
|
389 |
+
assumes "dip \<in> kD(rt1)"
|
390 |
+
and "dip \<in> kD(rt2)"
|
391 |
+
and "rt1 \<approx>\<^bsub>dip\<^esub> rt2"
|
392 |
+
shows "nsqn\<^sub>r (the (rt2 dip)) = nsqn\<^sub>r (the (rt1 dip))"
|
393 |
+
using assms(3) unfolding rt_fresh_as_def
|
394 |
+
by (auto simp: rt_fresher_def2 [OF \<open>dip \<in> kD(rt1)\<close> \<open>dip \<in> kD(rt2)\<close>]
|
395 |
+
rt_fresher_def2 [OF \<open>dip \<in> kD(rt2)\<close> \<open>dip \<in> kD(rt1)\<close>]
|
396 |
+
kD_nsqn [OF \<open>dip \<in> kD(rt1)\<close>]
|
397 |
+
kD_nsqn [OF \<open>dip \<in> kD(rt2)\<close>])
|
398 |
+
|
399 |
+
lemma rt_fresher_mapupd [intro!]:
|
400 |
+
assumes "dip\<in>kD(rt)"
|
401 |
+
and "the (rt dip) \<sqsubseteq> r"
|
402 |
+
shows "rt \<sqsubseteq>\<^bsub>dip\<^esub> rt(dip \<mapsto> r)"
|
403 |
+
using assms unfolding rt_fresher_def by simp
|
404 |
+
|
405 |
+
lemma rt_fresher_map_update_other [intro!]:
|
406 |
+
assumes "dip\<in>kD(rt)"
|
407 |
+
and "dip \<noteq> ip"
|
408 |
+
shows "rt \<sqsubseteq>\<^bsub>dip\<^esub> rt(ip \<mapsto> r)"
|
409 |
+
using assms unfolding rt_fresher_def by simp
|
410 |
+
|
411 |
+
lemma rt_fresher_update_other [simp]:
|
412 |
+
assumes inkD: "dip\<in>kD(rt)"
|
413 |
+
and "dip \<noteq> ip"
|
414 |
+
shows "rt \<sqsubseteq>\<^bsub>dip\<^esub> update rt ip r"
|
415 |
+
using assms unfolding update_def
|
416 |
+
by (clarsimp split: option.split) (fastforce)
|
417 |
+
|
418 |
+
theorem rt_fresher_update [simp]:
|
419 |
+
assumes "dip\<in>kD(rt)"
|
420 |
+
and "the (dhops rt dip) \<ge> 1"
|
421 |
+
and "update_arg_wf r"
|
422 |
+
shows "rt \<sqsubseteq>\<^bsub>dip\<^esub> update rt ip r"
|
423 |
+
proof (cases "dip = ip")
|
424 |
+
assume "dip \<noteq> ip" with \<open>dip\<in>kD(rt)\<close> show ?thesis
|
425 |
+
by (rule rt_fresher_update_other)
|
426 |
+
next
|
427 |
+
assume "dip = ip"
|
428 |
+
|
429 |
+
from \<open>dip\<in>kD(rt)\<close> obtain dsn\<^sub>n dsk\<^sub>n f\<^sub>n hops\<^sub>n nhip\<^sub>n pre\<^sub>n
|
430 |
+
where rtn [simp]: "the (rt dip) = (dsn\<^sub>n, dsk\<^sub>n, f\<^sub>n, hops\<^sub>n, nhip\<^sub>n, pre\<^sub>n)"
|
431 |
+
by (metis prod_cases6)
|
432 |
+
with \<open>the (dhops rt dip) \<ge> 1\<close> and \<open>dip\<in>kD(rt)\<close> have "hops\<^sub>n \<ge> 1"
|
433 |
+
by (metis proj5_eq_dhops projs(4))
|
434 |
+
from \<open>dip\<in>kD(rt)\<close> rtn have [simp]: "sqn rt dip = dsn\<^sub>n"
|
435 |
+
and [simp]: "the (dhops rt dip) = hops\<^sub>n"
|
436 |
+
and [simp]: "the (flag rt dip) = f\<^sub>n"
|
437 |
+
by (simp add: sqn_def proj5_eq_dhops [symmetric]
|
438 |
+
proj4_eq_flag [symmetric])+
|
439 |
+
|
440 |
+
from \<open>update_arg_wf r\<close> have "(dsn\<^sub>n, dsk\<^sub>n, f\<^sub>n, hops\<^sub>n, nhip\<^sub>n, pre\<^sub>n)
|
441 |
+
\<sqsubseteq> the ((update rt dip r) dip)"
|
442 |
+
proof (rule wf_r_cases)
|
443 |
+
fix nhip pre
|
444 |
+
from \<open>hops\<^sub>n \<ge> 1\<close> have "\<And>pre'. (dsn\<^sub>n, dsk\<^sub>n, f\<^sub>n, hops\<^sub>n, nhip\<^sub>n, pre\<^sub>n)
|
445 |
+
\<sqsubseteq> (dsn\<^sub>n, unk, val, Suc 0, nhip, pre')"
|
446 |
+
unfolding fresher_def sqn_def by (cases f\<^sub>n) auto
|
447 |
+
thus "(dsn\<^sub>n, dsk\<^sub>n, f\<^sub>n, hops\<^sub>n, nhip\<^sub>n, pre\<^sub>n)
|
448 |
+
\<sqsubseteq> the (update rt dip (0, unk, val, Suc 0, nhip, pre) dip)"
|
449 |
+
using \<open>dip\<in>kD(rt)\<close> by - (rule update_cases_kD, simp_all)
|
450 |
+
next
|
451 |
+
fix dsn :: sqn and hops nhip pre
|
452 |
+
assume "0 < dsn"
|
453 |
+
show "(dsn\<^sub>n, dsk\<^sub>n, f\<^sub>n, hops\<^sub>n, nhip\<^sub>n, pre\<^sub>n)
|
454 |
+
\<sqsubseteq> the (update rt dip (dsn, kno, val, hops, nhip, pre) dip)"
|
455 |
+
proof (rule update_cases_kD [OF _ \<open>dip\<in>kD(rt)\<close>], simp_all add: \<open>0 < dsn\<close>)
|
456 |
+
assume "dsn\<^sub>n < dsn"
|
457 |
+
thus "(dsn\<^sub>n, dsk\<^sub>n, f\<^sub>n, hops\<^sub>n, nhip\<^sub>n, pre\<^sub>n)
|
458 |
+
\<sqsubseteq> (dsn, kno, val, hops, nhip, pre \<union> pre\<^sub>n)"
|
459 |
+
unfolding fresher_def by auto
|
460 |
+
next
|
461 |
+
assume "dsn\<^sub>n = dsn"
|
462 |
+
and "hops < hops\<^sub>n"
|
463 |
+
thus "(dsn, dsk\<^sub>n, f\<^sub>n, hops\<^sub>n, nhip\<^sub>n, pre\<^sub>n)
|
464 |
+
\<sqsubseteq> (dsn, kno, val, hops, nhip, pre \<union> pre\<^sub>n)"
|
465 |
+
unfolding fresher_def nsqn\<^sub>r_def by simp
|
466 |
+
next
|
467 |
+
assume "dsn\<^sub>n = dsn"
|
468 |
+
with \<open>0 < dsn\<close>
|
469 |
+
show "(dsn, dsk\<^sub>n, inv, hops\<^sub>n, nhip\<^sub>n, pre\<^sub>n)
|
470 |
+
\<sqsubseteq> (dsn, kno, val, hops, nhip, pre \<union> pre\<^sub>n)"
|
471 |
+
unfolding fresher_def by simp
|
472 |
+
qed
|
473 |
+
qed
|
474 |
+
hence "rt \<sqsubseteq>\<^bsub>dip\<^esub> update rt dip r"
|
475 |
+
by - (rule single_rt_fresher, simp)
|
476 |
+
with \<open>dip = ip\<close> show ?thesis by simp
|
477 |
+
qed
|
478 |
+
|
479 |
+
theorem rt_fresher_invalidate [simp]:
|
480 |
+
assumes "dip\<in>kD(rt)"
|
481 |
+
and indests: "\<forall>rip\<in>dom(dests). rip\<in>vD(rt) \<and> sqn rt rip < the (dests rip)"
|
482 |
+
shows "rt \<sqsubseteq>\<^bsub>dip\<^esub> invalidate rt dests"
|
483 |
+
proof (cases "dip\<in>dom(dests)")
|
484 |
+
assume "dip\<notin>dom(dests)"
|
485 |
+
thus ?thesis using \<open>dip\<in>kD(rt)\<close>
|
486 |
+
by - (rule single_rt_fresher, simp)
|
487 |
+
next
|
488 |
+
assume "dip\<in>dom(dests)"
|
489 |
+
moreover with indests have "dip\<in>vD(rt)"
|
490 |
+
and "sqn rt dip < the (dests dip)"
|
491 |
+
by auto
|
492 |
+
ultimately show ?thesis
|
493 |
+
unfolding invalidate_def sqn_def
|
494 |
+
by - (rule single_rt_fresher, auto simp: fresher_def)
|
495 |
+
qed
|
496 |
+
|
497 |
+
lemma nsqn\<^sub>r_invalidate [simp]:
|
498 |
+
assumes "dip\<in>kD(rt)"
|
499 |
+
and "dip\<in>dom(dests)"
|
500 |
+
shows "nsqn\<^sub>r (the (invalidate rt dests dip)) = the (dests dip) - 1"
|
501 |
+
using assms unfolding invalidate_def by auto
|
502 |
+
|
503 |
+
lemma rt_fresh_as_inc_invalidate [simp]:
|
504 |
+
assumes "dip\<in>kD(rt)"
|
505 |
+
and "\<forall>rip\<in>dom(dests). rip\<in>vD(rt) \<and> the (dests rip) = inc (sqn rt rip)"
|
506 |
+
shows "rt \<approx>\<^bsub>dip\<^esub> invalidate rt dests"
|
507 |
+
proof (cases "dip\<in>dom(dests)")
|
508 |
+
assume "dip\<notin>dom(dests)"
|
509 |
+
with \<open>dip\<in>kD(rt)\<close> have "dip\<in>kD(invalidate rt dests)"
|
510 |
+
by simp
|
511 |
+
with \<open>dip\<in>kD(rt)\<close> show ?thesis
|
512 |
+
by rule (simp_all add: \<open>dip\<notin>dom(dests)\<close>)
|
513 |
+
next
|
514 |
+
assume "dip\<in>dom(dests)"
|
515 |
+
with assms(2) have "dip\<in>vD(rt)"
|
516 |
+
and "the (dests dip) = inc (sqn rt dip)" by auto
|
517 |
+
from \<open>dip\<in>vD(rt)\<close> have "dip\<in>kD(rt)" by simp
|
518 |
+
moreover then have "dip\<in>kD(invalidate rt dests)" by simp
|
519 |
+
ultimately show ?thesis
|
520 |
+
proof (rule nsqn_rt_fresh_asI)
|
521 |
+
from \<open>dip\<in>vD(rt)\<close> have "nsqn rt dip = sqn rt dip" by simp
|
522 |
+
also have "sqn rt dip = nsqn\<^sub>r (the (invalidate rt dests dip))"
|
523 |
+
proof -
|
524 |
+
from \<open>dip\<in>kD(rt)\<close> have "nsqn\<^sub>r (the (invalidate rt dests dip)) = the (dests dip) - 1"
|
525 |
+
using \<open>dip\<in>dom(dests)\<close> by (rule nsqn\<^sub>r_invalidate)
|
526 |
+
with \<open>the (dests dip) = inc (sqn rt dip)\<close>
|
527 |
+
show "sqn rt dip = nsqn\<^sub>r (the (invalidate rt dests dip))" by simp
|
528 |
+
qed
|
529 |
+
also from \<open>dip\<in>kD(invalidate rt dests)\<close>
|
530 |
+
have "nsqn\<^sub>r (the (invalidate rt dests dip)) = nsqn (invalidate rt dests) dip"
|
531 |
+
by (simp add: kD_nsqn)
|
532 |
+
finally show "nsqn rt dip = nsqn (invalidate rt dests) dip" .
|
533 |
+
qed simp
|
534 |
+
qed
|
535 |
+
|
536 |
+
lemmas rt_fresher_inc_invalidate [simp] = rt_fresh_as_inc_invalidate [THEN rt_fresh_asD1]
|
537 |
+
|
538 |
+
lemma rt_fresh_as_addpreRT [simp]:
|
539 |
+
assumes "ip\<in>kD(rt)"
|
540 |
+
shows "rt \<approx>\<^bsub>dip\<^esub> the (addpreRT rt ip npre)"
|
541 |
+
using assms [THEN kD_Some] by (auto simp: addpreRT_def)
|
542 |
+
|
543 |
+
lemmas rt_fresher_addpreRT [simp] = rt_fresh_as_addpreRT [THEN rt_fresh_asD1]
|
544 |
+
|
545 |
+
subsection "Strictly comparing routing tables "
|
546 |
+
|
547 |
+
definition rt_strictly_fresher :: "ip \<Rightarrow> rt \<Rightarrow> rt \<Rightarrow> bool"
|
548 |
+
where
|
549 |
+
"rt_strictly_fresher \<equiv> \<lambda>dip rt1 rt2. (rt1 \<sqsubseteq>\<^bsub>dip\<^esub> rt2) \<and> \<not>(rt1 \<approx>\<^bsub>dip\<^esub> rt2)"
|
550 |
+
|
551 |
+
abbreviation
|
552 |
+
rt_strictly_fresher_syn :: "rt \<Rightarrow> ip \<Rightarrow> rt \<Rightarrow> bool" ("(_/ \<sqsubset>\<^bsub>_\<^esub> _)" [51, 999, 51] 50)
|
553 |
+
where
|
554 |
+
"rt1 \<sqsubset>\<^bsub>i\<^esub> rt2 \<equiv> rt_strictly_fresher i rt1 rt2"
|
555 |
+
|
556 |
+
lemma rt_strictly_fresher_def'':
|
557 |
+
"rt1 \<sqsubset>\<^bsub>i\<^esub> rt2 = ((rt1 \<sqsubseteq>\<^bsub>i\<^esub> rt2) \<and> \<not>(rt2 \<sqsubseteq>\<^bsub>i\<^esub> rt1))"
|
558 |
+
unfolding rt_strictly_fresher_def rt_fresh_as_def by auto
|
559 |
+
|
560 |
+
lemma rt_strictly_fresherI' [intro]:
|
561 |
+
assumes "rt1 \<sqsubseteq>\<^bsub>i\<^esub> rt2"
|
562 |
+
and "\<not>(rt2 \<sqsubseteq>\<^bsub>i\<^esub> rt1)"
|
563 |
+
shows "rt1 \<sqsubset>\<^bsub>i\<^esub> rt2"
|
564 |
+
using assms unfolding rt_strictly_fresher_def'' by simp
|
565 |
+
|
566 |
+
lemma rt_strictly_fresherE' [elim]:
|
567 |
+
assumes "rt1 \<sqsubset>\<^bsub>i\<^esub> rt2"
|
568 |
+
and "\<lbrakk> rt1 \<sqsubseteq>\<^bsub>i\<^esub> rt2; \<not>(rt2 \<sqsubseteq>\<^bsub>i\<^esub> rt1) \<rbrakk> \<Longrightarrow> P rt1 rt2 i"
|
569 |
+
shows "P rt1 rt2 i"
|
570 |
+
using assms unfolding rt_strictly_fresher_def'' by simp
|
571 |
+
|
572 |
+
lemma rt_strictly_fresherI [intro]:
|
573 |
+
assumes "rt1 \<sqsubseteq>\<^bsub>i\<^esub> rt2"
|
574 |
+
and "\<not>(rt1 \<approx>\<^bsub>i\<^esub> rt2)"
|
575 |
+
shows "rt1 \<sqsubset>\<^bsub>i\<^esub> rt2"
|
576 |
+
unfolding rt_strictly_fresher_def using assms ..
|
577 |
+
|
578 |
+
lemmas rt_strictly_fresher_singleI [elim] = rt_strictly_fresherI [OF single_rt_fresher]
|
579 |
+
|
580 |
+
lemma rt_strictly_fresherE [elim]:
|
581 |
+
assumes "rt1 \<sqsubset>\<^bsub>i\<^esub> rt2"
|
582 |
+
and "\<lbrakk> rt1 \<sqsubseteq>\<^bsub>i\<^esub> rt2; \<not>(rt1 \<approx>\<^bsub>i\<^esub> rt2) \<rbrakk> \<Longrightarrow> P rt1 rt2 i"
|
583 |
+
shows "P rt1 rt2 i"
|
584 |
+
using assms(1) unfolding rt_strictly_fresher_def
|
585 |
+
by rule (erule(1) assms(2))
|
586 |
+
|
587 |
+
lemma rt_strictly_fresher_def':
|
588 |
+
"rt1 \<sqsubset>\<^bsub>i\<^esub> rt2 =
|
589 |
+
(nsqn\<^sub>r (the (rt1 i)) < nsqn\<^sub>r (the (rt2 i))
|
590 |
+
\<or> (nsqn\<^sub>r (the (rt1 i)) = nsqn\<^sub>r (the (rt2 i)) \<and> \<pi>\<^sub>5(the (rt1 i)) > \<pi>\<^sub>5(the (rt2 i))))"
|
591 |
+
unfolding rt_strictly_fresher_def'' rt_fresher_def fresher_def by auto
|
592 |
+
|
593 |
+
lemma rt_strictly_fresher_fresherD [dest]:
|
594 |
+
assumes "rt1 \<sqsubset>\<^bsub>dip\<^esub> rt2"
|
595 |
+
shows "the (rt1 dip) \<sqsubseteq> the (rt2 dip)"
|
596 |
+
using assms unfolding rt_strictly_fresher_def rt_fresher_def by auto
|
597 |
+
|
598 |
+
lemma rt_strictly_fresher_not_fresh_asD [dest]:
|
599 |
+
assumes "rt1 \<sqsubset>\<^bsub>dip\<^esub> rt2"
|
600 |
+
shows "\<not> rt1 \<approx>\<^bsub>dip\<^esub> rt2"
|
601 |
+
using assms unfolding rt_strictly_fresher_def by auto
|
602 |
+
|
603 |
+
lemma rt_strictly_fresher_trans [elim, trans]:
|
604 |
+
assumes "rt1 \<sqsubset>\<^bsub>dip\<^esub> rt2"
|
605 |
+
and "rt2 \<sqsubset>\<^bsub>dip\<^esub> rt3"
|
606 |
+
shows "rt1 \<sqsubset>\<^bsub>dip\<^esub> rt3"
|
607 |
+
using assms proof -
|
608 |
+
from \<open>rt1 \<sqsubset>\<^bsub>dip\<^esub> rt2\<close> obtain "the (rt1 dip) \<sqsubseteq> the (rt2 dip)" by auto
|
609 |
+
also from \<open>rt2 \<sqsubset>\<^bsub>dip\<^esub> rt3\<close> obtain "the (rt2 dip) \<sqsubseteq> the (rt3 dip)" by auto
|
610 |
+
finally have "the (rt1 dip) \<sqsubseteq> the (rt3 dip)" .
|
611 |
+
|
612 |
+
moreover have "\<not> (rt1 \<approx>\<^bsub>dip\<^esub> rt3)"
|
613 |
+
proof -
|
614 |
+
from \<open>rt1 \<sqsubset>\<^bsub>dip\<^esub> rt2\<close> obtain "\<not>(the (rt2 dip) \<sqsubseteq> the (rt1 dip))" by auto
|
615 |
+
also from \<open>rt2 \<sqsubset>\<^bsub>dip\<^esub> rt3\<close> obtain "\<not>(the (rt3 dip) \<sqsubseteq> the (rt2 dip))" by auto
|
616 |
+
finally have "\<not>(the (rt3 dip) \<sqsubseteq> the (rt1 dip))" .
|
617 |
+
thus ?thesis ..
|
618 |
+
qed
|
619 |
+
ultimately show "rt1 \<sqsubset>\<^bsub>dip\<^esub> rt3" ..
|
620 |
+
qed
|
621 |
+
|
622 |
+
lemma rt_strictly_fresher_irefl [simp]: "\<not> (rt \<sqsubset>\<^bsub>dip\<^esub> rt)"
|
623 |
+
unfolding rt_strictly_fresher_def
|
624 |
+
by clarsimp
|
625 |
+
|
626 |
+
lemma rt_fresher_trans_rt_strictly_fresher [elim, trans]:
|
627 |
+
assumes "rt1 \<sqsubset>\<^bsub>dip\<^esub> rt2"
|
628 |
+
and "rt2 \<sqsubseteq>\<^bsub>dip\<^esub> rt3"
|
629 |
+
shows "rt1 \<sqsubset>\<^bsub>dip\<^esub> rt3"
|
630 |
+
proof -
|
631 |
+
from \<open>rt1 \<sqsubset>\<^bsub>dip\<^esub> rt2\<close> have "rt1 \<sqsubseteq>\<^bsub>dip\<^esub> rt2"
|
632 |
+
and "\<not>(rt2 \<sqsubseteq>\<^bsub>dip\<^esub> rt1)"
|
633 |
+
unfolding rt_strictly_fresher_def'' by auto
|
634 |
+
from this(1) and \<open>rt2 \<sqsubseteq>\<^bsub>dip\<^esub> rt3\<close> have "rt1 \<sqsubseteq>\<^bsub>dip\<^esub> rt3" ..
|
635 |
+
|
636 |
+
moreover from \<open>\<not>(rt2 \<sqsubseteq>\<^bsub>dip\<^esub> rt1)\<close> have "\<not>(rt3 \<sqsubseteq>\<^bsub>dip\<^esub> rt1)"
|
637 |
+
proof (rule contrapos_nn)
|
638 |
+
assume "rt3 \<sqsubseteq>\<^bsub>dip\<^esub> rt1"
|
639 |
+
with \<open>rt2 \<sqsubseteq>\<^bsub>dip\<^esub> rt3\<close> show "rt2 \<sqsubseteq>\<^bsub>dip\<^esub> rt1" ..
|
640 |
+
qed
|
641 |
+
|
642 |
+
ultimately show "rt1 \<sqsubset>\<^bsub>dip\<^esub> rt3"
|
643 |
+
unfolding rt_strictly_fresher_def'' by auto
|
644 |
+
qed
|
645 |
+
|
646 |
+
lemma rt_fresher_trans_rt_strictly_fresher' [elim, trans]:
|
647 |
+
assumes "rt1 \<sqsubseteq>\<^bsub>dip\<^esub> rt2"
|
648 |
+
and "rt2 \<sqsubset>\<^bsub>dip\<^esub> rt3"
|
649 |
+
shows "rt1 \<sqsubset>\<^bsub>dip\<^esub> rt3"
|
650 |
+
proof -
|
651 |
+
from \<open>rt2 \<sqsubset>\<^bsub>dip\<^esub> rt3\<close> have "rt2 \<sqsubseteq>\<^bsub>dip\<^esub> rt3"
|
652 |
+
and "\<not>(rt3 \<sqsubseteq>\<^bsub>dip\<^esub> rt2)"
|
653 |
+
unfolding rt_strictly_fresher_def'' by auto
|
654 |
+
from \<open>rt1 \<sqsubseteq>\<^bsub>dip\<^esub> rt2\<close> and this(1) have "rt1 \<sqsubseteq>\<^bsub>dip\<^esub> rt3" ..
|
655 |
+
|
656 |
+
moreover from \<open>\<not>(rt3 \<sqsubseteq>\<^bsub>dip\<^esub> rt2)\<close> have "\<not>(rt3 \<sqsubseteq>\<^bsub>dip\<^esub> rt1)"
|
657 |
+
proof (rule contrapos_nn)
|
658 |
+
assume "rt3 \<sqsubseteq>\<^bsub>dip\<^esub> rt1"
|
659 |
+
thus "rt3 \<sqsubseteq>\<^bsub>dip\<^esub> rt2" using \<open>rt1 \<sqsubseteq>\<^bsub>dip\<^esub> rt2\<close> ..
|
660 |
+
qed
|
661 |
+
|
662 |
+
ultimately show "rt1 \<sqsubset>\<^bsub>dip\<^esub> rt3"
|
663 |
+
unfolding rt_strictly_fresher_def'' by auto
|
664 |
+
qed
|
665 |
+
|
666 |
+
lemma rt_fresher_imp_nsqn_le:
|
667 |
+
assumes "rt1 \<sqsubseteq>\<^bsub>ip\<^esub> rt2"
|
668 |
+
and "ip \<in> kD rt1"
|
669 |
+
and "ip \<in> kD rt2"
|
670 |
+
shows "nsqn rt1 ip \<le> nsqn rt2 ip"
|
671 |
+
using assms(1)
|
672 |
+
by (auto simp add: rt_fresher_def2 [OF assms(2-3)])
|
673 |
+
|
674 |
+
lemma rt_strictly_fresher_ltI [intro]:
|
675 |
+
assumes "dip \<in> kD(rt1)"
|
676 |
+
and "dip \<in> kD(rt2)"
|
677 |
+
and "nsqn rt1 dip < nsqn rt2 dip"
|
678 |
+
shows "rt1 \<sqsubset>\<^bsub>dip\<^esub> rt2"
|
679 |
+
proof
|
680 |
+
from assms show "rt1 \<sqsubseteq>\<^bsub>dip\<^esub> rt2" ..
|
681 |
+
next
|
682 |
+
show "\<not>(rt1 \<approx>\<^bsub>dip\<^esub> rt2)"
|
683 |
+
proof
|
684 |
+
assume "rt1 \<approx>\<^bsub>dip\<^esub> rt2"
|
685 |
+
hence "rt2 \<sqsubseteq>\<^bsub>dip\<^esub> rt1" ..
|
686 |
+
hence "nsqn rt2 dip \<le> nsqn rt1 dip"
|
687 |
+
using \<open>dip \<in> kD(rt2)\<close> \<open>dip \<in> kD(rt1)\<close>
|
688 |
+
by (rule rt_fresher_imp_nsqn_le)
|
689 |
+
with \<open>nsqn rt1 dip < nsqn rt2 dip\<close> show "False"
|
690 |
+
by simp
|
691 |
+
qed
|
692 |
+
qed
|
693 |
+
|
694 |
+
lemma rt_strictly_fresher_eqI [intro]:
|
695 |
+
assumes "i\<in>kD(rt1)"
|
696 |
+
and "i\<in>kD(rt2)"
|
697 |
+
and "nsqn rt1 i = nsqn rt2 i"
|
698 |
+
and "\<pi>\<^sub>5(the (rt2 i)) < \<pi>\<^sub>5(the (rt1 i))"
|
699 |
+
shows "rt1 \<sqsubset>\<^bsub>i\<^esub> rt2"
|
700 |
+
using assms unfolding rt_strictly_fresher_def' by (auto simp add: kD_nsqn)
|
701 |
+
|
702 |
+
lemma invalidate_rtsf_left [simp]:
|
703 |
+
"\<And>dests dip rt rt'. dests dip = None \<Longrightarrow> (invalidate rt dests \<sqsubset>\<^bsub>dip\<^esub> rt') = (rt \<sqsubset>\<^bsub>dip\<^esub> rt')"
|
704 |
+
unfolding invalidate_def rt_strictly_fresher_def'
|
705 |
+
by (rule iffI) (auto split: option.split_asm)
|
706 |
+
|
707 |
+
lemma vD_invalidate_rt_strictly_fresher [simp]:
|
708 |
+
assumes "dip \<in> vD(invalidate rt1 dests)"
|
709 |
+
shows "(invalidate rt1 dests \<sqsubset>\<^bsub>dip\<^esub> rt2) = (rt1 \<sqsubset>\<^bsub>dip\<^esub> rt2)"
|
710 |
+
proof (cases "dip \<in> dom(dests)")
|
711 |
+
assume "dip \<in> dom(dests)"
|
712 |
+
hence "dip \<notin> vD(invalidate rt1 dests)"
|
713 |
+
unfolding invalidate_def vD_def
|
714 |
+
by clarsimp (metis assms option.simps(3) vD_invalidate_vD_not_dests)
|
715 |
+
with \<open>dip \<in> vD(invalidate rt1 dests)\<close> show ?thesis by simp
|
716 |
+
next
|
717 |
+
assume "dip \<notin> dom(dests)"
|
718 |
+
hence "dests dip = None" by auto
|
719 |
+
moreover with \<open>dip \<in> vD(invalidate rt1 dests)\<close> have "dip \<in> vD(rt1)"
|
720 |
+
unfolding invalidate_def vD_def
|
721 |
+
by clarsimp (metis (opaque_lifting, no_types) assms vD_Some vD_invalidate_vD_not_dests)
|
722 |
+
ultimately show ?thesis
|
723 |
+
unfolding invalidate_def rt_strictly_fresher_def' by auto
|
724 |
+
qed
|
725 |
+
|
726 |
+
lemma rt_strictly_fresher_update_other [elim!]:
|
727 |
+
"\<And>dip ip rt r rt'. \<lbrakk> dip \<noteq> ip; rt \<sqsubset>\<^bsub>dip\<^esub> rt' \<rbrakk> \<Longrightarrow> update rt ip r \<sqsubset>\<^bsub>dip\<^esub> rt'"
|
728 |
+
unfolding rt_strictly_fresher_def' by clarsimp
|
729 |
+
|
730 |
+
lemma addpreRT_strictly_fresher [simp]:
|
731 |
+
assumes "dip \<in> kD(rt)"
|
732 |
+
shows "(the (addpreRT rt dip npre) \<sqsubset>\<^bsub>ip\<^esub> rt2) = (rt \<sqsubset>\<^bsub>ip\<^esub> rt2)"
|
733 |
+
using assms unfolding rt_strictly_fresher_def' by clarsimp
|
734 |
+
|
735 |
+
lemma lt_sqn_imp_update_strictly_fresher:
|
736 |
+
assumes "dip \<in> vD (rt2 nhip)"
|
737 |
+
and *: "osn < sqn (rt2 nhip) dip"
|
738 |
+
and **: "rt \<noteq> update rt dip (osn, kno, val, hops, nhip, {})"
|
739 |
+
shows "update rt dip (osn, kno, val, hops, nhip, {}) \<sqsubset>\<^bsub>dip\<^esub> rt2 nhip"
|
740 |
+
unfolding rt_strictly_fresher_def'
|
741 |
+
proof (rule disjI1)
|
742 |
+
from ** have "nsqn (update rt dip (osn, kno, val, hops, nhip, {})) dip = osn"
|
743 |
+
by (rule nsqn_update_changed_kno_val)
|
744 |
+
with \<open>dip\<in>vD(rt2 nhip)\<close>
|
745 |
+
have "nsqn\<^sub>r (the (update rt dip (osn, kno, val, hops, nhip, {}) dip)) = osn"
|
746 |
+
by (simp add: kD_nsqn)
|
747 |
+
also have "osn < sqn (rt2 nhip) dip" by (rule *)
|
748 |
+
also have "sqn (rt2 nhip) dip = nsqn\<^sub>r (the (rt2 nhip dip))"
|
749 |
+
unfolding nsqn\<^sub>r_def using \<open>dip \<in> vD (rt2 nhip)\<close>
|
750 |
+
by - (metis vD_flag_val proj2_eq_sqn proj4_eq_flag vD_iD_gives_kD(1))
|
751 |
+
finally show "nsqn\<^sub>r (the (update rt dip (osn, kno, val, hops, nhip, {}) dip))
|
752 |
+
< nsqn\<^sub>r (the (rt2 nhip dip))" .
|
753 |
+
qed
|
754 |
+
|
755 |
+
lemma dhops_le_hops_imp_update_strictly_fresher:
|
756 |
+
assumes "dip \<in> vD(rt2 nhip)"
|
757 |
+
and sqn: "sqn (rt2 nhip) dip = osn"
|
758 |
+
and hop: "the (dhops (rt2 nhip) dip) \<le> hops"
|
759 |
+
and **: "rt \<noteq> update rt dip (osn, kno, val, Suc hops, nhip, {})"
|
760 |
+
shows "update rt dip (osn, kno, val, Suc hops, nhip, {}) \<sqsubset>\<^bsub>dip\<^esub> rt2 nhip"
|
761 |
+
unfolding rt_strictly_fresher_def'
|
762 |
+
proof (rule disjI2, rule conjI)
|
763 |
+
from ** have "nsqn (update rt dip (osn, kno, val, Suc hops, nhip, {})) dip = osn"
|
764 |
+
by (rule nsqn_update_changed_kno_val)
|
765 |
+
with \<open>dip\<in>vD(rt2 nhip)\<close>
|
766 |
+
have "nsqn\<^sub>r (the (update rt dip (osn, kno, val, Suc hops, nhip, {}) dip)) = osn"
|
767 |
+
by (simp add: kD_nsqn)
|
768 |
+
also have "osn = sqn (rt2 nhip) dip" by (rule sqn [symmetric])
|
769 |
+
also have "sqn (rt2 nhip) dip = nsqn\<^sub>r (the (rt2 nhip dip))"
|
770 |
+
unfolding nsqn\<^sub>r_def using \<open>dip \<in> vD(rt2 nhip)\<close>
|
771 |
+
by - (metis vD_flag_val proj2_eq_sqn proj4_eq_flag vD_iD_gives_kD(1))
|
772 |
+
finally show "nsqn\<^sub>r (the (update rt dip (osn, kno, val, Suc hops, nhip, {}) dip))
|
773 |
+
= nsqn\<^sub>r (the (rt2 nhip dip))" .
|
774 |
+
next
|
775 |
+
have "the (dhops (rt2 nhip) dip) \<le> hops" by (rule hop)
|
776 |
+
also have "hops < hops + 1" by simp
|
777 |
+
also have "hops + 1 = the (dhops (update rt dip (osn, kno, val, Suc hops, nhip, {})) dip)"
|
778 |
+
using ** by simp
|
779 |
+
finally have "the (dhops (rt2 nhip) dip)
|
780 |
+
< the (dhops (update rt dip (osn, kno, val, Suc hops, nhip, {})) dip)" .
|
781 |
+
thus "\<pi>\<^sub>5 (the (rt2 nhip dip)) < \<pi>\<^sub>5 (the (update rt dip (osn, kno, val, Suc hops, nhip, {}) dip))"
|
782 |
+
using \<open>dip \<in> vD(rt2 nhip)\<close> by (simp add: proj5_eq_dhops)
|
783 |
+
qed
|
784 |
+
|
785 |
+
lemma nsqn_invalidate:
|
786 |
+
assumes "dip \<in> kD(rt)"
|
787 |
+
and "\<forall>ip\<in>dom(dests). ip \<in> vD(rt) \<and> the (dests ip) = inc (sqn rt ip)"
|
788 |
+
shows "nsqn (invalidate rt dests) dip = nsqn rt dip"
|
789 |
+
proof -
|
790 |
+
from \<open>dip \<in> kD(rt)\<close> have "dip \<in> kD(invalidate rt dests)" by simp
|
791 |
+
|
792 |
+
from assms have "rt \<approx>\<^bsub>dip\<^esub> invalidate rt dests"
|
793 |
+
by (rule rt_fresh_as_inc_invalidate)
|
794 |
+
with \<open>dip \<in> kD(rt)\<close> \<open>dip \<in> kD(invalidate rt dests)\<close> show ?thesis
|
795 |
+
by (simp add: kD_nsqn del: invalidate_kD_inv)
|
796 |
+
(erule(2) rt_fresh_as_nsqnr)
|
797 |
+
qed
|
798 |
+
|
799 |
+
end
|
formal/afp/AODV/variants/a_norreqid/A_Global_Invariants.thy
ADDED
@@ -0,0 +1,1159 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
(* Title: variants/a_norreqid/Global_Invariants.thy
|
2 |
+
License: BSD 2-Clause. See LICENSE.
|
3 |
+
Author: Timothy Bourke, Inria
|
4 |
+
*)
|
5 |
+
|
6 |
+
section "Global invariant proofs over sequential processes"
|
7 |
+
|
8 |
+
theory A_Global_Invariants
|
9 |
+
imports A_Seq_Invariants
|
10 |
+
A_Aodv_Predicates
|
11 |
+
A_Fresher
|
12 |
+
A_Quality_Increases
|
13 |
+
AWN.OAWN_Convert
|
14 |
+
A_OAodv
|
15 |
+
begin
|
16 |
+
|
17 |
+
lemma other_quality_increases [elim]:
|
18 |
+
assumes "other quality_increases I \<sigma> \<sigma>'"
|
19 |
+
shows "\<forall>j. quality_increases (\<sigma> j) (\<sigma>' j)"
|
20 |
+
using assms by (rule, clarsimp) (metis quality_increases_refl)
|
21 |
+
|
22 |
+
lemma weaken_otherwith [elim]:
|
23 |
+
fixes m
|
24 |
+
assumes *: "otherwith P I (orecvmsg Q) \<sigma> \<sigma>' a"
|
25 |
+
and weakenP: "\<And>\<sigma> m. P \<sigma> m \<Longrightarrow> P' \<sigma> m"
|
26 |
+
and weakenQ: "\<And>\<sigma> m. Q \<sigma> m \<Longrightarrow> Q' \<sigma> m"
|
27 |
+
shows "otherwith P' I (orecvmsg Q') \<sigma> \<sigma>' a"
|
28 |
+
proof
|
29 |
+
fix j
|
30 |
+
assume "j\<notin>I"
|
31 |
+
with * have "P (\<sigma> j) (\<sigma>' j)" by auto
|
32 |
+
thus "P' (\<sigma> j) (\<sigma>' j)" by (rule weakenP)
|
33 |
+
next
|
34 |
+
from * have "orecvmsg Q \<sigma> a" by auto
|
35 |
+
thus "orecvmsg Q' \<sigma> a"
|
36 |
+
by rule (erule weakenQ)
|
37 |
+
qed
|
38 |
+
|
39 |
+
lemma oreceived_msg_inv:
|
40 |
+
assumes other: "\<And>\<sigma> \<sigma>' m. \<lbrakk> P \<sigma> m; other Q {i} \<sigma> \<sigma>' \<rbrakk> \<Longrightarrow> P \<sigma>' m"
|
41 |
+
and local: "\<And>\<sigma> m. P \<sigma> m \<Longrightarrow> P (\<sigma>(i := \<sigma> i\<lparr>msg := m\<rparr>)) m"
|
42 |
+
shows "opaodv i \<Turnstile> (otherwith Q {i} (orecvmsg P), other Q {i} \<rightarrow>)
|
43 |
+
onl \<Gamma>\<^sub>A\<^sub>O\<^sub>D\<^sub>V (\<lambda>(\<sigma>, l). l \<in> {PAodv-:1} \<longrightarrow> P \<sigma> (msg (\<sigma> i)))"
|
44 |
+
proof (inv_cterms, intro impI)
|
45 |
+
fix \<sigma> \<sigma>' l
|
46 |
+
assume "l = PAodv-:1 \<longrightarrow> P \<sigma> (msg (\<sigma> i))"
|
47 |
+
and "l = PAodv-:1"
|
48 |
+
and "other Q {i} \<sigma> \<sigma>'"
|
49 |
+
from this(1-2) have "P \<sigma> (msg (\<sigma> i))" ..
|
50 |
+
hence "P \<sigma>' (msg (\<sigma> i))" using \<open>other Q {i} \<sigma> \<sigma>'\<close>
|
51 |
+
by (rule other)
|
52 |
+
moreover from \<open>other Q {i} \<sigma> \<sigma>'\<close> have "\<sigma>' i = \<sigma> i" ..
|
53 |
+
ultimately show "P \<sigma>' (msg (\<sigma>' i))" by simp
|
54 |
+
next
|
55 |
+
fix \<sigma> \<sigma>' msg
|
56 |
+
assume "otherwith Q {i} (orecvmsg P) \<sigma> \<sigma>' (receive msg)"
|
57 |
+
and "\<sigma>' i = \<sigma> i\<lparr>msg := msg\<rparr>"
|
58 |
+
from this(1) have "P \<sigma> msg"
|
59 |
+
and "\<forall>j. j\<noteq>i \<longrightarrow> Q (\<sigma> j) (\<sigma>' j)" by auto
|
60 |
+
from this(1) have "P (\<sigma>(i := \<sigma> i\<lparr>msg := msg\<rparr>)) msg" by (rule local)
|
61 |
+
thus "P \<sigma>' msg"
|
62 |
+
proof (rule other)
|
63 |
+
from \<open>\<sigma>' i = \<sigma> i\<lparr>msg := msg\<rparr>\<close> and \<open>\<forall>j. j\<noteq>i \<longrightarrow> Q (\<sigma> j) (\<sigma>' j)\<close>
|
64 |
+
show "other Q {i} (\<sigma>(i := \<sigma> i\<lparr>msg := msg\<rparr>)) \<sigma>'"
|
65 |
+
by - (rule otherI, auto)
|
66 |
+
qed
|
67 |
+
qed
|
68 |
+
|
69 |
+
text \<open>(Equivalent to) Proposition 7.27\<close>
|
70 |
+
|
71 |
+
lemma local_quality_increases:
|
72 |
+
"paodv i \<TTurnstile>\<^sub>A (recvmsg rreq_rrep_sn \<rightarrow>) onll \<Gamma>\<^sub>A\<^sub>O\<^sub>D\<^sub>V (\<lambda>((\<xi>, _), _, (\<xi>', _)). quality_increases \<xi> \<xi>')"
|
73 |
+
proof (rule step_invariantI)
|
74 |
+
fix s a s'
|
75 |
+
assume sr: "s \<in> reachable (paodv i) (recvmsg rreq_rrep_sn)"
|
76 |
+
and tr: "(s, a, s') \<in> trans (paodv i)"
|
77 |
+
and rm: "recvmsg rreq_rrep_sn a"
|
78 |
+
from sr have srTT: "s \<in> reachable (paodv i) TT" ..
|
79 |
+
|
80 |
+
from route_tables_fresher sr tr rm
|
81 |
+
have "onll \<Gamma>\<^sub>A\<^sub>O\<^sub>D\<^sub>V (\<lambda>((\<xi>, _), _, (\<xi>', _)). \<forall>dip\<in>kD (rt \<xi>). rt \<xi> \<sqsubseteq>\<^bsub>dip\<^esub> rt \<xi>') (s, a, s')"
|
82 |
+
by (rule step_invariantD)
|
83 |
+
|
84 |
+
moreover from known_destinations_increase srTT tr TT_True
|
85 |
+
have "onll \<Gamma>\<^sub>A\<^sub>O\<^sub>D\<^sub>V (\<lambda>((\<xi>, _), _, (\<xi>', _)). kD (rt \<xi>) \<subseteq> kD (rt \<xi>')) (s, a, s')"
|
86 |
+
by (rule step_invariantD)
|
87 |
+
|
88 |
+
moreover from sqns_increase srTT tr TT_True
|
89 |
+
have "onll \<Gamma>\<^sub>A\<^sub>O\<^sub>D\<^sub>V (\<lambda>((\<xi>, _), _, (\<xi>', _)). \<forall>ip. sqn (rt \<xi>) ip \<le> sqn (rt \<xi>') ip) (s, a, s')"
|
90 |
+
by (rule step_invariantD)
|
91 |
+
|
92 |
+
ultimately show "onll \<Gamma>\<^sub>A\<^sub>O\<^sub>D\<^sub>V (\<lambda>((\<xi>, _), _, (\<xi>', _)). quality_increases \<xi> \<xi>') (s, a, s')"
|
93 |
+
unfolding onll_def by auto
|
94 |
+
qed
|
95 |
+
|
96 |
+
lemmas olocal_quality_increases =
|
97 |
+
open_seq_step_invariant [OF local_quality_increases initiali_aodv oaodv_trans aodv_trans,
|
98 |
+
simplified seqll_onll_swap]
|
99 |
+
|
100 |
+
lemma oquality_increases:
|
101 |
+
"opaodv i \<Turnstile>\<^sub>A (otherwith quality_increases {i} (orecvmsg (\<lambda>_. rreq_rrep_sn)),
|
102 |
+
other quality_increases {i} \<rightarrow>)
|
103 |
+
onll \<Gamma>\<^sub>A\<^sub>O\<^sub>D\<^sub>V (\<lambda>((\<sigma>, _), _, (\<sigma>', _)). \<forall>j. quality_increases (\<sigma> j) (\<sigma>' j))"
|
104 |
+
(is "_ \<Turnstile>\<^sub>A (?S, _ \<rightarrow>) _")
|
105 |
+
proof (rule onll_ostep_invariantI, simp)
|
106 |
+
fix \<sigma> p l a \<sigma>' p' l'
|
107 |
+
assume or: "(\<sigma>, p) \<in> oreachable (opaodv i) ?S (other quality_increases {i})"
|
108 |
+
and ll: "l \<in> labels \<Gamma>\<^sub>A\<^sub>O\<^sub>D\<^sub>V p"
|
109 |
+
and "?S \<sigma> \<sigma>' a"
|
110 |
+
and tr: "((\<sigma>, p), a, (\<sigma>', p')) \<in> oseqp_sos \<Gamma>\<^sub>A\<^sub>O\<^sub>D\<^sub>V i"
|
111 |
+
and ll': "l' \<in> labels \<Gamma>\<^sub>A\<^sub>O\<^sub>D\<^sub>V p'"
|
112 |
+
from this(1-3) have "orecvmsg (\<lambda>_. rreq_rrep_sn) \<sigma> a"
|
113 |
+
by (auto dest!: oreachable_weakenE [where QS="act (recvmsg rreq_rrep_sn)"
|
114 |
+
and QU="other quality_increases {i}"]
|
115 |
+
otherwith_actionD)
|
116 |
+
with or have orw: "(\<sigma>, p) \<in> oreachable (opaodv i) (act (recvmsg rreq_rrep_sn))
|
117 |
+
(other quality_increases {i})"
|
118 |
+
by - (erule oreachable_weakenE, auto)
|
119 |
+
with tr ll ll' and \<open>orecvmsg (\<lambda>_. rreq_rrep_sn) \<sigma> a\<close> have "quality_increases (\<sigma> i) (\<sigma>' i)"
|
120 |
+
by - (drule onll_ostep_invariantD [OF olocal_quality_increases], auto simp: seqll_def)
|
121 |
+
with \<open>?S \<sigma> \<sigma>' a\<close> show "\<forall>j. quality_increases (\<sigma> j) (\<sigma>' j)"
|
122 |
+
by (auto dest!: otherwith_syncD)
|
123 |
+
qed
|
124 |
+
|
125 |
+
lemma rreq_rrep_nsqn_fresh_any_step_invariant:
|
126 |
+
"opaodv i \<Turnstile>\<^sub>A (act (recvmsg rreq_rrep_sn), other A {i} \<rightarrow>)
|
127 |
+
onll \<Gamma>\<^sub>A\<^sub>O\<^sub>D\<^sub>V (\<lambda>((\<sigma>, _), a, _). anycast (msg_fresh \<sigma>) a)"
|
128 |
+
proof (rule ostep_invariantI, simp del: act_simp)
|
129 |
+
fix \<sigma> p a \<sigma>' p'
|
130 |
+
assume or: "(\<sigma>, p) \<in> oreachable (opaodv i) (act (recvmsg rreq_rrep_sn)) (other A {i})"
|
131 |
+
and "((\<sigma>, p), a, (\<sigma>', p')) \<in> oseqp_sos \<Gamma>\<^sub>A\<^sub>O\<^sub>D\<^sub>V i"
|
132 |
+
and recv: "act (recvmsg rreq_rrep_sn) \<sigma> \<sigma>' a"
|
133 |
+
obtain l l' where "l\<in>labels \<Gamma>\<^sub>A\<^sub>O\<^sub>D\<^sub>V p" and "l'\<in>labels \<Gamma>\<^sub>A\<^sub>O\<^sub>D\<^sub>V p'"
|
134 |
+
by (metis aodv_ex_label)
|
135 |
+
from \<open>((\<sigma>, p), a, (\<sigma>', p')) \<in> oseqp_sos \<Gamma>\<^sub>A\<^sub>O\<^sub>D\<^sub>V i\<close>
|
136 |
+
have tr: "((\<sigma>, p), a, (\<sigma>', p')) \<in> trans (opaodv i)" by simp
|
137 |
+
|
138 |
+
have "anycast (rreq_rrep_fresh (rt (\<sigma> i))) a"
|
139 |
+
proof -
|
140 |
+
have "opaodv i \<Turnstile>\<^sub>A (act (recvmsg rreq_rrep_sn), other A {i} \<rightarrow>)
|
141 |
+
onll \<Gamma>\<^sub>A\<^sub>O\<^sub>D\<^sub>V (seqll i (\<lambda>((\<xi>, _), a, _). anycast (rreq_rrep_fresh (rt \<xi>)) a))"
|
142 |
+
by (rule ostep_invariant_weakenE [OF
|
143 |
+
open_seq_step_invariant [OF rreq_rrep_fresh_any_step_invariant initiali_aodv,
|
144 |
+
simplified seqll_onll_swap]]) auto
|
145 |
+
hence "onll \<Gamma>\<^sub>A\<^sub>O\<^sub>D\<^sub>V (seqll i (\<lambda>((\<xi>, _), a, _). anycast (rreq_rrep_fresh (rt \<xi>)) a))
|
146 |
+
((\<sigma>, p), a, (\<sigma>', p'))"
|
147 |
+
using or tr recv by - (erule(4) ostep_invariantE)
|
148 |
+
thus ?thesis
|
149 |
+
using \<open>l\<in>labels \<Gamma>\<^sub>A\<^sub>O\<^sub>D\<^sub>V p\<close> and \<open>l'\<in>labels \<Gamma>\<^sub>A\<^sub>O\<^sub>D\<^sub>V p'\<close> by auto
|
150 |
+
qed
|
151 |
+
|
152 |
+
moreover have "anycast (rerr_invalid (rt (\<sigma> i))) a"
|
153 |
+
proof -
|
154 |
+
have "opaodv i \<Turnstile>\<^sub>A (act (recvmsg rreq_rrep_sn), other A {i} \<rightarrow>)
|
155 |
+
onll \<Gamma>\<^sub>A\<^sub>O\<^sub>D\<^sub>V (seqll i (\<lambda>((\<xi>, _), a, _). anycast (rerr_invalid (rt \<xi>)) a))"
|
156 |
+
by (rule ostep_invariant_weakenE [OF
|
157 |
+
open_seq_step_invariant [OF rerr_invalid_any_step_invariant initiali_aodv,
|
158 |
+
simplified seqll_onll_swap]]) auto
|
159 |
+
hence "onll \<Gamma>\<^sub>A\<^sub>O\<^sub>D\<^sub>V (seqll i (\<lambda>((\<xi>, _), a, _). anycast (rerr_invalid (rt \<xi>)) a))
|
160 |
+
((\<sigma>, p), a, (\<sigma>', p'))"
|
161 |
+
using or tr recv by - (erule(4) ostep_invariantE)
|
162 |
+
thus ?thesis
|
163 |
+
using \<open>l\<in>labels \<Gamma>\<^sub>A\<^sub>O\<^sub>D\<^sub>V p\<close> and \<open>l'\<in>labels \<Gamma>\<^sub>A\<^sub>O\<^sub>D\<^sub>V p'\<close> by auto
|
164 |
+
qed
|
165 |
+
|
166 |
+
moreover have "anycast rreq_rrep_sn a"
|
167 |
+
proof -
|
168 |
+
from or tr recv
|
169 |
+
have "onll \<Gamma>\<^sub>A\<^sub>O\<^sub>D\<^sub>V (seqll i (\<lambda>(_, a, _). anycast rreq_rrep_sn a)) ((\<sigma>, p), a, (\<sigma>', p'))"
|
170 |
+
by (rule ostep_invariantE [OF
|
171 |
+
open_seq_step_invariant [OF rreq_rrep_sn_any_step_invariant initiali_aodv
|
172 |
+
oaodv_trans aodv_trans,
|
173 |
+
simplified seqll_onll_swap]])
|
174 |
+
thus ?thesis
|
175 |
+
using \<open>l\<in>labels \<Gamma>\<^sub>A\<^sub>O\<^sub>D\<^sub>V p\<close> and \<open>l'\<in>labels \<Gamma>\<^sub>A\<^sub>O\<^sub>D\<^sub>V p'\<close> by auto
|
176 |
+
qed
|
177 |
+
|
178 |
+
moreover have "anycast (\<lambda>m. not_Pkt m \<longrightarrow> msg_sender m = i) a"
|
179 |
+
proof -
|
180 |
+
have "opaodv i \<Turnstile>\<^sub>A (act (recvmsg rreq_rrep_sn), other A {i} \<rightarrow>)
|
181 |
+
onll \<Gamma>\<^sub>A\<^sub>O\<^sub>D\<^sub>V (seqll i (\<lambda>((\<xi>, _), a, _). anycast (\<lambda>m. not_Pkt m \<longrightarrow> msg_sender m = i) a))"
|
182 |
+
by (rule ostep_invariant_weakenE [OF
|
183 |
+
open_seq_step_invariant [OF sender_ip_valid initiali_aodv,
|
184 |
+
simplified seqll_onll_swap]]) auto
|
185 |
+
thus ?thesis using or tr recv \<open>l\<in>labels \<Gamma>\<^sub>A\<^sub>O\<^sub>D\<^sub>V p\<close> and \<open>l'\<in>labels \<Gamma>\<^sub>A\<^sub>O\<^sub>D\<^sub>V p'\<close>
|
186 |
+
by - (drule(3) onll_ostep_invariantD, auto)
|
187 |
+
qed
|
188 |
+
|
189 |
+
ultimately have "anycast (msg_fresh \<sigma>) a"
|
190 |
+
by (simp_all add: anycast_def
|
191 |
+
del: msg_fresh
|
192 |
+
split: seq_action.split_asm msg.split_asm) simp_all
|
193 |
+
thus "onll \<Gamma>\<^sub>A\<^sub>O\<^sub>D\<^sub>V (\<lambda>((\<sigma>, _), a, _). anycast (msg_fresh \<sigma>) a) ((\<sigma>, p), a, (\<sigma>', p'))"
|
194 |
+
by auto
|
195 |
+
qed
|
196 |
+
|
197 |
+
lemma oreceived_rreq_rrep_nsqn_fresh_inv:
|
198 |
+
"opaodv i \<Turnstile> (otherwith quality_increases {i} (orecvmsg msg_fresh),
|
199 |
+
other quality_increases {i} \<rightarrow>)
|
200 |
+
onl \<Gamma>\<^sub>A\<^sub>O\<^sub>D\<^sub>V (\<lambda>(\<sigma>, l). l \<in> {PAodv-:1} \<longrightarrow> msg_fresh \<sigma> (msg (\<sigma> i)))"
|
201 |
+
proof (rule oreceived_msg_inv)
|
202 |
+
fix \<sigma> \<sigma>' m
|
203 |
+
assume *: "msg_fresh \<sigma> m"
|
204 |
+
and "other quality_increases {i} \<sigma> \<sigma>'"
|
205 |
+
from this(2) have "\<forall>j. quality_increases (\<sigma> j) (\<sigma>' j)" ..
|
206 |
+
thus "msg_fresh \<sigma>' m" using * ..
|
207 |
+
next
|
208 |
+
fix \<sigma> m
|
209 |
+
assume "msg_fresh \<sigma> m"
|
210 |
+
thus "msg_fresh (\<sigma>(i := \<sigma> i\<lparr>msg := m\<rparr>)) m"
|
211 |
+
proof (cases m)
|
212 |
+
fix dests sip
|
213 |
+
assume "m = Rerr dests sip"
|
214 |
+
with \<open>msg_fresh \<sigma> m\<close> show ?thesis by auto
|
215 |
+
qed auto
|
216 |
+
qed
|
217 |
+
|
218 |
+
lemma oquality_increases_nsqn_fresh:
|
219 |
+
"opaodv i \<Turnstile>\<^sub>A (otherwith quality_increases {i} (orecvmsg msg_fresh),
|
220 |
+
other quality_increases {i} \<rightarrow>)
|
221 |
+
onll \<Gamma>\<^sub>A\<^sub>O\<^sub>D\<^sub>V (\<lambda>((\<sigma>, _), _, (\<sigma>', _)). \<forall>j. quality_increases (\<sigma> j) (\<sigma>' j))"
|
222 |
+
by (rule ostep_invariant_weakenE [OF oquality_increases]) auto
|
223 |
+
|
224 |
+
lemma oosn_rreq:
|
225 |
+
"opaodv i \<Turnstile> (otherwith quality_increases {i} (orecvmsg msg_fresh),
|
226 |
+
other quality_increases {i} \<rightarrow>)
|
227 |
+
onl \<Gamma>\<^sub>A\<^sub>O\<^sub>D\<^sub>V (seql i (\<lambda>(\<xi>, l). l \<in> {PAodv-:4, PAodv-:5} \<union> {PRreq-:n |n. True} \<longrightarrow> 1 \<le> osn \<xi>))"
|
228 |
+
by (rule oinvariant_weakenE [OF open_seq_invariant [OF osn_rreq initiali_aodv]])
|
229 |
+
(auto simp: seql_onl_swap)
|
230 |
+
|
231 |
+
lemma rreq_sip:
|
232 |
+
"opaodv i \<Turnstile> (otherwith quality_increases {i} (orecvmsg msg_fresh),
|
233 |
+
other quality_increases {i} \<rightarrow>)
|
234 |
+
onl \<Gamma>\<^sub>A\<^sub>O\<^sub>D\<^sub>V (\<lambda>(\<sigma>, l).
|
235 |
+
(l \<in> {PAodv-:4, PAodv-:5, PRreq-:0, PRreq-:2} \<and> sip (\<sigma> i) \<noteq> oip (\<sigma> i))
|
236 |
+
\<longrightarrow> oip (\<sigma> i) \<in> kD(rt (\<sigma> (sip (\<sigma> i))))
|
237 |
+
\<and> nsqn (rt (\<sigma> (sip (\<sigma> i)))) (oip (\<sigma> i)) \<ge> osn (\<sigma> i)
|
238 |
+
\<and> (nsqn (rt (\<sigma> (sip (\<sigma> i)))) (oip (\<sigma> i)) = osn (\<sigma> i)
|
239 |
+
\<longrightarrow> (hops (\<sigma> i) \<ge> the (dhops (rt (\<sigma> (sip (\<sigma> i)))) (oip (\<sigma> i)))
|
240 |
+
\<or> the (flag (rt (\<sigma> (sip (\<sigma> i)))) (oip (\<sigma> i))) = inv)))"
|
241 |
+
(is "_ \<Turnstile> (?S, ?U \<rightarrow>) _")
|
242 |
+
proof (inv_cterms inv add: oseq_step_invariant_sterms [OF oquality_increases_nsqn_fresh
|
243 |
+
aodv_wf oaodv_trans]
|
244 |
+
onl_oinvariant_sterms [OF aodv_wf oreceived_rreq_rrep_nsqn_fresh_inv]
|
245 |
+
onl_oinvariant_sterms [OF aodv_wf oosn_rreq]
|
246 |
+
simp add: seqlsimp
|
247 |
+
simp del: One_nat_def, rule impI)
|
248 |
+
fix \<sigma> \<sigma>' p l
|
249 |
+
assume "(\<sigma>, p) \<in> oreachable (opaodv i) ?S ?U"
|
250 |
+
and "l \<in> labels \<Gamma>\<^sub>A\<^sub>O\<^sub>D\<^sub>V p"
|
251 |
+
and pre:
|
252 |
+
"(l = PAodv-:4 \<or> l = PAodv-:5 \<or> l = PRreq-:0 \<or> l = PRreq-:2) \<and> sip (\<sigma> i) \<noteq> oip (\<sigma> i)
|
253 |
+
\<longrightarrow> oip (\<sigma> i) \<in> kD (rt (\<sigma> (sip (\<sigma> i))))
|
254 |
+
\<and> osn (\<sigma> i) \<le> nsqn (rt (\<sigma> (sip (\<sigma> i)))) (oip (\<sigma> i))
|
255 |
+
\<and> (nsqn (rt (\<sigma> (sip (\<sigma> i)))) (oip (\<sigma> i)) = osn (\<sigma> i)
|
256 |
+
\<longrightarrow> the (dhops (rt (\<sigma> (sip (\<sigma> i)))) (oip (\<sigma> i))) \<le> hops (\<sigma> i)
|
257 |
+
\<or> the (flag (rt (\<sigma> (sip (\<sigma> i)))) (oip (\<sigma> i))) = inv)"
|
258 |
+
and "other quality_increases {i} \<sigma> \<sigma>'"
|
259 |
+
and hyp: "(l=PAodv-:4 \<or> l=PAodv-:5 \<or> l=PRreq-:0 \<or> l=PRreq-:2) \<and> sip (\<sigma>' i) \<noteq> oip (\<sigma>' i)"
|
260 |
+
(is "?labels \<and> sip (\<sigma>' i) \<noteq> oip (\<sigma>' i)")
|
261 |
+
from this(4) have "\<sigma>' i = \<sigma> i" ..
|
262 |
+
with hyp have hyp': "?labels \<and> sip (\<sigma> i) \<noteq> oip (\<sigma> i)" by simp
|
263 |
+
show "oip (\<sigma>' i) \<in> kD (rt (\<sigma>' (sip (\<sigma>' i))))
|
264 |
+
\<and> osn (\<sigma>' i) \<le> nsqn (rt (\<sigma>' (sip (\<sigma>' i)))) (oip (\<sigma>' i))
|
265 |
+
\<and> (nsqn (rt (\<sigma>' (sip (\<sigma>' i)))) (oip (\<sigma>' i)) = osn (\<sigma>' i)
|
266 |
+
\<longrightarrow> the (dhops (rt (\<sigma>' (sip (\<sigma>' i)))) (oip (\<sigma>' i))) \<le> hops (\<sigma>' i)
|
267 |
+
\<or> the (flag (rt (\<sigma>' (sip (\<sigma>' i)))) (oip (\<sigma>' i))) = inv)"
|
268 |
+
proof (cases "sip (\<sigma> i) = i")
|
269 |
+
assume "sip (\<sigma> i) \<noteq> i"
|
270 |
+
from \<open>other quality_increases {i} \<sigma> \<sigma>'\<close>
|
271 |
+
have "quality_increases (\<sigma> (sip (\<sigma> i))) (\<sigma>' (sip (\<sigma>' i)))"
|
272 |
+
by (rule otherE) (clarsimp simp: \<open>sip (\<sigma> i) \<noteq> i\<close>)
|
273 |
+
moreover from \<open>(\<sigma>, p) \<in> oreachable (opaodv i) ?S ?U\<close> \<open>l \<in> labels \<Gamma>\<^sub>A\<^sub>O\<^sub>D\<^sub>V p\<close> and hyp
|
274 |
+
have "1 \<le> osn (\<sigma>' i)"
|
275 |
+
by (auto dest!: onl_oinvariant_weakenD [OF oosn_rreq]
|
276 |
+
simp add: seqlsimp \<open>\<sigma>' i = \<sigma> i\<close>)
|
277 |
+
moreover from \<open>sip (\<sigma> i) \<noteq> i\<close> hyp' and pre
|
278 |
+
have "oip (\<sigma>' i) \<in> kD (rt (\<sigma> (sip (\<sigma> i))))
|
279 |
+
\<and> osn (\<sigma>' i) \<le> nsqn (rt (\<sigma> (sip (\<sigma> i)))) (oip (\<sigma>' i))
|
280 |
+
\<and> (nsqn (rt (\<sigma> (sip (\<sigma> i)))) (oip (\<sigma>' i)) = osn (\<sigma>' i)
|
281 |
+
\<longrightarrow> the (dhops (rt (\<sigma> (sip (\<sigma> i)))) (oip (\<sigma>' i))) \<le> hops (\<sigma>' i)
|
282 |
+
\<or> the (flag (rt (\<sigma> (sip (\<sigma> i)))) (oip (\<sigma>' i))) = inv)"
|
283 |
+
by (auto simp: \<open>\<sigma>' i = \<sigma> i\<close>)
|
284 |
+
ultimately show ?thesis
|
285 |
+
by (rule quality_increases_rreq_rrep_props)
|
286 |
+
next
|
287 |
+
assume "sip (\<sigma> i) = i" thus ?thesis
|
288 |
+
using \<open>\<sigma>' i = \<sigma> i\<close> hyp and pre by auto
|
289 |
+
qed
|
290 |
+
qed (auto elim!: quality_increases_rreq_rrep_props')
|
291 |
+
|
292 |
+
lemma odsn_rrep:
|
293 |
+
"opaodv i \<Turnstile> (otherwith quality_increases {i} (orecvmsg msg_fresh),
|
294 |
+
other quality_increases {i} \<rightarrow>)
|
295 |
+
onl \<Gamma>\<^sub>A\<^sub>O\<^sub>D\<^sub>V (seql i (\<lambda>(\<xi>, l). l \<in> {PAodv-:6, PAodv-:7} \<union> {PRrep-:n|n. True} \<longrightarrow> 1 \<le> dsn \<xi>))"
|
296 |
+
by (rule oinvariant_weakenE [OF open_seq_invariant [OF dsn_rrep initiali_aodv]])
|
297 |
+
(auto simp: seql_onl_swap)
|
298 |
+
|
299 |
+
lemma rrep_sip:
|
300 |
+
"opaodv i \<Turnstile> (otherwith quality_increases {i} (orecvmsg msg_fresh),
|
301 |
+
other quality_increases {i} \<rightarrow>)
|
302 |
+
onl \<Gamma>\<^sub>A\<^sub>O\<^sub>D\<^sub>V (\<lambda>(\<sigma>, l).
|
303 |
+
(l \<in> {PAodv-:6, PAodv-:7, PRrep-:0, PRrep-:1} \<and> sip (\<sigma> i) \<noteq> dip (\<sigma> i))
|
304 |
+
\<longrightarrow> dip (\<sigma> i) \<in> kD(rt (\<sigma> (sip (\<sigma> i))))
|
305 |
+
\<and> nsqn (rt (\<sigma> (sip (\<sigma> i)))) (dip (\<sigma> i)) \<ge> dsn (\<sigma> i)
|
306 |
+
\<and> (nsqn (rt (\<sigma> (sip (\<sigma> i)))) (dip (\<sigma> i)) = dsn (\<sigma> i)
|
307 |
+
\<longrightarrow> (hops (\<sigma> i) \<ge> the (dhops (rt (\<sigma> (sip (\<sigma> i)))) (dip (\<sigma> i)))
|
308 |
+
\<or> the (flag (rt (\<sigma> (sip (\<sigma> i)))) (dip (\<sigma> i))) = inv)))"
|
309 |
+
(is "_ \<Turnstile> (?S, ?U \<rightarrow>) _")
|
310 |
+
proof (inv_cterms inv add: oseq_step_invariant_sterms [OF oquality_increases_nsqn_fresh aodv_wf
|
311 |
+
oaodv_trans]
|
312 |
+
onl_oinvariant_sterms [OF aodv_wf oreceived_rreq_rrep_nsqn_fresh_inv]
|
313 |
+
onl_oinvariant_sterms [OF aodv_wf odsn_rrep]
|
314 |
+
simp del: One_nat_def, rule impI)
|
315 |
+
fix \<sigma> \<sigma>' p l
|
316 |
+
assume "(\<sigma>, p) \<in> oreachable (opaodv i) ?S ?U"
|
317 |
+
and "l \<in> labels \<Gamma>\<^sub>A\<^sub>O\<^sub>D\<^sub>V p"
|
318 |
+
and pre:
|
319 |
+
"(l = PAodv-:6 \<or> l = PAodv-:7 \<or> l = PRrep-:0 \<or> l = PRrep-:1) \<and> sip (\<sigma> i) \<noteq> dip (\<sigma> i)
|
320 |
+
\<longrightarrow> dip (\<sigma> i) \<in> kD (rt (\<sigma> (sip (\<sigma> i))))
|
321 |
+
\<and> dsn (\<sigma> i) \<le> nsqn (rt (\<sigma> (sip (\<sigma> i)))) (dip (\<sigma> i))
|
322 |
+
\<and> (nsqn (rt (\<sigma> (sip (\<sigma> i)))) (dip (\<sigma> i)) = dsn (\<sigma> i)
|
323 |
+
\<longrightarrow> the (dhops (rt (\<sigma> (sip (\<sigma> i)))) (dip (\<sigma> i))) \<le> hops (\<sigma> i)
|
324 |
+
\<or> the (flag (rt (\<sigma> (sip (\<sigma> i)))) (dip (\<sigma> i))) = inv)"
|
325 |
+
and "other quality_increases {i} \<sigma> \<sigma>'"
|
326 |
+
and hyp: "(l=PAodv-:6 \<or> l=PAodv-:7 \<or> l=PRrep-:0 \<or> l=PRrep-:1) \<and> sip (\<sigma>' i) \<noteq> dip (\<sigma>' i)"
|
327 |
+
(is "?labels \<and> sip (\<sigma>' i) \<noteq> dip (\<sigma>' i)")
|
328 |
+
from this(4) have "\<sigma>' i = \<sigma> i" ..
|
329 |
+
with hyp have hyp': "?labels \<and> sip (\<sigma> i) \<noteq> dip (\<sigma> i)" by simp
|
330 |
+
show "dip (\<sigma>' i) \<in> kD (rt (\<sigma>' (sip (\<sigma>' i))))
|
331 |
+
\<and> dsn (\<sigma>' i) \<le> nsqn (rt (\<sigma>' (sip (\<sigma>' i)))) (dip (\<sigma>' i))
|
332 |
+
\<and> (nsqn (rt (\<sigma>' (sip (\<sigma>' i)))) (dip (\<sigma>' i)) = dsn (\<sigma>' i)
|
333 |
+
\<longrightarrow> the (dhops (rt (\<sigma>' (sip (\<sigma>' i)))) (dip (\<sigma>' i))) \<le> hops (\<sigma>' i)
|
334 |
+
\<or> the (flag (rt (\<sigma>' (sip (\<sigma>' i)))) (dip (\<sigma>' i))) = inv)"
|
335 |
+
proof (cases "sip (\<sigma> i) = i")
|
336 |
+
assume "sip (\<sigma> i) \<noteq> i"
|
337 |
+
from \<open>other quality_increases {i} \<sigma> \<sigma>'\<close>
|
338 |
+
have "quality_increases (\<sigma> (sip (\<sigma> i))) (\<sigma>' (sip (\<sigma>' i)))"
|
339 |
+
by (rule otherE) (clarsimp simp: \<open>sip (\<sigma> i) \<noteq> i\<close>)
|
340 |
+
moreover from \<open>(\<sigma>, p) \<in> oreachable (opaodv i) ?S ?U\<close> \<open>l \<in> labels \<Gamma>\<^sub>A\<^sub>O\<^sub>D\<^sub>V p\<close> and hyp
|
341 |
+
have "1 \<le> dsn (\<sigma>' i)"
|
342 |
+
by (auto dest!: onl_oinvariant_weakenD [OF odsn_rrep]
|
343 |
+
simp add: seqlsimp \<open>\<sigma>' i = \<sigma> i\<close>)
|
344 |
+
moreover from \<open>sip (\<sigma> i) \<noteq> i\<close> hyp' and pre
|
345 |
+
have "dip (\<sigma>' i) \<in> kD (rt (\<sigma> (sip (\<sigma> i))))
|
346 |
+
\<and> dsn (\<sigma>' i) \<le> nsqn (rt (\<sigma> (sip (\<sigma> i)))) (dip (\<sigma>' i))
|
347 |
+
\<and> (nsqn (rt (\<sigma> (sip (\<sigma> i)))) (dip (\<sigma>' i)) = dsn (\<sigma>' i)
|
348 |
+
\<longrightarrow> the (dhops (rt (\<sigma> (sip (\<sigma> i)))) (dip (\<sigma>' i))) \<le> hops (\<sigma>' i)
|
349 |
+
\<or> the (flag (rt (\<sigma> (sip (\<sigma> i)))) (dip (\<sigma>' i))) = inv)"
|
350 |
+
by (auto simp: \<open>\<sigma>' i = \<sigma> i\<close>)
|
351 |
+
ultimately show ?thesis
|
352 |
+
by (rule quality_increases_rreq_rrep_props)
|
353 |
+
next
|
354 |
+
assume "sip (\<sigma> i) = i" thus ?thesis
|
355 |
+
using \<open>\<sigma>' i = \<sigma> i\<close> hyp and pre by auto
|
356 |
+
qed
|
357 |
+
qed (auto simp add: seqlsimp elim!: quality_increases_rreq_rrep_props')
|
358 |
+
|
359 |
+
lemma rerr_sip:
|
360 |
+
"opaodv i \<Turnstile> (otherwith quality_increases {i} (orecvmsg msg_fresh),
|
361 |
+
other quality_increases {i} \<rightarrow>)
|
362 |
+
onl \<Gamma>\<^sub>A\<^sub>O\<^sub>D\<^sub>V (\<lambda>(\<sigma>, l).
|
363 |
+
l \<in> {PAodv-:8, PAodv-:9, PRerr-:0, PRerr-:1}
|
364 |
+
\<longrightarrow> (\<forall>ripc\<in>dom(dests (\<sigma> i)). ripc\<in>kD(rt (\<sigma> (sip (\<sigma> i)))) \<and>
|
365 |
+
the (dests (\<sigma> i) ripc) - 1 \<le> nsqn (rt (\<sigma> (sip (\<sigma> i)))) ripc))"
|
366 |
+
(is "_ \<Turnstile> (?S, ?U \<rightarrow>) _")
|
367 |
+
proof -
|
368 |
+
{ fix dests rip sip rsn and \<sigma> \<sigma>' :: "ip \<Rightarrow> state"
|
369 |
+
assume qinc: "\<forall>j. quality_increases (\<sigma> j) (\<sigma>' j)"
|
370 |
+
and *: "\<forall>rip\<in>dom dests. rip \<in> kD (rt (\<sigma> sip))
|
371 |
+
\<and> the (dests rip) - 1 \<le> nsqn (rt (\<sigma> sip)) rip"
|
372 |
+
and "dests rip = Some rsn"
|
373 |
+
from this(3) have "rip\<in>dom dests" by auto
|
374 |
+
with * and \<open>dests rip = Some rsn\<close> have "rip\<in>kD(rt (\<sigma> sip))"
|
375 |
+
and "rsn - 1 \<le> nsqn (rt (\<sigma> sip)) rip"
|
376 |
+
by (auto dest!: bspec)
|
377 |
+
from qinc have "quality_increases (\<sigma> sip) (\<sigma>' sip)" ..
|
378 |
+
have "rip \<in> kD(rt (\<sigma>' sip)) \<and> rsn - 1 \<le> nsqn (rt (\<sigma>' sip)) rip"
|
379 |
+
proof
|
380 |
+
from \<open>rip\<in>kD(rt (\<sigma> sip))\<close> and \<open>quality_increases (\<sigma> sip) (\<sigma>' sip)\<close>
|
381 |
+
show "rip \<in> kD(rt (\<sigma>' sip))" ..
|
382 |
+
next
|
383 |
+
from \<open>rip\<in>kD(rt (\<sigma> sip))\<close> and \<open>quality_increases (\<sigma> sip) (\<sigma>' sip)\<close>
|
384 |
+
have "nsqn (rt (\<sigma> sip)) rip \<le> nsqn (rt (\<sigma>' sip)) rip" ..
|
385 |
+
with \<open>rsn - 1 \<le> nsqn (rt (\<sigma> sip)) rip\<close> show "rsn - 1 \<le> nsqn (rt (\<sigma>' sip)) rip"
|
386 |
+
by (rule le_trans)
|
387 |
+
qed
|
388 |
+
} note partial = this
|
389 |
+
|
390 |
+
show ?thesis
|
391 |
+
by (inv_cterms inv add: oseq_step_invariant_sterms [OF oquality_increases_nsqn_fresh aodv_wf
|
392 |
+
oaodv_trans]
|
393 |
+
onl_oinvariant_sterms [OF aodv_wf oreceived_rreq_rrep_nsqn_fresh_inv]
|
394 |
+
other_quality_increases other_localD
|
395 |
+
simp del: One_nat_def, intro conjI)
|
396 |
+
(clarsimp simp del: One_nat_def split: if_split_asm option.split_asm, erule(2) partial)+
|
397 |
+
qed
|
398 |
+
|
399 |
+
lemma prerr_guard: "paodv i \<TTurnstile>
|
400 |
+
onl \<Gamma>\<^sub>A\<^sub>O\<^sub>D\<^sub>V (\<lambda>(\<xi>, l). (l = PRerr-:1
|
401 |
+
\<longrightarrow> (\<forall>ip\<in>dom(dests \<xi>). ip\<in>vD(rt \<xi>)
|
402 |
+
\<and> the (nhop (rt \<xi>) ip) = sip \<xi>
|
403 |
+
\<and> sqn (rt \<xi>) ip < the (dests \<xi> ip))))"
|
404 |
+
by (inv_cterms) (clarsimp split: option.split_asm if_split_asm)
|
405 |
+
|
406 |
+
lemmas oaddpreRT_welldefined =
|
407 |
+
open_seq_invariant [OF addpreRT_welldefined initiali_aodv oaodv_trans aodv_trans,
|
408 |
+
simplified seql_onl_swap,
|
409 |
+
THEN oinvariant_anyact]
|
410 |
+
|
411 |
+
lemmas odests_vD_inc_sqn =
|
412 |
+
open_seq_invariant [OF dests_vD_inc_sqn initiali_aodv oaodv_trans aodv_trans,
|
413 |
+
simplified seql_onl_swap,
|
414 |
+
THEN oinvariant_anyact]
|
415 |
+
|
416 |
+
lemmas oprerr_guard =
|
417 |
+
open_seq_invariant [OF prerr_guard initiali_aodv oaodv_trans aodv_trans,
|
418 |
+
simplified seql_onl_swap,
|
419 |
+
THEN oinvariant_anyact]
|
420 |
+
|
421 |
+
text \<open>Proposition 7.28\<close>
|
422 |
+
|
423 |
+
lemma seq_compare_next_hop':
|
424 |
+
"opaodv i \<Turnstile> (otherwith quality_increases {i} (orecvmsg msg_fresh),
|
425 |
+
other quality_increases {i} \<rightarrow>) onl \<Gamma>\<^sub>A\<^sub>O\<^sub>D\<^sub>V (\<lambda>(\<sigma>, _).
|
426 |
+
\<forall>dip. let nhip = the (nhop (rt (\<sigma> i)) dip)
|
427 |
+
in dip \<in> kD(rt (\<sigma> i)) \<and> nhip \<noteq> dip \<longrightarrow>
|
428 |
+
dip \<in> kD(rt (\<sigma> nhip)) \<and> nsqn (rt (\<sigma> i)) dip \<le> nsqn (rt (\<sigma> nhip)) dip)"
|
429 |
+
(is "_ \<Turnstile> (?S, ?U \<rightarrow>) _")
|
430 |
+
proof -
|
431 |
+
|
432 |
+
{ fix nhop and \<sigma> \<sigma>' :: "ip \<Rightarrow> state"
|
433 |
+
assume pre: "\<forall>dip\<in>kD(rt (\<sigma> i)). nhop dip \<noteq> dip \<longrightarrow>
|
434 |
+
dip\<in>kD(rt (\<sigma> (nhop dip))) \<and> nsqn (rt (\<sigma> i)) dip \<le> nsqn (rt (\<sigma> (nhop dip))) dip"
|
435 |
+
and qinc: "\<forall>j. quality_increases (\<sigma> j) (\<sigma>' j)"
|
436 |
+
have "\<forall>dip\<in>kD(rt (\<sigma> i)). nhop dip \<noteq> dip \<longrightarrow>
|
437 |
+
dip\<in>kD(rt (\<sigma>' (nhop dip))) \<and> nsqn (rt (\<sigma> i)) dip \<le> nsqn (rt (\<sigma>' (nhop dip))) dip"
|
438 |
+
proof (intro ballI impI)
|
439 |
+
fix dip
|
440 |
+
assume "dip\<in>kD(rt (\<sigma> i))"
|
441 |
+
and "nhop dip \<noteq> dip"
|
442 |
+
with pre have "dip\<in>kD(rt (\<sigma> (nhop dip)))"
|
443 |
+
and "nsqn (rt (\<sigma> i)) dip \<le> nsqn (rt (\<sigma> (nhop dip))) dip"
|
444 |
+
by auto
|
445 |
+
from qinc have qinc_nhop: "quality_increases (\<sigma> (nhop dip)) (\<sigma>' (nhop dip))" ..
|
446 |
+
with \<open>dip\<in>kD(rt (\<sigma> (nhop dip)))\<close> have "dip\<in>kD (rt (\<sigma>' (nhop dip)))" ..
|
447 |
+
|
448 |
+
moreover have "nsqn (rt (\<sigma> i)) dip \<le> nsqn (rt (\<sigma>' (nhop dip))) dip"
|
449 |
+
proof -
|
450 |
+
from \<open>dip\<in>kD(rt (\<sigma> (nhop dip)))\<close> qinc_nhop
|
451 |
+
have "nsqn (rt (\<sigma> (nhop dip))) dip \<le> nsqn (rt (\<sigma>' (nhop dip))) dip" ..
|
452 |
+
with \<open>nsqn (rt (\<sigma> i)) dip \<le> nsqn (rt (\<sigma> (nhop dip))) dip\<close> show ?thesis
|
453 |
+
by simp
|
454 |
+
qed
|
455 |
+
|
456 |
+
ultimately show "dip\<in>kD(rt (\<sigma>' (nhop dip)))
|
457 |
+
\<and> nsqn (rt (\<sigma> i)) dip \<le> nsqn (rt (\<sigma>' (nhop dip))) dip" ..
|
458 |
+
qed
|
459 |
+
} note basic = this
|
460 |
+
|
461 |
+
{ fix nhop and \<sigma> \<sigma>' :: "ip \<Rightarrow> state"
|
462 |
+
assume pre: "\<forall>dip\<in>kD(rt (\<sigma> i)). nhop dip \<noteq> dip \<longrightarrow> dip\<in>kD(rt (\<sigma> (nhop dip)))
|
463 |
+
\<and> nsqn (rt (\<sigma> i)) dip \<le> nsqn (rt (\<sigma> (nhop dip))) dip"
|
464 |
+
and ndest: "\<forall>ripc\<in>dom (dests (\<sigma> i)). ripc \<in> kD (rt (\<sigma> (sip (\<sigma> i))))
|
465 |
+
\<and> the (dests (\<sigma> i) ripc) - 1 \<le> nsqn (rt (\<sigma> (sip (\<sigma> i)))) ripc"
|
466 |
+
and issip: "\<forall>ip\<in>dom (dests (\<sigma> i)). nhop ip = sip (\<sigma> i)"
|
467 |
+
and qinc: "\<forall>j. quality_increases (\<sigma> j) (\<sigma>' j)"
|
468 |
+
have "\<forall>dip\<in>kD(rt (\<sigma> i)). nhop dip \<noteq> dip \<longrightarrow> dip \<in> kD (rt (\<sigma>' (nhop dip)))
|
469 |
+
\<and> nsqn (invalidate (rt (\<sigma> i)) (dests (\<sigma> i))) dip \<le> nsqn (rt (\<sigma>' (nhop dip))) dip"
|
470 |
+
proof (intro ballI impI)
|
471 |
+
fix dip
|
472 |
+
assume "dip\<in>kD(rt (\<sigma> i))"
|
473 |
+
and "nhop dip \<noteq> dip"
|
474 |
+
with pre and qinc have "dip\<in>kD(rt (\<sigma>' (nhop dip)))"
|
475 |
+
and "nsqn (rt (\<sigma> i)) dip \<le> nsqn (rt (\<sigma>' (nhop dip))) dip"
|
476 |
+
by (auto dest!: basic)
|
477 |
+
|
478 |
+
have "nsqn (invalidate (rt (\<sigma> i)) (dests (\<sigma> i))) dip \<le> nsqn (rt (\<sigma>' (nhop dip))) dip"
|
479 |
+
proof (cases "dip\<in>dom (dests (\<sigma> i))")
|
480 |
+
assume "dip\<in>dom (dests (\<sigma> i))"
|
481 |
+
with \<open>dip\<in>kD(rt (\<sigma> i))\<close> obtain dsn where "dests (\<sigma> i) dip = Some dsn"
|
482 |
+
by auto
|
483 |
+
with \<open>dip\<in>kD(rt (\<sigma> i))\<close> have "nsqn (invalidate (rt (\<sigma> i)) (dests (\<sigma> i))) dip = dsn - 1"
|
484 |
+
by (rule nsqn_invalidate_eq)
|
485 |
+
moreover have "dsn - 1 \<le> nsqn (rt (\<sigma>' (nhop dip))) dip"
|
486 |
+
proof -
|
487 |
+
from \<open>dests (\<sigma> i) dip = Some dsn\<close> have "the (dests (\<sigma> i) dip) = dsn" by simp
|
488 |
+
with ndest and \<open>dip\<in>dom (dests (\<sigma> i))\<close> have "dip \<in> kD (rt (\<sigma> (sip (\<sigma> i))))"
|
489 |
+
"dsn - 1 \<le> nsqn (rt (\<sigma> (sip (\<sigma> i)))) dip"
|
490 |
+
by auto
|
491 |
+
moreover from issip and \<open>dip\<in>dom (dests (\<sigma> i))\<close> have "nhop dip = sip (\<sigma> i)" ..
|
492 |
+
ultimately have "dip \<in> kD (rt (\<sigma> (nhop dip)))"
|
493 |
+
and "dsn - 1 \<le> nsqn (rt (\<sigma> (nhop dip))) dip" by auto
|
494 |
+
with qinc show "dsn - 1 \<le> nsqn (rt (\<sigma>' (nhop dip))) dip"
|
495 |
+
by simp (metis kD_nsqn_quality_increases_trans)
|
496 |
+
qed
|
497 |
+
ultimately show ?thesis by simp
|
498 |
+
next
|
499 |
+
assume "dip \<notin> dom (dests (\<sigma> i))"
|
500 |
+
with \<open>dip\<in>kD(rt (\<sigma> i))\<close>
|
501 |
+
have "nsqn (invalidate (rt (\<sigma> i)) (dests (\<sigma> i))) dip = nsqn (rt (\<sigma> i)) dip"
|
502 |
+
by (rule nsqn_invalidate_other)
|
503 |
+
with \<open>nsqn (rt (\<sigma> i)) dip \<le> nsqn (rt (\<sigma>' (nhop dip))) dip\<close> show ?thesis by simp
|
504 |
+
qed
|
505 |
+
with \<open>dip\<in>kD(rt (\<sigma>' (nhop dip)))\<close>
|
506 |
+
show "dip \<in> kD (rt (\<sigma>' (nhop dip)))
|
507 |
+
\<and> nsqn (invalidate (rt (\<sigma> i)) (dests (\<sigma> i))) dip \<le> nsqn (rt (\<sigma>' (nhop dip))) dip" ..
|
508 |
+
qed
|
509 |
+
} note basic_prerr = this
|
510 |
+
|
511 |
+
{ fix \<sigma> \<sigma>' :: "ip \<Rightarrow> state"
|
512 |
+
assume a1: "\<forall>dip\<in>kD(rt (\<sigma> i)). the (nhop (rt (\<sigma> i)) dip) \<noteq> dip
|
513 |
+
\<longrightarrow> dip\<in>kD(rt (\<sigma> (the (nhop (rt (\<sigma> i)) dip))))
|
514 |
+
\<and> nsqn (rt (\<sigma> i)) dip \<le> nsqn (rt (\<sigma> (the (nhop (rt (\<sigma> i)) dip)))) dip"
|
515 |
+
and a2: "\<forall>j. quality_increases (\<sigma> j) (\<sigma>' j)"
|
516 |
+
have "\<forall>dip\<in>kD(rt (\<sigma> i)).
|
517 |
+
the (nhop (update (rt (\<sigma> i)) (sip (\<sigma> i)) (0, unk, val, Suc 0, sip (\<sigma> i), {})) dip) \<noteq> dip \<longrightarrow>
|
518 |
+
dip\<in>kD(rt (\<sigma>' (the (nhop (update (rt (\<sigma> i)) (sip (\<sigma> i))
|
519 |
+
(0, unk, val, Suc 0, sip (\<sigma> i), {}))
|
520 |
+
dip)))) \<and>
|
521 |
+
nsqn (update (rt (\<sigma> i)) (sip (\<sigma> i)) (0, unk, val, Suc 0, sip (\<sigma> i), {})) dip
|
522 |
+
\<le> nsqn (rt (\<sigma>' (the (nhop (update (rt (\<sigma> i)) (sip (\<sigma> i))
|
523 |
+
(0, unk, val, Suc 0, sip (\<sigma> i), {}))
|
524 |
+
dip))))
|
525 |
+
dip" (is "\<forall>dip\<in>kD(rt (\<sigma> i)). ?P dip")
|
526 |
+
proof
|
527 |
+
fix dip
|
528 |
+
assume "dip\<in>kD(rt (\<sigma> i))"
|
529 |
+
with a1 and a2
|
530 |
+
have "the (nhop (rt (\<sigma> i)) dip) \<noteq> dip \<longrightarrow> dip\<in>kD(rt (\<sigma>' (the (nhop (rt (\<sigma> i)) dip))))
|
531 |
+
\<and> nsqn (rt (\<sigma> i)) dip \<le> nsqn (rt (\<sigma>' (the (nhop (rt (\<sigma> i)) dip)))) dip"
|
532 |
+
by - (drule(1) basic, auto)
|
533 |
+
thus "?P dip" by (cases "dip = sip (\<sigma> i)") auto
|
534 |
+
qed
|
535 |
+
} note nhop_update_sip = this
|
536 |
+
|
537 |
+
{ fix \<sigma> \<sigma>' oip sip osn hops
|
538 |
+
assume pre: "\<forall>dip\<in>kD (rt (\<sigma> i)). the (nhop (rt (\<sigma> i)) dip) \<noteq> dip
|
539 |
+
\<longrightarrow> dip\<in>kD(rt (\<sigma> (the (nhop (rt (\<sigma> i)) dip))))
|
540 |
+
\<and> nsqn (rt (\<sigma> i)) dip \<le> nsqn (rt (\<sigma> (the (nhop (rt (\<sigma> i)) dip)))) dip"
|
541 |
+
and qinc: "\<forall>j. quality_increases (\<sigma> j) (\<sigma>' j)"
|
542 |
+
and *: "sip \<noteq> oip \<longrightarrow> oip\<in>kD(rt (\<sigma> sip))
|
543 |
+
\<and> osn \<le> nsqn (rt (\<sigma> sip)) oip
|
544 |
+
\<and> (nsqn (rt (\<sigma> sip)) oip = osn
|
545 |
+
\<longrightarrow> the (dhops (rt (\<sigma> sip)) oip) \<le> hops
|
546 |
+
\<or> the (flag (rt (\<sigma> sip)) oip) = inv)"
|
547 |
+
from pre and qinc
|
548 |
+
have pre': "\<forall>dip\<in>kD (rt (\<sigma> i)). the (nhop (rt (\<sigma> i)) dip) \<noteq> dip
|
549 |
+
\<longrightarrow> dip\<in>kD(rt (\<sigma>' (the (nhop (rt (\<sigma> i)) dip))))
|
550 |
+
\<and> nsqn (rt (\<sigma> i)) dip \<le> nsqn (rt (\<sigma>' (the (nhop (rt (\<sigma> i)) dip)))) dip"
|
551 |
+
by (rule basic)
|
552 |
+
have "(the (nhop (update (rt (\<sigma> i)) oip (osn, kno, val, Suc hops, sip, {})) oip) \<noteq> oip
|
553 |
+
\<longrightarrow> oip\<in>kD(rt (\<sigma>' (the (nhop (update (rt (\<sigma> i)) oip
|
554 |
+
(osn, kno, val, Suc hops, sip, {})) oip))))
|
555 |
+
\<and> nsqn (update (rt (\<sigma> i)) oip (osn, kno, val, Suc hops, sip, {})) oip
|
556 |
+
\<le> nsqn (rt (\<sigma>' (the (nhop (update (rt (\<sigma> i)) oip
|
557 |
+
(osn, kno, val, Suc hops, sip, {})) oip)))) oip)"
|
558 |
+
(is "?nhop_not_oip \<longrightarrow> ?oip_in_kD \<and> ?nsqn_le_nsqn")
|
559 |
+
proof (rule, split update_rt_split_asm)
|
560 |
+
assume "rt (\<sigma> i) = update (rt (\<sigma> i)) oip (osn, kno, val, Suc hops, sip, {})"
|
561 |
+
and "the (nhop (rt (\<sigma> i)) oip) \<noteq> oip"
|
562 |
+
with pre' show "?oip_in_kD \<and> ?nsqn_le_nsqn" by auto
|
563 |
+
next
|
564 |
+
assume rtnot: "rt (\<sigma> i) \<noteq> update (rt (\<sigma> i)) oip (osn, kno, val, Suc hops, sip, {})"
|
565 |
+
and notoip: ?nhop_not_oip
|
566 |
+
with * qinc have ?oip_in_kD
|
567 |
+
by (clarsimp elim!: kD_quality_increases)
|
568 |
+
moreover with * pre qinc rtnot notoip have ?nsqn_le_nsqn
|
569 |
+
by simp (metis kD_nsqn_quality_increases_trans)
|
570 |
+
ultimately show "?oip_in_kD \<and> ?nsqn_le_nsqn" ..
|
571 |
+
qed
|
572 |
+
} note update1 = this
|
573 |
+
|
574 |
+
{ fix \<sigma> \<sigma>' oip sip osn hops
|
575 |
+
assume pre: "\<forall>dip\<in>kD (rt (\<sigma> i)). the (nhop (rt (\<sigma> i)) dip) \<noteq> dip
|
576 |
+
\<longrightarrow> dip\<in>kD(rt (\<sigma> (the (nhop (rt (\<sigma> i)) dip))))
|
577 |
+
\<and> nsqn (rt (\<sigma> i)) dip \<le> nsqn (rt (\<sigma> (the (nhop (rt (\<sigma> i)) dip)))) dip"
|
578 |
+
and qinc: "\<forall>j. quality_increases (\<sigma> j) (\<sigma>' j)"
|
579 |
+
and *: "sip \<noteq> oip \<longrightarrow> oip\<in>kD(rt (\<sigma> sip))
|
580 |
+
\<and> osn \<le> nsqn (rt (\<sigma> sip)) oip
|
581 |
+
\<and> (nsqn (rt (\<sigma> sip)) oip = osn
|
582 |
+
\<longrightarrow> the (dhops (rt (\<sigma> sip)) oip) \<le> hops
|
583 |
+
\<or> the (flag (rt (\<sigma> sip)) oip) = inv)"
|
584 |
+
from pre and qinc
|
585 |
+
have pre': "\<forall>dip\<in>kD (rt (\<sigma> i)). the (nhop (rt (\<sigma> i)) dip) \<noteq> dip
|
586 |
+
\<longrightarrow> dip\<in>kD(rt (\<sigma>' (the (nhop (rt (\<sigma> i)) dip))))
|
587 |
+
\<and> nsqn (rt (\<sigma> i)) dip \<le> nsqn (rt (\<sigma>' (the (nhop (rt (\<sigma> i)) dip)))) dip"
|
588 |
+
by (rule basic)
|
589 |
+
have "\<forall>dip\<in>kD(rt (\<sigma> i)).
|
590 |
+
the (nhop (update (rt (\<sigma> i)) oip (osn, kno, val, Suc hops, sip, {})) dip) \<noteq> dip
|
591 |
+
\<longrightarrow> dip\<in>kD(rt (\<sigma>' (the (nhop (update (rt (\<sigma> i)) oip
|
592 |
+
(osn, kno, val, Suc hops, sip, {})) dip))))
|
593 |
+
\<and> nsqn (update (rt (\<sigma> i)) oip (osn, kno, val, Suc hops, sip, {})) dip
|
594 |
+
\<le> nsqn (rt (\<sigma>' (the (nhop (update (rt (\<sigma> i)) oip
|
595 |
+
(osn, kno, val, Suc hops, sip, {})) dip)))) dip"
|
596 |
+
(is "\<forall>dip\<in>kD(rt (\<sigma> i)). _ \<longrightarrow> ?dip_in_kD dip \<and> ?nsqn_le_nsqn dip")
|
597 |
+
proof (intro ballI impI, split update_rt_split_asm)
|
598 |
+
fix dip
|
599 |
+
assume "dip\<in>kD(rt (\<sigma> i))"
|
600 |
+
and "the (nhop (rt (\<sigma> i)) dip) \<noteq> dip"
|
601 |
+
and "rt (\<sigma> i) = update (rt (\<sigma> i)) oip (osn, kno, val, Suc hops, sip, {})"
|
602 |
+
with pre' show "?dip_in_kD dip \<and> ?nsqn_le_nsqn dip" by simp
|
603 |
+
next
|
604 |
+
fix dip
|
605 |
+
assume "dip\<in>kD(rt (\<sigma> i))"
|
606 |
+
and notdip: "the (nhop (update (rt (\<sigma> i)) oip
|
607 |
+
(osn, kno, val, Suc hops, sip, {})) dip) \<noteq> dip"
|
608 |
+
and rtnot: "rt (\<sigma> i) \<noteq> update (rt (\<sigma> i)) oip (osn, kno, val, Suc hops, sip, {})"
|
609 |
+
show "?dip_in_kD dip \<and> ?nsqn_le_nsqn dip"
|
610 |
+
proof (cases "dip = oip")
|
611 |
+
assume "dip \<noteq> oip"
|
612 |
+
with pre' \<open>dip\<in>kD(rt (\<sigma> i))\<close> notdip
|
613 |
+
show ?thesis by clarsimp
|
614 |
+
next
|
615 |
+
assume "dip = oip"
|
616 |
+
with rtnot qinc \<open>dip\<in>kD(rt (\<sigma> i))\<close> notdip *
|
617 |
+
have "?dip_in_kD dip"
|
618 |
+
by simp (metis kD_quality_increases)
|
619 |
+
moreover from \<open>dip = oip\<close> rtnot qinc \<open>dip\<in>kD(rt (\<sigma> i))\<close> notdip *
|
620 |
+
have "?nsqn_le_nsqn dip" by simp (metis kD_nsqn_quality_increases_trans)
|
621 |
+
ultimately show ?thesis ..
|
622 |
+
qed
|
623 |
+
qed
|
624 |
+
} note update2 = this
|
625 |
+
|
626 |
+
have "opaodv i \<Turnstile> (?S, ?U \<rightarrow>) onl \<Gamma>\<^sub>A\<^sub>O\<^sub>D\<^sub>V (\<lambda>(\<sigma>, _).
|
627 |
+
\<forall>dip \<in> kD(rt (\<sigma> i)). the (nhop (rt (\<sigma> i)) dip) \<noteq> dip
|
628 |
+
\<longrightarrow> dip \<in> kD(rt (\<sigma> (the (nhop (rt (\<sigma> i)) dip))))
|
629 |
+
\<and> nsqn (rt (\<sigma> i)) dip \<le> nsqn (rt (\<sigma> (the (nhop (rt (\<sigma> i)) dip)))) dip)"
|
630 |
+
by (inv_cterms inv add: oseq_step_invariant_sterms [OF oquality_increases_nsqn_fresh aodv_wf
|
631 |
+
oaodv_trans]
|
632 |
+
onl_oinvariant_sterms [OF aodv_wf oaddpreRT_welldefined]
|
633 |
+
onl_oinvariant_sterms [OF aodv_wf odests_vD_inc_sqn]
|
634 |
+
onl_oinvariant_sterms [OF aodv_wf oprerr_guard]
|
635 |
+
onl_oinvariant_sterms [OF aodv_wf rreq_sip]
|
636 |
+
onl_oinvariant_sterms [OF aodv_wf rrep_sip]
|
637 |
+
onl_oinvariant_sterms [OF aodv_wf rerr_sip]
|
638 |
+
other_quality_increases
|
639 |
+
other_localD
|
640 |
+
solve: basic basic_prerr
|
641 |
+
simp add: seqlsimp nsqn_invalidate nhop_update_sip
|
642 |
+
simp del: One_nat_def)
|
643 |
+
(rule conjI, erule(2) update1, erule(2) update2)+
|
644 |
+
|
645 |
+
thus ?thesis unfolding Let_def by auto
|
646 |
+
qed
|
647 |
+
|
648 |
+
text \<open>Proposition 7.30\<close>
|
649 |
+
|
650 |
+
lemmas okD_unk_or_atleast_one =
|
651 |
+
open_seq_invariant [OF kD_unk_or_atleast_one initiali_aodv,
|
652 |
+
simplified seql_onl_swap]
|
653 |
+
|
654 |
+
lemmas ozero_seq_unk_hops_one =
|
655 |
+
open_seq_invariant [OF zero_seq_unk_hops_one initiali_aodv,
|
656 |
+
simplified seql_onl_swap]
|
657 |
+
|
658 |
+
lemma oreachable_fresh_okD_unk_or_atleast_one:
|
659 |
+
fixes dip
|
660 |
+
assumes "(\<sigma>, p) \<in> oreachable (opaodv i)
|
661 |
+
(otherwith ((=)) {i} (orecvmsg (\<lambda>\<sigma> m. msg_fresh \<sigma> m
|
662 |
+
\<and> msg_zhops m)))
|
663 |
+
(other quality_increases {i})"
|
664 |
+
and "dip\<in>kD(rt (\<sigma> i))"
|
665 |
+
shows "\<pi>\<^sub>3(the (rt (\<sigma> i) dip)) = unk \<or> 1 \<le> \<pi>\<^sub>2(the (rt (\<sigma> i) dip))"
|
666 |
+
(is "?P dip")
|
667 |
+
proof -
|
668 |
+
have "\<exists>l. l\<in>labels \<Gamma>\<^sub>A\<^sub>O\<^sub>D\<^sub>V p" by (metis aodv_ex_label)
|
669 |
+
with assms(1) have "\<forall>dip\<in>kD (rt (\<sigma> i)). ?P dip"
|
670 |
+
by - (drule oinvariant_weakenD [OF okD_unk_or_atleast_one [OF oaodv_trans aodv_trans]],
|
671 |
+
auto dest!: otherwith_actionD onlD simp: seqlsimp)
|
672 |
+
with \<open>dip\<in>kD(rt (\<sigma> i))\<close> show ?thesis by simp
|
673 |
+
qed
|
674 |
+
|
675 |
+
lemma oreachable_fresh_ozero_seq_unk_hops_one:
|
676 |
+
fixes dip
|
677 |
+
assumes "(\<sigma>, p) \<in> oreachable (opaodv i)
|
678 |
+
(otherwith ((=)) {i} (orecvmsg (\<lambda>\<sigma> m. msg_fresh \<sigma> m
|
679 |
+
\<and> msg_zhops m)))
|
680 |
+
(other quality_increases {i})"
|
681 |
+
and "dip\<in>kD(rt (\<sigma> i))"
|
682 |
+
shows "sqn (rt (\<sigma> i)) dip = 0 \<longrightarrow>
|
683 |
+
sqnf (rt (\<sigma> i)) dip = unk
|
684 |
+
\<and> the (dhops (rt (\<sigma> i)) dip) = 1
|
685 |
+
\<and> the (nhop (rt (\<sigma> i)) dip) = dip"
|
686 |
+
(is "?P dip")
|
687 |
+
proof -
|
688 |
+
have "\<exists>l. l\<in>labels \<Gamma>\<^sub>A\<^sub>O\<^sub>D\<^sub>V p" by (metis aodv_ex_label)
|
689 |
+
with assms(1) have "\<forall>dip\<in>kD (rt (\<sigma> i)). ?P dip"
|
690 |
+
by - (drule oinvariant_weakenD [OF ozero_seq_unk_hops_one [OF oaodv_trans aodv_trans]],
|
691 |
+
auto dest!: onlD otherwith_actionD simp: seqlsimp)
|
692 |
+
with \<open>dip\<in>kD(rt (\<sigma> i))\<close> show ?thesis by simp
|
693 |
+
qed
|
694 |
+
|
695 |
+
lemma seq_nhop_quality_increases':
|
696 |
+
shows "opaodv i \<Turnstile> (otherwith ((=)) {i}
|
697 |
+
(orecvmsg (\<lambda>\<sigma> m. msg_fresh \<sigma> m \<and> msg_zhops m)),
|
698 |
+
other quality_increases {i} \<rightarrow>)
|
699 |
+
onl \<Gamma>\<^sub>A\<^sub>O\<^sub>D\<^sub>V (\<lambda>(\<sigma>, _). \<forall>dip. let nhip = the (nhop (rt (\<sigma> i)) dip)
|
700 |
+
in dip \<in> vD (rt (\<sigma> i)) \<inter> vD (rt (\<sigma> nhip))
|
701 |
+
\<and> nhip \<noteq> dip
|
702 |
+
\<longrightarrow> (rt (\<sigma> i)) \<sqsubset>\<^bsub>dip\<^esub> (rt (\<sigma> nhip)))"
|
703 |
+
(is "_ \<Turnstile> (?S i, _ \<rightarrow>) _")
|
704 |
+
proof -
|
705 |
+
have weaken:
|
706 |
+
"\<And>p I Q R P. p \<Turnstile> (otherwith quality_increases I (orecvmsg Q), other quality_increases I \<rightarrow>) P
|
707 |
+
\<Longrightarrow> p \<Turnstile> (otherwith ((=)) I (orecvmsg (\<lambda>\<sigma> m. Q \<sigma> m \<and> R \<sigma> m)), other quality_increases I \<rightarrow>) P"
|
708 |
+
by auto
|
709 |
+
{
|
710 |
+
fix i a and \<sigma> \<sigma>' :: "ip \<Rightarrow> state"
|
711 |
+
assume a1: "\<forall>dip. dip\<in>vD(rt (\<sigma> i))
|
712 |
+
\<and> dip\<in>vD(rt (\<sigma> (the (nhop (rt (\<sigma> i)) dip))))
|
713 |
+
\<and> (the (nhop (rt (\<sigma> i)) dip)) \<noteq> dip
|
714 |
+
\<longrightarrow> rt (\<sigma> i) \<sqsubset>\<^bsub>dip\<^esub> rt (\<sigma> (the (nhop (rt (\<sigma> i)) dip)))"
|
715 |
+
and ow: "?S i \<sigma> \<sigma>' a"
|
716 |
+
have "\<forall>dip. dip\<in>vD(rt (\<sigma> i))
|
717 |
+
\<and> dip\<in>vD (rt (\<sigma>' (the (nhop (rt (\<sigma> i)) dip))))
|
718 |
+
\<and> (the (nhop (rt (\<sigma> i)) dip)) \<noteq> dip
|
719 |
+
\<longrightarrow> rt (\<sigma> i) \<sqsubset>\<^bsub>dip\<^esub> rt (\<sigma>' (the (nhop (rt (\<sigma> i)) dip)))"
|
720 |
+
proof clarify
|
721 |
+
fix dip
|
722 |
+
assume a2: "dip\<in>vD(rt (\<sigma> i))"
|
723 |
+
and a3: "dip\<in>vD (rt (\<sigma>' (the (nhop (rt (\<sigma> i)) dip))))"
|
724 |
+
and a4: "(the (nhop (rt (\<sigma> i)) dip)) \<noteq> dip"
|
725 |
+
from ow have "\<forall>j. j \<noteq> i \<longrightarrow> \<sigma> j = \<sigma>' j" by auto
|
726 |
+
show "rt (\<sigma> i) \<sqsubset>\<^bsub>dip\<^esub> rt (\<sigma>' (the (nhop (rt (\<sigma> i)) dip)))"
|
727 |
+
proof (cases "(the (nhop (rt (\<sigma> i)) dip)) = i")
|
728 |
+
assume "(the (nhop (rt (\<sigma> i)) dip)) = i"
|
729 |
+
with \<open>dip \<in> vD(rt (\<sigma> i))\<close> have "dip \<in> vD(rt (\<sigma> (the (nhop (rt (\<sigma> i)) dip))))" by simp
|
730 |
+
with a1 a2 a4 have "rt (\<sigma> i) \<sqsubset>\<^bsub>dip\<^esub> rt (\<sigma> (the (nhop (rt (\<sigma> i)) dip)))" by simp
|
731 |
+
with \<open>(the (nhop (rt (\<sigma> i)) dip)) = i\<close> have "rt (\<sigma> i) \<sqsubset>\<^bsub>dip\<^esub> rt (\<sigma> i)" by simp
|
732 |
+
hence False by simp
|
733 |
+
thus ?thesis ..
|
734 |
+
next
|
735 |
+
assume "(the (nhop (rt (\<sigma> i)) dip)) \<noteq> i"
|
736 |
+
with \<open>\<forall>j. j \<noteq> i \<longrightarrow> \<sigma> j = \<sigma>' j\<close>
|
737 |
+
have *: "\<sigma> (the (nhop (rt (\<sigma> i)) dip)) = \<sigma>' (the (nhop (rt (\<sigma> i)) dip))" by simp
|
738 |
+
with \<open>dip\<in>vD (rt (\<sigma>' (the (nhop (rt (\<sigma> i)) dip))))\<close>
|
739 |
+
have "dip\<in>vD (rt (\<sigma> (the (nhop (rt (\<sigma> i)) dip))))" by simp
|
740 |
+
with a1 a2 a4 have "rt (\<sigma> i) \<sqsubset>\<^bsub>dip\<^esub> rt (\<sigma> (the (nhop (rt (\<sigma> i)) dip)))" by simp
|
741 |
+
with * show ?thesis by simp
|
742 |
+
qed
|
743 |
+
qed
|
744 |
+
} note basic = this
|
745 |
+
|
746 |
+
{ fix \<sigma> \<sigma>' a dip sip i
|
747 |
+
assume a1: "\<forall>dip. dip\<in>vD(rt (\<sigma> i))
|
748 |
+
\<and> dip\<in>vD(rt (\<sigma> (the (nhop (rt (\<sigma> i)) dip))))
|
749 |
+
\<and> the (nhop (rt (\<sigma> i)) dip) \<noteq> dip
|
750 |
+
\<longrightarrow> rt (\<sigma> i) \<sqsubset>\<^bsub>dip\<^esub> rt (\<sigma> (the (nhop (rt (\<sigma> i)) dip)))"
|
751 |
+
and ow: "?S i \<sigma> \<sigma>' a"
|
752 |
+
have "\<forall>dip. dip\<in>vD(update (rt (\<sigma> i)) sip (0, unk, val, Suc 0, sip, {}))
|
753 |
+
\<and> dip\<in>vD(rt (\<sigma>' (the (nhop (update (rt (\<sigma> i)) sip (0, unk, val, Suc 0, sip, {})) dip))))
|
754 |
+
\<and> the (nhop (update (rt (\<sigma> i)) sip (0, unk, val, Suc 0, sip, {})) dip) \<noteq> dip
|
755 |
+
\<longrightarrow> update (rt (\<sigma> i)) sip (0, unk, val, Suc 0, sip, {})
|
756 |
+
\<sqsubset>\<^bsub>dip\<^esub> rt (\<sigma>' (the (nhop (update (rt (\<sigma> i)) sip (0, unk, val, Suc 0, sip, {})) dip)))"
|
757 |
+
proof clarify
|
758 |
+
fix dip
|
759 |
+
assume a2: "dip\<in>vD (update (rt (\<sigma> i)) sip (0, unk, val, Suc 0, sip, {}))"
|
760 |
+
and a3: "dip\<in>vD(rt (\<sigma>' (the (nhop
|
761 |
+
(update (rt (\<sigma> i)) sip (0, unk, val, Suc 0, sip, {})) dip))))"
|
762 |
+
and a4: "the (nhop (update (rt (\<sigma> i)) sip (0, unk, val, Suc 0, sip, {})) dip) \<noteq> dip"
|
763 |
+
show "update (rt (\<sigma> i)) sip (0, unk, val, Suc 0, sip, {})
|
764 |
+
\<sqsubset>\<^bsub>dip\<^esub> rt (\<sigma>' (the (nhop (update (rt (\<sigma> i)) sip (0, unk, val, Suc 0, sip, {})) dip)))"
|
765 |
+
proof (cases "dip = sip")
|
766 |
+
assume "dip = sip"
|
767 |
+
with \<open>the (nhop (update (rt (\<sigma> i)) sip (0, unk, val, Suc 0, sip, {})) dip) \<noteq> dip\<close>
|
768 |
+
have False by simp
|
769 |
+
thus ?thesis ..
|
770 |
+
next
|
771 |
+
assume [simp]: "dip \<noteq> sip"
|
772 |
+
from a2 have "dip\<in>vD(rt (\<sigma> i)) \<or> dip = sip"
|
773 |
+
by (rule vD_update_val)
|
774 |
+
with \<open>dip \<noteq> sip\<close> have "dip\<in>vD(rt (\<sigma> i))" by simp
|
775 |
+
moreover from a3 have "dip\<in>vD(rt (\<sigma>' (the (nhop (rt (\<sigma> i)) dip))))" by simp
|
776 |
+
moreover from a4 have "the (nhop (rt (\<sigma> i)) dip) \<noteq> dip" by simp
|
777 |
+
ultimately have "rt (\<sigma> i) \<sqsubset>\<^bsub>dip\<^esub> rt (\<sigma>' (the (nhop (rt (\<sigma> i)) dip)))"
|
778 |
+
using a1 ow by - (drule(1) basic, simp)
|
779 |
+
with \<open>dip \<noteq> sip\<close> show ?thesis
|
780 |
+
by - (erule rt_strictly_fresher_update_other, simp)
|
781 |
+
qed
|
782 |
+
qed
|
783 |
+
} note update_0_unk = this
|
784 |
+
|
785 |
+
{ fix \<sigma> a \<sigma>' nhop
|
786 |
+
assume pre: "\<forall>dip. dip\<in>vD(rt (\<sigma> i)) \<and> dip\<in>vD(rt (\<sigma> (nhop dip))) \<and> nhop dip \<noteq> dip
|
787 |
+
\<longrightarrow> rt (\<sigma> i) \<sqsubset>\<^bsub>dip\<^esub> rt (\<sigma> (nhop dip))"
|
788 |
+
and ow: "?S i \<sigma> \<sigma>' a"
|
789 |
+
have "\<forall>dip. dip \<in> vD (invalidate (rt (\<sigma> i)) (dests (\<sigma> i)))
|
790 |
+
\<and> dip \<in> vD (rt (\<sigma>' (nhop dip))) \<and> nhop dip \<noteq> dip
|
791 |
+
\<longrightarrow> rt (\<sigma> i) \<sqsubset>\<^bsub>dip\<^esub> rt (\<sigma>' (nhop dip))"
|
792 |
+
proof clarify
|
793 |
+
fix dip
|
794 |
+
assume "dip\<in>vD(invalidate (rt (\<sigma> i)) (dests (\<sigma> i)))"
|
795 |
+
and "dip\<in>vD(rt (\<sigma>' (nhop dip)))"
|
796 |
+
and "nhop dip \<noteq> dip"
|
797 |
+
from this(1) have "dip\<in>vD (rt (\<sigma> i))"
|
798 |
+
by (clarsimp dest!: vD_invalidate_vD_not_dests)
|
799 |
+
moreover from ow have "\<forall>j. j \<noteq> i \<longrightarrow> \<sigma> j = \<sigma>' j" by auto
|
800 |
+
ultimately have "rt (\<sigma> i) \<sqsubset>\<^bsub>dip\<^esub> rt (\<sigma> (nhop dip))"
|
801 |
+
using pre \<open>dip \<in> vD (rt (\<sigma>' (nhop dip)))\<close> \<open>nhop dip \<noteq> dip\<close>
|
802 |
+
by metis
|
803 |
+
with \<open>\<forall>j. j \<noteq> i \<longrightarrow> \<sigma> j = \<sigma>' j\<close> show "rt (\<sigma> i) \<sqsubset>\<^bsub>dip\<^esub> rt (\<sigma>' (nhop dip))"
|
804 |
+
by (metis rt_strictly_fresher_irefl)
|
805 |
+
qed
|
806 |
+
} note invalidate = this
|
807 |
+
|
808 |
+
{ fix \<sigma> a \<sigma>' dip oip osn sip hops i
|
809 |
+
assume pre: "\<forall>dip. dip \<in> vD (rt (\<sigma> i))
|
810 |
+
\<and> dip \<in> vD (rt (\<sigma> (the (nhop (rt (\<sigma> i)) dip))))
|
811 |
+
\<and> the (nhop (rt (\<sigma> i)) dip) \<noteq> dip
|
812 |
+
\<longrightarrow> rt (\<sigma> i) \<sqsubset>\<^bsub>dip\<^esub> rt (\<sigma> (the (nhop (rt (\<sigma> i)) dip)))"
|
813 |
+
and ow: "?S i \<sigma> \<sigma>' a"
|
814 |
+
and "Suc 0 \<le> osn"
|
815 |
+
and a6: "sip \<noteq> oip \<longrightarrow> oip \<in> kD (rt (\<sigma> sip))
|
816 |
+
\<and> osn \<le> nsqn (rt (\<sigma> sip)) oip
|
817 |
+
\<and> (nsqn (rt (\<sigma> sip)) oip = osn
|
818 |
+
\<longrightarrow> the (dhops (rt (\<sigma> sip)) oip) \<le> hops
|
819 |
+
\<or> the (flag (rt (\<sigma> sip)) oip) = inv)"
|
820 |
+
and after: "\<sigma>' i = \<sigma> i\<lparr>rt := update (rt (\<sigma> i)) oip (osn, kno, val, Suc hops, sip, {})\<rparr>"
|
821 |
+
have "\<forall>dip. dip \<in> vD (update (rt (\<sigma> i)) oip (osn, kno, val, Suc hops, sip, {}))
|
822 |
+
\<and> dip \<in> vD (rt (\<sigma>' (the (nhop (update (rt (\<sigma> i)) oip
|
823 |
+
(osn, kno, val, Suc hops, sip, {})) dip))))
|
824 |
+
\<and> the (nhop (update (rt (\<sigma> i)) oip (osn, kno, val, Suc hops, sip, {})) dip) \<noteq> dip
|
825 |
+
\<longrightarrow> update (rt (\<sigma> i)) oip (osn, kno, val, Suc hops, sip, {})
|
826 |
+
\<sqsubset>\<^bsub>dip\<^esub>
|
827 |
+
rt (\<sigma>' (the (nhop (update (rt (\<sigma> i)) oip (osn, kno, val, Suc hops, sip, {})) dip)))"
|
828 |
+
proof clarify
|
829 |
+
fix dip
|
830 |
+
assume a2: "dip\<in>vD(update (rt (\<sigma> i)) oip (osn, kno, val, Suc (hops), sip, {}))"
|
831 |
+
and a3: "dip\<in>vD(rt (\<sigma>' (the (nhop (update (rt (\<sigma> i)) oip
|
832 |
+
(osn, kno, val, Suc hops, sip, {})) dip))))"
|
833 |
+
and a4: "the (nhop (update (rt (\<sigma> i)) oip (osn, kno, val, Suc hops, sip, {})) dip) \<noteq> dip"
|
834 |
+
from ow have a5: "\<forall>j. j \<noteq> i \<longrightarrow> \<sigma> j = \<sigma>' j" by auto
|
835 |
+
show "update (rt (\<sigma> i)) oip (osn, kno, val, Suc hops, sip, {})
|
836 |
+
\<sqsubset>\<^bsub>dip\<^esub>
|
837 |
+
rt (\<sigma>' (the (nhop (update (rt (\<sigma> i)) oip (osn, kno, val, Suc hops, sip, {})) dip)))"
|
838 |
+
(is "?rt1 \<sqsubset>\<^bsub>dip\<^esub> ?rt2 dip")
|
839 |
+
proof (cases "?rt1 = rt (\<sigma> i)")
|
840 |
+
assume nochange [simp]:
|
841 |
+
"update (rt (\<sigma> i)) oip (osn, kno, val, Suc hops, sip, {}) = rt (\<sigma> i)"
|
842 |
+
|
843 |
+
from after have "\<sigma>' i = \<sigma> i" by simp
|
844 |
+
with a5 have "\<forall>j. \<sigma> j = \<sigma>' j" by metis
|
845 |
+
|
846 |
+
from a2 have "dip\<in>vD (rt (\<sigma> i))" by simp
|
847 |
+
moreover from a3 have "dip\<in>vD(rt (\<sigma> (the (nhop (rt (\<sigma> i)) dip))))"
|
848 |
+
using nochange and \<open>\<forall>j. \<sigma> j = \<sigma>' j\<close> by clarsimp
|
849 |
+
moreover from a4 have "the (nhop (rt (\<sigma> i)) dip) \<noteq> dip" by simp
|
850 |
+
ultimately have "rt (\<sigma> i) \<sqsubset>\<^bsub>dip\<^esub> rt (\<sigma> (the (nhop (rt (\<sigma> i)) dip)))"
|
851 |
+
using pre by simp
|
852 |
+
|
853 |
+
hence "rt (\<sigma> i) \<sqsubset>\<^bsub>dip\<^esub> rt (\<sigma>' (the (nhop (rt (\<sigma> i)) dip)))"
|
854 |
+
using \<open>\<forall>j. \<sigma> j = \<sigma>' j\<close> by simp
|
855 |
+
thus "?thesis" by simp
|
856 |
+
next
|
857 |
+
assume change: "?rt1 \<noteq> rt (\<sigma> i)"
|
858 |
+
from after a2 have "dip\<in>kD(rt (\<sigma>' i))" by auto
|
859 |
+
show ?thesis
|
860 |
+
proof (cases "dip = oip")
|
861 |
+
assume "dip \<noteq> oip"
|
862 |
+
|
863 |
+
with a2 have "dip\<in>vD (rt (\<sigma> i))" by auto
|
864 |
+
moreover with a3 a5 after and \<open>dip \<noteq> oip\<close>
|
865 |
+
have "dip\<in>vD(rt (\<sigma> (the (nhop (rt (\<sigma> i)) dip))))"
|
866 |
+
by simp metis
|
867 |
+
moreover from a4 and \<open>dip \<noteq> oip\<close> have "the (nhop (rt (\<sigma> i)) dip) \<noteq> dip" by simp
|
868 |
+
ultimately have "rt (\<sigma> i) \<sqsubset>\<^bsub>dip\<^esub> rt (\<sigma> (the (nhop (rt (\<sigma> i)) dip)))"
|
869 |
+
using pre by simp
|
870 |
+
|
871 |
+
with after and a5 and \<open>dip \<noteq> oip\<close> show ?thesis
|
872 |
+
by simp (metis rt_strictly_fresher_update_other
|
873 |
+
rt_strictly_fresher_irefl)
|
874 |
+
next
|
875 |
+
assume "dip = oip"
|
876 |
+
|
877 |
+
with a4 and change have "sip \<noteq> oip" by simp
|
878 |
+
with a6 have "oip\<in>kD(rt (\<sigma> sip))"
|
879 |
+
and "osn \<le> nsqn (rt (\<sigma> sip)) oip" by auto
|
880 |
+
|
881 |
+
from a3 change \<open>dip = oip\<close> have "oip\<in>vD(rt (\<sigma>' sip))" by simp
|
882 |
+
hence "the (flag (rt (\<sigma>' sip)) oip) = val" by simp
|
883 |
+
|
884 |
+
from \<open>oip\<in>kD(rt (\<sigma> sip))\<close>
|
885 |
+
have "osn < nsqn (rt (\<sigma>' sip)) oip \<or> (osn = nsqn (rt (\<sigma>' sip)) oip
|
886 |
+
\<and> the (dhops (rt (\<sigma>' sip)) oip) \<le> hops)"
|
887 |
+
proof
|
888 |
+
assume "oip\<in>vD(rt (\<sigma> sip))"
|
889 |
+
hence "the (flag (rt (\<sigma> sip)) oip) = val" by simp
|
890 |
+
with a6 \<open>sip \<noteq> oip\<close> have "nsqn (rt (\<sigma> sip)) oip = osn \<longrightarrow>
|
891 |
+
the (dhops (rt (\<sigma> sip)) oip) \<le> hops"
|
892 |
+
by simp
|
893 |
+
show ?thesis
|
894 |
+
proof (cases "sip = i")
|
895 |
+
assume "sip \<noteq> i"
|
896 |
+
with a5 have "\<sigma> sip = \<sigma>' sip" by simp
|
897 |
+
with \<open>osn \<le> nsqn (rt (\<sigma> sip)) oip\<close>
|
898 |
+
and \<open>nsqn (rt (\<sigma> sip)) oip = osn \<longrightarrow> the (dhops (rt (\<sigma> sip)) oip) \<le> hops\<close>
|
899 |
+
show ?thesis by auto
|
900 |
+
next
|
901 |
+
\<comment> \<open>alternative to using @{text sip_not_ip}\<close>
|
902 |
+
assume [simp]: "sip = i"
|
903 |
+
have "?rt1 = rt (\<sigma> i)"
|
904 |
+
proof (rule update_cases_kD, simp_all)
|
905 |
+
from \<open>Suc 0 \<le> osn\<close> show "0 < osn" by simp
|
906 |
+
next
|
907 |
+
from \<open>oip\<in>kD(rt (\<sigma> sip))\<close> and \<open>sip = i\<close> show "oip\<in>kD(rt (\<sigma> i))"
|
908 |
+
by simp
|
909 |
+
next
|
910 |
+
assume "sqn (rt (\<sigma> i)) oip < osn"
|
911 |
+
also from \<open>osn \<le> nsqn (rt (\<sigma> sip)) oip\<close>
|
912 |
+
have "... \<le> nsqn (rt (\<sigma> i)) oip" by simp
|
913 |
+
also have "... \<le> sqn (rt (\<sigma> i)) oip"
|
914 |
+
by (rule nsqn_sqn)
|
915 |
+
finally have "sqn (rt (\<sigma> i)) oip < sqn (rt (\<sigma> i)) oip" .
|
916 |
+
hence False by simp
|
917 |
+
thus "(\<lambda>a. if a = oip
|
918 |
+
then Some (osn, kno, val, Suc hops, i, \<pi>\<^sub>7 (the (rt (\<sigma> i) oip)))
|
919 |
+
else rt (\<sigma> i) a) = rt (\<sigma> i)" ..
|
920 |
+
next
|
921 |
+
assume "sqn (rt (\<sigma> i)) oip = osn"
|
922 |
+
and "Suc hops < the (dhops (rt (\<sigma> i)) oip)"
|
923 |
+
from this(1) and \<open>oip \<in> vD (rt (\<sigma> sip))\<close> have "nsqn (rt (\<sigma> i)) oip = osn"
|
924 |
+
by simp
|
925 |
+
with \<open>nsqn (rt (\<sigma> sip)) oip = osn \<longrightarrow> the (dhops (rt (\<sigma> sip)) oip) \<le> hops\<close>
|
926 |
+
have "the (dhops (rt (\<sigma> i)) oip) \<le> hops" by simp
|
927 |
+
with \<open>Suc hops < the (dhops (rt (\<sigma> i)) oip)\<close> have False by simp
|
928 |
+
thus "(\<lambda>a. if a = oip
|
929 |
+
then Some (osn, kno, val, Suc hops, i, \<pi>\<^sub>7 (the (rt (\<sigma> i) oip)))
|
930 |
+
else rt (\<sigma> i) a) = rt (\<sigma> i)" ..
|
931 |
+
next
|
932 |
+
assume "the (flag (rt (\<sigma> i)) oip) = inv"
|
933 |
+
with \<open>the (flag (rt (\<sigma> sip)) oip) = val\<close> have False by simp
|
934 |
+
thus "(\<lambda>a. if a = oip
|
935 |
+
then Some (osn, kno, val, Suc hops, i, \<pi>\<^sub>7 (the (rt (\<sigma> i) oip)))
|
936 |
+
else rt (\<sigma> i) a) = rt (\<sigma> i)" ..
|
937 |
+
next
|
938 |
+
from \<open>oip\<in>kD(rt (\<sigma> sip))\<close>
|
939 |
+
show "(\<lambda>a. if a = oip then Some (the (rt (\<sigma> i) oip)) else rt (\<sigma> i) a) = rt (\<sigma> i)"
|
940 |
+
by (auto dest!: kD_Some)
|
941 |
+
qed
|
942 |
+
with change have False ..
|
943 |
+
thus ?thesis ..
|
944 |
+
qed
|
945 |
+
next
|
946 |
+
assume "oip\<in>iD(rt (\<sigma> sip))"
|
947 |
+
with \<open>the (flag (rt (\<sigma>' sip)) oip) = val\<close> and a5 have "sip = i"
|
948 |
+
by (metis f.distinct(1) iD_flag_is_inv)
|
949 |
+
from \<open>oip\<in>iD(rt (\<sigma> sip))\<close> have "the (flag (rt (\<sigma> sip)) oip) = inv" by auto
|
950 |
+
with \<open>sip = i\<close> \<open>Suc 0 \<le> osn\<close> change after \<open>oip\<in>kD(rt (\<sigma> sip))\<close>
|
951 |
+
have "nsqn (rt (\<sigma> sip)) oip < nsqn (rt (\<sigma>' sip)) oip"
|
952 |
+
unfolding update_def
|
953 |
+
by (clarsimp split: option.split_asm if_split_asm)
|
954 |
+
(auto simp: sqn_def)
|
955 |
+
with \<open>osn \<le> nsqn (rt (\<sigma> sip)) oip\<close> have "osn < nsqn (rt (\<sigma>' sip)) oip"
|
956 |
+
by simp
|
957 |
+
thus ?thesis ..
|
958 |
+
qed
|
959 |
+
thus ?thesis
|
960 |
+
proof
|
961 |
+
assume osnlt: "osn < nsqn (rt (\<sigma>' sip)) oip"
|
962 |
+
from \<open>dip\<in>kD(rt (\<sigma>' i))\<close> and \<open>dip = oip\<close> have "dip \<in> kD (?rt1)" by simp
|
963 |
+
moreover from a3 have "dip \<in> kD(?rt2 dip)" by simp
|
964 |
+
moreover have "nsqn ?rt1 dip < nsqn (?rt2 dip) dip"
|
965 |
+
proof -
|
966 |
+
have "nsqn ?rt1 oip = osn"
|
967 |
+
by (simp add: \<open>dip = oip\<close> nsqn_update_changed_kno_val [OF change [THEN not_sym]])
|
968 |
+
also have "... < nsqn (rt (\<sigma>' sip)) oip" using osnlt .
|
969 |
+
also have "... = nsqn (?rt2 oip) oip" by (simp add: change)
|
970 |
+
finally show ?thesis
|
971 |
+
using \<open>dip = oip\<close> by simp
|
972 |
+
qed
|
973 |
+
ultimately show ?thesis
|
974 |
+
by (rule rt_strictly_fresher_ltI)
|
975 |
+
next
|
976 |
+
assume osneq: "osn = nsqn (rt (\<sigma>' sip)) oip \<and> the (dhops (rt (\<sigma>' sip)) oip) \<le> hops"
|
977 |
+
|
978 |
+
have "oip\<in>kD(?rt1)" by simp
|
979 |
+
moreover from a3 \<open>dip = oip\<close> have "oip\<in>kD(?rt2 oip)" by simp
|
980 |
+
|
981 |
+
moreover have "nsqn ?rt1 oip = nsqn (?rt2 oip) oip"
|
982 |
+
proof -
|
983 |
+
from osneq have "osn = nsqn (rt (\<sigma>' sip)) oip" ..
|
984 |
+
also have "osn = nsqn ?rt1 oip"
|
985 |
+
by (simp add: \<open>dip = oip\<close> nsqn_update_changed_kno_val [OF change [THEN not_sym]])
|
986 |
+
also have "nsqn (rt (\<sigma>' sip)) oip = nsqn (?rt2 oip) oip"
|
987 |
+
by (simp add: change)
|
988 |
+
finally show ?thesis .
|
989 |
+
qed
|
990 |
+
|
991 |
+
moreover have "\<pi>\<^sub>5(the (?rt2 oip oip)) < \<pi>\<^sub>5(the (?rt1 oip))"
|
992 |
+
proof -
|
993 |
+
from osneq have "the (dhops (rt (\<sigma>' sip)) oip) \<le> hops" ..
|
994 |
+
moreover from \<open>oip \<in> vD (rt (\<sigma>' sip))\<close> have "oip\<in>kD(rt (\<sigma>' sip))" by auto
|
995 |
+
ultimately have "\<pi>\<^sub>5(the (rt (\<sigma>' sip) oip)) \<le> hops"
|
996 |
+
by (auto simp add: proj5_eq_dhops)
|
997 |
+
also from change after have "hops < \<pi>\<^sub>5(the (rt (\<sigma>' i) oip))"
|
998 |
+
by (simp add: proj5_eq_dhops) (metis dhops_update_changed lessI)
|
999 |
+
finally have "\<pi>\<^sub>5(the (rt (\<sigma>' sip) oip)) < \<pi>\<^sub>5(the (rt (\<sigma>' i) oip))" .
|
1000 |
+
with change after show ?thesis by simp
|
1001 |
+
qed
|
1002 |
+
|
1003 |
+
ultimately have "?rt1 \<sqsubset>\<^bsub>oip\<^esub> ?rt2 oip"
|
1004 |
+
by (rule rt_strictly_fresher_eqI)
|
1005 |
+
with \<open>dip = oip\<close> show ?thesis by simp
|
1006 |
+
qed
|
1007 |
+
qed
|
1008 |
+
qed
|
1009 |
+
qed
|
1010 |
+
} note rreq_rrep_update = this
|
1011 |
+
|
1012 |
+
have "opaodv i \<Turnstile> (otherwith ((=)) {i} (orecvmsg (\<lambda>\<sigma> m. msg_fresh \<sigma> m
|
1013 |
+
\<and> msg_zhops m)),
|
1014 |
+
other quality_increases {i} \<rightarrow>)
|
1015 |
+
onl \<Gamma>\<^sub>A\<^sub>O\<^sub>D\<^sub>V
|
1016 |
+
(\<lambda>(\<sigma>, _). \<forall>dip. dip \<in> vD (rt (\<sigma> i)) \<inter> vD (rt (\<sigma> (the (nhop (rt (\<sigma> i)) dip))))
|
1017 |
+
\<and> the (nhop (rt (\<sigma> i)) dip) \<noteq> dip
|
1018 |
+
\<longrightarrow> rt (\<sigma> i) \<sqsubset>\<^bsub>dip\<^esub> rt (\<sigma> (the (nhop (rt (\<sigma> i)) dip))))"
|
1019 |
+
proof (inv_cterms inv add: onl_oinvariant_sterms [OF aodv_wf rreq_sip [THEN weaken]]
|
1020 |
+
onl_oinvariant_sterms [OF aodv_wf rrep_sip [THEN weaken]]
|
1021 |
+
onl_oinvariant_sterms [OF aodv_wf rerr_sip [THEN weaken]]
|
1022 |
+
onl_oinvariant_sterms [OF aodv_wf oosn_rreq [THEN weaken]]
|
1023 |
+
onl_oinvariant_sterms [OF aodv_wf odsn_rrep [THEN weaken]]
|
1024 |
+
onl_oinvariant_sterms [OF aodv_wf oaddpreRT_welldefined]
|
1025 |
+
solve: basic update_0_unk invalidate rreq_rrep_update
|
1026 |
+
simp add: seqlsimp)
|
1027 |
+
fix \<sigma> \<sigma>' p l
|
1028 |
+
assume or: "(\<sigma>, p) \<in> oreachable (opaodv i) (?S i) (other quality_increases {i})"
|
1029 |
+
and "other quality_increases {i} \<sigma> \<sigma>'"
|
1030 |
+
and ll: "l \<in> labels \<Gamma>\<^sub>A\<^sub>O\<^sub>D\<^sub>V p"
|
1031 |
+
and pre: "\<forall>dip. dip\<in>vD (rt (\<sigma> i))
|
1032 |
+
\<and> dip\<in>vD(rt (\<sigma> (the (nhop (rt (\<sigma> i)) dip))))
|
1033 |
+
\<and> the (nhop (rt (\<sigma> i)) dip) \<noteq> dip
|
1034 |
+
\<longrightarrow> rt (\<sigma> i) \<sqsubset>\<^bsub>dip\<^esub> rt (\<sigma> (the (nhop (rt (\<sigma> i)) dip)))"
|
1035 |
+
from this(1-2)
|
1036 |
+
have or': "(\<sigma>', p) \<in> oreachable (opaodv i) (?S i) (other quality_increases {i})"
|
1037 |
+
by - (rule oreachable_other')
|
1038 |
+
|
1039 |
+
from or and ll have next_hop: "\<forall>dip. let nhip = the (nhop (rt (\<sigma> i)) dip)
|
1040 |
+
in dip \<in> kD(rt (\<sigma> i)) \<and> nhip \<noteq> dip
|
1041 |
+
\<longrightarrow> dip \<in> kD(rt (\<sigma> nhip))
|
1042 |
+
\<and> nsqn (rt (\<sigma> i)) dip \<le> nsqn (rt (\<sigma> nhip)) dip"
|
1043 |
+
by (auto dest!: onl_oinvariant_weakenD [OF seq_compare_next_hop'])
|
1044 |
+
|
1045 |
+
from or and ll have unk_hops_one: "\<forall>dip\<in>kD (rt (\<sigma> i)). sqn (rt (\<sigma> i)) dip = 0
|
1046 |
+
\<longrightarrow> sqnf (rt (\<sigma> i)) dip = unk
|
1047 |
+
\<and> the (dhops (rt (\<sigma> i)) dip) = 1
|
1048 |
+
\<and> the (nhop (rt (\<sigma> i)) dip) = dip"
|
1049 |
+
by (auto dest!: onl_oinvariant_weakenD [OF ozero_seq_unk_hops_one
|
1050 |
+
[OF oaodv_trans aodv_trans]]
|
1051 |
+
otherwith_actionD
|
1052 |
+
simp: seqlsimp)
|
1053 |
+
|
1054 |
+
from \<open>other quality_increases {i} \<sigma> \<sigma>'\<close> have "\<sigma>' i = \<sigma> i" by auto
|
1055 |
+
hence "quality_increases (\<sigma> i) (\<sigma>' i)" by auto
|
1056 |
+
with \<open>other quality_increases {i} \<sigma> \<sigma>'\<close> have "\<forall>j. quality_increases (\<sigma> j) (\<sigma>' j)"
|
1057 |
+
by - (erule otherE, metis singleton_iff)
|
1058 |
+
|
1059 |
+
show "\<forall>dip. dip \<in> vD (rt (\<sigma>' i))
|
1060 |
+
\<and> dip \<in> vD (rt (\<sigma>' (the (nhop (rt (\<sigma>' i)) dip))))
|
1061 |
+
\<and> the (nhop (rt (\<sigma>' i)) dip) \<noteq> dip
|
1062 |
+
\<longrightarrow> rt (\<sigma>' i) \<sqsubset>\<^bsub>dip\<^esub> rt (\<sigma>' (the (nhop (rt (\<sigma>' i)) dip)))"
|
1063 |
+
proof clarify
|
1064 |
+
fix dip
|
1065 |
+
assume "dip\<in>vD(rt (\<sigma>' i))"
|
1066 |
+
and "dip\<in>vD(rt (\<sigma>' (the (nhop (rt (\<sigma>' i)) dip))))"
|
1067 |
+
and "the (nhop (rt (\<sigma>' i)) dip) \<noteq> dip"
|
1068 |
+
from this(1) and \<open>\<sigma>' i = \<sigma> i\<close> have "dip\<in>vD(rt (\<sigma> i))"
|
1069 |
+
and "dip\<in>kD(rt (\<sigma> i))"
|
1070 |
+
by auto
|
1071 |
+
|
1072 |
+
from \<open>the (nhop (rt (\<sigma>' i)) dip) \<noteq> dip\<close> and \<open>\<sigma>' i = \<sigma> i\<close>
|
1073 |
+
have "the (nhop (rt (\<sigma> i)) dip) \<noteq> dip" (is "?nhip \<noteq> _") by simp
|
1074 |
+
with \<open>dip\<in>kD(rt (\<sigma> i))\<close> and next_hop
|
1075 |
+
have "dip\<in>kD(rt (\<sigma> (?nhip)))"
|
1076 |
+
and nsqns: "nsqn (rt (\<sigma> i)) dip \<le> nsqn (rt (\<sigma> ?nhip)) dip"
|
1077 |
+
by (auto simp: Let_def)
|
1078 |
+
|
1079 |
+
have "0 < sqn (rt (\<sigma> i)) dip"
|
1080 |
+
proof (rule neq0_conv [THEN iffD1, OF notI])
|
1081 |
+
assume "sqn (rt (\<sigma> i)) dip = 0"
|
1082 |
+
with \<open>dip\<in>kD(rt (\<sigma> i))\<close> and unk_hops_one
|
1083 |
+
have "?nhip = dip" by simp
|
1084 |
+
with \<open>?nhip \<noteq> dip\<close> show False ..
|
1085 |
+
qed
|
1086 |
+
also have "... = nsqn (rt (\<sigma> i)) dip"
|
1087 |
+
by (rule vD_nsqn_sqn [OF \<open>dip\<in>vD(rt (\<sigma> i))\<close>, THEN sym])
|
1088 |
+
also have "... \<le> nsqn (rt (\<sigma> ?nhip)) dip"
|
1089 |
+
by (rule nsqns)
|
1090 |
+
also have "... \<le> sqn (rt (\<sigma> ?nhip)) dip"
|
1091 |
+
by (rule nsqn_sqn)
|
1092 |
+
finally have "0 < sqn (rt (\<sigma> ?nhip)) dip" .
|
1093 |
+
|
1094 |
+
have "rt (\<sigma> i) \<sqsubset>\<^bsub>dip\<^esub> rt (\<sigma>' ?nhip)"
|
1095 |
+
proof (cases "dip\<in>vD(rt (\<sigma> ?nhip))")
|
1096 |
+
assume "dip\<in>vD(rt (\<sigma> ?nhip))"
|
1097 |
+
with pre \<open>dip\<in>vD(rt (\<sigma> i))\<close> and \<open>?nhip \<noteq> dip\<close>
|
1098 |
+
have "rt (\<sigma> i) \<sqsubset>\<^bsub>dip\<^esub> rt (\<sigma> ?nhip)" by auto
|
1099 |
+
moreover from \<open>\<forall>j. quality_increases (\<sigma> j) (\<sigma>' j)\<close>
|
1100 |
+
have "quality_increases (\<sigma> ?nhip) (\<sigma>' ?nhip)" ..
|
1101 |
+
ultimately show ?thesis
|
1102 |
+
using \<open>dip\<in>kD(rt (\<sigma> ?nhip))\<close>
|
1103 |
+
by (rule strictly_fresher_quality_increases_right)
|
1104 |
+
next
|
1105 |
+
assume "dip\<notin>vD(rt (\<sigma> ?nhip))"
|
1106 |
+
with \<open>dip\<in>kD(rt (\<sigma> ?nhip))\<close> have "dip\<in>iD(rt (\<sigma> ?nhip))" ..
|
1107 |
+
hence "the (flag (rt (\<sigma> ?nhip)) dip) = inv"
|
1108 |
+
by auto
|
1109 |
+
have "nsqn (rt (\<sigma> i)) dip \<le> nsqn (rt (\<sigma> ?nhip)) dip"
|
1110 |
+
by (rule nsqns)
|
1111 |
+
also from \<open>dip\<in>iD(rt (\<sigma> ?nhip))\<close>
|
1112 |
+
have "... = sqn (rt (\<sigma> ?nhip)) dip - 1" ..
|
1113 |
+
also have "... < sqn (rt (\<sigma>' ?nhip)) dip"
|
1114 |
+
proof -
|
1115 |
+
from \<open>\<forall>j. quality_increases (\<sigma> j) (\<sigma>' j)\<close>
|
1116 |
+
have "quality_increases (\<sigma> ?nhip) (\<sigma>' ?nhip)" ..
|
1117 |
+
hence "\<forall>ip. sqn (rt (\<sigma> ?nhip)) ip \<le> sqn (rt (\<sigma>' ?nhip)) ip" by auto
|
1118 |
+
hence "sqn (rt (\<sigma> ?nhip)) dip \<le> sqn (rt (\<sigma>' ?nhip)) dip" ..
|
1119 |
+
with \<open>0 < sqn (rt (\<sigma> ?nhip)) dip\<close> show ?thesis by auto
|
1120 |
+
qed
|
1121 |
+
also have "... = nsqn (rt (\<sigma>' ?nhip)) dip"
|
1122 |
+
proof (rule vD_nsqn_sqn [THEN sym])
|
1123 |
+
from \<open>dip\<in>vD(rt (\<sigma>' (the (nhop (rt (\<sigma>' i)) dip))))\<close> and \<open>\<sigma>' i = \<sigma> i\<close>
|
1124 |
+
show "dip\<in>vD(rt (\<sigma>' ?nhip))" by simp
|
1125 |
+
qed
|
1126 |
+
finally have "nsqn (rt (\<sigma> i)) dip < nsqn (rt (\<sigma>' ?nhip)) dip" .
|
1127 |
+
|
1128 |
+
moreover from \<open>dip\<in>vD(rt (\<sigma>' (the (nhop (rt (\<sigma>' i)) dip))))\<close> and \<open>\<sigma>' i = \<sigma> i\<close>
|
1129 |
+
have "dip\<in>kD(rt (\<sigma>' ?nhip))" by auto
|
1130 |
+
ultimately show "rt (\<sigma> i) \<sqsubset>\<^bsub>dip\<^esub> rt (\<sigma>' ?nhip)"
|
1131 |
+
using \<open>dip\<in>kD(rt (\<sigma> i))\<close> by - (rule rt_strictly_fresher_ltI)
|
1132 |
+
qed
|
1133 |
+
with \<open>\<sigma>' i = \<sigma> i\<close> show "rt (\<sigma>' i) \<sqsubset>\<^bsub>dip\<^esub> rt (\<sigma>' (the (nhop (rt (\<sigma>' i)) dip)))"
|
1134 |
+
by simp
|
1135 |
+
qed
|
1136 |
+
qed
|
1137 |
+
thus ?thesis unfolding Let_def .
|
1138 |
+
qed
|
1139 |
+
|
1140 |
+
lemma seq_compare_next_hop:
|
1141 |
+
fixes w
|
1142 |
+
shows "opaodv i \<Turnstile> (otherwith ((=)) {i} (orecvmsg msg_fresh),
|
1143 |
+
other quality_increases {i} \<rightarrow>)
|
1144 |
+
global (\<lambda>\<sigma>. \<forall>dip. let nhip = the (nhop (rt (\<sigma> i)) dip)
|
1145 |
+
in dip \<in> kD(rt (\<sigma> i)) \<and> nhip \<noteq> dip \<longrightarrow>
|
1146 |
+
dip \<in> kD(rt (\<sigma> nhip))
|
1147 |
+
\<and> nsqn (rt (\<sigma> i)) dip \<le> nsqn (rt (\<sigma> nhip)) dip)"
|
1148 |
+
by (rule oinvariant_weakenE [OF seq_compare_next_hop']) (auto dest!: onlD)
|
1149 |
+
|
1150 |
+
lemma seq_nhop_quality_increases:
|
1151 |
+
shows "opaodv i \<Turnstile> (otherwith ((=)) {i}
|
1152 |
+
(orecvmsg (\<lambda>\<sigma> m. msg_fresh \<sigma> m \<and> msg_zhops m)),
|
1153 |
+
other quality_increases {i} \<rightarrow>)
|
1154 |
+
global (\<lambda>\<sigma>. \<forall>dip. let nhip = the (nhop (rt (\<sigma> i)) dip)
|
1155 |
+
in dip \<in> vD (rt (\<sigma> i)) \<inter> vD (rt (\<sigma> nhip)) \<and> nhip \<noteq> dip
|
1156 |
+
\<longrightarrow> (rt (\<sigma> i)) \<sqsubset>\<^bsub>dip\<^esub> (rt (\<sigma> nhip)))"
|
1157 |
+
by (rule oinvariant_weakenE [OF seq_nhop_quality_increases']) (auto dest!: onlD)
|
1158 |
+
|
1159 |
+
end
|
formal/afp/AODV/variants/a_norreqid/A_Loop_Freedom.thy
ADDED
@@ -0,0 +1,123 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
(* Title: variants/a_norreqid/Loop_Freedom.thy
|
2 |
+
License: BSD 2-Clause. See LICENSE.
|
3 |
+
Author: Timothy Bourke, Inria
|
4 |
+
*)
|
5 |
+
|
6 |
+
section "Routing graphs and loop freedom"
|
7 |
+
|
8 |
+
theory A_Loop_Freedom
|
9 |
+
imports A_Aodv_Predicates A_Fresher
|
10 |
+
begin
|
11 |
+
|
12 |
+
text \<open>Define the central theorem that relates an invariant over network states to the absence
|
13 |
+
of loops in the associate routing graph.\<close>
|
14 |
+
|
15 |
+
definition
|
16 |
+
rt_graph :: "(ip \<Rightarrow> state) \<Rightarrow> ip \<Rightarrow> ip rel"
|
17 |
+
where
|
18 |
+
"rt_graph \<sigma> = (\<lambda>dip.
|
19 |
+
{(ip, ip') | ip ip' dsn dsk hops pre.
|
20 |
+
ip \<noteq> dip \<and> rt (\<sigma> ip) dip = Some (dsn, dsk, val, hops, ip', pre)})"
|
21 |
+
|
22 |
+
text \<open>Given the state of a network @{term \<sigma>}, a routing graph for a given destination
|
23 |
+
ip address @{term dip} abstracts the details of routing tables into nodes
|
24 |
+
(ip addresses) and vertices (valid routes between ip addresses).\<close>
|
25 |
+
|
26 |
+
lemma rt_graphE [elim]:
|
27 |
+
fixes n dip ip ip'
|
28 |
+
assumes "(ip, ip') \<in> rt_graph \<sigma> dip"
|
29 |
+
shows "ip \<noteq> dip \<and> (\<exists>r. rt (\<sigma> ip) = r
|
30 |
+
\<and> (\<exists>dsn dsk hops pre. r dip = Some (dsn, dsk, val, hops, ip', pre)))"
|
31 |
+
using assms unfolding rt_graph_def by auto
|
32 |
+
|
33 |
+
lemma rt_graph_vD [dest]:
|
34 |
+
"\<And>ip ip' \<sigma> dip. (ip, ip') \<in> rt_graph \<sigma> dip \<Longrightarrow> dip \<in> vD(rt (\<sigma> ip))"
|
35 |
+
unfolding rt_graph_def vD_def by auto
|
36 |
+
|
37 |
+
lemma rt_graph_vD_trans [dest]:
|
38 |
+
"\<And>ip ip' \<sigma> dip. (ip, ip') \<in> (rt_graph \<sigma> dip)\<^sup>+ \<Longrightarrow> dip \<in> vD(rt (\<sigma> ip))"
|
39 |
+
by (erule converse_tranclE) auto
|
40 |
+
|
41 |
+
lemma rt_graph_not_dip [dest]:
|
42 |
+
"\<And>ip ip' \<sigma> dip. (ip, ip') \<in> rt_graph \<sigma> dip \<Longrightarrow> ip \<noteq> dip"
|
43 |
+
unfolding rt_graph_def by auto
|
44 |
+
|
45 |
+
lemma rt_graph_not_dip_trans [dest]:
|
46 |
+
"\<And>ip ip' \<sigma> dip. (ip, ip') \<in> (rt_graph \<sigma> dip)\<^sup>+ \<Longrightarrow> ip \<noteq> dip"
|
47 |
+
by (erule converse_tranclE) auto
|
48 |
+
|
49 |
+
text "NB: the property below cannot be lifted to the transitive closure"
|
50 |
+
|
51 |
+
lemma rt_graph_nhip_is_nhop [dest]:
|
52 |
+
"\<And>ip ip' \<sigma> dip. (ip, ip') \<in> rt_graph \<sigma> dip \<Longrightarrow> ip' = the (nhop (rt (\<sigma> ip)) dip)"
|
53 |
+
unfolding rt_graph_def by auto
|
54 |
+
|
55 |
+
theorem inv_to_loop_freedom:
|
56 |
+
assumes "\<forall>i dip. let nhip = the (nhop (rt (\<sigma> i)) dip)
|
57 |
+
in dip \<in> vD (rt (\<sigma> i)) \<inter> vD (rt (\<sigma> nhip)) \<and> nhip \<noteq> dip
|
58 |
+
\<longrightarrow> (rt (\<sigma> i)) \<sqsubset>\<^bsub>dip\<^esub> (rt (\<sigma> nhip))"
|
59 |
+
shows "\<forall>dip. irrefl ((rt_graph \<sigma> dip)\<^sup>+)"
|
60 |
+
using assms proof (intro allI)
|
61 |
+
fix \<sigma> :: "ip \<Rightarrow> state" and dip
|
62 |
+
assume inv: "\<forall>ip dip.
|
63 |
+
let nhip = the (nhop (rt (\<sigma> ip)) dip)
|
64 |
+
in dip \<in> vD(rt (\<sigma> ip)) \<inter> vD(rt (\<sigma> nhip)) \<and>
|
65 |
+
nhip \<noteq> dip \<longrightarrow> rt (\<sigma> ip) \<sqsubset>\<^bsub>dip\<^esub> rt (\<sigma> nhip)"
|
66 |
+
{ fix ip ip'
|
67 |
+
assume "(ip, ip') \<in> (rt_graph \<sigma> dip)\<^sup>+"
|
68 |
+
and "dip \<in> vD(rt (\<sigma> ip'))"
|
69 |
+
and "ip' \<noteq> dip"
|
70 |
+
hence "rt (\<sigma> ip) \<sqsubset>\<^bsub>dip\<^esub> rt (\<sigma> ip')"
|
71 |
+
proof induction
|
72 |
+
fix nhip
|
73 |
+
assume "(ip, nhip) \<in> rt_graph \<sigma> dip"
|
74 |
+
and "dip \<in> vD(rt (\<sigma> nhip))"
|
75 |
+
and "nhip \<noteq> dip"
|
76 |
+
from \<open>(ip, nhip) \<in> rt_graph \<sigma> dip\<close> have "dip \<in> vD(rt (\<sigma> ip))"
|
77 |
+
and "nhip = the (nhop (rt (\<sigma> ip)) dip)"
|
78 |
+
by auto
|
79 |
+
from \<open>dip \<in> vD(rt (\<sigma> ip))\<close> and \<open>dip \<in> vD(rt (\<sigma> nhip))\<close>
|
80 |
+
have "dip \<in> vD(rt (\<sigma> ip)) \<inter> vD(rt (\<sigma> nhip))" ..
|
81 |
+
with \<open>nhip = the (nhop (rt (\<sigma> ip)) dip)\<close>
|
82 |
+
and \<open>nhip \<noteq> dip\<close>
|
83 |
+
and inv
|
84 |
+
show "rt (\<sigma> ip) \<sqsubset>\<^bsub>dip\<^esub> rt (\<sigma> nhip)"
|
85 |
+
by (clarsimp simp: Let_def)
|
86 |
+
next
|
87 |
+
fix nhip nhip'
|
88 |
+
assume "(ip, nhip) \<in> (rt_graph \<sigma> dip)\<^sup>+"
|
89 |
+
and "(nhip, nhip') \<in> rt_graph \<sigma> dip"
|
90 |
+
and IH: "\<lbrakk> dip \<in> vD(rt (\<sigma> nhip)); nhip \<noteq> dip \<rbrakk> \<Longrightarrow> rt (\<sigma> ip) \<sqsubset>\<^bsub>dip\<^esub> rt (\<sigma> nhip)"
|
91 |
+
and "dip \<in> vD(rt (\<sigma> nhip'))"
|
92 |
+
and "nhip' \<noteq> dip"
|
93 |
+
from \<open>(nhip, nhip') \<in> rt_graph \<sigma> dip\<close> have 1: "dip \<in> vD(rt (\<sigma> nhip))"
|
94 |
+
and 2: "nhip \<noteq> dip"
|
95 |
+
and "nhip' = the (nhop (rt (\<sigma> nhip)) dip)"
|
96 |
+
by auto
|
97 |
+
from 1 2 have "rt (\<sigma> ip) \<sqsubset>\<^bsub>dip\<^esub> rt (\<sigma> nhip)" by (rule IH)
|
98 |
+
also have "rt (\<sigma> nhip) \<sqsubset>\<^bsub>dip\<^esub> rt (\<sigma> nhip')"
|
99 |
+
proof -
|
100 |
+
from \<open>dip \<in> vD(rt (\<sigma> nhip))\<close> and \<open>dip \<in> vD(rt (\<sigma> nhip'))\<close>
|
101 |
+
have "dip \<in> vD(rt (\<sigma> nhip)) \<inter> vD(rt (\<sigma> nhip'))" ..
|
102 |
+
with \<open>nhip' \<noteq> dip\<close>
|
103 |
+
and \<open>nhip' = the (nhop (rt (\<sigma> nhip)) dip)\<close>
|
104 |
+
and inv
|
105 |
+
show "rt (\<sigma> nhip) \<sqsubset>\<^bsub>dip\<^esub> rt (\<sigma> nhip')"
|
106 |
+
by (clarsimp simp: Let_def)
|
107 |
+
qed
|
108 |
+
finally show "rt (\<sigma> ip) \<sqsubset>\<^bsub>dip\<^esub> rt (\<sigma> nhip')" .
|
109 |
+
qed } note fresher = this
|
110 |
+
|
111 |
+
show "irrefl ((rt_graph \<sigma> dip)\<^sup>+)"
|
112 |
+
unfolding irrefl_def proof (intro allI notI)
|
113 |
+
fix ip
|
114 |
+
assume "(ip, ip) \<in> (rt_graph \<sigma> dip)\<^sup>+"
|
115 |
+
moreover then have "dip \<in> vD(rt (\<sigma> ip))"
|
116 |
+
and "ip \<noteq> dip"
|
117 |
+
by auto
|
118 |
+
ultimately have "rt (\<sigma> ip) \<sqsubset>\<^bsub>dip\<^esub> rt (\<sigma> ip)" by (rule fresher)
|
119 |
+
thus False by simp
|
120 |
+
qed
|
121 |
+
qed
|
122 |
+
|
123 |
+
end
|
formal/afp/AODV/variants/a_norreqid/A_Norreqid.thy
ADDED
@@ -0,0 +1,25 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
(* Title: variants/a_norreqid/A_Norreqid.thy
|
2 |
+
License: BSD 2-Clause. See LICENSE.
|
3 |
+
Author: Timothy Bourke, Inria
|
4 |
+
Author: Peter Höfner, NICTA
|
5 |
+
*)
|
6 |
+
|
7 |
+
theory %invisible A_Norreqid
|
8 |
+
imports "../../Aodv_Basic"
|
9 |
+
begin
|
10 |
+
|
11 |
+
chapter "Variant A: Skipping the RREQ ID"
|
12 |
+
|
13 |
+
text \<open>
|
14 |
+
Explanation~\cite[\textsection 10.1]{FehnkerEtAl:AWN:2013}:
|
15 |
+
AODV does not need the route request identifier. This number, in
|
16 |
+
combination with the IP address of the originator, is used to identify
|
17 |
+
every RREQ message in a unique way. This variant shows that the
|
18 |
+
combination of the originator's IP address and its sequence number is just
|
19 |
+
as suited to uniquely determine the route request to which the message
|
20 |
+
belongs. Hence, the route request identifier field is not required. This
|
21 |
+
can then reduce the size of the RREQ message.
|
22 |
+
\<close>
|
23 |
+
|
24 |
+
end %invisible
|
25 |
+
|
formal/afp/AODV/variants/a_norreqid/A_OAodv.thy
ADDED
@@ -0,0 +1,47 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
(* Title: variants/a_norreqid/OAodv.thy
|
2 |
+
License: BSD 2-Clause. See LICENSE.
|
3 |
+
Author: Timothy Bourke, Inria
|
4 |
+
*)
|
5 |
+
|
6 |
+
section "The `open' AODV model"
|
7 |
+
|
8 |
+
theory A_OAodv
|
9 |
+
imports A_Aodv AWN.OAWN_SOS_Labels AWN.OAWN_Convert
|
10 |
+
begin
|
11 |
+
|
12 |
+
text \<open>Definitions for stating and proving global network properties over individual processes.\<close>
|
13 |
+
|
14 |
+
definition \<sigma>\<^sub>A\<^sub>O\<^sub>D\<^sub>V' :: "((ip \<Rightarrow> state) \<times> ((state, msg, pseqp, pseqp label) seqp)) set"
|
15 |
+
where "\<sigma>\<^sub>A\<^sub>O\<^sub>D\<^sub>V' \<equiv> {(\<lambda>i. aodv_init i, \<Gamma>\<^sub>A\<^sub>O\<^sub>D\<^sub>V PAodv)}"
|
16 |
+
|
17 |
+
abbreviation opaodv
|
18 |
+
:: "ip \<Rightarrow> ((ip \<Rightarrow> state) \<times> (state, msg, pseqp, pseqp label) seqp, msg seq_action) automaton"
|
19 |
+
where
|
20 |
+
"opaodv i \<equiv> \<lparr> init = \<sigma>\<^sub>A\<^sub>O\<^sub>D\<^sub>V', trans = oseqp_sos \<Gamma>\<^sub>A\<^sub>O\<^sub>D\<^sub>V i \<rparr>"
|
21 |
+
|
22 |
+
lemma initiali_aodv [intro!, simp]: "initiali i (init (opaodv i)) (init (paodv i))"
|
23 |
+
unfolding \<sigma>\<^sub>A\<^sub>O\<^sub>D\<^sub>V_def \<sigma>\<^sub>A\<^sub>O\<^sub>D\<^sub>V'_def by rule simp_all
|
24 |
+
|
25 |
+
lemma oaodv_control_within [simp]: "control_within \<Gamma>\<^sub>A\<^sub>O\<^sub>D\<^sub>V (init (opaodv i))"
|
26 |
+
unfolding \<sigma>\<^sub>A\<^sub>O\<^sub>D\<^sub>V'_def by (rule control_withinI) (auto simp del: \<Gamma>\<^sub>A\<^sub>O\<^sub>D\<^sub>V_simps)
|
27 |
+
|
28 |
+
lemma \<sigma>\<^sub>A\<^sub>O\<^sub>D\<^sub>V'_labels [simp]: "(\<sigma>, p) \<in> \<sigma>\<^sub>A\<^sub>O\<^sub>D\<^sub>V' \<Longrightarrow> labels \<Gamma>\<^sub>A\<^sub>O\<^sub>D\<^sub>V p = {PAodv-:0}"
|
29 |
+
unfolding \<sigma>\<^sub>A\<^sub>O\<^sub>D\<^sub>V'_def by simp
|
30 |
+
|
31 |
+
lemma oaodv_init_kD_empty [simp]:
|
32 |
+
"(\<sigma>, p) \<in> \<sigma>\<^sub>A\<^sub>O\<^sub>D\<^sub>V' \<Longrightarrow> kD (rt (\<sigma> i)) = {}"
|
33 |
+
unfolding \<sigma>\<^sub>A\<^sub>O\<^sub>D\<^sub>V'_def kD_def by simp
|
34 |
+
|
35 |
+
lemma oaodv_init_vD_empty [simp]:
|
36 |
+
"(\<sigma>, p) \<in> \<sigma>\<^sub>A\<^sub>O\<^sub>D\<^sub>V' \<Longrightarrow> vD (rt (\<sigma> i)) = {}"
|
37 |
+
unfolding \<sigma>\<^sub>A\<^sub>O\<^sub>D\<^sub>V'_def vD_def by simp
|
38 |
+
|
39 |
+
lemma oaodv_trans: "trans (opaodv i) = oseqp_sos \<Gamma>\<^sub>A\<^sub>O\<^sub>D\<^sub>V i"
|
40 |
+
by simp
|
41 |
+
|
42 |
+
declare
|
43 |
+
oseq_invariant_ctermsI [OF aodv_wf oaodv_control_within aodv_simple_labels oaodv_trans, cterms_intros]
|
44 |
+
oseq_step_invariant_ctermsI [OF aodv_wf oaodv_control_within aodv_simple_labels oaodv_trans, cterms_intros]
|
45 |
+
|
46 |
+
end
|
47 |
+
|
formal/afp/AODV/variants/a_norreqid/A_Quality_Increases.thy
ADDED
@@ -0,0 +1,457 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
(* Title: variants/a_norreqid/Quality_Increases.thy
|
2 |
+
License: BSD 2-Clause. See LICENSE.
|
3 |
+
Author: Timothy Bourke, Inria
|
4 |
+
Author: Peter Höfner, NICTA
|
5 |
+
*)
|
6 |
+
|
7 |
+
section "The quality increases predicate"
|
8 |
+
|
9 |
+
theory A_Quality_Increases
|
10 |
+
imports A_Aodv_Predicates A_Fresher
|
11 |
+
begin
|
12 |
+
|
13 |
+
definition quality_increases :: "state \<Rightarrow> state \<Rightarrow> bool"
|
14 |
+
where "quality_increases \<xi> \<xi>' \<equiv> (\<forall>dip\<in>kD(rt \<xi>). dip \<in> kD(rt \<xi>') \<and> rt \<xi> \<sqsubseteq>\<^bsub>dip\<^esub> rt \<xi>')
|
15 |
+
\<and> (\<forall>dip. sqn (rt \<xi>) dip \<le> sqn (rt \<xi>') dip)"
|
16 |
+
|
17 |
+
lemma quality_increasesI [intro!]:
|
18 |
+
assumes "\<And>dip. dip \<in> kD(rt \<xi>) \<Longrightarrow> dip \<in> kD(rt \<xi>')"
|
19 |
+
and "\<And>dip. \<lbrakk> dip \<in> kD(rt \<xi>); dip \<in> kD(rt \<xi>') \<rbrakk> \<Longrightarrow> rt \<xi> \<sqsubseteq>\<^bsub>dip\<^esub> rt \<xi>'"
|
20 |
+
and "\<And>dip. sqn (rt \<xi>) dip \<le> sqn (rt \<xi>') dip"
|
21 |
+
shows "quality_increases \<xi> \<xi>'"
|
22 |
+
unfolding quality_increases_def using assms by clarsimp
|
23 |
+
|
24 |
+
lemma quality_increasesE [elim]:
|
25 |
+
fixes dip
|
26 |
+
assumes "quality_increases \<xi> \<xi>'"
|
27 |
+
and "dip\<in>kD(rt \<xi>)"
|
28 |
+
and "\<lbrakk> dip \<in> kD(rt \<xi>'); rt \<xi> \<sqsubseteq>\<^bsub>dip\<^esub> rt \<xi>'; sqn (rt \<xi>) dip \<le> sqn (rt \<xi>') dip \<rbrakk> \<Longrightarrow> R dip \<xi> \<xi>'"
|
29 |
+
shows "R dip \<xi> \<xi>'"
|
30 |
+
using assms unfolding quality_increases_def by clarsimp
|
31 |
+
|
32 |
+
lemma quality_increases_rt_fresherD [dest]:
|
33 |
+
fixes ip
|
34 |
+
assumes "quality_increases \<xi> \<xi>'"
|
35 |
+
and "ip\<in>kD(rt \<xi>)"
|
36 |
+
shows "rt \<xi> \<sqsubseteq>\<^bsub>ip\<^esub> rt \<xi>'"
|
37 |
+
using assms by auto
|
38 |
+
|
39 |
+
lemma quality_increases_sqnE [elim]:
|
40 |
+
fixes dip
|
41 |
+
assumes "quality_increases \<xi> \<xi>'"
|
42 |
+
and "sqn (rt \<xi>) dip \<le> sqn (rt \<xi>') dip \<Longrightarrow> R dip \<xi> \<xi>'"
|
43 |
+
shows "R dip \<xi> \<xi>'"
|
44 |
+
using assms unfolding quality_increases_def by clarsimp
|
45 |
+
|
46 |
+
lemma quality_increases_refl [intro, simp]: "quality_increases \<xi> \<xi>"
|
47 |
+
by rule simp_all
|
48 |
+
|
49 |
+
lemma strictly_fresher_quality_increases_right [elim]:
|
50 |
+
fixes \<sigma> \<sigma>' dip
|
51 |
+
assumes "rt (\<sigma> i) \<sqsubset>\<^bsub>dip\<^esub> rt (\<sigma> nhip)"
|
52 |
+
and qinc: "quality_increases (\<sigma> nhip) (\<sigma>' nhip)"
|
53 |
+
and "dip\<in>kD(rt (\<sigma> nhip))"
|
54 |
+
shows "rt (\<sigma> i) \<sqsubset>\<^bsub>dip\<^esub> rt (\<sigma>' nhip)"
|
55 |
+
proof -
|
56 |
+
from qinc have "rt (\<sigma> nhip) \<sqsubseteq>\<^bsub>dip\<^esub> rt (\<sigma>' nhip)" using \<open>dip\<in>kD(rt (\<sigma> nhip))\<close>
|
57 |
+
by auto
|
58 |
+
with \<open>rt (\<sigma> i) \<sqsubset>\<^bsub>dip\<^esub> rt (\<sigma> nhip)\<close> show ?thesis ..
|
59 |
+
qed
|
60 |
+
|
61 |
+
lemma kD_quality_increases [elim]:
|
62 |
+
assumes "i\<in>kD(rt \<xi>)"
|
63 |
+
and "quality_increases \<xi> \<xi>'"
|
64 |
+
shows "i\<in>kD(rt \<xi>')"
|
65 |
+
using assms by auto
|
66 |
+
|
67 |
+
lemma kD_nsqn_quality_increases [elim]:
|
68 |
+
assumes "i\<in>kD(rt \<xi>)"
|
69 |
+
and "quality_increases \<xi> \<xi>'"
|
70 |
+
shows "i\<in>kD(rt \<xi>') \<and> nsqn (rt \<xi>) i \<le> nsqn (rt \<xi>') i"
|
71 |
+
proof -
|
72 |
+
from assms have "i\<in>kD(rt \<xi>')" ..
|
73 |
+
moreover with assms have "rt \<xi> \<sqsubseteq>\<^bsub>i\<^esub> rt \<xi>'" by auto
|
74 |
+
ultimately have "nsqn (rt \<xi>) i \<le> nsqn (rt \<xi>') i"
|
75 |
+
using \<open>i\<in>kD(rt \<xi>)\<close> by - (erule(2) rt_fresher_imp_nsqn_le)
|
76 |
+
with \<open>i\<in>kD(rt \<xi>')\<close> show ?thesis ..
|
77 |
+
qed
|
78 |
+
|
79 |
+
lemma nsqn_quality_increases [elim]:
|
80 |
+
assumes "i\<in>kD(rt \<xi>)"
|
81 |
+
and "quality_increases \<xi> \<xi>'"
|
82 |
+
shows "nsqn (rt \<xi>) i \<le> nsqn (rt \<xi>') i"
|
83 |
+
using assms by (rule kD_nsqn_quality_increases [THEN conjunct2])
|
84 |
+
|
85 |
+
lemma kD_nsqn_quality_increases_trans [elim]:
|
86 |
+
assumes "i\<in>kD(rt \<xi>)"
|
87 |
+
and "s \<le> nsqn (rt \<xi>) i"
|
88 |
+
and "quality_increases \<xi> \<xi>'"
|
89 |
+
shows "i\<in>kD(rt \<xi>') \<and> s \<le> nsqn (rt \<xi>') i"
|
90 |
+
proof
|
91 |
+
from \<open>i\<in>kD(rt \<xi>)\<close> and \<open>quality_increases \<xi> \<xi>'\<close> show "i\<in>kD(rt \<xi>')" ..
|
92 |
+
next
|
93 |
+
from \<open>i\<in>kD(rt \<xi>)\<close> and \<open>quality_increases \<xi> \<xi>'\<close> have "nsqn (rt \<xi>) i \<le> nsqn (rt \<xi>') i" ..
|
94 |
+
with \<open>s \<le> nsqn (rt \<xi>) i\<close> show "s \<le> nsqn (rt \<xi>') i" by (rule le_trans)
|
95 |
+
qed
|
96 |
+
|
97 |
+
lemma nsqn_quality_increases_nsqn_lt_lt [elim]:
|
98 |
+
assumes "i\<in>kD(rt \<xi>)"
|
99 |
+
and "quality_increases \<xi> \<xi>'"
|
100 |
+
and "s < nsqn (rt \<xi>) i"
|
101 |
+
shows "s < nsqn (rt \<xi>') i"
|
102 |
+
proof -
|
103 |
+
from assms(1-2) have "nsqn (rt \<xi>) i \<le> nsqn (rt \<xi>') i" ..
|
104 |
+
with \<open>s < nsqn (rt \<xi>) i\<close> show "s < nsqn (rt \<xi>') i" by simp
|
105 |
+
qed
|
106 |
+
|
107 |
+
lemma nsqn_quality_increases_dhops [elim]:
|
108 |
+
assumes "i\<in>kD(rt \<xi>)"
|
109 |
+
and "quality_increases \<xi> \<xi>'"
|
110 |
+
and "nsqn (rt \<xi>) i = nsqn (rt \<xi>') i"
|
111 |
+
shows "the (dhops (rt \<xi>) i) \<ge> the (dhops (rt \<xi>') i)"
|
112 |
+
using assms unfolding quality_increases_def
|
113 |
+
by (clarsimp) (drule(1) bspec, clarsimp simp: rt_fresher_def2)
|
114 |
+
|
115 |
+
lemma nsqn_quality_increases_nsqn_eq_le [elim]:
|
116 |
+
assumes "i\<in>kD(rt \<xi>)"
|
117 |
+
and "quality_increases \<xi> \<xi>'"
|
118 |
+
and "s = nsqn (rt \<xi>) i"
|
119 |
+
shows "s < nsqn (rt \<xi>') i \<or> (s = nsqn (rt \<xi>') i \<and> the (dhops (rt \<xi>) i) \<ge> the (dhops (rt \<xi>') i))"
|
120 |
+
using assms by (metis nat_less_le nsqn_quality_increases nsqn_quality_increases_dhops)
|
121 |
+
|
122 |
+
lemma quality_increases_rreq_rrep_props [elim]:
|
123 |
+
fixes sn ip hops sip
|
124 |
+
assumes qinc: "quality_increases (\<sigma> sip) (\<sigma>' sip)"
|
125 |
+
and "1 \<le> sn"
|
126 |
+
and *: "ip\<in>kD(rt (\<sigma> sip)) \<and> sn \<le> nsqn (rt (\<sigma> sip)) ip
|
127 |
+
\<and> (nsqn (rt (\<sigma> sip)) ip = sn
|
128 |
+
\<longrightarrow> (the (dhops (rt (\<sigma> sip)) ip) \<le> hops
|
129 |
+
\<or> the (flag (rt (\<sigma> sip)) ip) = inv))"
|
130 |
+
shows "ip\<in>kD(rt (\<sigma>' sip)) \<and> sn \<le> nsqn (rt (\<sigma>' sip)) ip
|
131 |
+
\<and> (nsqn (rt (\<sigma>' sip)) ip = sn
|
132 |
+
\<longrightarrow> (the (dhops (rt (\<sigma>' sip)) ip) \<le> hops
|
133 |
+
\<or> the (flag (rt (\<sigma>' sip)) ip) = inv))"
|
134 |
+
(is "_ \<and> ?nsqnafter")
|
135 |
+
proof -
|
136 |
+
from * obtain "ip\<in>kD(rt (\<sigma> sip))" and "sn \<le> nsqn (rt (\<sigma> sip)) ip" by auto
|
137 |
+
|
138 |
+
from \<open>quality_increases (\<sigma> sip) (\<sigma>' sip)\<close>
|
139 |
+
have "sqn (rt (\<sigma> sip)) ip \<le> sqn (rt (\<sigma>' sip)) ip" ..
|
140 |
+
from \<open>quality_increases (\<sigma> sip) (\<sigma>' sip)\<close> and \<open>ip\<in>kD (rt (\<sigma> sip))\<close>
|
141 |
+
have "ip\<in>kD (rt (\<sigma>' sip))" ..
|
142 |
+
|
143 |
+
from \<open>sn \<le> nsqn (rt (\<sigma> sip)) ip\<close> have ?nsqnafter
|
144 |
+
proof
|
145 |
+
assume "sn < nsqn (rt (\<sigma> sip)) ip"
|
146 |
+
also from \<open>ip\<in>kD(rt (\<sigma> sip))\<close> and \<open>quality_increases (\<sigma> sip) (\<sigma>' sip)\<close>
|
147 |
+
have "... \<le> nsqn (rt (\<sigma>' sip)) ip" ..
|
148 |
+
finally have "sn < nsqn (rt (\<sigma>' sip)) ip" .
|
149 |
+
thus ?thesis by simp
|
150 |
+
next
|
151 |
+
assume "sn = nsqn (rt (\<sigma> sip)) ip"
|
152 |
+
with \<open>ip\<in>kD(rt (\<sigma> sip))\<close> and \<open>quality_increases (\<sigma> sip) (\<sigma>' sip)\<close>
|
153 |
+
have "sn < nsqn (rt (\<sigma>' sip)) ip
|
154 |
+
\<or> (sn = nsqn (rt (\<sigma>' sip)) ip
|
155 |
+
\<and> the (dhops (rt (\<sigma>' sip)) ip) \<le> the (dhops (rt (\<sigma> sip)) ip))" ..
|
156 |
+
hence "sn < nsqn (rt (\<sigma>' sip)) ip
|
157 |
+
\<or> (nsqn (rt (\<sigma>' sip)) ip = sn \<and> (the (dhops (rt (\<sigma>' sip)) ip) \<le> hops
|
158 |
+
\<or> the (flag (rt (\<sigma>' sip)) ip) = inv))"
|
159 |
+
proof
|
160 |
+
assume "sn < nsqn (rt (\<sigma>' sip)) ip" thus ?thesis ..
|
161 |
+
next
|
162 |
+
assume "sn = nsqn (rt (\<sigma>' sip)) ip
|
163 |
+
\<and> the (dhops (rt (\<sigma> sip)) ip) \<ge> the (dhops (rt (\<sigma>' sip)) ip)"
|
164 |
+
hence "sn = nsqn (rt (\<sigma>' sip)) ip"
|
165 |
+
and "the (dhops (rt (\<sigma>' sip)) ip) \<le> the (dhops (rt (\<sigma> sip)) ip)" by auto
|
166 |
+
|
167 |
+
from * and \<open>sn = nsqn (rt (\<sigma> sip)) ip\<close> have "the (dhops (rt (\<sigma> sip)) ip) \<le> hops
|
168 |
+
\<or> the (flag (rt (\<sigma> sip)) ip) = inv"
|
169 |
+
by simp
|
170 |
+
thus ?thesis
|
171 |
+
proof
|
172 |
+
assume "the (dhops (rt (\<sigma> sip)) ip) \<le> hops"
|
173 |
+
with \<open>the (dhops (rt (\<sigma>' sip)) ip) \<le> the (dhops (rt (\<sigma> sip)) ip)\<close>
|
174 |
+
have "the (dhops (rt (\<sigma>' sip)) ip) \<le> hops" by simp
|
175 |
+
with \<open>sn = nsqn (rt (\<sigma>' sip)) ip\<close> show ?thesis by simp
|
176 |
+
next
|
177 |
+
assume "the (flag (rt (\<sigma> sip)) ip) = inv"
|
178 |
+
with \<open>ip\<in>kD(rt (\<sigma> sip))\<close> have "nsqn (rt (\<sigma> sip)) ip = sqn (rt (\<sigma> sip)) ip - 1" ..
|
179 |
+
|
180 |
+
with \<open>sn \<ge> 1\<close> and \<open>sn = nsqn (rt (\<sigma> sip)) ip\<close>
|
181 |
+
have "sqn (rt (\<sigma> sip)) ip > 1" by simp
|
182 |
+
|
183 |
+
from \<open>ip\<in>kD(rt (\<sigma>' sip))\<close> show ?thesis
|
184 |
+
proof (rule vD_or_iD)
|
185 |
+
assume "ip\<in>iD(rt (\<sigma>' sip))"
|
186 |
+
hence "the (flag (rt (\<sigma>' sip)) ip) = inv" ..
|
187 |
+
with \<open>sn = nsqn (rt (\<sigma>' sip)) ip\<close> show ?thesis
|
188 |
+
by simp
|
189 |
+
next
|
190 |
+
(* the tricky case: sn = nsqn (rt (\<sigma>' sip)) ip
|
191 |
+
\<and> ip\<in>iD(rt (\<sigma> sip))
|
192 |
+
\<and> ip\<in>vD(rt (\<sigma>' sip)) *)
|
193 |
+
assume "ip\<in>vD(rt (\<sigma>' sip))"
|
194 |
+
hence "nsqn (rt (\<sigma>' sip)) ip = sqn (rt (\<sigma>' sip)) ip" ..
|
195 |
+
with \<open>sqn (rt (\<sigma> sip)) ip \<le> sqn (rt (\<sigma>' sip)) ip\<close>
|
196 |
+
have "nsqn (rt (\<sigma>' sip)) ip \<ge> sqn (rt (\<sigma> sip)) ip" by simp
|
197 |
+
|
198 |
+
with \<open>sqn (rt (\<sigma> sip)) ip > 1\<close>
|
199 |
+
have "nsqn (rt (\<sigma>' sip)) ip > sqn (rt (\<sigma> sip)) ip - 1" by simp
|
200 |
+
with \<open>nsqn (rt (\<sigma> sip)) ip = sqn (rt (\<sigma> sip)) ip - 1\<close>
|
201 |
+
have "nsqn (rt (\<sigma>' sip)) ip > nsqn (rt (\<sigma> sip)) ip" by simp
|
202 |
+
with \<open>sn = nsqn (rt (\<sigma> sip)) ip\<close> have "nsqn (rt (\<sigma>' sip)) ip > sn"
|
203 |
+
by simp
|
204 |
+
thus ?thesis ..
|
205 |
+
qed
|
206 |
+
qed
|
207 |
+
qed
|
208 |
+
thus ?thesis by (metis (mono_tags) le_cases not_le)
|
209 |
+
qed
|
210 |
+
with \<open>ip\<in>kD (rt (\<sigma>' sip))\<close> show "ip\<in>kD (rt (\<sigma>' sip)) \<and> ?nsqnafter" ..
|
211 |
+
qed
|
212 |
+
|
213 |
+
lemma quality_increases_rreq_rrep_props':
|
214 |
+
fixes sn ip hops sip
|
215 |
+
assumes "\<forall>j. quality_increases (\<sigma> j) (\<sigma>' j)"
|
216 |
+
and "1 \<le> sn"
|
217 |
+
and *: "ip\<in>kD(rt (\<sigma> sip)) \<and> sn \<le> nsqn (rt (\<sigma> sip)) ip
|
218 |
+
\<and> (nsqn (rt (\<sigma> sip)) ip = sn
|
219 |
+
\<longrightarrow> (the (dhops (rt (\<sigma> sip)) ip) \<le> hops
|
220 |
+
\<or> the (flag (rt (\<sigma> sip)) ip) = inv))"
|
221 |
+
shows "ip\<in>kD(rt (\<sigma>' sip)) \<and> sn \<le> nsqn (rt (\<sigma>' sip)) ip
|
222 |
+
\<and> (nsqn (rt (\<sigma>' sip)) ip = sn
|
223 |
+
\<longrightarrow> (the (dhops (rt (\<sigma>' sip)) ip) \<le> hops
|
224 |
+
\<or> the (flag (rt (\<sigma>' sip)) ip) = inv))"
|
225 |
+
proof -
|
226 |
+
from assms(1) have "quality_increases (\<sigma> sip) (\<sigma>' sip)" ..
|
227 |
+
thus ?thesis using assms(2-3) by (rule quality_increases_rreq_rrep_props)
|
228 |
+
qed
|
229 |
+
|
230 |
+
lemma rteq_quality_increases:
|
231 |
+
assumes "\<forall>j. j \<noteq> i \<longrightarrow> quality_increases (\<sigma> j) (\<sigma>' j)"
|
232 |
+
and "rt (\<sigma>' i) = rt (\<sigma> i)"
|
233 |
+
shows "\<forall>j. quality_increases (\<sigma> j) (\<sigma>' j)"
|
234 |
+
using assms by clarsimp (metis order_refl quality_increasesI rt_fresher_refl)
|
235 |
+
|
236 |
+
definition msg_fresh :: "(ip \<Rightarrow> state) \<Rightarrow> msg \<Rightarrow> bool"
|
237 |
+
where "msg_fresh \<sigma> m \<equiv>
|
238 |
+
case m of Rreq hopsc _ _ _ oipc osnc sipc \<Rightarrow> osnc \<ge> 1 \<and> (sipc \<noteq> oipc \<longrightarrow>
|
239 |
+
oipc\<in>kD(rt (\<sigma> sipc)) \<and> nsqn (rt (\<sigma> sipc)) oipc \<ge> osnc
|
240 |
+
\<and> (nsqn (rt (\<sigma> sipc)) oipc = osnc
|
241 |
+
\<longrightarrow> (hopsc \<ge> the (dhops (rt (\<sigma> sipc)) oipc)
|
242 |
+
\<or> the (flag (rt (\<sigma> sipc)) oipc) = inv)))
|
243 |
+
| Rrep hopsc dipc dsnc _ sipc \<Rightarrow> dsnc \<ge> 1 \<and> (sipc \<noteq> dipc \<longrightarrow>
|
244 |
+
dipc\<in>kD(rt (\<sigma> sipc)) \<and> nsqn (rt (\<sigma> sipc)) dipc \<ge> dsnc
|
245 |
+
\<and> (nsqn (rt (\<sigma> sipc)) dipc = dsnc
|
246 |
+
\<longrightarrow> (hopsc \<ge> the (dhops (rt (\<sigma> sipc)) dipc)
|
247 |
+
\<or> the (flag (rt (\<sigma> sipc)) dipc) = inv)))
|
248 |
+
| Rerr destsc sipc \<Rightarrow> (\<forall>ripc\<in>dom(destsc). (ripc\<in>kD(rt (\<sigma> sipc))
|
249 |
+
\<and> the (destsc ripc) - 1 \<le> nsqn (rt (\<sigma> sipc)) ripc))
|
250 |
+
| _ \<Rightarrow> True"
|
251 |
+
|
252 |
+
lemma msg_fresh [simp]:
|
253 |
+
"\<And>hops dip dsn dsk oip osn sip.
|
254 |
+
msg_fresh \<sigma> (Rreq hops dip dsn dsk oip osn sip) =
|
255 |
+
(osn \<ge> 1 \<and> (sip \<noteq> oip \<longrightarrow> oip\<in>kD(rt (\<sigma> sip))
|
256 |
+
\<and> nsqn (rt (\<sigma> sip)) oip \<ge> osn
|
257 |
+
\<and> (nsqn (rt (\<sigma> sip)) oip = osn
|
258 |
+
\<longrightarrow> (hops \<ge> the (dhops (rt (\<sigma> sip)) oip)
|
259 |
+
\<or> the (flag (rt (\<sigma> sip)) oip) = inv))))"
|
260 |
+
"\<And>hops dip dsn oip sip. msg_fresh \<sigma> (Rrep hops dip dsn oip sip) =
|
261 |
+
(dsn \<ge> 1 \<and> (sip \<noteq> dip \<longrightarrow> dip\<in>kD(rt (\<sigma> sip))
|
262 |
+
\<and> nsqn (rt (\<sigma> sip)) dip \<ge> dsn
|
263 |
+
\<and> (nsqn (rt (\<sigma> sip)) dip = dsn
|
264 |
+
\<longrightarrow> (hops \<ge> the (dhops (rt (\<sigma> sip)) dip))
|
265 |
+
\<or> the (flag (rt (\<sigma> sip)) dip) = inv)))"
|
266 |
+
"\<And>dests sip. msg_fresh \<sigma> (Rerr dests sip) =
|
267 |
+
(\<forall>ripc\<in>dom(dests). (ripc\<in>kD(rt (\<sigma> sip))
|
268 |
+
\<and> the (dests ripc) - 1 \<le> nsqn (rt (\<sigma> sip)) ripc))"
|
269 |
+
"\<And>d dip. msg_fresh \<sigma> (Newpkt d dip) = True"
|
270 |
+
"\<And>d dip sip. msg_fresh \<sigma> (Pkt d dip sip) = True"
|
271 |
+
unfolding msg_fresh_def by simp_all
|
272 |
+
|
273 |
+
lemma msg_fresh_inc_sn [simp, elim]:
|
274 |
+
"msg_fresh \<sigma> m \<Longrightarrow> rreq_rrep_sn m"
|
275 |
+
by (cases m) simp_all
|
276 |
+
|
277 |
+
lemma recv_msg_fresh_inc_sn [simp, elim]:
|
278 |
+
"orecvmsg (msg_fresh) \<sigma> m \<Longrightarrow> recvmsg rreq_rrep_sn m"
|
279 |
+
by (cases m) simp_all
|
280 |
+
|
281 |
+
lemma rreq_nsqn_is_fresh [simp]:
|
282 |
+
fixes \<sigma> msg hops dip dsn dsk oip osn sip
|
283 |
+
assumes "rreq_rrep_fresh (rt (\<sigma> sip)) (Rreq hops dip dsn dsk oip osn sip)"
|
284 |
+
and "rreq_rrep_sn (Rreq hops dip dsn dsk oip osn sip)"
|
285 |
+
shows "msg_fresh \<sigma> (Rreq hops dip dsn dsk oip osn sip)"
|
286 |
+
(is "msg_fresh \<sigma> ?msg")
|
287 |
+
proof -
|
288 |
+
let ?rt = "rt (\<sigma> sip)"
|
289 |
+
from assms(2) have "1 \<le> osn" by simp
|
290 |
+
thus ?thesis
|
291 |
+
unfolding msg_fresh_def
|
292 |
+
proof (simp only: msg.case, intro conjI impI)
|
293 |
+
assume "sip \<noteq> oip"
|
294 |
+
with assms(1) show "oip \<in> kD(?rt)" by simp
|
295 |
+
next
|
296 |
+
assume "sip \<noteq> oip"
|
297 |
+
and "nsqn ?rt oip = osn"
|
298 |
+
show "the (dhops ?rt oip) \<le> hops \<or> the (flag ?rt oip) = inv"
|
299 |
+
proof (cases "oip\<in>vD(?rt)")
|
300 |
+
assume "oip\<in>vD(?rt)"
|
301 |
+
hence "nsqn ?rt oip = sqn ?rt oip" ..
|
302 |
+
with \<open>nsqn ?rt oip = osn\<close> have "sqn ?rt oip = osn" by simp
|
303 |
+
with assms(1) and \<open>sip \<noteq> oip\<close> have "the (dhops ?rt oip) \<le> hops"
|
304 |
+
by simp
|
305 |
+
thus ?thesis ..
|
306 |
+
next
|
307 |
+
assume "oip\<notin>vD(?rt)"
|
308 |
+
moreover from assms(1) and \<open>sip \<noteq> oip\<close> have "oip\<in>kD(?rt)" by simp
|
309 |
+
ultimately have "oip\<in>iD(?rt)" by auto
|
310 |
+
hence "the (flag ?rt oip) = inv" ..
|
311 |
+
thus ?thesis ..
|
312 |
+
qed
|
313 |
+
next
|
314 |
+
assume "sip \<noteq> oip"
|
315 |
+
with assms(1) have "osn \<le> sqn ?rt oip" by auto
|
316 |
+
thus "osn \<le> nsqn (rt (\<sigma> sip)) oip"
|
317 |
+
proof (rule nat_le_eq_or_lt)
|
318 |
+
assume "osn < sqn ?rt oip"
|
319 |
+
hence "osn \<le> sqn ?rt oip - 1" by simp
|
320 |
+
also have "... \<le> nsqn ?rt oip" by (rule sqn_nsqn)
|
321 |
+
finally show "osn \<le> nsqn ?rt oip" .
|
322 |
+
next
|
323 |
+
assume "osn = sqn ?rt oip"
|
324 |
+
with assms(1) and \<open>sip \<noteq> oip\<close> have "oip\<in>kD(?rt)"
|
325 |
+
and "the (flag ?rt oip) = val"
|
326 |
+
by auto
|
327 |
+
hence "nsqn ?rt oip = sqn ?rt oip" ..
|
328 |
+
with \<open>osn = sqn ?rt oip\<close> have "nsqn ?rt oip = osn" by simp
|
329 |
+
thus "osn \<le> nsqn ?rt oip" by simp
|
330 |
+
qed
|
331 |
+
qed simp
|
332 |
+
qed
|
333 |
+
|
334 |
+
lemma rrep_nsqn_is_fresh [simp]:
|
335 |
+
fixes \<sigma> msg hops dip dsn oip sip
|
336 |
+
assumes "rreq_rrep_fresh (rt (\<sigma> sip)) (Rrep hops dip dsn oip sip)"
|
337 |
+
and "rreq_rrep_sn (Rrep hops dip dsn oip sip)"
|
338 |
+
shows "msg_fresh \<sigma> (Rrep hops dip dsn oip sip)"
|
339 |
+
(is "msg_fresh \<sigma> ?msg")
|
340 |
+
proof -
|
341 |
+
let ?rt = "rt (\<sigma> sip)"
|
342 |
+
from assms have "sip \<noteq> dip \<longrightarrow> dip\<in>kD(?rt) \<and> sqn ?rt dip = dsn \<and> the (flag ?rt dip) = val"
|
343 |
+
by simp
|
344 |
+
hence "sip \<noteq> dip \<longrightarrow> dip\<in>kD(?rt) \<and> nsqn ?rt dip \<ge> dsn"
|
345 |
+
by clarsimp
|
346 |
+
with assms show "msg_fresh \<sigma> ?msg"
|
347 |
+
by clarsimp
|
348 |
+
qed
|
349 |
+
|
350 |
+
lemma rerr_nsqn_is_fresh [simp]:
|
351 |
+
fixes \<sigma> msg dests sip
|
352 |
+
assumes "rerr_invalid (rt (\<sigma> sip)) (Rerr dests sip)"
|
353 |
+
shows "msg_fresh \<sigma> (Rerr dests sip)"
|
354 |
+
(is "msg_fresh \<sigma> ?msg")
|
355 |
+
proof -
|
356 |
+
let ?rt = "rt (\<sigma> sip)"
|
357 |
+
from assms have *: "(\<forall>rip\<in>dom(dests). (rip\<in>iD(rt (\<sigma> sip))
|
358 |
+
\<and> the (dests rip) = sqn (rt (\<sigma> sip)) rip))"
|
359 |
+
by clarsimp
|
360 |
+
have "(\<forall>rip\<in>dom(dests). (rip\<in>kD(rt (\<sigma> sip))
|
361 |
+
\<and> the (dests rip) - 1 \<le> nsqn (rt (\<sigma> sip)) rip))"
|
362 |
+
proof
|
363 |
+
fix rip
|
364 |
+
assume "rip \<in> dom dests"
|
365 |
+
with * have "rip\<in>iD(rt (\<sigma> sip))" and "the (dests rip) = sqn (rt (\<sigma> sip)) rip"
|
366 |
+
by auto
|
367 |
+
|
368 |
+
from this(2) have "the (dests rip) - 1 = sqn (rt (\<sigma> sip)) rip - 1" by simp
|
369 |
+
also have "... \<le> nsqn (rt (\<sigma> sip)) rip" by (rule sqn_nsqn)
|
370 |
+
finally have "the (dests rip) - 1 \<le> nsqn (rt (\<sigma> sip)) rip" .
|
371 |
+
|
372 |
+
with \<open>rip\<in>iD(rt (\<sigma> sip))\<close>
|
373 |
+
show "rip\<in>kD(rt (\<sigma> sip)) \<and> the (dests rip) - 1 \<le> nsqn (rt (\<sigma> sip)) rip"
|
374 |
+
by clarsimp
|
375 |
+
qed
|
376 |
+
thus "msg_fresh \<sigma> ?msg"
|
377 |
+
by simp
|
378 |
+
qed
|
379 |
+
|
380 |
+
lemma quality_increases_msg_fresh [elim]:
|
381 |
+
assumes qinc: "\<forall>j. quality_increases (\<sigma> j) (\<sigma>' j)"
|
382 |
+
and "msg_fresh \<sigma> m"
|
383 |
+
shows "msg_fresh \<sigma>' m"
|
384 |
+
using assms(2)
|
385 |
+
proof (cases m)
|
386 |
+
fix hops rreqid dip dsn dsk oip osn sip
|
387 |
+
assume [simp]: "m = Rreq hops dip dsn dsk oip osn sip"
|
388 |
+
and "msg_fresh \<sigma> m"
|
389 |
+
then have "osn \<ge> 1" and "sip = oip \<or> (oip\<in>kD(rt (\<sigma> sip)) \<and> osn \<le> nsqn (rt (\<sigma> sip)) oip
|
390 |
+
\<and> (nsqn (rt (\<sigma> sip)) oip = osn
|
391 |
+
\<longrightarrow> (the (dhops (rt (\<sigma> sip)) oip) \<le> hops
|
392 |
+
\<or> the (flag (rt (\<sigma> sip)) oip) = inv)))"
|
393 |
+
by auto
|
394 |
+
from this(2) show ?thesis
|
395 |
+
proof
|
396 |
+
assume "sip = oip" with \<open>osn \<ge> 1\<close> show ?thesis by simp
|
397 |
+
next
|
398 |
+
assume "oip\<in>kD(rt (\<sigma> sip)) \<and> osn \<le> nsqn (rt (\<sigma> sip)) oip
|
399 |
+
\<and> (nsqn (rt (\<sigma> sip)) oip = osn
|
400 |
+
\<longrightarrow> (the (dhops (rt (\<sigma> sip)) oip) \<le> hops
|
401 |
+
\<or> the (flag (rt (\<sigma> sip)) oip) = inv))"
|
402 |
+
moreover from qinc have "quality_increases (\<sigma> sip) (\<sigma>' sip)" ..
|
403 |
+
ultimately have "oip\<in>kD(rt (\<sigma>' sip)) \<and> osn \<le> nsqn (rt (\<sigma>' sip)) oip
|
404 |
+
\<and> (nsqn (rt (\<sigma>' sip)) oip = osn
|
405 |
+
\<longrightarrow> (the (dhops (rt (\<sigma>' sip)) oip) \<le> hops
|
406 |
+
\<or> the (flag (rt (\<sigma>' sip)) oip) = inv))"
|
407 |
+
using \<open>osn \<ge> 1\<close> by (rule quality_increases_rreq_rrep_props [rotated 2])
|
408 |
+
with \<open>osn \<ge> 1\<close> show "msg_fresh \<sigma>' m"
|
409 |
+
by (clarsimp)
|
410 |
+
qed
|
411 |
+
next
|
412 |
+
fix hops dip dsn oip sip
|
413 |
+
assume [simp]: "m = Rrep hops dip dsn oip sip"
|
414 |
+
and "msg_fresh \<sigma> m"
|
415 |
+
then have "dsn \<ge> 1" and "sip = dip \<or> (dip\<in>kD(rt (\<sigma> sip)) \<and> dsn \<le> nsqn (rt (\<sigma> sip)) dip
|
416 |
+
\<and> (nsqn (rt (\<sigma> sip)) dip = dsn
|
417 |
+
\<longrightarrow> (the (dhops (rt (\<sigma> sip)) dip) \<le> hops
|
418 |
+
\<or> the (flag (rt (\<sigma> sip)) dip) = inv)))"
|
419 |
+
by auto
|
420 |
+
from this(2) show "?thesis"
|
421 |
+
proof
|
422 |
+
assume "sip = dip" with \<open>dsn \<ge> 1\<close> show ?thesis by simp
|
423 |
+
next
|
424 |
+
assume "dip\<in>kD(rt (\<sigma> sip)) \<and> dsn \<le> nsqn (rt (\<sigma> sip)) dip
|
425 |
+
\<and> (nsqn (rt (\<sigma> sip)) dip = dsn
|
426 |
+
\<longrightarrow> (the (dhops (rt (\<sigma> sip)) dip) \<le> hops
|
427 |
+
\<or> the (flag (rt (\<sigma> sip)) dip) = inv))"
|
428 |
+
moreover from qinc have "quality_increases (\<sigma> sip) (\<sigma>' sip)" ..
|
429 |
+
ultimately have "dip\<in>kD(rt (\<sigma>' sip)) \<and> dsn \<le> nsqn (rt (\<sigma>' sip)) dip
|
430 |
+
\<and> (nsqn (rt (\<sigma>' sip)) dip = dsn
|
431 |
+
\<longrightarrow> (the (dhops (rt (\<sigma>' sip)) dip) \<le> hops
|
432 |
+
\<or> the (flag (rt (\<sigma>' sip)) dip) = inv))"
|
433 |
+
using \<open>dsn \<ge> 1\<close> by (rule quality_increases_rreq_rrep_props [rotated 2])
|
434 |
+
with \<open>dsn \<ge> 1\<close> show "msg_fresh \<sigma>' m"
|
435 |
+
by clarsimp
|
436 |
+
qed
|
437 |
+
next
|
438 |
+
fix dests sip
|
439 |
+
assume [simp]: "m = Rerr dests sip"
|
440 |
+
and "msg_fresh \<sigma> m"
|
441 |
+
then have *: "\<forall>rip\<in>dom(dests). rip\<in>kD(rt (\<sigma> sip))
|
442 |
+
\<and> the (dests rip) - 1 \<le> nsqn (rt (\<sigma> sip)) rip"
|
443 |
+
by simp
|
444 |
+
have "\<forall>rip\<in>dom(dests). rip\<in>kD(rt (\<sigma>' sip))
|
445 |
+
\<and> the (dests rip) - 1 \<le> nsqn (rt (\<sigma>' sip)) rip"
|
446 |
+
proof
|
447 |
+
fix rip
|
448 |
+
assume "rip\<in>dom(dests)"
|
449 |
+
with * have "rip\<in>kD(rt (\<sigma> sip))" and "the (dests rip) - 1 \<le> nsqn (rt (\<sigma> sip)) rip"
|
450 |
+
by - (drule(1) bspec, clarsimp)+
|
451 |
+
moreover from qinc have "quality_increases (\<sigma> sip) (\<sigma>' sip)" by simp
|
452 |
+
ultimately show "rip\<in>kD(rt (\<sigma>' sip)) \<and> the (dests rip) - 1 \<le> nsqn (rt (\<sigma>' sip)) rip" ..
|
453 |
+
qed
|
454 |
+
thus ?thesis by simp
|
455 |
+
qed simp_all
|
456 |
+
|
457 |
+
end
|
formal/afp/AODV/variants/a_norreqid/A_Seq_Invariants.thy
ADDED
@@ -0,0 +1,643 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
(* Title: variants/a_norreqid/Seq_Invariants.thy
|
2 |
+
License: BSD 2-Clause. See LICENSE.
|
3 |
+
Author: Timothy Bourke, Inria
|
4 |
+
*)
|
5 |
+
|
6 |
+
section "Invariant proofs on individual processes"
|
7 |
+
|
8 |
+
theory A_Seq_Invariants
|
9 |
+
imports AWN.Invariants A_Aodv A_Aodv_Data A_Aodv_Predicates A_Fresher
|
10 |
+
|
11 |
+
begin
|
12 |
+
|
13 |
+
text \<open>
|
14 |
+
The proposition numbers are taken from the December 2013 version of
|
15 |
+
the Fehnker et al technical report.
|
16 |
+
\<close>
|
17 |
+
|
18 |
+
text \<open>Proposition 7.2\<close>
|
19 |
+
|
20 |
+
lemma sequence_number_increases:
|
21 |
+
"paodv i \<TTurnstile>\<^sub>A onll \<Gamma>\<^sub>A\<^sub>O\<^sub>D\<^sub>V (\<lambda>((\<xi>, _), _, (\<xi>', _)). sn \<xi> \<le> sn \<xi>')"
|
22 |
+
by inv_cterms
|
23 |
+
|
24 |
+
lemma sequence_number_one_or_bigger:
|
25 |
+
"paodv i \<TTurnstile> onl \<Gamma>\<^sub>A\<^sub>O\<^sub>D\<^sub>V (\<lambda>(\<xi>, _). 1 \<le> sn \<xi>)"
|
26 |
+
by (rule onll_step_to_invariantI [OF sequence_number_increases])
|
27 |
+
(auto simp: \<sigma>\<^sub>A\<^sub>O\<^sub>D\<^sub>V_def)
|
28 |
+
|
29 |
+
text \<open>We can get rid of the onl/onll if desired...\<close>
|
30 |
+
|
31 |
+
lemma sequence_number_increases':
|
32 |
+
"paodv i \<TTurnstile>\<^sub>A (\<lambda>((\<xi>, _), _, (\<xi>', _)). sn \<xi> \<le> sn \<xi>')"
|
33 |
+
by (rule step_invariant_weakenE [OF sequence_number_increases]) (auto dest!: onllD)
|
34 |
+
|
35 |
+
lemma sequence_number_one_or_bigger':
|
36 |
+
"paodv i \<TTurnstile> (\<lambda>(\<xi>, _). 1 \<le> sn \<xi>)"
|
37 |
+
by (rule invariant_weakenE [OF sequence_number_one_or_bigger]) auto
|
38 |
+
|
39 |
+
lemma sip_in_kD:
|
40 |
+
"paodv i \<TTurnstile> onl \<Gamma>\<^sub>A\<^sub>O\<^sub>D\<^sub>V (\<lambda>(\<xi>, l). l \<in> ({PAodv-:7} \<union> {PAodv-:5} \<union> {PRrep-:0..PRrep-:1}
|
41 |
+
\<union> {PRreq-:0..PRreq-:3}) \<longrightarrow> sip \<xi> \<in> kD (rt \<xi>))"
|
42 |
+
by inv_cterms
|
43 |
+
|
44 |
+
lemma rrep_1_update_changes:
|
45 |
+
"paodv i \<TTurnstile> onl \<Gamma>\<^sub>A\<^sub>O\<^sub>D\<^sub>V (\<lambda>(\<xi>, l). (l = PRrep-:1 \<longrightarrow>
|
46 |
+
rt \<xi> \<noteq> update (rt \<xi>) (dip \<xi>) (dsn \<xi>, kno, val, hops \<xi> + 1, sip \<xi>, {})))"
|
47 |
+
by inv_cterms
|
48 |
+
|
49 |
+
lemma addpreRT_partly_welldefined:
|
50 |
+
"paodv i \<TTurnstile>
|
51 |
+
onl \<Gamma>\<^sub>A\<^sub>O\<^sub>D\<^sub>V (\<lambda>(\<xi>, l). (l \<in> {PRreq-:16..PRreq-:18} \<union> {PRrep-:2..PRrep-:6} \<longrightarrow> dip \<xi> \<in> kD (rt \<xi>))
|
52 |
+
\<and> (l \<in> {PRreq-:3..PRreq-:17} \<longrightarrow> oip \<xi> \<in> kD (rt \<xi>)))"
|
53 |
+
by inv_cterms
|
54 |
+
|
55 |
+
text \<open>Proposition 7.38\<close>
|
56 |
+
|
57 |
+
lemma includes_nhip:
|
58 |
+
"paodv i \<TTurnstile> onl \<Gamma>\<^sub>A\<^sub>O\<^sub>D\<^sub>V (\<lambda>(\<xi>, l). \<forall>dip\<in>kD(rt \<xi>). the (nhop (rt \<xi>) dip)\<in>kD(rt \<xi>))"
|
59 |
+
proof -
|
60 |
+
{ fix ip and \<xi> \<xi>' :: state
|
61 |
+
assume "\<forall>dip\<in>kD (rt \<xi>). the (nhop (rt \<xi>) dip) \<in> kD (rt \<xi>)"
|
62 |
+
and "\<xi>' = \<xi>\<lparr>rt := update (rt \<xi>) ip (0, unk, val, Suc 0, ip, {})\<rparr>"
|
63 |
+
hence "\<forall>dip\<in>kD (rt \<xi>).
|
64 |
+
the (nhop (update (rt \<xi>) ip (0, unk, val, Suc 0, ip, {})) dip) = ip
|
65 |
+
\<or> the (nhop (update (rt \<xi>) ip (0, unk, val, Suc 0, ip, {})) dip) \<in> kD (rt \<xi>)"
|
66 |
+
by clarsimp (metis nhop_update_unk_val update_another)
|
67 |
+
} note one_hop = this
|
68 |
+
{ fix ip sip sn hops and \<xi> \<xi>' :: state
|
69 |
+
assume "\<forall>dip\<in>kD (rt \<xi>). the (nhop (rt \<xi>) dip) \<in> kD (rt \<xi>)"
|
70 |
+
and "\<xi>' = \<xi>\<lparr>rt := update (rt \<xi>) ip (sn, kno, val, Suc hops, sip, {})\<rparr>"
|
71 |
+
and "sip \<in> kD (rt \<xi>)"
|
72 |
+
hence "(the (nhop (update (rt \<xi>) ip (sn, kno, val, Suc hops, sip, {})) ip) = ip
|
73 |
+
\<or> the (nhop (update (rt \<xi>) ip (sn, kno, val, Suc hops, sip, {})) ip) \<in> kD (rt \<xi>))
|
74 |
+
\<and> (\<forall>dip\<in>kD (rt \<xi>).
|
75 |
+
the (nhop (update (rt \<xi>) ip (sn, kno, val, Suc hops, sip, {})) dip) = ip
|
76 |
+
\<or> the (nhop (update (rt \<xi>) ip (sn, kno, val, Suc hops, sip, {})) dip) \<in> kD (rt \<xi>))"
|
77 |
+
by (metis kD_update_unchanged nhop_update_changed update_another)
|
78 |
+
} note nhip_is_sip = this
|
79 |
+
show ?thesis
|
80 |
+
by (inv_cterms inv add: onl_invariant_sterms [OF aodv_wf sip_in_kD]
|
81 |
+
onl_invariant_sterms [OF aodv_wf addpreRT_partly_welldefined]
|
82 |
+
solve: one_hop nhip_is_sip)
|
83 |
+
qed
|
84 |
+
|
85 |
+
text \<open>Proposition 7.22: needed in Proposition 7.4\<close>
|
86 |
+
|
87 |
+
lemma addpreRT_welldefined:
|
88 |
+
"paodv i \<TTurnstile> onl \<Gamma>\<^sub>A\<^sub>O\<^sub>D\<^sub>V (\<lambda>(\<xi>, l). (l \<in> {PRreq-:16..PRreq-:18} \<longrightarrow> dip \<xi> \<in> kD (rt \<xi>)) \<and>
|
89 |
+
(l = PRreq-:17 \<longrightarrow> oip \<xi> \<in> kD (rt \<xi>)) \<and>
|
90 |
+
(l = PRrep-:5 \<longrightarrow> dip \<xi> \<in> kD (rt \<xi>)) \<and>
|
91 |
+
(l = PRrep-:6 \<longrightarrow> (the (nhop (rt \<xi>) (dip \<xi>))) \<in> kD (rt \<xi>)))"
|
92 |
+
(is "_ \<TTurnstile> onl \<Gamma>\<^sub>A\<^sub>O\<^sub>D\<^sub>V ?P")
|
93 |
+
unfolding invariant_def
|
94 |
+
proof
|
95 |
+
fix s
|
96 |
+
assume "s \<in> reachable (paodv i) TT"
|
97 |
+
then obtain \<xi> p where "s = (\<xi>, p)"
|
98 |
+
and "(\<xi>, p) \<in> reachable (paodv i) TT"
|
99 |
+
by (metis prod.exhaust)
|
100 |
+
have "onl \<Gamma>\<^sub>A\<^sub>O\<^sub>D\<^sub>V ?P (\<xi>, p)"
|
101 |
+
proof (rule onlI)
|
102 |
+
fix l
|
103 |
+
assume "l \<in> labels \<Gamma>\<^sub>A\<^sub>O\<^sub>D\<^sub>V p"
|
104 |
+
with \<open>(\<xi>, p) \<in> reachable (paodv i) TT\<close>
|
105 |
+
have I1: "l \<in> {PRreq-:16..PRreq-:18} \<longrightarrow> dip \<xi> \<in> kD(rt \<xi>)"
|
106 |
+
and I2: "l = PRreq-:17 \<longrightarrow> oip \<xi> \<in> kD(rt \<xi>)"
|
107 |
+
and I3: "l \<in> {PRrep-:2..PRrep-:6} \<longrightarrow> dip \<xi> \<in> kD(rt \<xi>)"
|
108 |
+
by (auto dest!: invariantD [OF addpreRT_partly_welldefined])
|
109 |
+
moreover from \<open>(\<xi>, p) \<in> reachable (paodv i) TT\<close> \<open>l \<in> labels \<Gamma>\<^sub>A\<^sub>O\<^sub>D\<^sub>V p\<close> and I3
|
110 |
+
have "l = PRrep-:6 \<longrightarrow> (the (nhop (rt \<xi>) (dip \<xi>))) \<in> kD(rt \<xi>)"
|
111 |
+
by (auto dest!: invariantD [OF includes_nhip])
|
112 |
+
ultimately show "?P (\<xi>, l)"
|
113 |
+
by simp
|
114 |
+
qed
|
115 |
+
with \<open>s = (\<xi>, p)\<close> show "onl \<Gamma>\<^sub>A\<^sub>O\<^sub>D\<^sub>V ?P s"
|
116 |
+
by simp
|
117 |
+
qed
|
118 |
+
|
119 |
+
text \<open>Proposition 7.4\<close>
|
120 |
+
|
121 |
+
lemma known_destinations_increase:
|
122 |
+
"paodv i \<TTurnstile>\<^sub>A onll \<Gamma>\<^sub>A\<^sub>O\<^sub>D\<^sub>V (\<lambda>((\<xi>, _), _, (\<xi>', _)). kD (rt \<xi>) \<subseteq> kD (rt \<xi>'))"
|
123 |
+
by (inv_cterms inv add: onl_invariant_sterms [OF aodv_wf addpreRT_welldefined]
|
124 |
+
simp add: subset_insertI)
|
125 |
+
|
126 |
+
text \<open>Proposition 7.5\<close>
|
127 |
+
|
128 |
+
lemma rreqs_increase:
|
129 |
+
"paodv i \<TTurnstile>\<^sub>A onll \<Gamma>\<^sub>A\<^sub>O\<^sub>D\<^sub>V (\<lambda>((\<xi>, _), _, (\<xi>', _)). rreqs \<xi> \<subseteq> rreqs \<xi>')"
|
130 |
+
by (inv_cterms simp add: subset_insertI)
|
131 |
+
|
132 |
+
lemma dests_bigger_than_sqn:
|
133 |
+
"paodv i \<TTurnstile> onl \<Gamma>\<^sub>A\<^sub>O\<^sub>D\<^sub>V (\<lambda>(\<xi>, l). l \<in> {PAodv-:15..PAodv-:19}
|
134 |
+
\<union> {PPkt-:7..PPkt-:11}
|
135 |
+
\<union> {PRreq-:9..PRreq-:13}
|
136 |
+
\<union> {PRreq-:21..PRreq-:25}
|
137 |
+
\<union> {PRrep-:10..PRrep-:14}
|
138 |
+
\<union> {PRerr-:1..PRerr-:5}
|
139 |
+
\<longrightarrow> (\<forall>ip\<in>dom(dests \<xi>). ip\<in>kD(rt \<xi>) \<and> sqn (rt \<xi>) ip \<le> the (dests \<xi> ip)))"
|
140 |
+
proof -
|
141 |
+
have sqninv:
|
142 |
+
"\<And>dests rt rsn ip.
|
143 |
+
\<lbrakk> \<forall>ip\<in>dom(dests). ip\<in>kD(rt) \<and> sqn rt ip \<le> the (dests ip); dests ip = Some rsn \<rbrakk>
|
144 |
+
\<Longrightarrow> sqn (invalidate rt dests) ip \<le> rsn"
|
145 |
+
by (rule sqn_invalidate_in_dests [THEN eq_imp_le], assumption) auto
|
146 |
+
have indests:
|
147 |
+
"\<And>dests rt rsn ip.
|
148 |
+
\<lbrakk> \<forall>ip\<in>dom(dests). ip\<in>kD(rt) \<and> sqn rt ip \<le> the (dests ip); dests ip = Some rsn \<rbrakk>
|
149 |
+
\<Longrightarrow> ip\<in>kD(rt) \<and> sqn rt ip \<le> rsn"
|
150 |
+
by (metis domI option.sel)
|
151 |
+
show ?thesis
|
152 |
+
by inv_cterms
|
153 |
+
(clarsimp split: if_split_asm option.split_asm
|
154 |
+
elim!: sqninv indests)+
|
155 |
+
qed
|
156 |
+
|
157 |
+
text \<open>Proposition 7.6\<close>
|
158 |
+
|
159 |
+
lemma sqns_increase:
|
160 |
+
"paodv i \<TTurnstile>\<^sub>A onll \<Gamma>\<^sub>A\<^sub>O\<^sub>D\<^sub>V (\<lambda>((\<xi>, _), _, (\<xi>', _)). \<forall>ip. sqn (rt \<xi>) ip \<le> sqn (rt \<xi>') ip)"
|
161 |
+
proof -
|
162 |
+
{ fix \<xi> :: state
|
163 |
+
assume *: "\<forall>ip\<in>dom(dests \<xi>). ip \<in> kD (rt \<xi>) \<and> sqn (rt \<xi>) ip \<le> the (dests \<xi> ip)"
|
164 |
+
have "\<forall>ip. sqn (rt \<xi>) ip \<le> sqn (invalidate (rt \<xi>) (dests \<xi>)) ip"
|
165 |
+
proof
|
166 |
+
fix ip
|
167 |
+
from * have "ip\<notin>dom(dests \<xi>) \<or> sqn (rt \<xi>) ip \<le> the (dests \<xi> ip)" by simp
|
168 |
+
thus "sqn (rt \<xi>) ip \<le> sqn (invalidate (rt \<xi>) (dests \<xi>)) ip"
|
169 |
+
by (metis domI invalidate_sqn option.sel)
|
170 |
+
qed
|
171 |
+
} note solve_invalidate = this
|
172 |
+
show ?thesis
|
173 |
+
by (inv_cterms inv add: onl_invariant_sterms [OF aodv_wf addpreRT_welldefined]
|
174 |
+
onl_invariant_sterms [OF aodv_wf dests_bigger_than_sqn]
|
175 |
+
simp add: solve_invalidate)
|
176 |
+
qed
|
177 |
+
|
178 |
+
text \<open>Proposition 7.7\<close>
|
179 |
+
|
180 |
+
lemma ip_constant:
|
181 |
+
"paodv i \<TTurnstile> onl \<Gamma>\<^sub>A\<^sub>O\<^sub>D\<^sub>V (\<lambda>(\<xi>, _). ip \<xi> = i)"
|
182 |
+
by (inv_cterms simp add: \<sigma>\<^sub>A\<^sub>O\<^sub>D\<^sub>V_def)
|
183 |
+
|
184 |
+
text \<open>Proposition 7.8\<close>
|
185 |
+
|
186 |
+
lemma sender_ip_valid':
|
187 |
+
"paodv i \<TTurnstile>\<^sub>A onll \<Gamma>\<^sub>A\<^sub>O\<^sub>D\<^sub>V (\<lambda>((\<xi>, _), a, _). anycast (\<lambda>m. not_Pkt m \<longrightarrow> msg_sender m = ip \<xi>) a)"
|
188 |
+
by inv_cterms
|
189 |
+
|
190 |
+
lemma sender_ip_valid:
|
191 |
+
"paodv i \<TTurnstile>\<^sub>A onll \<Gamma>\<^sub>A\<^sub>O\<^sub>D\<^sub>V (\<lambda>((\<xi>, _), a, _). anycast (\<lambda>m. not_Pkt m \<longrightarrow> msg_sender m = i) a)"
|
192 |
+
by (rule step_invariant_weaken_with_invariantE [OF ip_constant sender_ip_valid'])
|
193 |
+
(auto dest!: onlD onllD)
|
194 |
+
|
195 |
+
lemma received_msg_inv:
|
196 |
+
"paodv i \<TTurnstile> (recvmsg P \<rightarrow>) onl \<Gamma>\<^sub>A\<^sub>O\<^sub>D\<^sub>V (\<lambda>(\<xi>, l). l \<in> {PAodv-:1} \<longrightarrow> P (msg \<xi>))"
|
197 |
+
by inv_cterms
|
198 |
+
|
199 |
+
text \<open>Proposition 7.9\<close>
|
200 |
+
|
201 |
+
lemma sip_not_ip':
|
202 |
+
"paodv i \<TTurnstile> (recvmsg (\<lambda>m. not_Pkt m \<longrightarrow> msg_sender m \<noteq> i) \<rightarrow>) onl \<Gamma>\<^sub>A\<^sub>O\<^sub>D\<^sub>V (\<lambda>(\<xi>, _). sip \<xi> \<noteq> ip \<xi>)"
|
203 |
+
by (inv_cterms inv add: onl_invariant_sterms [OF aodv_wf received_msg_inv]
|
204 |
+
onl_invariant_sterms [OF aodv_wf ip_constant [THEN invariant_restrict_inD]]
|
205 |
+
simp add: clear_locals_sip_not_ip') clarsimp+
|
206 |
+
|
207 |
+
lemma sip_not_ip:
|
208 |
+
"paodv i \<TTurnstile> (recvmsg (\<lambda>m. not_Pkt m \<longrightarrow> msg_sender m \<noteq> i) \<rightarrow>) onl \<Gamma>\<^sub>A\<^sub>O\<^sub>D\<^sub>V (\<lambda>(\<xi>, _). sip \<xi> \<noteq> i)"
|
209 |
+
by (inv_cterms inv add: onl_invariant_sterms [OF aodv_wf received_msg_inv]
|
210 |
+
onl_invariant_sterms [OF aodv_wf ip_constant [THEN invariant_restrict_inD]]
|
211 |
+
simp add: clear_locals_sip_not_ip') clarsimp+
|
212 |
+
|
213 |
+
text \<open>Neither \<open>sip_not_ip'\<close> nor \<open>sip_not_ip\<close> is needed to show loop freedom.\<close>
|
214 |
+
|
215 |
+
text \<open>Proposition 7.10\<close>
|
216 |
+
|
217 |
+
lemma hop_count_positive:
|
218 |
+
"paodv i \<TTurnstile> onl \<Gamma>\<^sub>A\<^sub>O\<^sub>D\<^sub>V (\<lambda>(\<xi>, _). \<forall>ip\<in>kD (rt \<xi>). the (dhops (rt \<xi>) ip) \<ge> 1)"
|
219 |
+
by (inv_cterms inv add: onl_invariant_sterms [OF aodv_wf addpreRT_welldefined]) auto
|
220 |
+
|
221 |
+
lemma rreq_dip_in_vD_dip_eq_ip:
|
222 |
+
"paodv i \<TTurnstile> onl \<Gamma>\<^sub>A\<^sub>O\<^sub>D\<^sub>V (\<lambda>(\<xi>, l). (l \<in> {PRreq-:16..PRreq-:18} \<longrightarrow> dip \<xi> \<in> vD(rt \<xi>))
|
223 |
+
\<and> (l \<in> {PRreq-:5, PRreq-:6} \<longrightarrow> dip \<xi> = ip \<xi>)
|
224 |
+
\<and> (l \<in> {PRreq-:15..PRreq-:18} \<longrightarrow> dip \<xi> \<noteq> ip \<xi>))"
|
225 |
+
proof (inv_cterms, elim conjE)
|
226 |
+
fix l \<xi> pp p'
|
227 |
+
assume "(\<xi>, pp) \<in> reachable (paodv i) TT"
|
228 |
+
and "{PRreq-:17}\<lbrakk>\<lambda>\<xi>. \<xi>\<lparr>rt := the (addpreRT (rt \<xi>) (oip \<xi>) {the (nhop (rt \<xi>) (dip \<xi>))})\<rparr>\<rbrakk> p'
|
229 |
+
\<in> sterms \<Gamma>\<^sub>A\<^sub>O\<^sub>D\<^sub>V pp"
|
230 |
+
and "l = PRreq-:17"
|
231 |
+
and "dip \<xi> \<in> vD (rt \<xi>)"
|
232 |
+
from this(1-3) have "oip \<xi> \<in> kD (rt \<xi>)"
|
233 |
+
by (auto dest: onl_invariant_sterms [OF aodv_wf addpreRT_welldefined, where l="PRreq-:17"])
|
234 |
+
with \<open>dip \<xi> \<in> vD (rt \<xi>)\<close>
|
235 |
+
show "dip \<xi> \<in> vD (the (addpreRT (rt \<xi>) (oip \<xi>) {the (nhop (rt \<xi>) (dip \<xi>))}))" by simp
|
236 |
+
qed
|
237 |
+
|
238 |
+
text \<open>Proposition 7.11\<close>
|
239 |
+
|
240 |
+
lemma anycast_msg_zhops:
|
241 |
+
"\<And>rreqid dip dsn dsk oip osn sip.
|
242 |
+
paodv i \<TTurnstile>\<^sub>A onll \<Gamma>\<^sub>A\<^sub>O\<^sub>D\<^sub>V (\<lambda>(_, a, _). anycast msg_zhops a)"
|
243 |
+
proof (inv_cterms inv add:
|
244 |
+
onl_invariant_sterms [OF aodv_wf rreq_dip_in_vD_dip_eq_ip [THEN invariant_restrict_inD]]
|
245 |
+
onl_invariant_sterms [OF aodv_wf hop_count_positive [THEN invariant_restrict_inD]],
|
246 |
+
elim conjE)
|
247 |
+
fix l \<xi> a pp p' pp'
|
248 |
+
assume "(\<xi>, pp) \<in> reachable (paodv i) TT"
|
249 |
+
and "{PRreq-:18}unicast(\<lambda>\<xi>. the (nhop (rt \<xi>) (oip \<xi>)),
|
250 |
+
\<lambda>\<xi>. Rrep (the (dhops (rt \<xi>) (dip \<xi>))) (dip \<xi>) (sqn (rt \<xi>) (dip \<xi>)) (oip \<xi>) (ip \<xi>)).
|
251 |
+
p' \<triangleright> pp' \<in> sterms \<Gamma>\<^sub>A\<^sub>O\<^sub>D\<^sub>V pp"
|
252 |
+
and "l = PRreq-:18"
|
253 |
+
and "a = unicast (the (nhop (rt \<xi>) (oip \<xi>)))
|
254 |
+
(Rrep (the (dhops (rt \<xi>) (dip \<xi>))) (dip \<xi>) (sqn (rt \<xi>) (dip \<xi>)) (oip \<xi>) (ip \<xi>))"
|
255 |
+
and *: "\<forall>ip\<in>kD (rt \<xi>). Suc 0 \<le> the (dhops (rt \<xi>) ip)"
|
256 |
+
and "dip \<xi> \<in> vD (rt \<xi>)"
|
257 |
+
from \<open>dip \<xi> \<in> vD (rt \<xi>)\<close> have "dip \<xi> \<in> kD (rt \<xi>)"
|
258 |
+
by (rule vD_iD_gives_kD(1))
|
259 |
+
with * have "Suc 0 \<le> the (dhops (rt \<xi>) (dip \<xi>))" ..
|
260 |
+
thus "0 < the (dhops (rt \<xi>) (dip \<xi>))" by simp
|
261 |
+
qed
|
262 |
+
|
263 |
+
lemma hop_count_zero_oip_dip_sip:
|
264 |
+
"paodv i \<TTurnstile> (recvmsg msg_zhops \<rightarrow>) onl \<Gamma>\<^sub>A\<^sub>O\<^sub>D\<^sub>V (\<lambda>(\<xi>, l).
|
265 |
+
(l\<in>{PAodv-:4..PAodv-:5} \<union> {PRreq-:n|n. True} \<longrightarrow>
|
266 |
+
(hops \<xi> = 0 \<longrightarrow> oip \<xi> = sip \<xi>))
|
267 |
+
\<and>
|
268 |
+
((l\<in>{PAodv-:6..PAodv-:7} \<union> {PRrep-:n|n. True} \<longrightarrow>
|
269 |
+
(hops \<xi> = 0 \<longrightarrow> dip \<xi> = sip \<xi>))))"
|
270 |
+
by (inv_cterms inv add: onl_invariant_sterms [OF aodv_wf received_msg_inv]) auto
|
271 |
+
|
272 |
+
lemma osn_rreq:
|
273 |
+
"paodv i \<TTurnstile> (recvmsg rreq_rrep_sn \<rightarrow>) onl \<Gamma>\<^sub>A\<^sub>O\<^sub>D\<^sub>V (\<lambda>(\<xi>, l).
|
274 |
+
l \<in> {PAodv-:4, PAodv-:5} \<union> {PRreq-:n|n. True} \<longrightarrow> 1 \<le> osn \<xi>)"
|
275 |
+
by (inv_cterms inv add: onl_invariant_sterms [OF aodv_wf received_msg_inv]) clarsimp
|
276 |
+
|
277 |
+
lemma osn_rreq':
|
278 |
+
"paodv i \<TTurnstile> (recvmsg (\<lambda>m. rreq_rrep_sn m \<and> msg_zhops m) \<rightarrow>) onl \<Gamma>\<^sub>A\<^sub>O\<^sub>D\<^sub>V (\<lambda>(\<xi>, l).
|
279 |
+
l \<in> {PAodv-:4, PAodv-:5} \<union> {PRreq-:n|n. True} \<longrightarrow> 1 \<le> osn \<xi>)"
|
280 |
+
proof (rule invariant_weakenE [OF osn_rreq])
|
281 |
+
fix a
|
282 |
+
assume "recvmsg (\<lambda>m. rreq_rrep_sn m \<and> msg_zhops m) a"
|
283 |
+
thus "recvmsg rreq_rrep_sn a"
|
284 |
+
by (cases a) simp_all
|
285 |
+
qed
|
286 |
+
|
287 |
+
lemma dsn_rrep:
|
288 |
+
"paodv i \<TTurnstile> (recvmsg rreq_rrep_sn \<rightarrow>) onl \<Gamma>\<^sub>A\<^sub>O\<^sub>D\<^sub>V (\<lambda>(\<xi>, l).
|
289 |
+
l \<in> {PAodv-:6, PAodv-:7} \<union> {PRrep-:n|n. True} \<longrightarrow> 1 \<le> dsn \<xi>)"
|
290 |
+
by (inv_cterms inv add: onl_invariant_sterms [OF aodv_wf received_msg_inv]) clarsimp
|
291 |
+
|
292 |
+
lemma dsn_rrep':
|
293 |
+
"paodv i \<TTurnstile> (recvmsg (\<lambda>m. rreq_rrep_sn m \<and> msg_zhops m) \<rightarrow>) onl \<Gamma>\<^sub>A\<^sub>O\<^sub>D\<^sub>V (\<lambda>(\<xi>, l).
|
294 |
+
l \<in> {PAodv-:6, PAodv-:7} \<union> {PRrep-:n|n. True} \<longrightarrow> 1 \<le> dsn \<xi>)"
|
295 |
+
proof (rule invariant_weakenE [OF dsn_rrep])
|
296 |
+
fix a
|
297 |
+
assume "recvmsg (\<lambda>m. rreq_rrep_sn m \<and> msg_zhops m) a"
|
298 |
+
thus "recvmsg rreq_rrep_sn a"
|
299 |
+
by (cases a) simp_all
|
300 |
+
qed
|
301 |
+
|
302 |
+
lemma hop_count_zero_oip_dip_sip':
|
303 |
+
"paodv i \<TTurnstile> (recvmsg (\<lambda>m. rreq_rrep_sn m \<and> msg_zhops m) \<rightarrow>) onl \<Gamma>\<^sub>A\<^sub>O\<^sub>D\<^sub>V (\<lambda>(\<xi>, l).
|
304 |
+
(l\<in>{PAodv-:4..PAodv-:5} \<union> {PRreq-:n|n. True} \<longrightarrow>
|
305 |
+
(hops \<xi> = 0 \<longrightarrow> oip \<xi> = sip \<xi>))
|
306 |
+
\<and>
|
307 |
+
((l\<in>{PAodv-:6..PAodv-:7} \<union> {PRrep-:n|n. True} \<longrightarrow>
|
308 |
+
(hops \<xi> = 0 \<longrightarrow> dip \<xi> = sip \<xi>))))"
|
309 |
+
proof (rule invariant_weakenE [OF hop_count_zero_oip_dip_sip])
|
310 |
+
fix a
|
311 |
+
assume "recvmsg (\<lambda>m. rreq_rrep_sn m \<and> msg_zhops m) a"
|
312 |
+
thus "recvmsg msg_zhops a"
|
313 |
+
by (cases a) simp_all
|
314 |
+
qed
|
315 |
+
|
316 |
+
text \<open>Proposition 7.12\<close>
|
317 |
+
|
318 |
+
lemma zero_seq_unk_hops_one':
|
319 |
+
"paodv i \<TTurnstile> (recvmsg (\<lambda>m. rreq_rrep_sn m \<and> msg_zhops m) \<rightarrow>) onl \<Gamma>\<^sub>A\<^sub>O\<^sub>D\<^sub>V (\<lambda>(\<xi>, _).
|
320 |
+
\<forall>dip\<in>kD(rt \<xi>). (sqn (rt \<xi>) dip = 0 \<longrightarrow> sqnf (rt \<xi>) dip = unk)
|
321 |
+
\<and> (sqnf (rt \<xi>) dip = unk \<longrightarrow> the (dhops (rt \<xi>) dip) = 1)
|
322 |
+
\<and> (the (dhops (rt \<xi>) dip) = 1 \<longrightarrow> the (nhop (rt \<xi>) dip) = dip))"
|
323 |
+
proof -
|
324 |
+
{ fix dip and \<xi> :: state and P
|
325 |
+
assume "sqn (invalidate (rt \<xi>) (dests \<xi>)) dip = 0"
|
326 |
+
and all: "\<forall>ip. sqn (rt \<xi>) ip \<le> sqn (invalidate (rt \<xi>) (dests \<xi>)) ip"
|
327 |
+
and *: "sqn (rt \<xi>) dip = 0 \<Longrightarrow> P \<xi> dip"
|
328 |
+
have "P \<xi> dip"
|
329 |
+
proof -
|
330 |
+
from all have "sqn (rt \<xi>) dip \<le> sqn (invalidate (rt \<xi>) (dests \<xi>)) dip" ..
|
331 |
+
with \<open>sqn (invalidate (rt \<xi>) (dests \<xi>)) dip = 0\<close> have "sqn (rt \<xi>) dip = 0" by simp
|
332 |
+
thus "P \<xi> dip" by (rule *)
|
333 |
+
qed
|
334 |
+
} note sqn_invalidate_zero [elim!] = this
|
335 |
+
|
336 |
+
{ fix dsn hops :: nat and sip oip rt and ip dip :: ip
|
337 |
+
assume "\<forall>dip\<in>kD(rt).
|
338 |
+
(sqn rt dip = 0 \<longrightarrow> \<pi>\<^sub>3(the (rt dip)) = unk) \<and>
|
339 |
+
(\<pi>\<^sub>3(the (rt dip)) = unk \<longrightarrow> the (dhops rt dip) = Suc 0) \<and>
|
340 |
+
(the (dhops rt dip) = Suc 0 \<longrightarrow> the (nhop rt dip) = dip)"
|
341 |
+
and "hops = 0 \<longrightarrow> sip = dip"
|
342 |
+
and "Suc 0 \<le> dsn"
|
343 |
+
and "ip \<noteq> dip \<longrightarrow> ip\<in>kD(rt)"
|
344 |
+
hence "the (dhops (update rt dip (dsn, kno, val, Suc hops, sip, {})) ip) = Suc 0 \<longrightarrow>
|
345 |
+
the (nhop (update rt dip (dsn, kno, val, Suc hops, sip, {})) ip) = ip"
|
346 |
+
by - (rule update_cases, auto simp add: sqn_def dest!: bspec)
|
347 |
+
} note prreq_ok1 [simp] = this
|
348 |
+
|
349 |
+
{ fix ip dsn hops sip oip rt dip
|
350 |
+
assume "\<forall>dip\<in>kD(rt).
|
351 |
+
(sqn rt dip = 0 \<longrightarrow> \<pi>\<^sub>3(the (rt dip)) = unk) \<and>
|
352 |
+
(\<pi>\<^sub>3(the (rt dip)) = unk \<longrightarrow> the (dhops rt dip) = Suc 0) \<and>
|
353 |
+
(the (dhops rt dip) = Suc 0 \<longrightarrow> the (nhop rt dip) = dip)"
|
354 |
+
and "Suc 0 \<le> dsn"
|
355 |
+
and "ip \<noteq> dip \<longrightarrow> ip\<in>kD(rt)"
|
356 |
+
hence "\<pi>\<^sub>3(the (update rt dip (dsn, kno, val, Suc hops, sip, {}) ip)) = unk \<longrightarrow>
|
357 |
+
the (dhops (update rt dip (dsn, kno, val, Suc hops, sip, {})) ip) = Suc 0"
|
358 |
+
by - (rule update_cases, auto simp add: sqn_def sqnf_def dest!: bspec)
|
359 |
+
} note prreq_ok2 [simp] = this
|
360 |
+
|
361 |
+
{ fix ip dsn hops sip oip rt dip
|
362 |
+
assume "\<forall>dip\<in>kD(rt).
|
363 |
+
(sqn rt dip = 0 \<longrightarrow> \<pi>\<^sub>3(the (rt dip)) = unk) \<and>
|
364 |
+
(\<pi>\<^sub>3(the (rt dip)) = unk \<longrightarrow> the (dhops rt dip) = Suc 0) \<and>
|
365 |
+
(the (dhops rt dip) = Suc 0 \<longrightarrow> the (nhop rt dip) = dip)"
|
366 |
+
and "Suc 0 \<le> dsn"
|
367 |
+
and "ip \<noteq> dip \<longrightarrow> ip\<in>kD(rt)"
|
368 |
+
hence "sqn (update rt dip (dsn, kno, val, Suc hops, sip, {})) ip = 0 \<longrightarrow>
|
369 |
+
\<pi>\<^sub>3 (the (update rt dip (dsn, kno, val, Suc hops, sip, {}) ip)) = unk"
|
370 |
+
by - (rule update_cases, auto simp add: sqn_def dest!: bspec)
|
371 |
+
} note prreq_ok3 [simp] = this
|
372 |
+
|
373 |
+
{ fix rt sip
|
374 |
+
assume "\<forall>dip\<in>kD rt.
|
375 |
+
(sqn rt dip = 0 \<longrightarrow> \<pi>\<^sub>3(the (rt dip)) = unk) \<and>
|
376 |
+
(\<pi>\<^sub>3(the (rt dip)) = unk \<longrightarrow> the (dhops rt dip) = Suc 0) \<and>
|
377 |
+
(the (dhops rt dip) = Suc 0 \<longrightarrow> the (nhop rt dip) = dip)"
|
378 |
+
hence "\<forall>dip\<in>kD rt.
|
379 |
+
(sqn (update rt sip (0, unk, val, Suc 0, sip, {})) dip = 0 \<longrightarrow>
|
380 |
+
\<pi>\<^sub>3(the (update rt sip (0, unk, val, Suc 0, sip, {}) dip)) = unk)
|
381 |
+
\<and> (\<pi>\<^sub>3(the (update rt sip (0, unk, val, Suc 0, sip, {}) dip)) = unk \<longrightarrow>
|
382 |
+
the (dhops (update rt sip (0, unk, val, Suc 0, sip, {})) dip) = Suc 0)
|
383 |
+
\<and> (the (dhops (update rt sip (0, unk, val, Suc 0, sip, {})) dip) = Suc 0 \<longrightarrow>
|
384 |
+
the (nhop (update rt sip (0, unk, val, Suc 0, sip, {})) dip) = dip)"
|
385 |
+
by - (rule update_cases, simp_all add: sqnf_def sqn_def)
|
386 |
+
} note prreq_ok4 [simp] = this
|
387 |
+
|
388 |
+
have prreq_ok5 [simp]: "\<And>sip rt.
|
389 |
+
\<pi>\<^sub>3(the (update rt sip (0, unk, val, Suc 0, sip, {}) sip)) = unk \<longrightarrow>
|
390 |
+
the (dhops (update rt sip (0, unk, val, Suc 0, sip, {})) sip) = Suc 0"
|
391 |
+
by (rule update_cases) simp_all
|
392 |
+
|
393 |
+
have prreq_ok6 [simp]: "\<And>sip rt.
|
394 |
+
sqn (update rt sip (0, unk, val, Suc 0, sip, {})) sip = 0 \<longrightarrow>
|
395 |
+
\<pi>\<^sub>3 (the (update rt sip (0, unk, val, Suc 0, sip, {}) sip)) = unk"
|
396 |
+
by (rule update_cases) simp_all
|
397 |
+
|
398 |
+
show ?thesis
|
399 |
+
by (inv_cterms inv add: onl_invariant_sterms_TT [OF aodv_wf addpreRT_welldefined]
|
400 |
+
onl_invariant_sterms [OF aodv_wf hop_count_zero_oip_dip_sip']
|
401 |
+
seq_step_invariant_sterms_TT [OF sqns_increase aodv_wf aodv_trans]
|
402 |
+
onl_invariant_sterms [OF aodv_wf osn_rreq']
|
403 |
+
onl_invariant_sterms [OF aodv_wf dsn_rrep']) clarsimp+
|
404 |
+
qed
|
405 |
+
|
406 |
+
lemma zero_seq_unk_hops_one:
|
407 |
+
"paodv i \<TTurnstile> (recvmsg (\<lambda>m. rreq_rrep_sn m \<and> msg_zhops m) \<rightarrow>) onl \<Gamma>\<^sub>A\<^sub>O\<^sub>D\<^sub>V (\<lambda>(\<xi>, _).
|
408 |
+
\<forall>dip\<in>kD(rt \<xi>). (sqn (rt \<xi>) dip = 0 \<longrightarrow> (sqnf (rt \<xi>) dip = unk
|
409 |
+
\<and> the (dhops (rt \<xi>) dip) = 1
|
410 |
+
\<and> the (nhop (rt \<xi>) dip) = dip)))"
|
411 |
+
by (rule invariant_weakenE [OF zero_seq_unk_hops_one']) auto
|
412 |
+
|
413 |
+
lemma kD_unk_or_atleast_one:
|
414 |
+
"paodv i \<TTurnstile> (recvmsg rreq_rrep_sn \<rightarrow>) onl \<Gamma>\<^sub>A\<^sub>O\<^sub>D\<^sub>V (\<lambda>(\<xi>, l).
|
415 |
+
\<forall>dip\<in>kD(rt \<xi>). \<pi>\<^sub>3(the (rt \<xi> dip)) = unk \<or> 1 \<le> \<pi>\<^sub>2(the (rt \<xi> dip)))"
|
416 |
+
proof -
|
417 |
+
{ fix sip rt dsn1 dsn2 dsk1 dsk2 flag1 flag2 hops1 hops2 nhip1 nhip2 pre1 pre2
|
418 |
+
assume "dsk1 = unk \<or> Suc 0 \<le> dsn2"
|
419 |
+
hence "\<pi>\<^sub>3(the (update rt sip (dsn1, dsk1, flag1, hops1, nhip1, pre1) sip)) = unk
|
420 |
+
\<or> Suc 0 \<le> sqn (update rt sip (dsn2, dsk2, flag2, hops2, nhip2, pre2)) sip"
|
421 |
+
unfolding update_def by (cases "dsk1 =unk") (clarsimp split: option.split)+
|
422 |
+
} note fromsip [simp] = this
|
423 |
+
|
424 |
+
{ fix dip sip rt dsn1 dsn2 dsk1 dsk2 flag1 flag2 hops1 hops2 nhip1 nhip2 pre1 pre2
|
425 |
+
assume allkd: "\<forall>dip\<in>kD(rt). \<pi>\<^sub>3(the (rt dip)) = unk \<or> Suc 0 \<le> sqn rt dip"
|
426 |
+
and **: "dsk1 = unk \<or> Suc 0 \<le> dsn2"
|
427 |
+
have "\<forall>dip\<in>kD(rt). \<pi>\<^sub>3(the (update rt sip (dsn1, dsk1, flag1, hops1, nhip1, pre1) dip)) = unk
|
428 |
+
\<or> Suc 0 \<le> sqn (update rt sip (dsn2, dsk2, flag2, hops2, nhip2, pre2)) dip"
|
429 |
+
(is "\<forall>dip\<in>kD(rt). ?prop dip")
|
430 |
+
proof
|
431 |
+
fix dip
|
432 |
+
assume "dip\<in>kD(rt)"
|
433 |
+
thus "?prop dip"
|
434 |
+
proof (cases "dip = sip")
|
435 |
+
assume "dip = sip"
|
436 |
+
with ** show ?thesis
|
437 |
+
by simp
|
438 |
+
next
|
439 |
+
assume "dip \<noteq> sip"
|
440 |
+
with \<open>dip\<in>kD(rt)\<close> allkd show ?thesis
|
441 |
+
by simp
|
442 |
+
qed
|
443 |
+
qed
|
444 |
+
} note solve_update [simp] = this
|
445 |
+
|
446 |
+
{ fix dip rt dests
|
447 |
+
assume *: "\<forall>ip\<in>dom(dests). ip\<in>kD(rt) \<and> sqn rt ip \<le> the (dests ip)"
|
448 |
+
and **: "\<forall>ip\<in>kD(rt). \<pi>\<^sub>3(the (rt ip)) = unk \<or> Suc 0 \<le> sqn rt ip"
|
449 |
+
have "\<forall>dip\<in>kD(rt). \<pi>\<^sub>3(the (rt dip)) = unk \<or> Suc 0 \<le> sqn (invalidate rt dests) dip"
|
450 |
+
proof
|
451 |
+
fix dip
|
452 |
+
assume "dip\<in>kD(rt)"
|
453 |
+
with ** have "\<pi>\<^sub>3(the (rt dip)) = unk \<or> Suc 0 \<le> sqn rt dip" ..
|
454 |
+
thus "\<pi>\<^sub>3 (the (rt dip)) = unk \<or> Suc 0 \<le> sqn (invalidate rt dests) dip"
|
455 |
+
proof
|
456 |
+
assume "\<pi>\<^sub>3(the (rt dip)) = unk" thus ?thesis ..
|
457 |
+
next
|
458 |
+
assume "Suc 0 \<le> sqn rt dip"
|
459 |
+
have "Suc 0 \<le> sqn (invalidate rt dests) dip"
|
460 |
+
proof (cases "dip\<in>dom(dests)")
|
461 |
+
assume "dip\<in>dom(dests)"
|
462 |
+
with * have "sqn rt dip \<le> the (dests dip)" by simp
|
463 |
+
with \<open>Suc 0 \<le> sqn rt dip\<close> have "Suc 0 \<le> the (dests dip)" by simp
|
464 |
+
with \<open>dip\<in>dom(dests)\<close> \<open>dip\<in>kD(rt)\<close> [THEN kD_Some] show ?thesis
|
465 |
+
unfolding invalidate_def sqn_def by auto
|
466 |
+
next
|
467 |
+
assume "dip\<notin>dom(dests)"
|
468 |
+
with \<open>Suc 0 \<le> sqn rt dip\<close> \<open>dip\<in>kD(rt)\<close> [THEN kD_Some] show ?thesis
|
469 |
+
unfolding invalidate_def sqn_def by auto
|
470 |
+
qed
|
471 |
+
thus ?thesis by (rule disjI2)
|
472 |
+
qed
|
473 |
+
qed
|
474 |
+
} note solve_invalidate [simp] = this
|
475 |
+
|
476 |
+
show ?thesis
|
477 |
+
by (inv_cterms inv add: onl_invariant_sterms_TT [OF aodv_wf addpreRT_welldefined]
|
478 |
+
onl_invariant_sterms [OF aodv_wf dests_bigger_than_sqn
|
479 |
+
[THEN invariant_restrict_inD]]
|
480 |
+
onl_invariant_sterms [OF aodv_wf osn_rreq]
|
481 |
+
onl_invariant_sterms [OF aodv_wf dsn_rrep]
|
482 |
+
simp add: proj3_inv proj2_eq_sqn)
|
483 |
+
qed
|
484 |
+
|
485 |
+
text \<open>Proposition 7.13\<close>
|
486 |
+
|
487 |
+
lemma rreq_rrep_sn_any_step_invariant:
|
488 |
+
"paodv i \<TTurnstile>\<^sub>A (recvmsg rreq_rrep_sn \<rightarrow>) onll \<Gamma>\<^sub>A\<^sub>O\<^sub>D\<^sub>V (\<lambda>(_, a, _). anycast rreq_rrep_sn a)"
|
489 |
+
proof -
|
490 |
+
have sqnf_kno: "paodv i \<TTurnstile> onl \<Gamma>\<^sub>A\<^sub>O\<^sub>D\<^sub>V (\<lambda>(\<xi>, l).
|
491 |
+
(l \<in> {PRreq-:16..PRreq-:18} \<longrightarrow> sqnf (rt \<xi>) (dip \<xi>) = kno))"
|
492 |
+
by (inv_cterms inv add: onl_invariant_sterms_TT [OF aodv_wf addpreRT_welldefined])
|
493 |
+
show ?thesis
|
494 |
+
by (inv_cterms inv add: onl_invariant_sterms_TT [OF aodv_wf addpreRT_welldefined]
|
495 |
+
onl_invariant_sterms [OF aodv_wf sequence_number_one_or_bigger
|
496 |
+
[THEN invariant_restrict_inD]]
|
497 |
+
onl_invariant_sterms [OF aodv_wf kD_unk_or_atleast_one]
|
498 |
+
onl_invariant_sterms_TT [OF aodv_wf sqnf_kno]
|
499 |
+
onl_invariant_sterms [OF aodv_wf osn_rreq]
|
500 |
+
onl_invariant_sterms [OF aodv_wf dsn_rrep])
|
501 |
+
(auto simp: proj2_eq_sqn)
|
502 |
+
qed
|
503 |
+
|
504 |
+
text \<open>Proposition 7.14\<close>
|
505 |
+
|
506 |
+
lemma rreq_rrep_fresh_any_step_invariant:
|
507 |
+
"paodv i \<TTurnstile>\<^sub>A onll \<Gamma>\<^sub>A\<^sub>O\<^sub>D\<^sub>V (\<lambda>((\<xi>, _), a, _). anycast (rreq_rrep_fresh (rt \<xi>)) a)"
|
508 |
+
proof -
|
509 |
+
have rreq_oip: "paodv i \<TTurnstile> onl \<Gamma>\<^sub>A\<^sub>O\<^sub>D\<^sub>V (\<lambda>(\<xi>, l).
|
510 |
+
(l \<in> {PRreq-:3, PRreq-:4, PRreq-:15, PRreq-:27}
|
511 |
+
\<longrightarrow> oip \<xi> \<in> kD(rt \<xi>)
|
512 |
+
\<and> (sqn (rt \<xi>) (oip \<xi>) > (osn \<xi>)
|
513 |
+
\<or> (sqn (rt \<xi>) (oip \<xi>) = (osn \<xi>)
|
514 |
+
\<and> the (dhops (rt \<xi>) (oip \<xi>)) \<le> Suc (hops \<xi>)
|
515 |
+
\<and> the (flag (rt \<xi>) (oip \<xi>)) = val))))"
|
516 |
+
proof inv_cterms
|
517 |
+
fix l \<xi> l' pp p'
|
518 |
+
assume "(\<xi>, pp) \<in> reachable (paodv i) TT"
|
519 |
+
and "{PRreq-:2}\<lbrakk>\<lambda>\<xi>. \<xi>\<lparr>rt :=
|
520 |
+
update (rt \<xi>) (oip \<xi>) (osn \<xi>, kno, val, Suc (hops \<xi>), sip \<xi>, {})\<rparr>\<rbrakk> p' \<in> sterms \<Gamma>\<^sub>A\<^sub>O\<^sub>D\<^sub>V pp"
|
521 |
+
and "l' = PRreq-:3"
|
522 |
+
show "osn \<xi> < sqn (update (rt \<xi>) (oip \<xi>) (osn \<xi>, kno, val, Suc (hops \<xi>), sip \<xi>, {})) (oip \<xi>)
|
523 |
+
\<or> (sqn (update (rt \<xi>) (oip \<xi>) (osn \<xi>, kno, val, Suc (hops \<xi>), sip \<xi>, {})) (oip \<xi>) = osn \<xi>
|
524 |
+
\<and> the (dhops (update (rt \<xi>) (oip \<xi>) (osn \<xi>, kno, val, Suc (hops \<xi>), sip \<xi>, {})) (oip \<xi>))
|
525 |
+
\<le> Suc (hops \<xi>)
|
526 |
+
\<and> the (flag (update (rt \<xi>) (oip \<xi>) (osn \<xi>, kno, val, Suc (hops \<xi>), sip \<xi>, {})) (oip \<xi>))
|
527 |
+
= val)"
|
528 |
+
unfolding update_def by (clarsimp split: option.split)
|
529 |
+
(metis linorder_neqE_nat not_less)
|
530 |
+
qed
|
531 |
+
|
532 |
+
have rrep_prrep: "paodv i \<TTurnstile> onl \<Gamma>\<^sub>A\<^sub>O\<^sub>D\<^sub>V (\<lambda>(\<xi>, l).
|
533 |
+
(l \<in> {PRrep-:2..PRrep-:7} \<longrightarrow> (dip \<xi> \<in> kD(rt \<xi>)
|
534 |
+
\<and> sqn (rt \<xi>) (dip \<xi>) = dsn \<xi>
|
535 |
+
\<and> the (dhops (rt \<xi>) (dip \<xi>)) = Suc (hops \<xi>)
|
536 |
+
\<and> the (flag (rt \<xi>) (dip \<xi>)) = val
|
537 |
+
\<and> the (nhop (rt \<xi>) (dip \<xi>)) \<in> kD (rt \<xi>))))"
|
538 |
+
by (inv_cterms inv add: onl_invariant_sterms [OF aodv_wf rrep_1_update_changes]
|
539 |
+
onl_invariant_sterms [OF aodv_wf sip_in_kD])
|
540 |
+
|
541 |
+
show ?thesis
|
542 |
+
by (inv_cterms inv add: onl_invariant_sterms [OF aodv_wf rreq_oip]
|
543 |
+
onl_invariant_sterms [OF aodv_wf rreq_dip_in_vD_dip_eq_ip]
|
544 |
+
onl_invariant_sterms [OF aodv_wf rrep_prrep])
|
545 |
+
qed
|
546 |
+
|
547 |
+
text \<open>Proposition 7.15\<close>
|
548 |
+
|
549 |
+
lemma rerr_invalid_any_step_invariant:
|
550 |
+
"paodv i \<TTurnstile>\<^sub>A onll \<Gamma>\<^sub>A\<^sub>O\<^sub>D\<^sub>V (\<lambda>((\<xi>, _), a, _). anycast (rerr_invalid (rt \<xi>)) a)"
|
551 |
+
proof -
|
552 |
+
have dests_inv: "paodv i \<TTurnstile>
|
553 |
+
onl \<Gamma>\<^sub>A\<^sub>O\<^sub>D\<^sub>V (\<lambda>(\<xi>, l). (l \<in> {PAodv-:15, PPkt-:7, PRreq-:9,
|
554 |
+
PRreq-:21, PRrep-:10, PRerr-:1}
|
555 |
+
\<longrightarrow> (\<forall>ip\<in>dom(dests \<xi>). ip\<in>vD(rt \<xi>)))
|
556 |
+
\<and> (l \<in> {PAodv-:16..PAodv-:19}
|
557 |
+
\<union> {PPkt-:8..PPkt-:11}
|
558 |
+
\<union> {PRreq-:10..PRreq-:13}
|
559 |
+
\<union> {PRreq-:22..PRreq-:25}
|
560 |
+
\<union> {PRrep-:11..PRrep-:14}
|
561 |
+
\<union> {PRerr-:2..PRerr-:5} \<longrightarrow> (\<forall>ip\<in>dom(dests \<xi>). ip\<in>iD(rt \<xi>)
|
562 |
+
\<and> the (dests \<xi> ip) = sqn (rt \<xi>) ip))
|
563 |
+
\<and> (l = PPkt-:14 \<longrightarrow> dip \<xi>\<in>iD(rt \<xi>)))"
|
564 |
+
by inv_cterms (clarsimp split: if_split_asm option.split_asm simp: domIff)+
|
565 |
+
show ?thesis
|
566 |
+
by (inv_cterms inv add: onl_invariant_sterms [OF aodv_wf dests_inv])
|
567 |
+
qed
|
568 |
+
|
569 |
+
text \<open>Proposition 7.16\<close>
|
570 |
+
|
571 |
+
text \<open>
|
572 |
+
Some well-definedness obligations are irrelevant for the Isabelle development:
|
573 |
+
|
574 |
+
\begin{enumerate}
|
575 |
+
\item In each routing table there is at most one entry for each destination: guaranteed by type.
|
576 |
+
|
577 |
+
\item In each store of queued data packets there is at most one data queue for
|
578 |
+
each destination: guaranteed by structure.
|
579 |
+
|
580 |
+
\item Whenever a set of pairs @{term "(rip, rsn)"} is assigned to the variable
|
581 |
+
@{term "dests"} of type @{typ "ip \<rightharpoonup> sqn"}, or to the first argument of
|
582 |
+
the function @{term "rerr"}, this set is a partial function, i.e., there
|
583 |
+
is at most one entry @{term "(rip, rsn)"} for each destination
|
584 |
+
@{term "rip"}: guaranteed by type.
|
585 |
+
\end{enumerate}
|
586 |
+
\<close>
|
587 |
+
|
588 |
+
lemma dests_vD_inc_sqn:
|
589 |
+
"paodv i \<TTurnstile>
|
590 |
+
onl \<Gamma>\<^sub>A\<^sub>O\<^sub>D\<^sub>V (\<lambda>(\<xi>, l). (l \<in> {PAodv-:15, PPkt-:7, PRreq-:9, PRreq-:21, PRrep-:10}
|
591 |
+
\<longrightarrow> (\<forall>ip\<in>dom(dests \<xi>). ip\<in>vD(rt \<xi>) \<and> the (dests \<xi> ip) = inc (sqn (rt \<xi>) ip)))
|
592 |
+
\<and> (l = PRerr-:1
|
593 |
+
\<longrightarrow> (\<forall>ip\<in>dom(dests \<xi>). ip\<in>vD(rt \<xi>) \<and> the (dests \<xi> ip) > sqn (rt \<xi>) ip)))"
|
594 |
+
by inv_cterms (clarsimp split: if_split_asm option.split_asm)+
|
595 |
+
|
596 |
+
text \<open>Proposition 7.27\<close>
|
597 |
+
|
598 |
+
lemma route_tables_fresher:
|
599 |
+
"paodv i \<TTurnstile>\<^sub>A (recvmsg rreq_rrep_sn \<rightarrow>) onll \<Gamma>\<^sub>A\<^sub>O\<^sub>D\<^sub>V (\<lambda>((\<xi>, _), _, (\<xi>', _)).
|
600 |
+
\<forall>dip\<in>kD(rt \<xi>). rt \<xi> \<sqsubseteq>\<^bsub>dip\<^esub> rt \<xi>')"
|
601 |
+
proof (inv_cterms inv add:
|
602 |
+
onl_invariant_sterms [OF aodv_wf dests_vD_inc_sqn [THEN invariant_restrict_inD]]
|
603 |
+
onl_invariant_sterms [OF aodv_wf hop_count_positive [THEN invariant_restrict_inD]]
|
604 |
+
onl_invariant_sterms [OF aodv_wf osn_rreq]
|
605 |
+
onl_invariant_sterms [OF aodv_wf dsn_rrep]
|
606 |
+
onl_invariant_sterms [OF aodv_wf addpreRT_welldefined [THEN invariant_restrict_inD]])
|
607 |
+
fix \<xi> pp p'
|
608 |
+
assume "(\<xi>, pp) \<in> reachable (paodv i) (recvmsg rreq_rrep_sn)"
|
609 |
+
and "{PRreq-:2}\<lbrakk>\<lambda>\<xi>. \<xi>\<lparr>rt := update (rt \<xi>) (oip \<xi>) (osn \<xi>, kno, val, Suc (hops \<xi>), sip \<xi>, {})\<rparr>\<rbrakk>
|
610 |
+
p' \<in> sterms \<Gamma>\<^sub>A\<^sub>O\<^sub>D\<^sub>V pp"
|
611 |
+
and "Suc 0 \<le> osn \<xi>"
|
612 |
+
and *: "\<forall>ip\<in>kD (rt \<xi>). Suc 0 \<le> the (dhops (rt \<xi>) ip)"
|
613 |
+
show "\<forall>ip\<in>kD (rt \<xi>). rt \<xi> \<sqsubseteq>\<^bsub>ip\<^esub> update (rt \<xi>) (oip \<xi>) (osn \<xi>, kno, val, Suc (hops \<xi>), sip \<xi>, {})"
|
614 |
+
proof
|
615 |
+
fix ip
|
616 |
+
assume "ip\<in>kD (rt \<xi>)"
|
617 |
+
moreover with * have "1 \<le> the (dhops (rt \<xi>) ip)" by simp
|
618 |
+
moreover from \<open>Suc 0 \<le> osn \<xi>\<close>
|
619 |
+
have "update_arg_wf (osn \<xi>, kno, val, Suc (hops \<xi>), sip \<xi>, {})" ..
|
620 |
+
ultimately show "rt \<xi> \<sqsubseteq>\<^bsub>ip\<^esub> update (rt \<xi>) (oip \<xi>) (osn \<xi>, kno, val, Suc (hops \<xi>), sip \<xi>, {})"
|
621 |
+
by (rule rt_fresher_update)
|
622 |
+
qed
|
623 |
+
next
|
624 |
+
fix \<xi> pp p'
|
625 |
+
assume "(\<xi>, pp) \<in> reachable (paodv i) (recvmsg rreq_rrep_sn)"
|
626 |
+
and "{PRrep-:1}\<lbrakk>\<lambda>\<xi>. \<xi>\<lparr>rt := update (rt \<xi>) (dip \<xi>) (dsn \<xi>, kno, val, Suc (hops \<xi>), sip \<xi>, {})\<rparr>\<rbrakk>
|
627 |
+
p' \<in> sterms \<Gamma>\<^sub>A\<^sub>O\<^sub>D\<^sub>V pp"
|
628 |
+
and "Suc 0 \<le> dsn \<xi>"
|
629 |
+
and *: "\<forall>ip\<in>kD (rt \<xi>). Suc 0 \<le> the (dhops (rt \<xi>) ip)"
|
630 |
+
show "\<forall>ip\<in>kD (rt \<xi>). rt \<xi> \<sqsubseteq>\<^bsub>ip\<^esub> update (rt \<xi>) (dip \<xi>) (dsn \<xi>, kno, val, Suc (hops \<xi>), sip \<xi>, {})"
|
631 |
+
proof
|
632 |
+
fix ip
|
633 |
+
assume "ip\<in>kD (rt \<xi>)"
|
634 |
+
moreover with * have "1 \<le> the (dhops (rt \<xi>) ip)" by simp
|
635 |
+
moreover from \<open>Suc 0 \<le> dsn \<xi>\<close>
|
636 |
+
have "update_arg_wf (dsn \<xi>, kno, val, Suc (hops \<xi>), sip \<xi>, {})" ..
|
637 |
+
ultimately show "rt \<xi> \<sqsubseteq>\<^bsub>ip\<^esub> update (rt \<xi>) (dip \<xi>) (dsn \<xi>, kno, val, Suc (hops \<xi>), sip \<xi>, {})"
|
638 |
+
by (rule rt_fresher_update)
|
639 |
+
qed
|
640 |
+
qed
|
641 |
+
|
642 |
+
end
|
643 |
+
|
formal/afp/AODV/variants/b_fwdrreps/B_Aodv.thy
ADDED
@@ -0,0 +1,532 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
(* Title: variants/b_fwdrreps/Aodv.thy
|
2 |
+
License: BSD 2-Clause. See LICENSE.
|
3 |
+
Author: Timothy Bourke, Inria
|
4 |
+
Author: Peter Höfner, NICTA
|
5 |
+
*)
|
6 |
+
|
7 |
+
section "The AODV protocol"
|
8 |
+
|
9 |
+
theory B_Aodv
|
10 |
+
imports B_Aodv_Data B_Aodv_Message
|
11 |
+
AWN.AWN_SOS_Labels AWN.AWN_Invariants
|
12 |
+
begin
|
13 |
+
|
14 |
+
subsection "Data state"
|
15 |
+
|
16 |
+
record state =
|
17 |
+
ip :: "ip"
|
18 |
+
sn :: "sqn"
|
19 |
+
rt :: "rt"
|
20 |
+
rreqs :: "(ip \<times> rreqid) set"
|
21 |
+
store :: "store"
|
22 |
+
(* all locals *)
|
23 |
+
msg :: "msg"
|
24 |
+
data :: "data"
|
25 |
+
dests :: "ip \<rightharpoonup> sqn"
|
26 |
+
pre :: "ip set"
|
27 |
+
rreqid :: "rreqid"
|
28 |
+
dip :: "ip"
|
29 |
+
oip :: "ip"
|
30 |
+
hops :: "nat"
|
31 |
+
dsn :: "sqn"
|
32 |
+
dsk :: "k"
|
33 |
+
osn :: "sqn"
|
34 |
+
sip :: "ip"
|
35 |
+
|
36 |
+
abbreviation aodv_init :: "ip \<Rightarrow> state"
|
37 |
+
where "aodv_init i \<equiv> \<lparr>
|
38 |
+
ip = i,
|
39 |
+
sn = 1,
|
40 |
+
rt = Map.empty,
|
41 |
+
rreqs = {},
|
42 |
+
store = Map.empty,
|
43 |
+
|
44 |
+
msg = (SOME x. True),
|
45 |
+
data = (SOME x. True),
|
46 |
+
dests = (SOME x. True),
|
47 |
+
pre = (SOME x. True),
|
48 |
+
rreqid = (SOME x. True),
|
49 |
+
dip = (SOME x. True),
|
50 |
+
oip = (SOME x. True),
|
51 |
+
hops = (SOME x. True),
|
52 |
+
dsn = (SOME x. True),
|
53 |
+
dsk = (SOME x. True),
|
54 |
+
osn = (SOME x. True),
|
55 |
+
sip = (SOME x. x \<noteq> i)
|
56 |
+
\<rparr>"
|
57 |
+
|
58 |
+
lemma some_neq_not_eq [simp]: "\<not>((SOME x :: nat. x \<noteq> i) = i)"
|
59 |
+
by (subst some_eq_ex) (metis zero_neq_numeral)
|
60 |
+
|
61 |
+
definition clear_locals :: "state \<Rightarrow> state"
|
62 |
+
where "clear_locals \<xi> = \<xi> \<lparr>
|
63 |
+
msg := (SOME x. True),
|
64 |
+
data := (SOME x. True),
|
65 |
+
dests := (SOME x. True),
|
66 |
+
pre := (SOME x. True),
|
67 |
+
rreqid := (SOME x. True),
|
68 |
+
dip := (SOME x. True),
|
69 |
+
oip := (SOME x. True),
|
70 |
+
hops := (SOME x. True),
|
71 |
+
dsn := (SOME x. True),
|
72 |
+
dsk := (SOME x. True),
|
73 |
+
osn := (SOME x. True),
|
74 |
+
sip := (SOME x. x \<noteq> ip \<xi>)
|
75 |
+
\<rparr>"
|
76 |
+
|
77 |
+
lemma clear_locals_sip_not_ip [simp]: "\<not>(sip (clear_locals \<xi>) = ip \<xi>)"
|
78 |
+
unfolding clear_locals_def by simp
|
79 |
+
|
80 |
+
lemma clear_locals_but_not_globals [simp]:
|
81 |
+
"ip (clear_locals \<xi>) = ip \<xi>"
|
82 |
+
"sn (clear_locals \<xi>) = sn \<xi>"
|
83 |
+
"rt (clear_locals \<xi>) = rt \<xi>"
|
84 |
+
"rreqs (clear_locals \<xi>) = rreqs \<xi>"
|
85 |
+
"store (clear_locals \<xi>) = store \<xi>"
|
86 |
+
unfolding clear_locals_def by auto
|
87 |
+
|
88 |
+
subsection "Auxilliary message handling definitions"
|
89 |
+
|
90 |
+
definition is_newpkt
|
91 |
+
where "is_newpkt \<xi> \<equiv> case msg \<xi> of
|
92 |
+
Newpkt data' dip' \<Rightarrow> { \<xi>\<lparr>data := data', dip := dip'\<rparr> }
|
93 |
+
| _ \<Rightarrow> {}"
|
94 |
+
|
95 |
+
definition is_pkt
|
96 |
+
where "is_pkt \<xi> \<equiv> case msg \<xi> of
|
97 |
+
Pkt data' dip' oip' \<Rightarrow> { \<xi>\<lparr> data := data', dip := dip', oip := oip' \<rparr> }
|
98 |
+
| _ \<Rightarrow> {}"
|
99 |
+
|
100 |
+
definition is_rreq
|
101 |
+
where "is_rreq \<xi> \<equiv> case msg \<xi> of
|
102 |
+
Rreq hops' rreqid' dip' dsn' dsk' oip' osn' sip' \<Rightarrow>
|
103 |
+
{ \<xi>\<lparr> hops := hops', rreqid := rreqid', dip := dip', dsn := dsn',
|
104 |
+
dsk := dsk', oip := oip', osn := osn', sip := sip' \<rparr> }
|
105 |
+
| _ \<Rightarrow> {}"
|
106 |
+
|
107 |
+
lemma is_rreq_asm [dest!]:
|
108 |
+
assumes "\<xi>' \<in> is_rreq \<xi>"
|
109 |
+
shows "(\<exists>hops' rreqid' dip' dsn' dsk' oip' osn' sip'.
|
110 |
+
msg \<xi> = Rreq hops' rreqid' dip' dsn' dsk' oip' osn' sip' \<and>
|
111 |
+
\<xi>' = \<xi>\<lparr> hops := hops', rreqid := rreqid', dip := dip', dsn := dsn',
|
112 |
+
dsk := dsk', oip := oip', osn := osn', sip := sip' \<rparr>)"
|
113 |
+
using assms unfolding is_rreq_def
|
114 |
+
by (cases "msg \<xi>") simp_all
|
115 |
+
|
116 |
+
definition is_rrep
|
117 |
+
where "is_rrep \<xi> \<equiv> case msg \<xi> of
|
118 |
+
Rrep hops' dip' dsn' oip' sip' \<Rightarrow>
|
119 |
+
{ \<xi>\<lparr> hops := hops', dip := dip', dsn := dsn', oip := oip', sip := sip' \<rparr> }
|
120 |
+
| _ \<Rightarrow> {}"
|
121 |
+
|
122 |
+
lemma is_rrep_asm [dest!]:
|
123 |
+
assumes "\<xi>' \<in> is_rrep \<xi>"
|
124 |
+
shows "(\<exists>hops' dip' dsn' oip' sip'.
|
125 |
+
msg \<xi> = Rrep hops' dip' dsn' oip' sip' \<and>
|
126 |
+
\<xi>' = \<xi>\<lparr> hops := hops', dip := dip', dsn := dsn', oip := oip', sip := sip' \<rparr>)"
|
127 |
+
using assms unfolding is_rrep_def
|
128 |
+
by (cases "msg \<xi>") simp_all
|
129 |
+
|
130 |
+
definition is_rerr
|
131 |
+
where "is_rerr \<xi> \<equiv> case msg \<xi> of
|
132 |
+
Rerr dests' sip' \<Rightarrow> { \<xi>\<lparr> dests := dests', sip := sip' \<rparr> }
|
133 |
+
| _ \<Rightarrow> {}"
|
134 |
+
|
135 |
+
lemma is_rerr_asm [dest!]:
|
136 |
+
assumes "\<xi>' \<in> is_rerr \<xi>"
|
137 |
+
shows "(\<exists>dests' sip'.
|
138 |
+
msg \<xi> = Rerr dests' sip' \<and>
|
139 |
+
\<xi>' = \<xi>\<lparr> dests := dests', sip := sip' \<rparr>)"
|
140 |
+
using assms unfolding is_rerr_def
|
141 |
+
by (cases "msg \<xi>") simp_all
|
142 |
+
|
143 |
+
lemmas is_msg_defs =
|
144 |
+
is_rerr_def is_rrep_def is_rreq_def is_pkt_def is_newpkt_def
|
145 |
+
|
146 |
+
lemma is_msg_inv_ip [simp]:
|
147 |
+
"\<xi>' \<in> is_rerr \<xi> \<Longrightarrow> ip \<xi>' = ip \<xi>"
|
148 |
+
"\<xi>' \<in> is_rrep \<xi> \<Longrightarrow> ip \<xi>' = ip \<xi>"
|
149 |
+
"\<xi>' \<in> is_rreq \<xi> \<Longrightarrow> ip \<xi>' = ip \<xi>"
|
150 |
+
"\<xi>' \<in> is_pkt \<xi> \<Longrightarrow> ip \<xi>' = ip \<xi>"
|
151 |
+
"\<xi>' \<in> is_newpkt \<xi> \<Longrightarrow> ip \<xi>' = ip \<xi>"
|
152 |
+
unfolding is_msg_defs
|
153 |
+
by (cases "msg \<xi>", clarsimp+)+
|
154 |
+
|
155 |
+
lemma is_msg_inv_sn [simp]:
|
156 |
+
"\<xi>' \<in> is_rerr \<xi> \<Longrightarrow> sn \<xi>' = sn \<xi>"
|
157 |
+
"\<xi>' \<in> is_rrep \<xi> \<Longrightarrow> sn \<xi>' = sn \<xi>"
|
158 |
+
"\<xi>' \<in> is_rreq \<xi> \<Longrightarrow> sn \<xi>' = sn \<xi>"
|
159 |
+
"\<xi>' \<in> is_pkt \<xi> \<Longrightarrow> sn \<xi>' = sn \<xi>"
|
160 |
+
"\<xi>' \<in> is_newpkt \<xi> \<Longrightarrow> sn \<xi>' = sn \<xi>"
|
161 |
+
unfolding is_msg_defs
|
162 |
+
by (cases "msg \<xi>", clarsimp+)+
|
163 |
+
|
164 |
+
lemma is_msg_inv_rt [simp]:
|
165 |
+
"\<xi>' \<in> is_rerr \<xi> \<Longrightarrow> rt \<xi>' = rt \<xi>"
|
166 |
+
"\<xi>' \<in> is_rrep \<xi> \<Longrightarrow> rt \<xi>' = rt \<xi>"
|
167 |
+
"\<xi>' \<in> is_rreq \<xi> \<Longrightarrow> rt \<xi>' = rt \<xi>"
|
168 |
+
"\<xi>' \<in> is_pkt \<xi> \<Longrightarrow> rt \<xi>' = rt \<xi>"
|
169 |
+
"\<xi>' \<in> is_newpkt \<xi> \<Longrightarrow> rt \<xi>' = rt \<xi>"
|
170 |
+
unfolding is_msg_defs
|
171 |
+
by (cases "msg \<xi>", clarsimp+)+
|
172 |
+
|
173 |
+
lemma is_msg_inv_rreqs [simp]:
|
174 |
+
"\<xi>' \<in> is_rerr \<xi> \<Longrightarrow> rreqs \<xi>' = rreqs \<xi>"
|
175 |
+
"\<xi>' \<in> is_rrep \<xi> \<Longrightarrow> rreqs \<xi>' = rreqs \<xi>"
|
176 |
+
"\<xi>' \<in> is_rreq \<xi> \<Longrightarrow> rreqs \<xi>' = rreqs \<xi>"
|
177 |
+
"\<xi>' \<in> is_pkt \<xi> \<Longrightarrow> rreqs \<xi>' = rreqs \<xi>"
|
178 |
+
"\<xi>' \<in> is_newpkt \<xi> \<Longrightarrow> rreqs \<xi>' = rreqs \<xi>"
|
179 |
+
unfolding is_msg_defs
|
180 |
+
by (cases "msg \<xi>", clarsimp+)+
|
181 |
+
|
182 |
+
lemma is_msg_inv_store [simp]:
|
183 |
+
"\<xi>' \<in> is_rerr \<xi> \<Longrightarrow> store \<xi>' = store \<xi>"
|
184 |
+
"\<xi>' \<in> is_rrep \<xi> \<Longrightarrow> store \<xi>' = store \<xi>"
|
185 |
+
"\<xi>' \<in> is_rreq \<xi> \<Longrightarrow> store \<xi>' = store \<xi>"
|
186 |
+
"\<xi>' \<in> is_pkt \<xi> \<Longrightarrow> store \<xi>' = store \<xi>"
|
187 |
+
"\<xi>' \<in> is_newpkt \<xi> \<Longrightarrow> store \<xi>' = store \<xi>"
|
188 |
+
unfolding is_msg_defs
|
189 |
+
by (cases "msg \<xi>", clarsimp+)+
|
190 |
+
|
191 |
+
lemma is_msg_inv_sip [simp]:
|
192 |
+
"\<xi>' \<in> is_pkt \<xi> \<Longrightarrow> sip \<xi>' = sip \<xi>"
|
193 |
+
"\<xi>' \<in> is_newpkt \<xi> \<Longrightarrow> sip \<xi>' = sip \<xi>"
|
194 |
+
unfolding is_msg_defs
|
195 |
+
by (cases "msg \<xi>", clarsimp+)+
|
196 |
+
|
197 |
+
subsection "The protocol process"
|
198 |
+
|
199 |
+
datatype pseqp =
|
200 |
+
PAodv
|
201 |
+
| PNewPkt
|
202 |
+
| PPkt
|
203 |
+
| PRreq
|
204 |
+
| PRrep
|
205 |
+
| PRerr
|
206 |
+
|
207 |
+
fun nat_of_seqp :: "pseqp \<Rightarrow> nat"
|
208 |
+
where
|
209 |
+
"nat_of_seqp PAodv = 1"
|
210 |
+
| "nat_of_seqp PPkt = 2"
|
211 |
+
| "nat_of_seqp PNewPkt = 3"
|
212 |
+
| "nat_of_seqp PRreq = 4"
|
213 |
+
| "nat_of_seqp PRrep = 5"
|
214 |
+
| "nat_of_seqp PRerr = 6"
|
215 |
+
|
216 |
+
instantiation "pseqp" :: ord
|
217 |
+
begin
|
218 |
+
definition less_eq_seqp [iff]: "l1 \<le> l2 = (nat_of_seqp l1 \<le> nat_of_seqp l2)"
|
219 |
+
definition less_seqp [iff]: "l1 < l2 = (nat_of_seqp l1 < nat_of_seqp l2)"
|
220 |
+
instance ..
|
221 |
+
end
|
222 |
+
|
223 |
+
abbreviation AODV
|
224 |
+
where
|
225 |
+
"AODV \<equiv> \<lambda>_. \<lbrakk>clear_locals\<rbrakk> call(PAodv)"
|
226 |
+
|
227 |
+
abbreviation PKT
|
228 |
+
where
|
229 |
+
"PKT args \<equiv>
|
230 |
+
|
231 |
+
\<lbrakk>\<xi>. let (data, dip, oip) = args \<xi> in
|
232 |
+
(clear_locals \<xi>) \<lparr> data := data, dip := dip, oip := oip \<rparr>\<rbrakk>
|
233 |
+
call(PPkt)"
|
234 |
+
abbreviation NEWPKT
|
235 |
+
where
|
236 |
+
"NEWPKT args \<equiv>
|
237 |
+
\<lbrakk>\<xi>. let (data, dip) = args \<xi> in
|
238 |
+
(clear_locals \<xi>) \<lparr> data := data, dip := dip \<rparr>\<rbrakk>
|
239 |
+
call(PNewPkt)"
|
240 |
+
|
241 |
+
abbreviation RREQ
|
242 |
+
where
|
243 |
+
"RREQ args \<equiv>
|
244 |
+
\<lbrakk>\<xi>. let (hops, rreqid, dip, dsn, dsk, oip, osn, sip) = args \<xi> in
|
245 |
+
(clear_locals \<xi>) \<lparr> hops := hops, rreqid := rreqid, dip := dip,
|
246 |
+
dsn := dsn, dsk := dsk, oip := oip,
|
247 |
+
osn := osn, sip := sip \<rparr>\<rbrakk>
|
248 |
+
call(PRreq)"
|
249 |
+
|
250 |
+
abbreviation RREP
|
251 |
+
where
|
252 |
+
"RREP args \<equiv>
|
253 |
+
\<lbrakk>\<xi>. let (hops, dip, dsn, oip, sip) = args \<xi> in
|
254 |
+
(clear_locals \<xi>) \<lparr> hops := hops, dip := dip, dsn := dsn,
|
255 |
+
oip := oip, sip := sip \<rparr>\<rbrakk>
|
256 |
+
call(PRrep)"
|
257 |
+
|
258 |
+
abbreviation RERR
|
259 |
+
where
|
260 |
+
"RERR args \<equiv>
|
261 |
+
\<lbrakk>\<xi>. let (dests, sip) = args \<xi> in
|
262 |
+
(clear_locals \<xi>) \<lparr> dests := dests, sip := sip \<rparr>\<rbrakk>
|
263 |
+
call(PRerr)"
|
264 |
+
|
265 |
+
fun \<Gamma>\<^sub>A\<^sub>O\<^sub>D\<^sub>V :: "(state, msg, pseqp, pseqp label) seqp_env"
|
266 |
+
where
|
267 |
+
"\<Gamma>\<^sub>A\<^sub>O\<^sub>D\<^sub>V PAodv = labelled PAodv (
|
268 |
+
receive(\<lambda>msg' \<xi>. \<xi> \<lparr> msg := msg' \<rparr>).
|
269 |
+
( \<langle>is_newpkt\<rangle> NEWPKT(\<lambda>\<xi>. (data \<xi>, ip \<xi>))
|
270 |
+
\<oplus> \<langle>is_pkt\<rangle> PKT(\<lambda>\<xi>. (data \<xi>, dip \<xi>, oip \<xi>))
|
271 |
+
\<oplus> \<langle>is_rreq\<rangle>
|
272 |
+
\<lbrakk>\<xi>. \<xi> \<lparr>rt := update (rt \<xi>) (sip \<xi>) (0, unk, val, 1, sip \<xi>, {}) \<rparr>\<rbrakk>
|
273 |
+
RREQ(\<lambda>\<xi>. (hops \<xi>, rreqid \<xi>, dip \<xi>, dsn \<xi>, dsk \<xi>, oip \<xi>, osn \<xi>, sip \<xi>))
|
274 |
+
\<oplus> \<langle>is_rrep\<rangle>
|
275 |
+
\<lbrakk>\<xi>. \<xi> \<lparr>rt := update (rt \<xi>) (sip \<xi>) (0, unk, val, 1, sip \<xi>, {}) \<rparr>\<rbrakk>
|
276 |
+
RREP(\<lambda>\<xi>. (hops \<xi>, dip \<xi>, dsn \<xi>, oip \<xi>, sip \<xi>))
|
277 |
+
\<oplus> \<langle>is_rerr\<rangle>
|
278 |
+
\<lbrakk>\<xi>. \<xi> \<lparr>rt := update (rt \<xi>) (sip \<xi>) (0, unk, val, 1, sip \<xi>, {}) \<rparr>\<rbrakk>
|
279 |
+
RERR(\<lambda>\<xi>. (dests \<xi>, sip \<xi>))
|
280 |
+
)
|
281 |
+
\<oplus> \<langle>\<lambda>\<xi>. { \<xi>\<lparr> dip := dip \<rparr> | dip. dip \<in> qD(store \<xi>) \<inter> vD(rt \<xi>) }\<rangle>
|
282 |
+
\<lbrakk>\<xi>. \<xi> \<lparr> data := hd(\<sigma>\<^bsub>queue\<^esub>(store \<xi>, dip \<xi>)) \<rparr>\<rbrakk>
|
283 |
+
unicast(\<lambda>\<xi>. the (nhop (rt \<xi>) (dip \<xi>)), \<lambda>\<xi>. pkt(data \<xi>, dip \<xi>, ip \<xi>)).
|
284 |
+
\<lbrakk>\<xi>. \<xi> \<lparr> store := the (drop (dip \<xi>) (store \<xi>)) \<rparr>\<rbrakk>
|
285 |
+
AODV()
|
286 |
+
\<triangleright> \<lbrakk>\<xi>. \<xi> \<lparr> dests := (\<lambda>rip. if (rip \<in> vD (rt \<xi>) \<and> nhop (rt \<xi>) rip = nhop (rt \<xi>) (dip \<xi>))
|
287 |
+
then Some (inc (sqn (rt \<xi>) rip)) else None) \<rparr>\<rbrakk>
|
288 |
+
\<lbrakk>\<xi>. \<xi> \<lparr> rt := invalidate (rt \<xi>) (dests \<xi>) \<rparr>\<rbrakk>
|
289 |
+
\<lbrakk>\<xi>. \<xi> \<lparr> store := setRRF (store \<xi>) (dests \<xi>)\<rparr>\<rbrakk>
|
290 |
+
\<lbrakk>\<xi>. \<xi> \<lparr> pre := \<Union>{ the (precs (rt \<xi>) rip) | rip. rip \<in> dom (dests \<xi>) } \<rparr>\<rbrakk>
|
291 |
+
\<lbrakk>\<xi>. \<xi> \<lparr> dests := (\<lambda>rip. if ((dests \<xi>) rip \<noteq> None \<and> the (precs (rt \<xi>) rip) \<noteq> {})
|
292 |
+
then (dests \<xi>) rip else None) \<rparr>\<rbrakk>
|
293 |
+
groupcast(\<lambda>\<xi>. pre \<xi>, \<lambda>\<xi>. rerr(dests \<xi>, ip \<xi>)). AODV()
|
294 |
+
\<oplus> \<langle>\<lambda>\<xi>. { \<xi>\<lparr> dip := dip \<rparr>
|
295 |
+
| dip. dip \<in> qD(store \<xi>) - vD(rt \<xi>) \<and> the (\<sigma>\<^bsub>p-flag\<^esub>(store \<xi>, dip)) = req }\<rangle>
|
296 |
+
\<lbrakk>\<xi>. \<xi> \<lparr> store := unsetRRF (store \<xi>) (dip \<xi>) \<rparr>\<rbrakk>
|
297 |
+
\<lbrakk>\<xi>. \<xi> \<lparr> sn := inc (sn \<xi>) \<rparr>\<rbrakk>
|
298 |
+
\<lbrakk>\<xi>. \<xi> \<lparr> rreqid := nrreqid (rreqs \<xi>) (ip \<xi>) \<rparr>\<rbrakk>
|
299 |
+
\<lbrakk>\<xi>. \<xi> \<lparr> rreqs := rreqs \<xi> \<union> {(ip \<xi>, rreqid \<xi>)} \<rparr>\<rbrakk>
|
300 |
+
broadcast(\<lambda>\<xi>. rreq(0, rreqid \<xi>, dip \<xi>, sqn (rt \<xi>) (dip \<xi>), sqnf (rt \<xi>) (dip \<xi>),
|
301 |
+
ip \<xi>, sn \<xi>, ip \<xi>)). AODV())"
|
302 |
+
|
303 |
+
| "\<Gamma>\<^sub>A\<^sub>O\<^sub>D\<^sub>V PNewPkt = labelled PNewPkt (
|
304 |
+
\<langle>\<xi>. dip \<xi> = ip \<xi>\<rangle>
|
305 |
+
deliver(\<lambda>\<xi>. data \<xi>).AODV()
|
306 |
+
\<oplus> \<langle>\<xi>. dip \<xi> \<noteq> ip \<xi>\<rangle>
|
307 |
+
\<lbrakk>\<xi>. \<xi> \<lparr> store := add (data \<xi>) (dip \<xi>) (store \<xi>) \<rparr>\<rbrakk>
|
308 |
+
AODV())"
|
309 |
+
|
310 |
+
| "\<Gamma>\<^sub>A\<^sub>O\<^sub>D\<^sub>V PPkt = labelled PPkt (
|
311 |
+
\<langle>\<xi>. dip \<xi> = ip \<xi>\<rangle>
|
312 |
+
deliver(\<lambda>\<xi>. data \<xi>).AODV()
|
313 |
+
\<oplus> \<langle>\<xi>. dip \<xi> \<noteq> ip \<xi>\<rangle>
|
314 |
+
(
|
315 |
+
\<langle>\<xi>. dip \<xi> \<in> vD (rt \<xi>)\<rangle>
|
316 |
+
unicast(\<lambda>\<xi>. the (nhop (rt \<xi>) (dip \<xi>)), \<lambda>\<xi>. pkt(data \<xi>, dip \<xi>, oip \<xi>)).AODV()
|
317 |
+
\<triangleright>
|
318 |
+
\<lbrakk>\<xi>. \<xi> \<lparr> dests := (\<lambda>rip. if (rip \<in> vD (rt \<xi>) \<and> nhop (rt \<xi>) rip = nhop (rt \<xi>) (dip \<xi>))
|
319 |
+
then Some (inc (sqn (rt \<xi>) rip)) else None) \<rparr>\<rbrakk>
|
320 |
+
\<lbrakk>\<xi>. \<xi> \<lparr> rt := invalidate (rt \<xi>) (dests \<xi>) \<rparr>\<rbrakk>
|
321 |
+
\<lbrakk>\<xi>. \<xi> \<lparr> store := setRRF (store \<xi>) (dests \<xi>)\<rparr>\<rbrakk>
|
322 |
+
\<lbrakk>\<xi>. \<xi> \<lparr> pre := \<Union>{ the (precs (rt \<xi>) rip) | rip. rip \<in> dom (dests \<xi>) } \<rparr>\<rbrakk>
|
323 |
+
\<lbrakk>\<xi>. \<xi> \<lparr> dests := (\<lambda>rip. if ((dests \<xi>) rip \<noteq> None \<and> the (precs (rt \<xi>) rip) \<noteq> {})
|
324 |
+
then (dests \<xi>) rip else None) \<rparr>\<rbrakk>
|
325 |
+
groupcast(\<lambda>\<xi>. pre \<xi>, \<lambda>\<xi>. rerr(dests \<xi>, ip \<xi>)).AODV()
|
326 |
+
\<oplus> \<langle>\<xi>. dip \<xi> \<notin> vD (rt \<xi>)\<rangle>
|
327 |
+
(
|
328 |
+
\<langle>\<xi>. dip \<xi> \<in> iD (rt \<xi>)\<rangle>
|
329 |
+
groupcast(\<lambda>\<xi>. the (precs (rt \<xi>) (dip \<xi>)),
|
330 |
+
\<lambda>\<xi>. rerr([dip \<xi> \<mapsto> sqn (rt \<xi>) (dip \<xi>)], ip \<xi>)). AODV()
|
331 |
+
\<oplus> \<langle>\<xi>. dip \<xi> \<notin> iD (rt \<xi>)\<rangle>
|
332 |
+
AODV()
|
333 |
+
)
|
334 |
+
))"
|
335 |
+
|
336 |
+
| "\<Gamma>\<^sub>A\<^sub>O\<^sub>D\<^sub>V PRreq = labelled PRreq (
|
337 |
+
\<langle>\<xi>. (oip \<xi>, rreqid \<xi>) \<in> rreqs \<xi>\<rangle>
|
338 |
+
AODV()
|
339 |
+
\<oplus> \<langle>\<xi>. (oip \<xi>, rreqid \<xi>) \<notin> rreqs \<xi>\<rangle>
|
340 |
+
\<lbrakk>\<xi>. \<xi> \<lparr> rt := update (rt \<xi>) (oip \<xi>) (osn \<xi>, kno, val, hops \<xi> + 1, sip \<xi>, {}) \<rparr>\<rbrakk>
|
341 |
+
\<lbrakk>\<xi>. \<xi> \<lparr> rreqs := rreqs \<xi> \<union> {(oip \<xi>, rreqid \<xi>)} \<rparr>\<rbrakk>
|
342 |
+
(
|
343 |
+
\<langle>\<xi>. dip \<xi> = ip \<xi>\<rangle>
|
344 |
+
\<lbrakk>\<xi>. \<xi> \<lparr> sn := max (sn \<xi>) (dsn \<xi>) \<rparr>\<rbrakk>
|
345 |
+
unicast(\<lambda>\<xi>. the (nhop (rt \<xi>) (oip \<xi>)), \<lambda>\<xi>. rrep(0, dip \<xi>, sn \<xi>, oip \<xi>, ip \<xi>)).AODV()
|
346 |
+
\<triangleright>
|
347 |
+
\<lbrakk>\<xi>. \<xi> \<lparr> dests := (\<lambda>rip. if (rip \<in> vD (rt \<xi>) \<and> nhop (rt \<xi>) rip = nhop (rt \<xi>) (oip \<xi>))
|
348 |
+
then Some (inc (sqn (rt \<xi>) rip)) else None) \<rparr>\<rbrakk>
|
349 |
+
\<lbrakk>\<xi>. \<xi> \<lparr> rt := invalidate (rt \<xi>) (dests \<xi>) \<rparr>\<rbrakk>
|
350 |
+
\<lbrakk>\<xi>. \<xi> \<lparr> store := setRRF (store \<xi>) (dests \<xi>)\<rparr>\<rbrakk>
|
351 |
+
\<lbrakk>\<xi>. \<xi> \<lparr> pre := \<Union>{ the (precs (rt \<xi>) rip) | rip. rip \<in> dom (dests \<xi>) } \<rparr>\<rbrakk>
|
352 |
+
\<lbrakk>\<xi>. \<xi> \<lparr> dests := (\<lambda>rip. if ((dests \<xi>) rip \<noteq> None \<and> the (precs (rt \<xi>) rip) \<noteq> {})
|
353 |
+
then (dests \<xi>) rip else None) \<rparr>\<rbrakk>
|
354 |
+
groupcast(\<lambda>\<xi>. pre \<xi>, \<lambda>\<xi>. rerr(dests \<xi>, ip \<xi>)).AODV()
|
355 |
+
\<oplus> \<langle>\<xi>. dip \<xi> \<noteq> ip \<xi>\<rangle>
|
356 |
+
(
|
357 |
+
\<langle>\<xi>. dip \<xi> \<in> vD (rt \<xi>) \<and> dsn \<xi> \<le> sqn (rt \<xi>) (dip \<xi>) \<and> sqnf (rt \<xi>) (dip \<xi>) = kno\<rangle>
|
358 |
+
\<lbrakk>\<xi>. \<xi> \<lparr> rt := the (addpreRT (rt \<xi>) (dip \<xi>) {sip \<xi>}) \<rparr>\<rbrakk>
|
359 |
+
\<lbrakk>\<xi>. \<xi> \<lparr> rt := the (addpreRT (rt \<xi>) (oip \<xi>) {the (nhop (rt \<xi>) (dip \<xi>))}) \<rparr>\<rbrakk>
|
360 |
+
unicast(\<lambda>\<xi>. the (nhop (rt \<xi>) (oip \<xi>)), \<lambda>\<xi>. rrep(the (dhops (rt \<xi>) (dip \<xi>)), dip \<xi>,
|
361 |
+
sqn (rt \<xi>) (dip \<xi>), oip \<xi>, ip \<xi>)).
|
362 |
+
AODV()
|
363 |
+
\<triangleright>
|
364 |
+
\<lbrakk>\<xi>. \<xi> \<lparr> dests := (\<lambda>rip. if (rip \<in> vD (rt \<xi>) \<and> nhop (rt \<xi>) rip = nhop (rt \<xi>) (oip \<xi>))
|
365 |
+
then Some (inc (sqn (rt \<xi>) rip)) else None) \<rparr>\<rbrakk>
|
366 |
+
\<lbrakk>\<xi>. \<xi> \<lparr> rt := invalidate (rt \<xi>) (dests \<xi>) \<rparr>\<rbrakk>
|
367 |
+
\<lbrakk>\<xi>. \<xi> \<lparr> store := setRRF (store \<xi>) (dests \<xi>)\<rparr>\<rbrakk>
|
368 |
+
\<lbrakk>\<xi>. \<xi> \<lparr> pre := \<Union>{ the (precs (rt \<xi>) rip) | rip. rip \<in> dom (dests \<xi>) } \<rparr>\<rbrakk>
|
369 |
+
\<lbrakk>\<xi>. \<xi> \<lparr> dests := (\<lambda>rip. if ((dests \<xi>) rip \<noteq> None \<and> the (precs (rt \<xi>) rip) \<noteq> {})
|
370 |
+
then (dests \<xi>) rip else None) \<rparr>\<rbrakk>
|
371 |
+
groupcast(\<lambda>\<xi>. pre \<xi>, \<lambda>\<xi>. rerr(dests \<xi>, ip \<xi>)).AODV()
|
372 |
+
\<oplus> \<langle>\<xi>. dip \<xi> \<notin> vD (rt \<xi>) \<or> sqn (rt \<xi>) (dip \<xi>) < dsn \<xi> \<or> sqnf (rt \<xi>) (dip \<xi>) = unk\<rangle>
|
373 |
+
broadcast(\<lambda>\<xi>. rreq(hops \<xi> + 1, rreqid \<xi>, dip \<xi>, max (sqn (rt \<xi>) (dip \<xi>)) (dsn \<xi>),
|
374 |
+
dsk \<xi>, oip \<xi>, osn \<xi>, ip \<xi>)).
|
375 |
+
AODV()
|
376 |
+
)
|
377 |
+
))"
|
378 |
+
|
379 |
+
| "\<Gamma>\<^sub>A\<^sub>O\<^sub>D\<^sub>V PRrep = labelled PRrep (
|
380 |
+
\<lbrakk>\<xi>. \<xi> \<lparr> rt := update (rt \<xi>) (dip \<xi>) (dsn \<xi>, kno, val, hops \<xi> + 1, sip \<xi>, {}) \<rparr> \<rbrakk>
|
381 |
+
(
|
382 |
+
\<langle>\<xi>. oip \<xi> = ip \<xi> \<rangle>
|
383 |
+
AODV()
|
384 |
+
\<oplus> \<langle>\<xi>. oip \<xi> \<noteq> ip \<xi> \<rangle>
|
385 |
+
(
|
386 |
+
\<langle>\<xi>. oip \<xi> \<in> vD (rt \<xi>) \<and> dip \<xi> \<in> vD (rt \<xi>)\<rangle>
|
387 |
+
\<lbrakk>\<xi>. \<xi> \<lparr> rt := the (addpreRT (rt \<xi>) (dip \<xi>)
|
388 |
+
{the (nhop (rt \<xi>) (oip \<xi>))}) \<rparr>\<rbrakk>
|
389 |
+
\<lbrakk>\<xi>. \<xi> \<lparr> rt := the (addpreRT (rt \<xi>) (the (nhop (rt \<xi>) (dip \<xi>))) {the (nhop (rt \<xi>) (oip \<xi>))}) \<rparr>\<rbrakk>
|
390 |
+
unicast(\<lambda>\<xi>. the (nhop (rt \<xi>) (oip \<xi>)), \<lambda>\<xi>. rrep(the (dhops (rt \<xi>) (dip \<xi>)), dip \<xi>,
|
391 |
+
sqn (rt \<xi>) (dip \<xi>), oip \<xi>, ip \<xi>)).
|
392 |
+
AODV()
|
393 |
+
\<triangleright>
|
394 |
+
\<lbrakk>\<xi>. \<xi> \<lparr> dests := (\<lambda>rip. if (rip \<in> vD (rt \<xi>) \<and> nhop (rt \<xi>) rip = nhop (rt \<xi>) (oip \<xi>))
|
395 |
+
then Some (inc (sqn (rt \<xi>) rip)) else None) \<rparr>\<rbrakk>
|
396 |
+
\<lbrakk>\<xi>. \<xi> \<lparr> rt := invalidate (rt \<xi>) (dests \<xi>) \<rparr>\<rbrakk>
|
397 |
+
\<lbrakk>\<xi>. \<xi> \<lparr> store := setRRF (store \<xi>) (dests \<xi>)\<rparr>\<rbrakk>
|
398 |
+
\<lbrakk>\<xi>. \<xi> \<lparr> pre := \<Union>{ the (precs (rt \<xi>) rip) | rip. rip \<in> dom (dests \<xi>) } \<rparr>\<rbrakk>
|
399 |
+
\<lbrakk>\<xi>. \<xi> \<lparr> dests := (\<lambda>rip. if ((dests \<xi>) rip \<noteq> None \<and> the (precs (rt \<xi>) rip) \<noteq> {})
|
400 |
+
then (dests \<xi>) rip else None) \<rparr>\<rbrakk>
|
401 |
+
groupcast(\<lambda>\<xi>. pre \<xi>, \<lambda>\<xi>. rerr(dests \<xi>, ip \<xi>)).AODV()
|
402 |
+
\<oplus> \<langle>\<xi>. oip \<xi> \<notin> vD (rt \<xi>) \<or> dip \<xi> \<notin> vD (rt \<xi>)\<rangle>
|
403 |
+
AODV()
|
404 |
+
)
|
405 |
+
)
|
406 |
+
)"
|
407 |
+
|
408 |
+
| "\<Gamma>\<^sub>A\<^sub>O\<^sub>D\<^sub>V PRerr = labelled PRerr (
|
409 |
+
\<lbrakk>\<xi>. \<xi> \<lparr> dests := (\<lambda>rip. case (dests \<xi>) rip of None \<Rightarrow> None
|
410 |
+
| Some rsn \<Rightarrow> if rip \<in> vD (rt \<xi>) \<and> the (nhop (rt \<xi>) rip) = sip \<xi>
|
411 |
+
\<and> sqn (rt \<xi>) rip < rsn then Some rsn else None) \<rparr>\<rbrakk>
|
412 |
+
\<lbrakk>\<xi>. \<xi> \<lparr> rt := invalidate (rt \<xi>) (dests \<xi>) \<rparr>\<rbrakk>
|
413 |
+
\<lbrakk>\<xi>. \<xi> \<lparr> store := setRRF (store \<xi>) (dests \<xi>)\<rparr>\<rbrakk>
|
414 |
+
\<lbrakk>\<xi>. \<xi> \<lparr> pre := \<Union>{ the (precs (rt \<xi>) rip) | rip. rip \<in> dom (dests \<xi>) } \<rparr>\<rbrakk>
|
415 |
+
\<lbrakk>\<xi>. \<xi> \<lparr> dests := (\<lambda>rip. if ((dests \<xi>) rip \<noteq> None \<and> the (precs (rt \<xi>) rip) \<noteq> {})
|
416 |
+
then (dests \<xi>) rip else None) \<rparr>\<rbrakk>
|
417 |
+
groupcast(\<lambda>\<xi>. pre \<xi>, \<lambda>\<xi>. rerr(dests \<xi>, ip \<xi>)). AODV())"
|
418 |
+
|
419 |
+
declare \<Gamma>\<^sub>A\<^sub>O\<^sub>D\<^sub>V.simps [simp del, code del]
|
420 |
+
lemmas \<Gamma>\<^sub>A\<^sub>O\<^sub>D\<^sub>V_simps [simp, code] = \<Gamma>\<^sub>A\<^sub>O\<^sub>D\<^sub>V.simps [simplified]
|
421 |
+
|
422 |
+
fun \<Gamma>\<^sub>A\<^sub>O\<^sub>D\<^sub>V_skeleton
|
423 |
+
where
|
424 |
+
"\<Gamma>\<^sub>A\<^sub>O\<^sub>D\<^sub>V_skeleton PAodv = seqp_skeleton (\<Gamma>\<^sub>A\<^sub>O\<^sub>D\<^sub>V PAodv)"
|
425 |
+
| "\<Gamma>\<^sub>A\<^sub>O\<^sub>D\<^sub>V_skeleton PNewPkt = seqp_skeleton (\<Gamma>\<^sub>A\<^sub>O\<^sub>D\<^sub>V PNewPkt)"
|
426 |
+
| "\<Gamma>\<^sub>A\<^sub>O\<^sub>D\<^sub>V_skeleton PPkt = seqp_skeleton (\<Gamma>\<^sub>A\<^sub>O\<^sub>D\<^sub>V PPkt)"
|
427 |
+
| "\<Gamma>\<^sub>A\<^sub>O\<^sub>D\<^sub>V_skeleton PRreq = seqp_skeleton (\<Gamma>\<^sub>A\<^sub>O\<^sub>D\<^sub>V PRreq)"
|
428 |
+
| "\<Gamma>\<^sub>A\<^sub>O\<^sub>D\<^sub>V_skeleton PRrep = seqp_skeleton (\<Gamma>\<^sub>A\<^sub>O\<^sub>D\<^sub>V PRrep)"
|
429 |
+
| "\<Gamma>\<^sub>A\<^sub>O\<^sub>D\<^sub>V_skeleton PRerr = seqp_skeleton (\<Gamma>\<^sub>A\<^sub>O\<^sub>D\<^sub>V PRerr)"
|
430 |
+
|
431 |
+
lemma \<Gamma>\<^sub>A\<^sub>O\<^sub>D\<^sub>V_skeleton_wf [simp]:
|
432 |
+
"wellformed \<Gamma>\<^sub>A\<^sub>O\<^sub>D\<^sub>V_skeleton"
|
433 |
+
proof (rule, intro allI)
|
434 |
+
fix pn pn'
|
435 |
+
show "call(pn') \<notin> stermsl (\<Gamma>\<^sub>A\<^sub>O\<^sub>D\<^sub>V_skeleton pn)"
|
436 |
+
by (cases pn) simp_all
|
437 |
+
qed
|
438 |
+
|
439 |
+
declare \<Gamma>\<^sub>A\<^sub>O\<^sub>D\<^sub>V_skeleton.simps [simp del, code del]
|
440 |
+
lemmas \<Gamma>\<^sub>A\<^sub>O\<^sub>D\<^sub>V_skeleton_simps [simp, code]
|
441 |
+
= \<Gamma>\<^sub>A\<^sub>O\<^sub>D\<^sub>V_skeleton.simps [simplified \<Gamma>\<^sub>A\<^sub>O\<^sub>D\<^sub>V_simps seqp_skeleton.simps]
|
442 |
+
|
443 |
+
lemma aodv_proc_cases [dest]:
|
444 |
+
fixes p pn
|
445 |
+
shows "p \<in> ctermsl (\<Gamma>\<^sub>A\<^sub>O\<^sub>D\<^sub>V pn) \<Longrightarrow>
|
446 |
+
(p \<in> ctermsl (\<Gamma>\<^sub>A\<^sub>O\<^sub>D\<^sub>V PAodv) \<or>
|
447 |
+
p \<in> ctermsl (\<Gamma>\<^sub>A\<^sub>O\<^sub>D\<^sub>V PNewPkt) \<or>
|
448 |
+
p \<in> ctermsl (\<Gamma>\<^sub>A\<^sub>O\<^sub>D\<^sub>V PPkt) \<or>
|
449 |
+
p \<in> ctermsl (\<Gamma>\<^sub>A\<^sub>O\<^sub>D\<^sub>V PRreq) \<or>
|
450 |
+
p \<in> ctermsl (\<Gamma>\<^sub>A\<^sub>O\<^sub>D\<^sub>V PRrep) \<or>
|
451 |
+
p \<in> ctermsl (\<Gamma>\<^sub>A\<^sub>O\<^sub>D\<^sub>V PRerr))"
|
452 |
+
by (cases pn) simp_all
|
453 |
+
|
454 |
+
definition \<sigma>\<^sub>A\<^sub>O\<^sub>D\<^sub>V :: "ip \<Rightarrow> (state \<times> (state, msg, pseqp, pseqp label) seqp) set"
|
455 |
+
where "\<sigma>\<^sub>A\<^sub>O\<^sub>D\<^sub>V i \<equiv> {(aodv_init i, \<Gamma>\<^sub>A\<^sub>O\<^sub>D\<^sub>V PAodv)}"
|
456 |
+
|
457 |
+
abbreviation paodv
|
458 |
+
:: "ip \<Rightarrow> (state \<times> (state, msg, pseqp, pseqp label) seqp, msg seq_action) automaton"
|
459 |
+
where
|
460 |
+
"paodv i \<equiv> \<lparr> init = \<sigma>\<^sub>A\<^sub>O\<^sub>D\<^sub>V i, trans = seqp_sos \<Gamma>\<^sub>A\<^sub>O\<^sub>D\<^sub>V \<rparr>"
|
461 |
+
|
462 |
+
lemma aodv_trans: "trans (paodv i) = seqp_sos \<Gamma>\<^sub>A\<^sub>O\<^sub>D\<^sub>V"
|
463 |
+
by simp
|
464 |
+
|
465 |
+
lemma aodv_control_within [simp]: "control_within \<Gamma>\<^sub>A\<^sub>O\<^sub>D\<^sub>V (init (paodv i))"
|
466 |
+
unfolding \<sigma>\<^sub>A\<^sub>O\<^sub>D\<^sub>V_def by (rule control_withinI) (auto simp del: \<Gamma>\<^sub>A\<^sub>O\<^sub>D\<^sub>V_simps)
|
467 |
+
|
468 |
+
lemma aodv_wf [simp]:
|
469 |
+
"wellformed \<Gamma>\<^sub>A\<^sub>O\<^sub>D\<^sub>V"
|
470 |
+
proof (rule, intro allI)
|
471 |
+
fix pn pn'
|
472 |
+
show "call(pn') \<notin> stermsl (\<Gamma>\<^sub>A\<^sub>O\<^sub>D\<^sub>V pn)"
|
473 |
+
by (cases pn) simp_all
|
474 |
+
qed
|
475 |
+
|
476 |
+
lemmas aodv_labels_not_empty [simp] = labels_not_empty [OF aodv_wf]
|
477 |
+
|
478 |
+
lemma aodv_ex_label [intro]: "\<exists>l. l\<in>labels \<Gamma>\<^sub>A\<^sub>O\<^sub>D\<^sub>V p"
|
479 |
+
by (metis aodv_labels_not_empty all_not_in_conv)
|
480 |
+
|
481 |
+
lemma aodv_ex_labelE [elim]:
|
482 |
+
assumes "\<forall>l\<in>labels \<Gamma>\<^sub>A\<^sub>O\<^sub>D\<^sub>V p. P l p"
|
483 |
+
and "\<exists>p l. P l p \<Longrightarrow> Q"
|
484 |
+
shows "Q"
|
485 |
+
using assms by (metis aodv_ex_label)
|
486 |
+
|
487 |
+
lemma aodv_simple_labels [simp]: "simple_labels \<Gamma>\<^sub>A\<^sub>O\<^sub>D\<^sub>V"
|
488 |
+
proof
|
489 |
+
fix pn p
|
490 |
+
assume "p\<in>subterms(\<Gamma>\<^sub>A\<^sub>O\<^sub>D\<^sub>V pn)"
|
491 |
+
thus "\<exists>!l. labels \<Gamma>\<^sub>A\<^sub>O\<^sub>D\<^sub>V p = {l}"
|
492 |
+
by (cases pn) (simp_all cong: seqp_congs | elim disjE)+
|
493 |
+
qed
|
494 |
+
|
495 |
+
lemma \<sigma>\<^sub>A\<^sub>O\<^sub>D\<^sub>V_labels [simp]: "(\<xi>, p) \<in> \<sigma>\<^sub>A\<^sub>O\<^sub>D\<^sub>V i \<Longrightarrow> labels \<Gamma>\<^sub>A\<^sub>O\<^sub>D\<^sub>V p = {PAodv-:0}"
|
496 |
+
unfolding \<sigma>\<^sub>A\<^sub>O\<^sub>D\<^sub>V_def by simp
|
497 |
+
|
498 |
+
lemma aodv_init_kD_empty [simp]:
|
499 |
+
"(\<xi>, p) \<in> \<sigma>\<^sub>A\<^sub>O\<^sub>D\<^sub>V i \<Longrightarrow> kD (rt \<xi>) = {}"
|
500 |
+
unfolding \<sigma>\<^sub>A\<^sub>O\<^sub>D\<^sub>V_def kD_def by simp
|
501 |
+
|
502 |
+
lemma aodv_init_sip_not_ip [simp]: "\<not>(sip (aodv_init i) = i)" by simp
|
503 |
+
|
504 |
+
lemma aodv_init_sip_not_ip' [simp]:
|
505 |
+
assumes "(\<xi>, p) \<in> \<sigma>\<^sub>A\<^sub>O\<^sub>D\<^sub>V i"
|
506 |
+
shows "sip \<xi> \<noteq> ip \<xi>"
|
507 |
+
using assms unfolding \<sigma>\<^sub>A\<^sub>O\<^sub>D\<^sub>V_def by simp
|
508 |
+
|
509 |
+
lemma aodv_init_sip_not_i [simp]:
|
510 |
+
assumes "(\<xi>, p) \<in> \<sigma>\<^sub>A\<^sub>O\<^sub>D\<^sub>V i"
|
511 |
+
shows "sip \<xi> \<noteq> i"
|
512 |
+
using assms unfolding \<sigma>\<^sub>A\<^sub>O\<^sub>D\<^sub>V_def by simp
|
513 |
+
|
514 |
+
lemma clear_locals_sip_not_ip':
|
515 |
+
assumes "ip \<xi> = i"
|
516 |
+
shows "\<not>(sip (clear_locals \<xi>) = i)"
|
517 |
+
using assms by auto
|
518 |
+
|
519 |
+
text \<open>Stop the simplifier from descending into process terms.\<close>
|
520 |
+
declare seqp_congs [cong]
|
521 |
+
|
522 |
+
text \<open>Configure the main invariant tactic for AODV.\<close>
|
523 |
+
|
524 |
+
declare
|
525 |
+
\<Gamma>\<^sub>A\<^sub>O\<^sub>D\<^sub>V_simps [cterms_env]
|
526 |
+
aodv_proc_cases [ctermsl_cases]
|
527 |
+
seq_invariant_ctermsI [OF aodv_wf aodv_control_within aodv_simple_labels aodv_trans,
|
528 |
+
cterms_intros]
|
529 |
+
seq_step_invariant_ctermsI [OF aodv_wf aodv_control_within aodv_simple_labels aodv_trans,
|
530 |
+
cterms_intros]
|
531 |
+
|
532 |
+
end
|
formal/afp/AODV/variants/b_fwdrreps/B_Aodv_Data.thy
ADDED
@@ -0,0 +1,990 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
(* Title: variants/b_fwdrreps/Aodv_Data.thy
|
2 |
+
License: BSD 2-Clause. See LICENSE.
|
3 |
+
Author: Timothy Bourke, Inria
|
4 |
+
*)
|
5 |
+
|
6 |
+
section "Predicates and functions used in the AODV model"
|
7 |
+
|
8 |
+
theory B_Aodv_Data
|
9 |
+
imports B_Fwdrreps
|
10 |
+
begin
|
11 |
+
|
12 |
+
subsection "Sequence Numbers"
|
13 |
+
|
14 |
+
text \<open>Sequence numbers approximate the relative freshness of routing information.\<close>
|
15 |
+
|
16 |
+
definition inc :: "sqn \<Rightarrow> sqn"
|
17 |
+
where "inc sn \<equiv> if sn = 0 then sn else sn + 1"
|
18 |
+
|
19 |
+
lemma less_than_inc [simp]: "x \<le> inc x"
|
20 |
+
unfolding inc_def by simp
|
21 |
+
|
22 |
+
lemma inc_minus_suc_0 [simp]:
|
23 |
+
"inc x - Suc 0 = x"
|
24 |
+
unfolding inc_def by simp
|
25 |
+
|
26 |
+
lemma inc_never_one' [simp, intro]: "inc x \<noteq> Suc 0"
|
27 |
+
unfolding inc_def by simp
|
28 |
+
|
29 |
+
lemma inc_never_one [simp, intro]: "inc x \<noteq> 1"
|
30 |
+
by simp
|
31 |
+
|
32 |
+
subsection "Modelling Routes"
|
33 |
+
|
34 |
+
text \<open>
|
35 |
+
A route is a 6-tuple, @{term "(dsn, dsk, flag, hops, nhip, pre)"} where
|
36 |
+
@{term dsn} is the `destination sequence number', @{term dsk} is the
|
37 |
+
`destination-sequence-number status', @{term flag} is the route status,
|
38 |
+
@{term hops} is the number of hops to the destination, @{term nhip} is the
|
39 |
+
next hop toward the destination, and @{term pre} is the set of `precursor nodes'--those
|
40 |
+
interested in hearing about changes to the route.
|
41 |
+
\<close>
|
42 |
+
|
43 |
+
type_synonym r = "sqn \<times> k \<times> f \<times> nat \<times> ip \<times> ip set"
|
44 |
+
|
45 |
+
definition proj2 :: "r \<Rightarrow> sqn" ("\<pi>\<^sub>2")
|
46 |
+
where "\<pi>\<^sub>2 \<equiv> \<lambda>(dsn, _, _, _, _, _). dsn"
|
47 |
+
|
48 |
+
definition proj3 :: "r \<Rightarrow> k" ("\<pi>\<^sub>3")
|
49 |
+
where "\<pi>\<^sub>3 \<equiv> \<lambda>(_, dsk, _, _, _, _). dsk"
|
50 |
+
|
51 |
+
definition proj4 :: "r \<Rightarrow> f" ("\<pi>\<^sub>4")
|
52 |
+
where "\<pi>\<^sub>4 \<equiv> \<lambda>(_, _, flag, _, _, _). flag"
|
53 |
+
|
54 |
+
definition proj5 :: "r \<Rightarrow> nat" ("\<pi>\<^sub>5")
|
55 |
+
where "\<pi>\<^sub>5 \<equiv> \<lambda>(_, _, _, hops, _, _). hops"
|
56 |
+
|
57 |
+
definition proj6 :: "r \<Rightarrow> ip" ("\<pi>\<^sub>6")
|
58 |
+
where "\<pi>\<^sub>6 \<equiv> \<lambda>(_, _, _, _, nhip, _). nhip"
|
59 |
+
|
60 |
+
definition proj7 :: "r \<Rightarrow> ip set" ("\<pi>\<^sub>7")
|
61 |
+
where "\<pi>\<^sub>7 \<equiv> \<lambda>(_, _, _, _, _, pre). pre"
|
62 |
+
|
63 |
+
lemma projs [simp]:
|
64 |
+
"\<pi>\<^sub>2(dsn, dsk, flag, hops, nhip, pre) = dsn"
|
65 |
+
"\<pi>\<^sub>3(dsn, dsk, flag, hops, nhip, pre) = dsk"
|
66 |
+
"\<pi>\<^sub>4(dsn, dsk, flag, hops, nhip, pre) = flag"
|
67 |
+
"\<pi>\<^sub>5(dsn, dsk, flag, hops, nhip, pre) = hops"
|
68 |
+
"\<pi>\<^sub>6(dsn, dsk, flag, hops, nhip, pre) = nhip"
|
69 |
+
"\<pi>\<^sub>7(dsn, dsk, flag, hops, nhip, pre) = pre"
|
70 |
+
by (clarsimp simp: proj2_def proj3_def proj4_def
|
71 |
+
proj5_def proj6_def proj7_def)+
|
72 |
+
|
73 |
+
lemma proj3_pred [intro]: "\<lbrakk> P kno; P unk \<rbrakk> \<Longrightarrow> P (\<pi>\<^sub>3 x)"
|
74 |
+
by (rule k.induct)
|
75 |
+
|
76 |
+
lemma proj4_pred [intro]: "\<lbrakk> P val; P inv \<rbrakk> \<Longrightarrow> P (\<pi>\<^sub>4 x)"
|
77 |
+
by (rule f.induct)
|
78 |
+
|
79 |
+
lemma proj6_pair_snd [simp]:
|
80 |
+
fixes dsn' r
|
81 |
+
shows "\<pi>\<^sub>6 (dsn', snd (r)) = \<pi>\<^sub>6(r)"
|
82 |
+
by (cases r) simp
|
83 |
+
|
84 |
+
subsection "Routing Tables"
|
85 |
+
|
86 |
+
text \<open>Routing tables map ip addresses to route entries.\<close>
|
87 |
+
|
88 |
+
type_synonym rt = "ip \<rightharpoonup> r"
|
89 |
+
|
90 |
+
syntax
|
91 |
+
"_Sigma_route" :: "rt \<Rightarrow> ip \<rightharpoonup> r" ("\<sigma>\<^bsub>route\<^esub>'(_, _')")
|
92 |
+
|
93 |
+
translations
|
94 |
+
"\<sigma>\<^bsub>route\<^esub>(rt, dip)" => "rt dip"
|
95 |
+
|
96 |
+
definition sqn :: "rt \<Rightarrow> ip \<Rightarrow> sqn"
|
97 |
+
where "sqn rt dip \<equiv> case \<sigma>\<^bsub>route\<^esub>(rt, dip) of Some r \<Rightarrow> \<pi>\<^sub>2(r) | None \<Rightarrow> 0"
|
98 |
+
|
99 |
+
definition sqnf :: "rt \<Rightarrow> ip \<Rightarrow> k"
|
100 |
+
where "sqnf rt dip \<equiv> case \<sigma>\<^bsub>route\<^esub>(rt, dip) of Some r \<Rightarrow> \<pi>\<^sub>3(r) | None \<Rightarrow> unk"
|
101 |
+
|
102 |
+
abbreviation flag :: "rt \<Rightarrow> ip \<rightharpoonup> f"
|
103 |
+
where "flag rt dip \<equiv> map_option \<pi>\<^sub>4 (\<sigma>\<^bsub>route\<^esub>(rt, dip))"
|
104 |
+
|
105 |
+
abbreviation dhops :: "rt \<Rightarrow> ip \<rightharpoonup> nat"
|
106 |
+
where "dhops rt dip \<equiv> map_option \<pi>\<^sub>5 (\<sigma>\<^bsub>route\<^esub>(rt, dip))"
|
107 |
+
|
108 |
+
abbreviation nhop :: "rt \<Rightarrow> ip \<rightharpoonup> ip"
|
109 |
+
where "nhop rt dip \<equiv> map_option \<pi>\<^sub>6 (\<sigma>\<^bsub>route\<^esub>(rt, dip))"
|
110 |
+
|
111 |
+
abbreviation precs :: "rt \<Rightarrow> ip \<rightharpoonup> ip set"
|
112 |
+
where "precs rt dip \<equiv> map_option \<pi>\<^sub>7 (\<sigma>\<^bsub>route\<^esub>(rt, dip))"
|
113 |
+
|
114 |
+
definition vD :: "rt \<Rightarrow> ip set"
|
115 |
+
where "vD rt \<equiv> {dip. flag rt dip = Some val}"
|
116 |
+
|
117 |
+
definition iD :: "rt \<Rightarrow> ip set"
|
118 |
+
where "iD rt \<equiv> {dip. flag rt dip = Some inv}"
|
119 |
+
|
120 |
+
definition kD :: "rt \<Rightarrow> ip set"
|
121 |
+
where "kD rt \<equiv> {dip. rt dip \<noteq> None}"
|
122 |
+
|
123 |
+
lemma kD_is_vD_and_iD: "kD rt = vD rt \<union> iD rt"
|
124 |
+
unfolding kD_def vD_def iD_def by auto
|
125 |
+
|
126 |
+
lemma vD_iD_gives_kD [simp]:
|
127 |
+
"\<And>ip rt. ip \<in> vD rt \<Longrightarrow> ip \<in> kD rt"
|
128 |
+
"\<And>ip rt. ip \<in> iD rt \<Longrightarrow> ip \<in> kD rt"
|
129 |
+
unfolding kD_is_vD_and_iD by simp_all
|
130 |
+
|
131 |
+
lemma kD_Some [dest]:
|
132 |
+
fixes dip rt
|
133 |
+
assumes "dip \<in> kD rt"
|
134 |
+
shows "\<exists>dsn dsk flag hops nhip pre.
|
135 |
+
\<sigma>\<^bsub>route\<^esub>(rt, dip) = Some (dsn, dsk, flag, hops, nhip, pre)"
|
136 |
+
using assms unfolding kD_def by simp
|
137 |
+
|
138 |
+
lemma kD_None [dest]:
|
139 |
+
fixes dip rt
|
140 |
+
assumes "dip \<notin> kD rt"
|
141 |
+
shows "\<sigma>\<^bsub>route\<^esub>(rt, dip) = None"
|
142 |
+
using assms unfolding kD_def
|
143 |
+
by (metis (mono_tags) mem_Collect_eq)
|
144 |
+
|
145 |
+
lemma vD_Some [dest]:
|
146 |
+
fixes dip rt
|
147 |
+
assumes "dip \<in> vD rt"
|
148 |
+
shows "\<exists>dsn dsk hops nhip pre.
|
149 |
+
\<sigma>\<^bsub>route\<^esub>(rt, dip) = Some (dsn, dsk, val, hops, nhip, pre)"
|
150 |
+
using assms unfolding vD_def by simp
|
151 |
+
|
152 |
+
lemma vD_empty [simp]: "vD Map.empty = {}"
|
153 |
+
unfolding vD_def by simp
|
154 |
+
|
155 |
+
lemma iD_Some [dest]:
|
156 |
+
fixes dip rt
|
157 |
+
assumes "dip \<in> iD rt"
|
158 |
+
shows "\<exists>dsn dsk hops nhip pre.
|
159 |
+
\<sigma>\<^bsub>route\<^esub>(rt, dip) = Some (dsn, dsk, inv, hops, nhip, pre)"
|
160 |
+
using assms unfolding iD_def by simp
|
161 |
+
|
162 |
+
lemma val_is_vD [elim]:
|
163 |
+
fixes ip rt
|
164 |
+
assumes "ip\<in>kD(rt)"
|
165 |
+
and "the (flag rt ip) = val"
|
166 |
+
shows "ip\<in>vD(rt)"
|
167 |
+
using assms unfolding vD_def by auto
|
168 |
+
|
169 |
+
lemma inv_is_iD [elim]:
|
170 |
+
fixes ip rt
|
171 |
+
assumes "ip\<in>kD(rt)"
|
172 |
+
and "the (flag rt ip) = inv"
|
173 |
+
shows "ip\<in>iD(rt)"
|
174 |
+
using assms unfolding iD_def by auto
|
175 |
+
|
176 |
+
lemma iD_flag_is_inv [elim, simp]:
|
177 |
+
fixes ip rt
|
178 |
+
assumes "ip\<in>iD(rt)"
|
179 |
+
shows "the (flag rt ip) = inv"
|
180 |
+
proof -
|
181 |
+
from \<open>ip\<in>iD(rt)\<close> have "ip\<in>kD(rt)" by auto
|
182 |
+
with assms show ?thesis unfolding iD_def by auto
|
183 |
+
qed
|
184 |
+
|
185 |
+
lemma kD_but_not_vD_is_iD [elim]:
|
186 |
+
fixes ip rt
|
187 |
+
assumes "ip\<in>kD(rt)"
|
188 |
+
and "ip\<notin>vD(rt)"
|
189 |
+
shows "ip\<in>iD(rt)"
|
190 |
+
proof -
|
191 |
+
from \<open>ip\<in>kD(rt)\<close> obtain dsn dsk f hops nhop pre
|
192 |
+
where rtip: "rt ip = Some (dsn, dsk, f, hops, nhop, pre)"
|
193 |
+
by (metis kD_Some)
|
194 |
+
from \<open>ip\<notin>vD(rt)\<close> have "f \<noteq> val"
|
195 |
+
proof (rule contrapos_nn)
|
196 |
+
assume "f = val"
|
197 |
+
with rtip have "the (flag rt ip) = val" by simp
|
198 |
+
with \<open>ip\<in>kD(rt)\<close> show "ip\<in>vD(rt)" ..
|
199 |
+
qed
|
200 |
+
with rtip have "the (flag rt ip)= inv" by simp
|
201 |
+
with \<open>ip\<in>kD(rt)\<close> show "ip\<in>iD(rt)" ..
|
202 |
+
qed
|
203 |
+
|
204 |
+
lemma vD_or_iD [elim]:
|
205 |
+
fixes ip rt
|
206 |
+
assumes "ip\<in>kD(rt)"
|
207 |
+
and "ip\<in>vD(rt) \<Longrightarrow> P rt ip"
|
208 |
+
and "ip\<in>iD(rt) \<Longrightarrow> P rt ip"
|
209 |
+
shows "P rt ip"
|
210 |
+
proof -
|
211 |
+
from \<open>ip\<in>kD(rt)\<close> have "ip\<in>vD(rt) \<union> iD(rt)"
|
212 |
+
by (simp add: kD_is_vD_and_iD)
|
213 |
+
thus ?thesis by (auto elim: assms(2-3))
|
214 |
+
qed
|
215 |
+
|
216 |
+
lemma proj5_eq_dhops: "\<And>dip rt. dip\<in>kD(rt) \<Longrightarrow> \<pi>\<^sub>5(the (rt dip)) = the (dhops rt dip)"
|
217 |
+
unfolding sqn_def by (drule kD_Some) clarsimp
|
218 |
+
|
219 |
+
lemma proj4_eq_flag: "\<And>dip rt. dip\<in>kD(rt) \<Longrightarrow> \<pi>\<^sub>4(the (rt dip)) = the (flag rt dip)"
|
220 |
+
unfolding sqn_def by (drule kD_Some) clarsimp
|
221 |
+
|
222 |
+
lemma proj2_eq_sqn: "\<And>dip rt. dip\<in>kD(rt) \<Longrightarrow> \<pi>\<^sub>2(the (rt dip)) = sqn rt dip"
|
223 |
+
unfolding sqn_def by (drule kD_Some) clarsimp
|
224 |
+
|
225 |
+
lemma kD_sqnf_is_proj3 [simp]:
|
226 |
+
"\<And>ip rt. ip\<in>kD(rt) \<Longrightarrow> sqnf rt ip = \<pi>\<^sub>3(the (rt ip))"
|
227 |
+
unfolding sqnf_def by auto
|
228 |
+
|
229 |
+
lemma vD_flag_val [simp]:
|
230 |
+
"\<And>dip rt. dip \<in> vD (rt) \<Longrightarrow> the (flag rt dip) = val"
|
231 |
+
unfolding vD_def by clarsimp
|
232 |
+
|
233 |
+
lemma kD_update [simp]:
|
234 |
+
"\<And>rt nip v. kD (rt(nip \<mapsto> v)) = insert nip (kD rt)"
|
235 |
+
unfolding kD_def by auto
|
236 |
+
|
237 |
+
lemma kD_empty [simp]: "kD Map.empty = {}"
|
238 |
+
unfolding kD_def by simp
|
239 |
+
|
240 |
+
lemma ip_equal_or_known [elim]:
|
241 |
+
fixes rt ip ip'
|
242 |
+
assumes "ip = ip' \<or> ip\<in>kD(rt)"
|
243 |
+
and "ip = ip' \<Longrightarrow> P rt ip ip'"
|
244 |
+
and "\<lbrakk> ip \<noteq> ip'; ip\<in>kD(rt)\<rbrakk> \<Longrightarrow> P rt ip ip'"
|
245 |
+
shows "P rt ip ip'"
|
246 |
+
using assms by auto
|
247 |
+
|
248 |
+
subsection "Updating Routing Tables"
|
249 |
+
|
250 |
+
text \<open>Routing table entries are modified through explicit functions.
|
251 |
+
The properties of these functions are important in invariant proofs.\<close>
|
252 |
+
|
253 |
+
subsubsection "Updating Precursor Lists"
|
254 |
+
|
255 |
+
definition addpre :: "r \<Rightarrow> ip set \<Rightarrow> r"
|
256 |
+
where "addpre r npre \<equiv> let (dsn, dsk, flag, hops, nhip, pre) = r in
|
257 |
+
(dsn, dsk, flag, hops, nhip, pre \<union> npre)"
|
258 |
+
|
259 |
+
lemma proj2_addpre:
|
260 |
+
fixes v pre
|
261 |
+
shows "\<pi>\<^sub>2(addpre v pre) = \<pi>\<^sub>2(v)"
|
262 |
+
unfolding addpre_def by (cases v) simp
|
263 |
+
|
264 |
+
lemma proj3_addpre:
|
265 |
+
fixes v pre
|
266 |
+
shows "\<pi>\<^sub>3(addpre v pre) = \<pi>\<^sub>3(v)"
|
267 |
+
unfolding addpre_def by (cases v) simp
|
268 |
+
|
269 |
+
lemma proj4_addpre:
|
270 |
+
fixes v pre
|
271 |
+
shows "\<pi>\<^sub>4(addpre v pre) = \<pi>\<^sub>4(v)"
|
272 |
+
unfolding addpre_def by (cases v) simp
|
273 |
+
|
274 |
+
lemma proj5_addpre:
|
275 |
+
fixes v pre
|
276 |
+
shows "\<pi>\<^sub>5(addpre v pre) = \<pi>\<^sub>5(v)"
|
277 |
+
unfolding addpre_def by (cases v) simp
|
278 |
+
|
279 |
+
lemma proj6_addpre:
|
280 |
+
fixes dsn dsk flag hops nhip pre npre
|
281 |
+
shows "\<pi>\<^sub>6(addpre v npre) = \<pi>\<^sub>6(v)"
|
282 |
+
unfolding addpre_def by (cases v) simp
|
283 |
+
|
284 |
+
lemma proj7_addpre:
|
285 |
+
fixes dsn dsk flag hops nhip pre npre
|
286 |
+
shows "\<pi>\<^sub>7(addpre v npre) = \<pi>\<^sub>7(v) \<union> npre"
|
287 |
+
unfolding addpre_def by (cases v) simp
|
288 |
+
|
289 |
+
lemma addpre_empty: "addpre r {} = r"
|
290 |
+
unfolding addpre_def by simp
|
291 |
+
|
292 |
+
lemma addpre_r:
|
293 |
+
"addpre (dsn, dsk, fl, hops, nhip, pre) npre = (dsn, dsk, fl, hops, nhip, pre \<union> npre)"
|
294 |
+
unfolding addpre_def by simp
|
295 |
+
|
296 |
+
lemmas addpre_simps [simp] = proj2_addpre proj3_addpre proj4_addpre proj5_addpre
|
297 |
+
proj6_addpre proj7_addpre addpre_empty addpre_r
|
298 |
+
|
299 |
+
definition addpreRT :: "rt \<Rightarrow> ip \<Rightarrow> ip set \<rightharpoonup> rt"
|
300 |
+
where "addpreRT rt dip npre \<equiv>
|
301 |
+
map_option (\<lambda>s. rt (dip \<mapsto> addpre s npre)) (\<sigma>\<^bsub>route\<^esub>(rt, dip))"
|
302 |
+
|
303 |
+
lemma snd_addpre [simp]:
|
304 |
+
"\<And>dsn dsn' v pre. (dsn, snd(addpre (dsn', v) pre)) = addpre (dsn, v) pre"
|
305 |
+
unfolding addpre_def by clarsimp
|
306 |
+
|
307 |
+
lemma proj2_addpreRT [simp]:
|
308 |
+
fixes ip rt ip' npre
|
309 |
+
assumes "ip\<in>kD rt"
|
310 |
+
and "ip'\<in>kD rt"
|
311 |
+
shows "\<pi>\<^sub>2(the (the (addpreRT rt ip' npre) ip)) = \<pi>\<^sub>2(the (rt ip))"
|
312 |
+
using assms [THEN kD_Some] unfolding addpreRT_def by clarsimp
|
313 |
+
|
314 |
+
lemma proj3_addpreRT [simp]:
|
315 |
+
fixes ip rt ip' npre
|
316 |
+
assumes "ip\<in>kD rt"
|
317 |
+
and "ip'\<in>kD rt"
|
318 |
+
shows "\<pi>\<^sub>3(the (the (addpreRT rt ip' npre) ip)) = \<pi>\<^sub>3(the (rt ip))"
|
319 |
+
using assms [THEN kD_Some] unfolding addpreRT_def by clarsimp
|
320 |
+
|
321 |
+
lemma proj5_addpreRT [simp]:
|
322 |
+
"\<And>rt dip ip npre. dip\<in>kD(rt) \<Longrightarrow> \<pi>\<^sub>5(the (the (addpreRT rt dip npre) ip)) = \<pi>\<^sub>5(the (rt ip))"
|
323 |
+
unfolding addpreRT_def by auto
|
324 |
+
|
325 |
+
lemma flag_addpreRT [simp]:
|
326 |
+
fixes rt pre ip dip
|
327 |
+
assumes "dip \<in> kD rt"
|
328 |
+
shows "flag (the (addpreRT rt dip pre)) ip = flag rt ip"
|
329 |
+
unfolding addpreRT_def
|
330 |
+
using assms [THEN kD_Some] by (clarsimp)
|
331 |
+
|
332 |
+
lemma kD_addpreRT [simp]:
|
333 |
+
fixes rt dip npre
|
334 |
+
assumes "dip \<in> kD rt"
|
335 |
+
shows "kD (the (addpreRT rt dip npre)) = kD rt"
|
336 |
+
unfolding kD_def addpreRT_def
|
337 |
+
using assms [THEN kD_Some]
|
338 |
+
by clarsimp blast
|
339 |
+
|
340 |
+
lemma vD_addpreRT [simp]:
|
341 |
+
fixes rt dip npre
|
342 |
+
assumes "dip \<in> kD rt"
|
343 |
+
shows "vD (the (addpreRT rt dip npre)) = vD rt"
|
344 |
+
unfolding vD_def addpreRT_def
|
345 |
+
using assms [THEN kD_Some] by clarsimp auto
|
346 |
+
|
347 |
+
lemma iD_addpreRT [simp]:
|
348 |
+
fixes rt dip npre
|
349 |
+
assumes "dip \<in> kD rt"
|
350 |
+
shows "iD (the (addpreRT rt dip npre)) = iD rt"
|
351 |
+
unfolding iD_def addpreRT_def
|
352 |
+
using assms [THEN kD_Some] by clarsimp auto
|
353 |
+
|
354 |
+
lemma nhop_addpreRT [simp]:
|
355 |
+
fixes rt pre ip dip
|
356 |
+
assumes "dip \<in> kD rt"
|
357 |
+
shows "nhop (the (addpreRT rt dip pre)) ip = nhop rt ip"
|
358 |
+
unfolding sqn_def addpreRT_def
|
359 |
+
using assms [THEN kD_Some] by (clarsimp)
|
360 |
+
|
361 |
+
lemma sqn_addpreRT [simp]:
|
362 |
+
fixes rt pre ip dip
|
363 |
+
assumes "dip \<in> kD rt"
|
364 |
+
shows "sqn (the (addpreRT rt dip pre)) ip = sqn rt ip"
|
365 |
+
unfolding sqn_def addpreRT_def
|
366 |
+
using assms [THEN kD_Some] by (clarsimp)
|
367 |
+
|
368 |
+
lemma dhops_addpreRT [simp]:
|
369 |
+
fixes rt pre ip dip
|
370 |
+
assumes "dip \<in> kD rt"
|
371 |
+
shows "dhops (the (addpreRT rt dip pre)) ip = dhops rt ip"
|
372 |
+
unfolding addpreRT_def
|
373 |
+
using assms [THEN kD_Some] by (clarsimp)
|
374 |
+
|
375 |
+
lemma sqnf_addpreRT [simp]:
|
376 |
+
"\<And>ip dip. ip\<in>kD(rt \<xi>) \<Longrightarrow> sqnf (the (addpreRT (rt \<xi>) ip npre)) dip = sqnf (rt \<xi>) dip"
|
377 |
+
unfolding sqnf_def addpreRT_def by auto
|
378 |
+
|
379 |
+
subsubsection "Updating route entries"
|
380 |
+
|
381 |
+
lemma in_kD_case [simp]:
|
382 |
+
fixes dip rt
|
383 |
+
assumes "dip \<in> kD(rt)"
|
384 |
+
shows "(case rt dip of None \<Rightarrow> en | Some r \<Rightarrow> es r) = es (the (rt dip))"
|
385 |
+
using assms [THEN kD_Some] by auto
|
386 |
+
|
387 |
+
lemma not_in_kD_case [simp]:
|
388 |
+
fixes dip rt
|
389 |
+
assumes "dip \<notin> kD(rt)"
|
390 |
+
shows "(case rt dip of None \<Rightarrow> en | Some r \<Rightarrow> es r) = en"
|
391 |
+
using assms [THEN kD_None] by auto
|
392 |
+
|
393 |
+
lemma rt_Some_sqn [dest]:
|
394 |
+
fixes rt and ip dsn dsk flag hops nhip pre
|
395 |
+
assumes "rt ip = Some (dsn, dsk, flag, hops, nhip, pre)"
|
396 |
+
shows "sqn rt ip = dsn"
|
397 |
+
unfolding sqn_def using assms by simp
|
398 |
+
|
399 |
+
lemma not_kD_sqn [simp]:
|
400 |
+
fixes dip rt
|
401 |
+
assumes "dip \<notin> kD(rt)"
|
402 |
+
shows "sqn rt dip = 0"
|
403 |
+
using assms unfolding sqn_def
|
404 |
+
by simp
|
405 |
+
|
406 |
+
definition update_arg_wf :: "r \<Rightarrow> bool"
|
407 |
+
where "update_arg_wf r \<equiv> \<pi>\<^sub>4(r) = val \<and>
|
408 |
+
(\<pi>\<^sub>2(r) = 0) = (\<pi>\<^sub>3(r) = unk) \<and>
|
409 |
+
(\<pi>\<^sub>3(r) = unk \<longrightarrow> \<pi>\<^sub>5(r) = 1)"
|
410 |
+
|
411 |
+
lemma update_arg_wf_gives_cases:
|
412 |
+
"\<And>r. update_arg_wf r \<Longrightarrow> (\<pi>\<^sub>2(r) = 0) = (\<pi>\<^sub>3(r) = unk)"
|
413 |
+
unfolding update_arg_wf_def by simp
|
414 |
+
|
415 |
+
lemma update_arg_wf_tuples [simp]:
|
416 |
+
"\<And>nhip pre. update_arg_wf (0, unk, val, Suc 0, nhip, pre)"
|
417 |
+
"\<And>n hops nhip pre. update_arg_wf (Suc n, kno, val, hops, nhip, pre)"
|
418 |
+
unfolding update_arg_wf_def by auto
|
419 |
+
|
420 |
+
lemma update_arg_wf_tuples' [elim]:
|
421 |
+
"\<And>n hops nhip pre. Suc 0 \<le> n \<Longrightarrow> update_arg_wf (n, kno, val, hops, nhip, pre)"
|
422 |
+
unfolding update_arg_wf_def by auto
|
423 |
+
|
424 |
+
lemma wf_r_cases [intro]:
|
425 |
+
fixes P r
|
426 |
+
assumes "update_arg_wf r"
|
427 |
+
and c1: "\<And>nhip pre. P (0, unk, val, Suc 0, nhip, pre)"
|
428 |
+
and c2: "\<And>dsn hops nhip pre. dsn > 0 \<Longrightarrow> P (dsn, kno, val, hops, nhip, pre)"
|
429 |
+
shows "P r"
|
430 |
+
proof -
|
431 |
+
obtain dsn dsk flag hops nhip pre
|
432 |
+
where *: "r = (dsn, dsk, flag, hops, nhip, pre)" by (cases r)
|
433 |
+
with \<open>update_arg_wf r\<close> have wf1: "flag = val"
|
434 |
+
and wf2: "(dsn = 0) = (dsk = unk)"
|
435 |
+
and wf3: "dsk = unk \<longrightarrow> (hops = 1)"
|
436 |
+
unfolding update_arg_wf_def by auto
|
437 |
+
have "P (dsn, dsk, flag, hops, nhip, pre)"
|
438 |
+
proof (cases dsk)
|
439 |
+
assume "dsk = unk"
|
440 |
+
moreover with wf2 wf3 have "dsn = 0" and "hops = Suc 0" by auto
|
441 |
+
ultimately show ?thesis using \<open>flag = val\<close> by simp (rule c1)
|
442 |
+
next
|
443 |
+
assume "dsk = kno"
|
444 |
+
moreover with wf2 have "dsn > 0" by simp
|
445 |
+
ultimately show ?thesis using \<open>flag = val\<close> by simp (rule c2)
|
446 |
+
qed
|
447 |
+
with * show "P r" by simp
|
448 |
+
qed
|
449 |
+
|
450 |
+
definition update :: "rt \<Rightarrow> ip \<Rightarrow> r \<Rightarrow> rt"
|
451 |
+
where
|
452 |
+
"update rt ip r \<equiv>
|
453 |
+
case \<sigma>\<^bsub>route\<^esub>(rt, ip) of
|
454 |
+
None \<Rightarrow> rt (ip \<mapsto> r)
|
455 |
+
| Some s \<Rightarrow>
|
456 |
+
if \<pi>\<^sub>2(s) < \<pi>\<^sub>2(r) then rt (ip \<mapsto> addpre r (\<pi>\<^sub>7(s)))
|
457 |
+
else if \<pi>\<^sub>2(s) = \<pi>\<^sub>2(r) \<and> (\<pi>\<^sub>5(s) > \<pi>\<^sub>5(r) \<or> \<pi>\<^sub>4(s) = inv)
|
458 |
+
then rt (ip \<mapsto> addpre r (\<pi>\<^sub>7(s)))
|
459 |
+
else if \<pi>\<^sub>3(r) = unk
|
460 |
+
then rt (ip \<mapsto> (\<pi>\<^sub>2(s), snd (addpre r (\<pi>\<^sub>7(s)))))
|
461 |
+
else rt (ip \<mapsto> addpre s (\<pi>\<^sub>7(r)))"
|
462 |
+
|
463 |
+
lemma update_simps [simp]:
|
464 |
+
fixes r s nrt nr nr' ns rt ip
|
465 |
+
defines "s \<equiv> the \<sigma>\<^bsub>route\<^esub>(rt, ip)"
|
466 |
+
and "nr \<equiv> addpre r (\<pi>\<^sub>7(s))"
|
467 |
+
and "nr' \<equiv> (\<pi>\<^sub>2(s), \<pi>\<^sub>3(nr), \<pi>\<^sub>4(nr), \<pi>\<^sub>5(nr), \<pi>\<^sub>6(nr), \<pi>\<^sub>7(nr))"
|
468 |
+
and "ns \<equiv> addpre s (\<pi>\<^sub>7(r))"
|
469 |
+
shows
|
470 |
+
"\<lbrakk>ip \<notin> kD(rt)\<rbrakk> \<Longrightarrow> update rt ip r = rt (ip \<mapsto> r)"
|
471 |
+
"\<lbrakk>ip \<in> kD(rt); sqn rt ip < \<pi>\<^sub>2(r)\<rbrakk> \<Longrightarrow> update rt ip r = rt (ip \<mapsto> nr)"
|
472 |
+
"\<lbrakk>ip \<in> kD(rt); sqn rt ip = \<pi>\<^sub>2(r);
|
473 |
+
the (dhops rt ip) > \<pi>\<^sub>5(r)\<rbrakk> \<Longrightarrow> update rt ip r = rt (ip \<mapsto> nr)"
|
474 |
+
"\<lbrakk>ip \<in> kD(rt); sqn rt ip = \<pi>\<^sub>2(r);
|
475 |
+
flag rt ip = Some inv\<rbrakk> \<Longrightarrow> update rt ip r = rt (ip \<mapsto> nr)"
|
476 |
+
"\<lbrakk>ip \<in> kD(rt); \<pi>\<^sub>3(r) = unk; (\<pi>\<^sub>2(r) = 0) = (\<pi>\<^sub>3(r) = unk)\<rbrakk> \<Longrightarrow> update rt ip r = rt (ip \<mapsto> nr')"
|
477 |
+
"\<lbrakk>ip \<in> kD(rt); sqn rt ip \<ge> \<pi>\<^sub>2(r); \<pi>\<^sub>3(r) = kno;
|
478 |
+
sqn rt ip = \<pi>\<^sub>2(r) \<Longrightarrow> the (dhops rt ip) \<le> \<pi>\<^sub>5(r) \<and> the (flag rt ip) = val \<rbrakk>
|
479 |
+
\<Longrightarrow> update rt ip r = rt (ip \<mapsto> ns)"
|
480 |
+
proof -
|
481 |
+
assume "ip\<notin>kD(rt)"
|
482 |
+
hence "\<sigma>\<^bsub>route\<^esub>(rt, ip) = None" ..
|
483 |
+
thus "update rt ip r = rt (ip \<mapsto> r)"
|
484 |
+
unfolding update_def by simp
|
485 |
+
next
|
486 |
+
assume "ip \<in> kD(rt)"
|
487 |
+
and "sqn rt ip < \<pi>\<^sub>2(r)"
|
488 |
+
from this(1) obtain dsn dsk fl hops nhip pre
|
489 |
+
where "rt ip = Some (dsn, dsk, fl, hops, nhip, pre)"
|
490 |
+
by (metis kD_Some)
|
491 |
+
with \<open>sqn rt ip < \<pi>\<^sub>2(r)\<close> show "update rt ip r = rt (ip \<mapsto> nr)"
|
492 |
+
unfolding update_def nr_def s_def by auto
|
493 |
+
next
|
494 |
+
assume "ip \<in> kD(rt)"
|
495 |
+
and "sqn rt ip = \<pi>\<^sub>2(r)"
|
496 |
+
and "the (dhops rt ip) > \<pi>\<^sub>5(r)"
|
497 |
+
from this(1) obtain dsn dsk fl hops nhip pre
|
498 |
+
where "rt ip = Some (dsn, dsk, fl, hops, nhip, pre)"
|
499 |
+
by (metis kD_Some)
|
500 |
+
with \<open>sqn rt ip = \<pi>\<^sub>2(r)\<close> and \<open>the (dhops rt ip) > \<pi>\<^sub>5(r)\<close>
|
501 |
+
show "update rt ip r = rt (ip \<mapsto> nr)"
|
502 |
+
unfolding update_def nr_def s_def by auto
|
503 |
+
next
|
504 |
+
assume "ip \<in> kD(rt)"
|
505 |
+
and "sqn rt ip = \<pi>\<^sub>2(r)"
|
506 |
+
and "flag rt ip = Some inv"
|
507 |
+
from this(1) obtain dsn dsk fl hops nhip pre
|
508 |
+
where "rt ip = Some (dsn, dsk, fl, hops, nhip, pre)"
|
509 |
+
by (metis kD_Some)
|
510 |
+
with \<open>sqn rt ip = \<pi>\<^sub>2(r)\<close> and \<open>flag rt ip = Some inv\<close>
|
511 |
+
show "update rt ip r = rt (ip \<mapsto> nr)"
|
512 |
+
unfolding update_def nr_def s_def by auto
|
513 |
+
next
|
514 |
+
assume "ip \<in> kD(rt)"
|
515 |
+
and "\<pi>\<^sub>3(r) = unk"
|
516 |
+
and "(\<pi>\<^sub>2(r) = 0) = (\<pi>\<^sub>3(r) = unk)"
|
517 |
+
from this(1) obtain dsn dsk fl hops nhip pre
|
518 |
+
where "rt ip = Some (dsn, dsk, fl, hops, nhip, pre)"
|
519 |
+
by (metis kD_Some)
|
520 |
+
with \<open>(\<pi>\<^sub>2(r) = 0) = (\<pi>\<^sub>3(r) = unk)\<close> and \<open>\<pi>\<^sub>3(r) = unk\<close>
|
521 |
+
show "update rt ip r = rt (ip \<mapsto> nr')"
|
522 |
+
unfolding update_def nr'_def nr_def s_def
|
523 |
+
by (cases r) simp
|
524 |
+
next
|
525 |
+
assume "ip \<in> kD(rt)"
|
526 |
+
and otherassms: "sqn rt ip \<ge> \<pi>\<^sub>2(r)"
|
527 |
+
"\<pi>\<^sub>3(r) = kno"
|
528 |
+
"sqn rt ip = \<pi>\<^sub>2(r) \<Longrightarrow> the (dhops rt ip) \<le> \<pi>\<^sub>5(r) \<and> the (flag rt ip) = val"
|
529 |
+
from this(1) obtain dsn dsk fl hops nhip pre
|
530 |
+
where "rt ip = Some (dsn, dsk, fl, hops, nhip, pre)"
|
531 |
+
by (metis kD_Some)
|
532 |
+
with otherassms show "update rt ip r = rt (ip \<mapsto> ns)"
|
533 |
+
unfolding update_def ns_def s_def by auto
|
534 |
+
qed
|
535 |
+
|
536 |
+
lemma update_cases [elim]:
|
537 |
+
assumes "(\<pi>\<^sub>2(r) = 0) = (\<pi>\<^sub>3(r) = unk)"
|
538 |
+
and c1: "\<lbrakk>ip \<notin> kD(rt)\<rbrakk> \<Longrightarrow> P (rt (ip \<mapsto> r))"
|
539 |
+
|
540 |
+
and c2: "\<lbrakk>ip \<in> kD(rt); sqn rt ip < \<pi>\<^sub>2(r)\<rbrakk>
|
541 |
+
\<Longrightarrow> P (rt (ip \<mapsto> addpre r (\<pi>\<^sub>7(the \<sigma>\<^bsub>route\<^esub>(rt, ip)))))"
|
542 |
+
and c3: "\<lbrakk>ip \<in> kD(rt); sqn rt ip = \<pi>\<^sub>2(r); the (dhops rt ip) > \<pi>\<^sub>5(r)\<rbrakk>
|
543 |
+
\<Longrightarrow> P (rt (ip \<mapsto> addpre r (\<pi>\<^sub>7(the \<sigma>\<^bsub>route\<^esub>(rt, ip)))))"
|
544 |
+
and c4: "\<lbrakk>ip \<in> kD(rt); sqn rt ip = \<pi>\<^sub>2(r); the (flag rt ip) = inv\<rbrakk>
|
545 |
+
\<Longrightarrow> P (rt (ip \<mapsto> addpre r (\<pi>\<^sub>7(the \<sigma>\<^bsub>route\<^esub>(rt, ip)))))"
|
546 |
+
and c5: "\<lbrakk>ip \<in> kD(rt); \<pi>\<^sub>3(r) = unk\<rbrakk>
|
547 |
+
\<Longrightarrow> P (rt (ip \<mapsto> (\<pi>\<^sub>2(the \<sigma>\<^bsub>route\<^esub>(rt, ip)), \<pi>\<^sub>3(r),
|
548 |
+
\<pi>\<^sub>4(r), \<pi>\<^sub>5(r), \<pi>\<^sub>6(r), \<pi>\<^sub>7(addpre r (\<pi>\<^sub>7(the \<sigma>\<^bsub>route\<^esub>(rt, ip)))))))"
|
549 |
+
and c6: "\<lbrakk>ip \<in> kD(rt); sqn rt ip \<ge> \<pi>\<^sub>2(r); \<pi>\<^sub>3(r) = kno;
|
550 |
+
sqn rt ip = \<pi>\<^sub>2(r) \<Longrightarrow> the (dhops rt ip) \<le> \<pi>\<^sub>5(r) \<and> the (flag rt ip) = val\<rbrakk>
|
551 |
+
\<Longrightarrow> P (rt (ip \<mapsto> addpre (the \<sigma>\<^bsub>route\<^esub>(rt, ip)) (\<pi>\<^sub>7(r))))"
|
552 |
+
shows "(P (update rt ip r))"
|
553 |
+
proof (cases "ip \<in> kD(rt)")
|
554 |
+
assume "ip \<notin> kD(rt)"
|
555 |
+
with c1 show ?thesis
|
556 |
+
by simp
|
557 |
+
next
|
558 |
+
assume "ip \<in> kD(rt)"
|
559 |
+
moreover then obtain dsn dsk fl hops nhip pre
|
560 |
+
where rteq: "rt ip = Some (dsn, dsk, fl, hops, nhip, pre)"
|
561 |
+
by (metis kD_Some)
|
562 |
+
moreover obtain dsn' dsk' fl' hops' nhip' pre'
|
563 |
+
where req: "r = (dsn', dsk', fl', hops', nhip', pre')"
|
564 |
+
by (cases r) metis
|
565 |
+
ultimately show ?thesis
|
566 |
+
using \<open>(\<pi>\<^sub>2(r) = 0) = (\<pi>\<^sub>3(r) = unk)\<close>
|
567 |
+
c2 [OF \<open>ip\<in>kD(rt)\<close>]
|
568 |
+
c3 [OF \<open>ip\<in>kD(rt)\<close>]
|
569 |
+
c4 [OF \<open>ip\<in>kD(rt)\<close>]
|
570 |
+
c5 [OF \<open>ip\<in>kD(rt)\<close>]
|
571 |
+
c6 [OF \<open>ip\<in>kD(rt)\<close>]
|
572 |
+
unfolding update_def sqn_def by auto
|
573 |
+
qed
|
574 |
+
|
575 |
+
lemma update_cases_kD:
|
576 |
+
assumes "(\<pi>\<^sub>2(r) = 0) = (\<pi>\<^sub>3(r) = unk)"
|
577 |
+
and "ip \<in> kD(rt)"
|
578 |
+
and c2: "sqn rt ip < \<pi>\<^sub>2(r) \<Longrightarrow> P (rt (ip \<mapsto> addpre r (\<pi>\<^sub>7(the \<sigma>\<^bsub>route\<^esub>(rt, ip)))))"
|
579 |
+
and c3: "\<lbrakk>sqn rt ip = \<pi>\<^sub>2(r); the (dhops rt ip) > \<pi>\<^sub>5(r)\<rbrakk>
|
580 |
+
\<Longrightarrow> P (rt (ip \<mapsto> addpre r (\<pi>\<^sub>7(the \<sigma>\<^bsub>route\<^esub>(rt, ip)))))"
|
581 |
+
and c4: "\<lbrakk>sqn rt ip = \<pi>\<^sub>2(r); the (flag rt ip) = inv\<rbrakk>
|
582 |
+
\<Longrightarrow> P (rt (ip \<mapsto> addpre r (\<pi>\<^sub>7(the \<sigma>\<^bsub>route\<^esub>(rt, ip)))))"
|
583 |
+
and c5: "\<pi>\<^sub>3(r) = unk \<Longrightarrow> P (rt (ip \<mapsto> (\<pi>\<^sub>2(the \<sigma>\<^bsub>route\<^esub>(rt, ip)), \<pi>\<^sub>3(r),
|
584 |
+
\<pi>\<^sub>4(r), \<pi>\<^sub>5(r), \<pi>\<^sub>6(r),
|
585 |
+
\<pi>\<^sub>7(addpre r (\<pi>\<^sub>7(the \<sigma>\<^bsub>route\<^esub>(rt, ip)))))))"
|
586 |
+
and c6: "\<lbrakk>sqn rt ip \<ge> \<pi>\<^sub>2(r); \<pi>\<^sub>3(r) = kno;
|
587 |
+
sqn rt ip = \<pi>\<^sub>2(r) \<Longrightarrow> the (dhops rt ip) \<le> \<pi>\<^sub>5(r) \<and> the (flag rt ip) = val\<rbrakk>
|
588 |
+
\<Longrightarrow> P (rt (ip \<mapsto> addpre (the \<sigma>\<^bsub>route\<^esub>(rt, ip)) (\<pi>\<^sub>7(r))))"
|
589 |
+
shows "(P (update rt ip r))"
|
590 |
+
using assms(1) proof (rule update_cases)
|
591 |
+
assume "sqn rt ip < \<pi>\<^sub>2(r)"
|
592 |
+
thus "P (rt(ip \<mapsto> addpre r (\<pi>\<^sub>7(the (rt ip)))))" by (rule c2)
|
593 |
+
next
|
594 |
+
assume "sqn rt ip = \<pi>\<^sub>2(r)"
|
595 |
+
and "the (dhops rt ip) > \<pi>\<^sub>5(r)"
|
596 |
+
thus "P (rt(ip \<mapsto> addpre r (\<pi>\<^sub>7 (the (rt ip)))))"
|
597 |
+
by (rule c3)
|
598 |
+
next
|
599 |
+
assume "sqn rt ip = \<pi>\<^sub>2(r)"
|
600 |
+
and "the (flag rt ip) = inv"
|
601 |
+
thus "P (rt(ip \<mapsto> addpre r (\<pi>\<^sub>7 (the (rt ip)))))"
|
602 |
+
by (rule c4)
|
603 |
+
next
|
604 |
+
assume "\<pi>\<^sub>3(r) = unk"
|
605 |
+
thus "P (rt (ip \<mapsto> (\<pi>\<^sub>2(the \<sigma>\<^bsub>route\<^esub>(rt, ip)), \<pi>\<^sub>3(r), \<pi>\<^sub>4(r), \<pi>\<^sub>5(r), \<pi>\<^sub>6(r),
|
606 |
+
\<pi>\<^sub>7(addpre r (\<pi>\<^sub>7(the (rt ip)))))))"
|
607 |
+
by (rule c5)
|
608 |
+
next
|
609 |
+
assume "sqn rt ip \<ge> \<pi>\<^sub>2(r)"
|
610 |
+
and "\<pi>\<^sub>3(r) = kno"
|
611 |
+
and "sqn rt ip = \<pi>\<^sub>2(r) \<Longrightarrow> the (dhops rt ip) \<le> \<pi>\<^sub>5(r) \<and> the (flag rt ip) = val"
|
612 |
+
thus "P (rt (ip \<mapsto> addpre (the (rt ip)) (\<pi>\<^sub>7(r))))"
|
613 |
+
by (rule c6)
|
614 |
+
qed (simp add: \<open>ip \<in> kD(rt)\<close>)
|
615 |
+
|
616 |
+
lemma in_kD_after_update [simp]:
|
617 |
+
fixes rt nip dsn dsk flag hops nhip pre
|
618 |
+
shows "kD (update rt nip (dsn, dsk, flag, hops, nhip, pre)) = insert nip (kD rt)"
|
619 |
+
unfolding update_def
|
620 |
+
by (cases "rt nip") auto
|
621 |
+
|
622 |
+
lemma nhop_of_update [simp]:
|
623 |
+
fixes rt dip dsn dsk flag hops nhip
|
624 |
+
assumes "rt \<noteq> update rt dip (dsn, dsk, flag, hops, nhip, {})"
|
625 |
+
shows "the (nhop (update rt dip (dsn, dsk, flag, hops, nhip, {})) dip) = nhip"
|
626 |
+
proof -
|
627 |
+
from assms
|
628 |
+
have update_neq: "\<And>v. rt dip = Some v \<Longrightarrow>
|
629 |
+
update rt dip (dsn, dsk, flag, hops, nhip, {})
|
630 |
+
\<noteq> rt(dip \<mapsto> addpre (the (rt dip)) (\<pi>\<^sub>7 (dsn, dsk, flag, hops, nhip, {})))"
|
631 |
+
by auto
|
632 |
+
show ?thesis
|
633 |
+
proof (cases "rt dip = None")
|
634 |
+
assume "rt dip = None"
|
635 |
+
thus "?thesis" unfolding update_def by clarsimp
|
636 |
+
next
|
637 |
+
assume "rt dip \<noteq> None"
|
638 |
+
then obtain v where "rt dip = Some v" by (metis not_None_eq)
|
639 |
+
with update_neq [OF this] show ?thesis
|
640 |
+
unfolding update_def by auto
|
641 |
+
qed
|
642 |
+
qed
|
643 |
+
|
644 |
+
lemma sqn_if_updated:
|
645 |
+
fixes rip v rt ip
|
646 |
+
shows "sqn (\<lambda>x. if x = rip then Some v else rt x) ip
|
647 |
+
= (if ip = rip then \<pi>\<^sub>2(v) else sqn rt ip)"
|
648 |
+
unfolding sqn_def by simp
|
649 |
+
|
650 |
+
lemma update_sqn [simp]:
|
651 |
+
fixes rt dip rip dsn dsk hops nhip pre
|
652 |
+
assumes "(dsn = 0) = (dsk = unk)"
|
653 |
+
shows "sqn rt dip \<le> sqn (update rt rip (dsn, dsk, val, hops, nhip, pre)) dip"
|
654 |
+
proof (rule update_cases)
|
655 |
+
show "(\<pi>\<^sub>2 (dsn, dsk, val, hops, nhip, pre) = 0) = (\<pi>\<^sub>3 (dsn, dsk, val, hops, nhip, pre) = unk)"
|
656 |
+
by simp (rule assms)
|
657 |
+
qed (clarsimp simp: sqn_if_updated sqn_def)+
|
658 |
+
|
659 |
+
lemma sqn_update_bigger [simp]:
|
660 |
+
fixes rt ip ip' dsn dsk flag hops nhip pre
|
661 |
+
assumes "1 \<le> hops"
|
662 |
+
shows "sqn rt ip \<le> sqn (update rt ip' (dsn, dsk, flag, hops, nhip, pre)) ip"
|
663 |
+
using assms unfolding update_def sqn_def
|
664 |
+
by (clarsimp split: option.split) auto
|
665 |
+
|
666 |
+
lemma dhops_update [intro]:
|
667 |
+
fixes rt dsn dsk flag hops ip rip nhip pre
|
668 |
+
assumes ex: "\<forall>ip\<in>kD rt. the (dhops rt ip) \<ge> 1"
|
669 |
+
and ip: "(ip = rip \<and> Suc 0 \<le> hops) \<or> (ip \<noteq> rip \<and> ip\<in>kD rt)"
|
670 |
+
shows "Suc 0 \<le> the (dhops (update rt rip (dsn, dsk, flag, hops, nhip, pre)) ip)"
|
671 |
+
using ip proof
|
672 |
+
assume "ip = rip \<and> Suc 0 \<le> hops" thus ?thesis
|
673 |
+
unfolding update_def using ex
|
674 |
+
by (cases "rip \<in> kD rt") (drule(1) bspec, auto)
|
675 |
+
next
|
676 |
+
assume "ip \<noteq> rip \<and> ip\<in>kD rt" thus ?thesis
|
677 |
+
using ex unfolding update_def
|
678 |
+
by (cases "rip\<in>kD rt") auto
|
679 |
+
qed
|
680 |
+
|
681 |
+
lemma update_another [simp]:
|
682 |
+
fixes dip ip rt dsn dsk flag hops nhip pre
|
683 |
+
assumes "ip \<noteq> dip"
|
684 |
+
shows "(update rt dip (dsn, dsk, flag, hops, nhip, pre)) ip = rt ip"
|
685 |
+
using assms unfolding update_def
|
686 |
+
by (clarsimp split: option.split)
|
687 |
+
|
688 |
+
lemma nhop_update_another [simp]:
|
689 |
+
fixes dip ip rt dsn dsk flag hops nhip pre
|
690 |
+
assumes "ip \<noteq> dip"
|
691 |
+
shows "nhop (update rt dip (dsn, dsk, flag, hops, nhip, pre)) ip = nhop rt ip"
|
692 |
+
using assms unfolding update_def
|
693 |
+
by (clarsimp split: option.split)
|
694 |
+
|
695 |
+
lemma dhops_update_another [simp]:
|
696 |
+
fixes dip ip rt dsn dsk flag hops nhip pre
|
697 |
+
assumes "ip \<noteq> dip"
|
698 |
+
shows "dhops (update rt dip (dsn, dsk, flag, hops, nhip, pre)) ip = dhops rt ip"
|
699 |
+
using assms unfolding update_def
|
700 |
+
by (clarsimp split: option.split)
|
701 |
+
|
702 |
+
lemma sqn_update_same [simp]:
|
703 |
+
"\<And>rt ip dsn dsk flag hops nhip pre. sqn (rt(ip \<mapsto> v)) ip = \<pi>\<^sub>2(v)"
|
704 |
+
unfolding sqn_def by simp
|
705 |
+
|
706 |
+
lemma dhops_update_changed [simp]:
|
707 |
+
fixes rt dip osn hops nhip
|
708 |
+
assumes "rt \<noteq> update rt dip (osn, kno, val, hops, nhip, {})"
|
709 |
+
shows "the (dhops (update rt dip (osn, kno, val, hops, nhip, {})) dip) = hops"
|
710 |
+
using assms unfolding update_def
|
711 |
+
by (clarsimp split: option.split_asm option.split if_split_asm) auto
|
712 |
+
|
713 |
+
lemma nhop_update_unk_val [simp]:
|
714 |
+
"\<And>rt dip ip dsn hops npre.
|
715 |
+
the (nhop (update rt dip (dsn, unk, val, hops, ip, npre)) dip) = ip"
|
716 |
+
unfolding update_def by (clarsimp split: option.split)
|
717 |
+
|
718 |
+
lemma nhop_update_changed [simp]:
|
719 |
+
fixes rt dip dsn dsk flg hops sip
|
720 |
+
assumes "update rt dip (dsn, dsk, flg, hops, sip, {}) \<noteq> rt"
|
721 |
+
shows "the (nhop (update rt dip (dsn, dsk, flg, hops, sip, {})) dip) = sip"
|
722 |
+
using assms unfolding update_def
|
723 |
+
by (clarsimp split: option.splits if_split_asm) auto
|
724 |
+
|
725 |
+
lemma update_rt_split_asm:
|
726 |
+
"\<And>rt ip dsn dsk flag hops sip.
|
727 |
+
P (update rt ip (dsn, dsk, flag, hops, sip, {}))
|
728 |
+
=
|
729 |
+
(\<not>(rt = update rt ip (dsn, dsk, flag, hops, sip, {}) \<and> \<not>P rt
|
730 |
+
\<or> rt \<noteq> update rt ip (dsn, dsk, flag, hops, sip, {})
|
731 |
+
\<and> \<not>P (update rt ip (dsn, dsk, flag, hops, sip, {}))))"
|
732 |
+
by auto
|
733 |
+
|
734 |
+
lemma sqn_update [simp]: "\<And>rt dip dsn flg hops sip.
|
735 |
+
rt \<noteq> update rt dip (dsn, kno, flg, hops, sip, {})
|
736 |
+
\<Longrightarrow> sqn (update rt dip (dsn, kno, flg, hops, sip, {})) dip = dsn"
|
737 |
+
unfolding update_def by (clarsimp split: option.split if_split_asm) auto
|
738 |
+
|
739 |
+
lemma sqnf_update [simp]: "\<And>rt dip dsn dsk flg hops sip.
|
740 |
+
rt \<noteq> update rt dip (dsn, dsk, flg, hops, sip, {})
|
741 |
+
\<Longrightarrow> sqnf (update rt dip (dsn, dsk, flg, hops, sip, {})) dip = dsk"
|
742 |
+
unfolding update_def sqnf_def
|
743 |
+
by (clarsimp split: option.splits if_split_asm) auto
|
744 |
+
|
745 |
+
lemma update_kno_dsn_greater_zero:
|
746 |
+
"\<And>rt dip ip dsn hops npre. 1 \<le> dsn \<Longrightarrow> 1 \<le> (sqn (update rt dip (dsn, kno, val, hops, ip, npre)) dip)"
|
747 |
+
unfolding update_def
|
748 |
+
by (clarsimp split: option.splits)
|
749 |
+
|
750 |
+
lemma proj3_update [simp]: "\<And>rt dip dsn dsk flg hops sip.
|
751 |
+
rt \<noteq> update rt dip (dsn, dsk, flg, hops, sip, {})
|
752 |
+
\<Longrightarrow> \<pi>\<^sub>3(the (update rt dip (dsn, dsk, flg, hops, sip, {}) dip)) = dsk"
|
753 |
+
unfolding update_def sqnf_def
|
754 |
+
by (clarsimp split: option.splits if_split_asm) auto
|
755 |
+
|
756 |
+
lemma nhop_update_changed_kno_val [simp]: "\<And>rt ip dsn dsk hops nhip.
|
757 |
+
rt \<noteq> update rt ip (dsn, kno, val, hops, nhip, {})
|
758 |
+
\<Longrightarrow> the (nhop (update rt ip (dsn, kno, val, hops, nhip, {})) ip) = nhip"
|
759 |
+
unfolding update_def
|
760 |
+
by (clarsimp split: option.split_asm option.split if_split_asm) auto
|
761 |
+
|
762 |
+
lemma flag_update [simp]: "\<And>rt dip dsn flg hops sip.
|
763 |
+
rt \<noteq> update rt dip (dsn, kno, flg, hops, sip, {})
|
764 |
+
\<Longrightarrow> the (flag (update rt dip (dsn, kno, flg, hops, sip, {})) dip) = flg"
|
765 |
+
unfolding update_def
|
766 |
+
by (clarsimp split: option.split if_split_asm) auto
|
767 |
+
|
768 |
+
lemma the_flag_Some [dest!]:
|
769 |
+
fixes ip rt
|
770 |
+
assumes "the (flag rt ip) = x"
|
771 |
+
and "ip \<in> kD rt"
|
772 |
+
shows "flag rt ip = Some x"
|
773 |
+
using assms by auto
|
774 |
+
|
775 |
+
lemma kD_update_unchanged [dest]:
|
776 |
+
fixes rt dip dsn dsk flag hops nhip pre
|
777 |
+
assumes "rt = update rt dip (dsn, dsk, flag, hops, nhip, pre)"
|
778 |
+
shows "dip\<in>kD(rt)"
|
779 |
+
proof -
|
780 |
+
have "dip\<in>kD(update rt dip (dsn, dsk, flag, hops, nhip, pre))" by simp
|
781 |
+
with assms show ?thesis by simp
|
782 |
+
qed
|
783 |
+
|
784 |
+
lemma nhop_update [simp]: "\<And>rt dip dsn dsk flg hops sip.
|
785 |
+
rt \<noteq> update rt dip (dsn, dsk, flg, hops, sip, {})
|
786 |
+
\<Longrightarrow> the (nhop (update rt dip (dsn, dsk, flg, hops, sip, {})) dip) = sip"
|
787 |
+
unfolding update_def sqnf_def
|
788 |
+
by (clarsimp split: option.splits if_split_asm) auto
|
789 |
+
|
790 |
+
lemma sqn_update_another [simp]:
|
791 |
+
fixes dip ip rt dsn dsk flag hops nhip pre
|
792 |
+
assumes "ip \<noteq> dip"
|
793 |
+
shows "sqn (update rt dip (dsn, dsk, flag, hops, nhip, pre)) ip = sqn rt ip"
|
794 |
+
using assms unfolding update_def sqn_def
|
795 |
+
by (clarsimp split: option.splits) auto
|
796 |
+
|
797 |
+
lemma sqnf_update_another [simp]:
|
798 |
+
fixes dip ip rt dsn dsk flag hops nhip pre
|
799 |
+
assumes "ip \<noteq> dip"
|
800 |
+
shows "sqnf (update rt dip (dsn, dsk, flag, hops, nhip, pre)) ip = sqnf rt ip"
|
801 |
+
using assms unfolding update_def sqnf_def
|
802 |
+
by (clarsimp split: option.splits) auto
|
803 |
+
|
804 |
+
lemma vD_update_val [dest]:
|
805 |
+
"\<And>dip rt dip' dsn dsk hops nhip pre.
|
806 |
+
dip \<in> vD(update rt dip' (dsn, dsk, val, hops, nhip, pre)) \<Longrightarrow> (dip\<in>vD(rt) \<or> dip=dip')"
|
807 |
+
unfolding update_def vD_def by (clarsimp split: option.split_asm if_split_asm)
|
808 |
+
|
809 |
+
subsubsection "Invalidating route entries"
|
810 |
+
|
811 |
+
definition invalidate :: "rt \<Rightarrow> (ip \<rightharpoonup> sqn) \<Rightarrow> rt"
|
812 |
+
where "invalidate rt dests \<equiv>
|
813 |
+
\<lambda>ip. case (rt ip, dests ip) of
|
814 |
+
(None, _) \<Rightarrow> None
|
815 |
+
| (Some s, None) \<Rightarrow> Some s
|
816 |
+
| (Some (_, dsk, _, hops, nhip, pre), Some rsn) \<Rightarrow>
|
817 |
+
Some (rsn, dsk, inv, hops, nhip, pre)"
|
818 |
+
|
819 |
+
lemma proj3_invalidate [simp]:
|
820 |
+
"\<And>dip. \<pi>\<^sub>3(the ((invalidate rt dests) dip)) = \<pi>\<^sub>3(the (rt dip))"
|
821 |
+
unfolding invalidate_def by (clarsimp split: option.split)
|
822 |
+
|
823 |
+
lemma proj5_invalidate [simp]:
|
824 |
+
"\<And>dip. \<pi>\<^sub>5(the ((invalidate rt dests) dip)) = \<pi>\<^sub>5(the (rt dip))"
|
825 |
+
unfolding invalidate_def by (clarsimp split: option.split)
|
826 |
+
|
827 |
+
lemma proj6_invalidate [simp]:
|
828 |
+
"\<And>dip. \<pi>\<^sub>6(the ((invalidate rt dests) dip)) = \<pi>\<^sub>6(the (rt dip))"
|
829 |
+
unfolding invalidate_def by (clarsimp split: option.split)
|
830 |
+
|
831 |
+
lemma proj7_invalidate [simp]:
|
832 |
+
"\<And>dip. \<pi>\<^sub>7(the ((invalidate rt dests) dip)) = \<pi>\<^sub>7(the (rt dip))"
|
833 |
+
unfolding invalidate_def by (clarsimp split: option.split)
|
834 |
+
|
835 |
+
lemma invalidate_kD_inv [simp]:
|
836 |
+
"\<And>rt dests. kD (invalidate rt dests) = kD rt"
|
837 |
+
unfolding invalidate_def kD_def
|
838 |
+
by (simp split: option.split)
|
839 |
+
|
840 |
+
lemma invalidate_sqn:
|
841 |
+
fixes rt dip dests
|
842 |
+
assumes "\<forall>rsn. dests dip = Some rsn \<longrightarrow> sqn rt dip \<le> rsn"
|
843 |
+
shows "sqn rt dip \<le> sqn (invalidate rt dests) dip"
|
844 |
+
proof (cases "dip \<notin> kD(rt)")
|
845 |
+
assume "\<not> dip \<notin> kD(rt)"
|
846 |
+
hence "dip\<in>kD(rt)" by simp
|
847 |
+
then obtain dsn dsk flag hops nhip pre where "rt dip = Some (dsn, dsk, flag, hops, nhip, pre)"
|
848 |
+
by (metis kD_Some)
|
849 |
+
with assms show "sqn rt dip \<le> sqn (invalidate rt dests) dip"
|
850 |
+
by (cases "dests dip") (auto simp add: invalidate_def sqn_def)
|
851 |
+
qed simp
|
852 |
+
|
853 |
+
lemma sqn_invalidate_in_dests [simp]:
|
854 |
+
fixes dests ipa rsn rt
|
855 |
+
assumes "dests ipa = Some rsn"
|
856 |
+
and "ipa\<in>kD(rt)"
|
857 |
+
shows "sqn (invalidate rt dests) ipa = rsn"
|
858 |
+
unfolding invalidate_def sqn_def
|
859 |
+
using assms(1) assms(2) [THEN kD_Some]
|
860 |
+
by clarsimp
|
861 |
+
|
862 |
+
lemma dhops_invalidate [simp]:
|
863 |
+
"\<And>dip. the (dhops (invalidate rt dests) dip) = the (dhops rt dip)"
|
864 |
+
unfolding invalidate_def by (clarsimp split: option.split)
|
865 |
+
|
866 |
+
lemma sqnf_invalidate [simp]:
|
867 |
+
"\<And>dip. sqnf (invalidate (rt \<xi>) (dests \<xi>)) dip = sqnf (rt \<xi>) dip"
|
868 |
+
unfolding sqnf_def invalidate_def by (clarsimp split: option.split)
|
869 |
+
|
870 |
+
lemma nhop_invalidate [simp]:
|
871 |
+
"\<And>dip. the (nhop (invalidate (rt \<xi>) (dests \<xi>)) dip) = the (nhop (rt \<xi>) dip)"
|
872 |
+
unfolding invalidate_def by (clarsimp split: option.split)
|
873 |
+
|
874 |
+
lemma invalidate_other [simp]:
|
875 |
+
fixes rt dests dip
|
876 |
+
assumes "dip\<notin>dom(dests)"
|
877 |
+
shows "invalidate rt dests dip = rt dip"
|
878 |
+
using assms unfolding invalidate_def
|
879 |
+
by (clarsimp split: option.split_asm)
|
880 |
+
|
881 |
+
lemma invalidate_none [simp]:
|
882 |
+
fixes rt dests dip
|
883 |
+
assumes "dip\<notin>kD(rt)"
|
884 |
+
shows "invalidate rt dests dip = None"
|
885 |
+
using assms unfolding invalidate_def by clarsimp
|
886 |
+
|
887 |
+
lemma vD_invalidate_vD_not_dests:
|
888 |
+
"\<And>dip rt dests. dip\<in>vD(invalidate rt dests) \<Longrightarrow> dip\<in>vD(rt) \<and> dests dip = None"
|
889 |
+
unfolding invalidate_def vD_def
|
890 |
+
by (clarsimp split: option.split_asm)
|
891 |
+
|
892 |
+
lemma sqn_invalidate_not_in_dests [simp]:
|
893 |
+
fixes dests dip rt
|
894 |
+
assumes "dip\<notin>dom(dests)"
|
895 |
+
shows "sqn (invalidate rt dests) dip = sqn rt dip"
|
896 |
+
using assms unfolding sqn_def by simp
|
897 |
+
|
898 |
+
lemma invalidate_changes:
|
899 |
+
fixes rt dests dip dsn dsk flag hops nhip pre
|
900 |
+
assumes "invalidate rt dests dip = Some (dsn, dsk, flag, hops, nhip, pre)"
|
901 |
+
shows " dsn = (case dests dip of None \<Rightarrow> \<pi>\<^sub>2(the (rt dip)) | Some rsn \<Rightarrow> rsn)
|
902 |
+
\<and> dsk = \<pi>\<^sub>3(the (rt dip))
|
903 |
+
\<and> flag = (if dests dip = None then \<pi>\<^sub>4(the (rt dip)) else inv)
|
904 |
+
\<and> hops = \<pi>\<^sub>5(the (rt dip))
|
905 |
+
\<and> nhip = \<pi>\<^sub>6(the (rt dip))
|
906 |
+
\<and> pre = \<pi>\<^sub>7(the (rt dip))"
|
907 |
+
using assms unfolding invalidate_def
|
908 |
+
by (cases "rt dip", clarsimp, cases "dests dip") auto
|
909 |
+
|
910 |
+
|
911 |
+
lemma proj3_inv: "\<And>dip rt dests. dip\<in>kD (rt)
|
912 |
+
\<Longrightarrow> \<pi>\<^sub>3(the (invalidate rt dests dip)) = \<pi>\<^sub>3(the (rt dip))"
|
913 |
+
by (clarsimp simp: invalidate_def kD_def split: option.split)
|
914 |
+
|
915 |
+
lemma dests_iD_invalidate [simp]:
|
916 |
+
assumes "dests ip = Some rsn"
|
917 |
+
and "ip\<in>kD(rt)"
|
918 |
+
shows "ip\<in>iD(invalidate rt dests)"
|
919 |
+
using assms(1) assms(2) [THEN kD_Some] unfolding invalidate_def iD_def
|
920 |
+
by (clarsimp split: option.split)
|
921 |
+
|
922 |
+
subsection "Route Requests"
|
923 |
+
|
924 |
+
text \<open>Generate a fresh route request identifier.\<close>
|
925 |
+
|
926 |
+
definition nrreqid :: "(ip \<times> rreqid) set \<Rightarrow> ip \<Rightarrow> rreqid"
|
927 |
+
where "nrreqid rreqs ip \<equiv> Max ({n. (ip, n) \<in> rreqs} \<union> {0}) + 1"
|
928 |
+
|
929 |
+
subsection "Queued Packets"
|
930 |
+
|
931 |
+
text \<open>Functions for sending data packets.\<close>
|
932 |
+
|
933 |
+
type_synonym store = "ip \<rightharpoonup> (p \<times> data list)"
|
934 |
+
|
935 |
+
definition sigma_queue :: "store \<Rightarrow> ip \<Rightarrow> data list" ("\<sigma>\<^bsub>queue\<^esub>'(_, _')")
|
936 |
+
where "\<sigma>\<^bsub>queue\<^esub>(store, dip) \<equiv> case store dip of None \<Rightarrow> [] | Some (p, q) \<Rightarrow> q"
|
937 |
+
|
938 |
+
definition qD :: "store \<Rightarrow> ip set"
|
939 |
+
where "qD \<equiv> dom"
|
940 |
+
|
941 |
+
definition add :: "data \<Rightarrow> ip \<Rightarrow> store \<Rightarrow> store"
|
942 |
+
where "add d dip store \<equiv> case store dip of
|
943 |
+
None \<Rightarrow> store (dip \<mapsto> (req, [d]))
|
944 |
+
| Some (p, q) \<Rightarrow> store (dip \<mapsto> (p, q @ [d]))"
|
945 |
+
|
946 |
+
lemma qD_add [simp]:
|
947 |
+
fixes d dip store
|
948 |
+
shows "qD(add d dip store) = insert dip (qD store)"
|
949 |
+
unfolding add_def Let_def qD_def
|
950 |
+
by (clarsimp split: option.split)
|
951 |
+
|
952 |
+
definition drop :: "ip \<Rightarrow> store \<rightharpoonup> store"
|
953 |
+
where "drop dip store \<equiv>
|
954 |
+
map_option (\<lambda>(p, q). if tl q = [] then store (dip := None)
|
955 |
+
else store (dip \<mapsto> (p, tl q))) (store dip)"
|
956 |
+
|
957 |
+
definition sigma_p_flag :: "store \<Rightarrow> ip \<rightharpoonup> p" ("\<sigma>\<^bsub>p-flag\<^esub>'(_, _')")
|
958 |
+
where "\<sigma>\<^bsub>p-flag\<^esub>(store, dip) \<equiv> map_option fst (store dip)"
|
959 |
+
|
960 |
+
definition unsetRRF :: "store \<Rightarrow> ip \<Rightarrow> store"
|
961 |
+
where "unsetRRF store dip \<equiv> case store dip of
|
962 |
+
None \<Rightarrow> store
|
963 |
+
| Some (p, q) \<Rightarrow> store (dip \<mapsto> (noreq, q))"
|
964 |
+
|
965 |
+
definition setRRF :: "store \<Rightarrow> (ip \<rightharpoonup> sqn) \<Rightarrow> store"
|
966 |
+
where "setRRF store dests \<equiv> \<lambda>dip. if dests dip = None then store dip
|
967 |
+
else map_option (\<lambda>(_, q). (req, q)) (store dip)"
|
968 |
+
|
969 |
+
subsection "Comparison with the original technical report"
|
970 |
+
|
971 |
+
text \<open>
|
972 |
+
The major differences with the AODV technical report of Fehnker et al are:
|
973 |
+
\begin{enumerate}
|
974 |
+
\item @{term nhop} is partial, thus a `@{term the}' is needed, similarly for @{term dhops}
|
975 |
+
and @{term addpreRT}.
|
976 |
+
\item @{term precs} is partial.
|
977 |
+
\item @{term "\<sigma>\<^bsub>p-flag\<^esub>(store, dip)"} is partial.
|
978 |
+
\item The routing table (@{typ rt}) is modelled as a map (@{typ "ip \<Rightarrow> r option"})
|
979 |
+
rather than a set of 7-tuples, likewise, the @{typ r} is a 6-tuple rather than
|
980 |
+
a 7-tuple, i.e., the destination ip-address (@{term "dip"}) is taken from the
|
981 |
+
argument to the function, rather than a part of the result. Well-definedness then
|
982 |
+
follows from the structure of the type and more related facts are available
|
983 |
+
automatically, rather than having to be acquired through tedious proofs.
|
984 |
+
\item Similar remarks hold for the dests mapping passed to @{term "invalidate"},
|
985 |
+
and @{term "store"}.
|
986 |
+
\end{enumerate}
|
987 |
+
\<close>
|
988 |
+
|
989 |
+
end
|
990 |
+
|
formal/afp/AODV/variants/b_fwdrreps/B_Aodv_Loop_Freedom.thy
ADDED
@@ -0,0 +1,369 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
(* Title: variants/b_fwdrreps/Aodv_Loop_Freedom.thy
|
2 |
+
License: BSD 2-Clause. See LICENSE.
|
3 |
+
Author: Timothy Bourke, Inria
|
4 |
+
*)
|
5 |
+
|
6 |
+
section "Lift and transfer invariants to show loop freedom"
|
7 |
+
|
8 |
+
theory B_Aodv_Loop_Freedom
|
9 |
+
imports AWN.OClosed_Transfer AWN.Qmsg_Lifting B_Global_Invariants B_Loop_Freedom
|
10 |
+
begin
|
11 |
+
|
12 |
+
subsection \<open>Lift to parallel processes with queues\<close>
|
13 |
+
|
14 |
+
lemma par_step_no_change_on_send_or_receive:
|
15 |
+
fixes \<sigma> s a \<sigma>' s'
|
16 |
+
assumes "((\<sigma>, s), a, (\<sigma>', s')) \<in> oparp_sos i (oseqp_sos \<Gamma>\<^sub>A\<^sub>O\<^sub>D\<^sub>V i) (seqp_sos \<Gamma>\<^sub>Q\<^sub>M\<^sub>S\<^sub>G)"
|
17 |
+
and "a \<noteq> \<tau>"
|
18 |
+
shows "\<sigma>' i = \<sigma> i"
|
19 |
+
using assms by (rule qmsg_no_change_on_send_or_receive)
|
20 |
+
|
21 |
+
lemma par_nhop_quality_increases:
|
22 |
+
shows "opaodv i \<langle>\<langle>\<^bsub>i\<^esub> qmsg \<Turnstile> (otherwith ((=)) {i} (orecvmsg (\<lambda>\<sigma> m.
|
23 |
+
msg_fresh \<sigma> m \<and> msg_zhops m)),
|
24 |
+
other quality_increases {i} \<rightarrow>)
|
25 |
+
global (\<lambda>\<sigma>. \<forall>dip. let nhip = the (nhop (rt (\<sigma> i)) dip)
|
26 |
+
in dip \<in> vD (rt (\<sigma> i)) \<inter> vD (rt (\<sigma> nhip)) \<and> nhip \<noteq> dip
|
27 |
+
\<longrightarrow> (rt (\<sigma> i)) \<sqsubset>\<^bsub>dip\<^esub> (rt (\<sigma> nhip)))"
|
28 |
+
proof (rule lift_into_qmsg [OF seq_nhop_quality_increases])
|
29 |
+
show "opaodv i \<Turnstile>\<^sub>A (otherwith ((=)) {i}
|
30 |
+
(orecvmsg (\<lambda>\<sigma> m. msg_fresh \<sigma> m \<and> msg_zhops m)),
|
31 |
+
other quality_increases {i} \<rightarrow>)
|
32 |
+
globala (\<lambda>(\<sigma>, _, \<sigma>'). quality_increases (\<sigma> i) (\<sigma>' i))"
|
33 |
+
proof (rule ostep_invariant_weakenE [OF oquality_increases], simp_all)
|
34 |
+
fix t :: "(((nat \<Rightarrow> state) \<times> (state, msg, pseqp, pseqp label) seqp), msg seq_action) transition"
|
35 |
+
assume "onll \<Gamma>\<^sub>A\<^sub>O\<^sub>D\<^sub>V (\<lambda>((\<sigma>, _), _, (\<sigma>', _)). \<forall>j. quality_increases (\<sigma> j) (\<sigma>' j)) t"
|
36 |
+
thus "quality_increases (fst (fst t) i) (fst (snd (snd t)) i)"
|
37 |
+
by (cases t) (clarsimp dest!: onllD, metis aodv_ex_label)
|
38 |
+
next
|
39 |
+
fix \<sigma> \<sigma>' a
|
40 |
+
assume "otherwith ((=)) {i}
|
41 |
+
(orecvmsg (\<lambda>\<sigma> m. msg_fresh \<sigma> m \<and> msg_zhops m)) \<sigma> \<sigma>' a"
|
42 |
+
thus "otherwith quality_increases {i} (orecvmsg (\<lambda>_. rreq_rrep_sn)) \<sigma> \<sigma>' a"
|
43 |
+
by - (erule weaken_otherwith, auto)
|
44 |
+
qed
|
45 |
+
qed auto
|
46 |
+
|
47 |
+
lemma par_rreq_rrep_sn_quality_increases:
|
48 |
+
"opaodv i \<langle>\<langle>\<^bsub>i\<^esub> qmsg \<Turnstile>\<^sub>A (\<lambda>\<sigma> _. orecvmsg (\<lambda>_. rreq_rrep_sn) \<sigma>, other (\<lambda>_ _. True) {i} \<rightarrow>)
|
49 |
+
globala (\<lambda>(\<sigma>, _, \<sigma>'). quality_increases (\<sigma> i) (\<sigma>' i))"
|
50 |
+
proof -
|
51 |
+
have "opaodv i \<Turnstile>\<^sub>A (\<lambda>\<sigma> _. orecvmsg (\<lambda>_. rreq_rrep_sn) \<sigma>, other (\<lambda>_ _. True) {i} \<rightarrow>)
|
52 |
+
globala (\<lambda>(\<sigma>, _, \<sigma>'). quality_increases (\<sigma> i) (\<sigma>' i))"
|
53 |
+
by (rule ostep_invariant_weakenE [OF olocal_quality_increases])
|
54 |
+
(auto dest!: onllD seqllD elim!: aodv_ex_labelE)
|
55 |
+
hence "opaodv i \<langle>\<langle>\<^bsub>i\<^esub> qmsg \<Turnstile>\<^sub>A (\<lambda>\<sigma> _. orecvmsg (\<lambda>_. rreq_rrep_sn) \<sigma>, other (\<lambda>_ _. True) {i} \<rightarrow>)
|
56 |
+
globala (\<lambda>(\<sigma>, _, \<sigma>'). quality_increases (\<sigma> i) (\<sigma>' i))"
|
57 |
+
by (rule lift_step_into_qmsg_statelessassm) simp_all
|
58 |
+
thus ?thesis by rule auto
|
59 |
+
qed
|
60 |
+
|
61 |
+
lemma par_rreq_rrep_nsqn_fresh_any_step:
|
62 |
+
shows "opaodv i \<langle>\<langle>\<^bsub>i\<^esub> qmsg \<Turnstile>\<^sub>A (\<lambda>\<sigma> _. orecvmsg (\<lambda>_. rreq_rrep_sn) \<sigma>,
|
63 |
+
other (\<lambda>_ _. True) {i} \<rightarrow>)
|
64 |
+
globala (\<lambda>(\<sigma>, a, \<sigma>'). anycast (msg_fresh \<sigma>) a)"
|
65 |
+
proof -
|
66 |
+
have "opaodv i \<Turnstile>\<^sub>A (\<lambda>\<sigma> _. (orecvmsg (\<lambda>_. rreq_rrep_sn)) \<sigma>, other (\<lambda>_ _. True) {i} \<rightarrow>)
|
67 |
+
globala (\<lambda>(\<sigma>, a, \<sigma>'). anycast (msg_fresh \<sigma>) a)"
|
68 |
+
proof (rule ostep_invariant_weakenE [OF rreq_rrep_nsqn_fresh_any_step_invariant])
|
69 |
+
fix t
|
70 |
+
assume "onll \<Gamma>\<^sub>A\<^sub>O\<^sub>D\<^sub>V (\<lambda>((\<sigma>, _), a, _). anycast (msg_fresh \<sigma>) a) t"
|
71 |
+
thus "globala (\<lambda>(\<sigma>, a, \<sigma>'). anycast (msg_fresh \<sigma>) a) t"
|
72 |
+
by (cases t) (clarsimp dest!: onllD, metis aodv_ex_label)
|
73 |
+
qed auto
|
74 |
+
hence "opaodv i \<langle>\<langle>\<^bsub>i\<^esub> qmsg \<Turnstile>\<^sub>A (\<lambda>\<sigma> _. (orecvmsg (\<lambda>_. rreq_rrep_sn)) \<sigma>, other (\<lambda>_ _. True) {i} \<rightarrow>)
|
75 |
+
globala (\<lambda>(\<sigma>, a, \<sigma>'). anycast (msg_fresh \<sigma>) a)"
|
76 |
+
by (rule lift_step_into_qmsg_statelessassm) simp_all
|
77 |
+
thus ?thesis by rule auto
|
78 |
+
qed
|
79 |
+
|
80 |
+
lemma par_anycast_msg_zhops:
|
81 |
+
shows "opaodv i \<langle>\<langle>\<^bsub>i\<^esub> qmsg \<Turnstile>\<^sub>A (\<lambda>\<sigma> _. orecvmsg (\<lambda>_. rreq_rrep_sn) \<sigma>, other (\<lambda>_ _. True) {i} \<rightarrow>)
|
82 |
+
globala (\<lambda>(_, a, _). anycast msg_zhops a)"
|
83 |
+
proof -
|
84 |
+
from anycast_msg_zhops initiali_aodv oaodv_trans aodv_trans
|
85 |
+
have "opaodv i \<Turnstile>\<^sub>A (act TT, other (\<lambda>_ _. True) {i} \<rightarrow>)
|
86 |
+
seqll i (onll \<Gamma>\<^sub>A\<^sub>O\<^sub>D\<^sub>V (\<lambda>(_, a, _). anycast msg_zhops a))"
|
87 |
+
by (rule open_seq_step_invariant)
|
88 |
+
hence "opaodv i \<Turnstile>\<^sub>A (\<lambda>\<sigma> _. orecvmsg (\<lambda>_. rreq_rrep_sn) \<sigma>, other (\<lambda>_ _. True) {i} \<rightarrow>)
|
89 |
+
globala (\<lambda>(_, a, _). anycast msg_zhops a)"
|
90 |
+
proof (rule ostep_invariant_weakenE)
|
91 |
+
fix t :: "(((nat \<Rightarrow> state) \<times> (state, msg, pseqp, pseqp label) seqp), msg seq_action) transition"
|
92 |
+
assume "seqll i (onll \<Gamma>\<^sub>A\<^sub>O\<^sub>D\<^sub>V (\<lambda>(_, a, _). anycast msg_zhops a)) t"
|
93 |
+
thus "globala (\<lambda>(_, a, _). anycast msg_zhops a) t"
|
94 |
+
by (cases t) (clarsimp dest!: seqllD onllD, metis aodv_ex_label)
|
95 |
+
qed simp_all
|
96 |
+
hence "opaodv i \<langle>\<langle>\<^bsub>i\<^esub> qmsg \<Turnstile>\<^sub>A (\<lambda>\<sigma> _. orecvmsg (\<lambda>_. rreq_rrep_sn) \<sigma>, other (\<lambda>_ _. True) {i} \<rightarrow>)
|
97 |
+
globala (\<lambda>(_, a, _). anycast msg_zhops a)"
|
98 |
+
by (rule lift_step_into_qmsg_statelessassm) simp_all
|
99 |
+
thus ?thesis by rule auto
|
100 |
+
qed
|
101 |
+
|
102 |
+
subsection \<open>Lift to nodes\<close>
|
103 |
+
|
104 |
+
lemma node_step_no_change_on_send_or_receive:
|
105 |
+
assumes "((\<sigma>, NodeS i P R), a, (\<sigma>', NodeS i' P' R')) \<in> onode_sos
|
106 |
+
(oparp_sos i (oseqp_sos \<Gamma>\<^sub>A\<^sub>O\<^sub>D\<^sub>V i) (seqp_sos \<Gamma>\<^sub>Q\<^sub>M\<^sub>S\<^sub>G))"
|
107 |
+
and "a \<noteq> \<tau>"
|
108 |
+
shows "\<sigma>' i = \<sigma> i"
|
109 |
+
using assms
|
110 |
+
by (cases a) (auto elim!: par_step_no_change_on_send_or_receive)
|
111 |
+
|
112 |
+
lemma node_nhop_quality_increases:
|
113 |
+
shows "\<langle> i : opaodv i \<langle>\<langle>\<^bsub>i\<^esub> qmsg : R \<rangle>\<^sub>o \<Turnstile>
|
114 |
+
(otherwith ((=)) {i}
|
115 |
+
(oarrivemsg (\<lambda>\<sigma> m. msg_fresh \<sigma> m \<and> msg_zhops m)),
|
116 |
+
other quality_increases {i}
|
117 |
+
\<rightarrow>) global (\<lambda>\<sigma>. \<forall>dip. let nhip = the (nhop (rt (\<sigma> i)) dip)
|
118 |
+
in dip \<in> vD (rt (\<sigma> i)) \<inter> vD (rt (\<sigma> nhip)) \<and> nhip \<noteq> dip
|
119 |
+
\<longrightarrow> (rt (\<sigma> i)) \<sqsubset>\<^bsub>dip\<^esub> (rt (\<sigma> nhip)))"
|
120 |
+
by (rule node_lift [OF par_nhop_quality_increases]) auto
|
121 |
+
|
122 |
+
lemma node_quality_increases:
|
123 |
+
"\<langle> i : opaodv i \<langle>\<langle>\<^bsub>i\<^esub> qmsg : R \<rangle>\<^sub>o \<Turnstile>\<^sub>A (\<lambda>\<sigma> _. oarrivemsg (\<lambda>_. rreq_rrep_sn) \<sigma>,
|
124 |
+
other (\<lambda>_ _. True) {i} \<rightarrow>)
|
125 |
+
globala (\<lambda>(\<sigma>, _, \<sigma>'). quality_increases (\<sigma> i) (\<sigma>' i))"
|
126 |
+
by (rule node_lift_step_statelessassm [OF par_rreq_rrep_sn_quality_increases]) simp
|
127 |
+
|
128 |
+
lemma node_rreq_rrep_nsqn_fresh_any_step:
|
129 |
+
shows "\<langle> i : opaodv i \<langle>\<langle>\<^bsub>i\<^esub> qmsg : R \<rangle>\<^sub>o \<Turnstile>\<^sub>A
|
130 |
+
(\<lambda>\<sigma> _. oarrivemsg (\<lambda>_. rreq_rrep_sn) \<sigma>, other (\<lambda>_ _. True) {i} \<rightarrow>)
|
131 |
+
globala (\<lambda>(\<sigma>, a, \<sigma>'). castmsg (msg_fresh \<sigma>) a)"
|
132 |
+
by (rule node_lift_anycast_statelessassm [OF par_rreq_rrep_nsqn_fresh_any_step])
|
133 |
+
|
134 |
+
lemma node_anycast_msg_zhops:
|
135 |
+
shows "\<langle> i : opaodv i \<langle>\<langle>\<^bsub>i\<^esub> qmsg : R \<rangle>\<^sub>o \<Turnstile>\<^sub>A
|
136 |
+
(\<lambda>\<sigma> _. oarrivemsg (\<lambda>_. rreq_rrep_sn) \<sigma>, other (\<lambda>_ _. True) {i} \<rightarrow>)
|
137 |
+
globala (\<lambda>(_, a, _). castmsg msg_zhops a)"
|
138 |
+
by (rule node_lift_anycast_statelessassm [OF par_anycast_msg_zhops])
|
139 |
+
|
140 |
+
lemma node_silent_change_only:
|
141 |
+
shows "\<langle> i : opaodv i \<langle>\<langle>\<^bsub>i\<^esub> qmsg : R\<^sub>i \<rangle>\<^sub>o \<Turnstile>\<^sub>A (\<lambda>\<sigma> _. oarrivemsg (\<lambda>_ _. True) \<sigma>,
|
142 |
+
other (\<lambda>_ _. True) {i} \<rightarrow>)
|
143 |
+
globala (\<lambda>(\<sigma>, a, \<sigma>'). a \<noteq> \<tau> \<longrightarrow> \<sigma>' i = \<sigma> i)"
|
144 |
+
proof (rule ostep_invariantI, simp (no_asm), rule impI)
|
145 |
+
fix \<sigma> \<zeta> a \<sigma>' \<zeta>'
|
146 |
+
assume or: "(\<sigma>, \<zeta>) \<in> oreachable (\<langle>i : opaodv i \<langle>\<langle>\<^bsub>i\<^esub> qmsg : R\<^sub>i\<rangle>\<^sub>o)
|
147 |
+
(\<lambda>\<sigma> _. oarrivemsg (\<lambda>_ _. True) \<sigma>)
|
148 |
+
(other (\<lambda>_ _. True) {i})"
|
149 |
+
and tr: "((\<sigma>, \<zeta>), a, (\<sigma>', \<zeta>')) \<in> trans (\<langle>i : opaodv i \<langle>\<langle>\<^bsub>i\<^esub> qmsg : R\<^sub>i\<rangle>\<^sub>o)"
|
150 |
+
and "a \<noteq> \<tau>\<^sub>n"
|
151 |
+
from or obtain p R where "\<zeta> = NodeS i p R"
|
152 |
+
by - (drule node_net_state, metis)
|
153 |
+
with tr have "((\<sigma>, NodeS i p R), a, (\<sigma>', \<zeta>'))
|
154 |
+
\<in> onode_sos (oparp_sos i (trans (opaodv i)) (trans qmsg))"
|
155 |
+
by simp
|
156 |
+
thus "\<sigma>' i = \<sigma> i" using \<open>a \<noteq> \<tau>\<^sub>n\<close>
|
157 |
+
by (cases rule: onode_sos.cases)
|
158 |
+
(auto elim: qmsg_no_change_on_send_or_receive)
|
159 |
+
qed
|
160 |
+
|
161 |
+
subsection \<open>Lift to partial networks\<close>
|
162 |
+
|
163 |
+
lemma arrive_rreq_rrep_nsqn_fresh_inc_sn [simp]:
|
164 |
+
assumes "oarrivemsg (\<lambda>\<sigma> m. msg_fresh \<sigma> m \<and> P \<sigma> m) \<sigma> m"
|
165 |
+
shows "oarrivemsg (\<lambda>_. rreq_rrep_sn) \<sigma> m"
|
166 |
+
using assms by (cases m) auto
|
167 |
+
|
168 |
+
lemma opnet_nhop_quality_increases:
|
169 |
+
shows "opnet (\<lambda>i. opaodv i \<langle>\<langle>\<^bsub>i\<^esub> qmsg) p \<Turnstile>
|
170 |
+
(otherwith ((=)) (net_tree_ips p)
|
171 |
+
(oarrivemsg (\<lambda>\<sigma> m. msg_fresh \<sigma> m \<and> msg_zhops m)),
|
172 |
+
other quality_increases (net_tree_ips p) \<rightarrow>)
|
173 |
+
global (\<lambda>\<sigma>. \<forall>i\<in>net_tree_ips p. \<forall>dip.
|
174 |
+
let nhip = the (nhop (rt (\<sigma> i)) dip)
|
175 |
+
in dip \<in> vD (rt (\<sigma> i)) \<inter> vD (rt (\<sigma> nhip)) \<and> nhip \<noteq> dip
|
176 |
+
\<longrightarrow> (rt (\<sigma> i)) \<sqsubset>\<^bsub>dip\<^esub> (rt (\<sigma> nhip)))"
|
177 |
+
proof (rule pnet_lift [OF node_nhop_quality_increases])
|
178 |
+
fix i R
|
179 |
+
have "\<langle>i : opaodv i \<langle>\<langle>\<^bsub>i\<^esub> qmsg : R\<rangle>\<^sub>o \<Turnstile>\<^sub>A (\<lambda>\<sigma> _. oarrivemsg (\<lambda>_. rreq_rrep_sn) \<sigma>,
|
180 |
+
other (\<lambda>_ _. True) {i} \<rightarrow>) globala (\<lambda>(\<sigma>, a, \<sigma>').
|
181 |
+
castmsg (\<lambda>m. msg_fresh \<sigma> m \<and> msg_zhops m) a)"
|
182 |
+
proof (rule ostep_invariantI, simp (no_asm))
|
183 |
+
fix \<sigma> s a \<sigma>' s'
|
184 |
+
assume or: "(\<sigma>, s) \<in> oreachable (\<langle>i : opaodv i \<langle>\<langle>\<^bsub>i\<^esub> qmsg : R\<rangle>\<^sub>o)
|
185 |
+
(\<lambda>\<sigma> _. oarrivemsg (\<lambda>_. rreq_rrep_sn) \<sigma>)
|
186 |
+
(other (\<lambda>_ _. True) {i})"
|
187 |
+
and tr: "((\<sigma>, s), a, (\<sigma>', s')) \<in> trans (\<langle>i : opaodv i \<langle>\<langle>\<^bsub>i\<^esub> qmsg : R\<rangle>\<^sub>o)"
|
188 |
+
and am: "oarrivemsg (\<lambda>_. rreq_rrep_sn) \<sigma> a"
|
189 |
+
from or tr am have "castmsg (msg_fresh \<sigma>) a"
|
190 |
+
by (auto dest!: ostep_invariantD [OF node_rreq_rrep_nsqn_fresh_any_step])
|
191 |
+
moreover from or tr am have "castmsg (msg_zhops) a"
|
192 |
+
by (auto dest!: ostep_invariantD [OF node_anycast_msg_zhops])
|
193 |
+
ultimately show "castmsg (\<lambda>m. msg_fresh \<sigma> m \<and> msg_zhops m) a"
|
194 |
+
by (case_tac a) auto
|
195 |
+
qed
|
196 |
+
thus "\<langle>i : opaodv i \<langle>\<langle>\<^bsub>i\<^esub> qmsg : R\<rangle>\<^sub>o \<Turnstile>\<^sub>A
|
197 |
+
(\<lambda>\<sigma> _. oarrivemsg (\<lambda>\<sigma> m. msg_fresh \<sigma> m \<and> msg_zhops m) \<sigma>,
|
198 |
+
other quality_increases {i} \<rightarrow>) globala (\<lambda>(\<sigma>, a, _).
|
199 |
+
castmsg (\<lambda>m. msg_fresh \<sigma> m \<and> msg_zhops m) a)"
|
200 |
+
by rule auto
|
201 |
+
next
|
202 |
+
fix i R
|
203 |
+
show "\<langle>i : opaodv i \<langle>\<langle>\<^bsub>i\<^esub> qmsg : R\<rangle>\<^sub>o \<Turnstile>\<^sub>A
|
204 |
+
(\<lambda>\<sigma> _. oarrivemsg (\<lambda>\<sigma> m. msg_fresh \<sigma> m \<and> msg_zhops m) \<sigma>,
|
205 |
+
other quality_increases {i} \<rightarrow>) globala (\<lambda>(\<sigma>, a, \<sigma>').
|
206 |
+
a \<noteq> \<tau> \<and> (\<forall>d. a \<noteq> i:deliver(d)) \<longrightarrow> \<sigma> i = \<sigma>' i)"
|
207 |
+
by (rule ostep_invariant_weakenE [OF node_silent_change_only]) auto
|
208 |
+
next
|
209 |
+
fix i R
|
210 |
+
show "\<langle>i : opaodv i \<langle>\<langle>\<^bsub>i\<^esub> qmsg : R\<rangle>\<^sub>o \<Turnstile>\<^sub>A
|
211 |
+
(\<lambda>\<sigma> _. oarrivemsg (\<lambda>\<sigma> m. msg_fresh \<sigma> m \<and> msg_zhops m) \<sigma>,
|
212 |
+
other quality_increases {i} \<rightarrow>) globala (\<lambda>(\<sigma>, a, \<sigma>').
|
213 |
+
a = \<tau> \<or> (\<exists>d. a = i:deliver(d)) \<longrightarrow> quality_increases (\<sigma> i) (\<sigma>' i))"
|
214 |
+
by (rule ostep_invariant_weakenE [OF node_quality_increases]) auto
|
215 |
+
qed simp_all
|
216 |
+
|
217 |
+
subsection \<open>Lift to closed networks\<close>
|
218 |
+
|
219 |
+
lemma onet_nhop_quality_increases:
|
220 |
+
shows "oclosed (opnet (\<lambda>i. opaodv i \<langle>\<langle>\<^bsub>i\<^esub> qmsg) p)
|
221 |
+
\<Turnstile> (\<lambda>_ _ _. True, other quality_increases (net_tree_ips p) \<rightarrow>)
|
222 |
+
global (\<lambda>\<sigma>. \<forall>i\<in>net_tree_ips p. \<forall>dip.
|
223 |
+
let nhip = the (nhop (rt (\<sigma> i)) dip)
|
224 |
+
in dip \<in> vD (rt (\<sigma> i)) \<inter> vD (rt (\<sigma> nhip)) \<and> nhip \<noteq> dip
|
225 |
+
\<longrightarrow> (rt (\<sigma> i)) \<sqsubset>\<^bsub>dip\<^esub> (rt (\<sigma> nhip)))"
|
226 |
+
(is "_ \<Turnstile> (_, ?U \<rightarrow>) ?inv")
|
227 |
+
proof (rule inclosed_closed)
|
228 |
+
from opnet_nhop_quality_increases
|
229 |
+
show "opnet (\<lambda>i. opaodv i \<langle>\<langle>\<^bsub>i\<^esub> qmsg) p
|
230 |
+
\<Turnstile> (otherwith ((=)) (net_tree_ips p) inoclosed, ?U \<rightarrow>) ?inv"
|
231 |
+
proof (rule oinvariant_weakenE)
|
232 |
+
fix \<sigma> \<sigma>' :: "ip \<Rightarrow> state" and a :: "msg node_action"
|
233 |
+
assume "otherwith ((=)) (net_tree_ips p) inoclosed \<sigma> \<sigma>' a"
|
234 |
+
thus "otherwith ((=)) (net_tree_ips p)
|
235 |
+
(oarrivemsg (\<lambda>\<sigma> m. msg_fresh \<sigma> m \<and> msg_zhops m)) \<sigma> \<sigma>' a"
|
236 |
+
proof (rule otherwithEI)
|
237 |
+
fix \<sigma> :: "ip \<Rightarrow> state" and a :: "msg node_action"
|
238 |
+
assume "inoclosed \<sigma> a"
|
239 |
+
thus "oarrivemsg (\<lambda>\<sigma> m. msg_fresh \<sigma> m \<and> msg_zhops m) \<sigma> a"
|
240 |
+
proof (cases a)
|
241 |
+
fix ii ni ms
|
242 |
+
assume "a = ii\<not>ni:arrive(ms)"
|
243 |
+
moreover with \<open>inoclosed \<sigma> a\<close> obtain d di where "ms = newpkt(d, di)"
|
244 |
+
by (cases ms) auto
|
245 |
+
ultimately show ?thesis by simp
|
246 |
+
qed simp_all
|
247 |
+
qed
|
248 |
+
qed
|
249 |
+
qed
|
250 |
+
|
251 |
+
subsection \<open>Transfer into the standard model\<close>
|
252 |
+
|
253 |
+
interpretation aodv_openproc: openproc paodv opaodv id
|
254 |
+
rewrites "aodv_openproc.initmissing = initmissing"
|
255 |
+
proof -
|
256 |
+
show "openproc paodv opaodv id"
|
257 |
+
proof unfold_locales
|
258 |
+
fix i :: ip
|
259 |
+
have "{(\<sigma>, \<zeta>). (\<sigma> i, \<zeta>) \<in> \<sigma>\<^sub>A\<^sub>O\<^sub>D\<^sub>V i \<and> (\<forall>j. j \<noteq> i \<longrightarrow> \<sigma> j \<in> fst ` \<sigma>\<^sub>A\<^sub>O\<^sub>D\<^sub>V j)} \<subseteq> \<sigma>\<^sub>A\<^sub>O\<^sub>D\<^sub>V'"
|
260 |
+
unfolding \<sigma>\<^sub>A\<^sub>O\<^sub>D\<^sub>V_def \<sigma>\<^sub>A\<^sub>O\<^sub>D\<^sub>V'_def
|
261 |
+
proof (rule equalityD1)
|
262 |
+
show "\<And>f p. {(\<sigma>, \<zeta>). (\<sigma> i, \<zeta>) \<in> {(f i, p)} \<and> (\<forall>j. j \<noteq> i
|
263 |
+
\<longrightarrow> \<sigma> j \<in> fst ` {(f j, p)})} = {(f, p)}"
|
264 |
+
by (rule set_eqI) auto
|
265 |
+
qed
|
266 |
+
thus "{ (\<sigma>, \<zeta>) |\<sigma> \<zeta> s. s \<in> init (paodv i)
|
267 |
+
\<and> (\<sigma> i, \<zeta>) = id s
|
268 |
+
\<and> (\<forall>j. j\<noteq>i \<longrightarrow> \<sigma> j \<in> (fst o id) ` init (paodv j)) } \<subseteq> init (opaodv i)"
|
269 |
+
by simp
|
270 |
+
next
|
271 |
+
show "\<forall>j. init (paodv j) \<noteq> {}"
|
272 |
+
unfolding \<sigma>\<^sub>A\<^sub>O\<^sub>D\<^sub>V_def by simp
|
273 |
+
next
|
274 |
+
fix i s a s' \<sigma> \<sigma>'
|
275 |
+
assume "\<sigma> i = fst (id s)"
|
276 |
+
and "\<sigma>' i = fst (id s')"
|
277 |
+
and "(s, a, s') \<in> trans (paodv i)"
|
278 |
+
then obtain q q' where "s = (\<sigma> i, q)"
|
279 |
+
and "s' = (\<sigma>' i, q')"
|
280 |
+
and "((\<sigma> i, q), a, (\<sigma>' i, q')) \<in> trans (paodv i)"
|
281 |
+
by (cases s, cases s') auto
|
282 |
+
from this(3) have "((\<sigma>, q), a, (\<sigma>', q')) \<in> trans (opaodv i)"
|
283 |
+
by simp (rule open_seqp_action [OF aodv_wf])
|
284 |
+
|
285 |
+
with \<open>s = (\<sigma> i, q)\<close> and \<open>s' = (\<sigma>' i, q')\<close>
|
286 |
+
show "((\<sigma>, snd (id s)), a, (\<sigma>', snd (id s'))) \<in> trans (opaodv i)"
|
287 |
+
by simp
|
288 |
+
qed
|
289 |
+
then interpret opn: openproc paodv opaodv id .
|
290 |
+
have [simp]: "\<And>i. (SOME x. x \<in> (fst o id) ` init (paodv i)) = aodv_init i"
|
291 |
+
unfolding \<sigma>\<^sub>A\<^sub>O\<^sub>D\<^sub>V_def by simp
|
292 |
+
hence "\<And>i. openproc.initmissing paodv id i = initmissing i"
|
293 |
+
unfolding opn.initmissing_def opn.someinit_def initmissing_def
|
294 |
+
by (auto split: option.split)
|
295 |
+
thus "openproc.initmissing paodv id = initmissing" ..
|
296 |
+
qed
|
297 |
+
|
298 |
+
interpretation aodv_openproc_par_qmsg: openproc_parq paodv opaodv id qmsg
|
299 |
+
rewrites "aodv_openproc_par_qmsg.netglobal = netglobal"
|
300 |
+
and "aodv_openproc_par_qmsg.initmissing = initmissing"
|
301 |
+
proof -
|
302 |
+
show "openproc_parq paodv opaodv id qmsg"
|
303 |
+
by (unfold_locales) simp
|
304 |
+
then interpret opq: openproc_parq paodv opaodv id qmsg .
|
305 |
+
|
306 |
+
have im: "\<And>\<sigma>. openproc.initmissing (\<lambda>i. paodv i \<langle>\<langle> qmsg) (\<lambda>(p, q). (fst (id p), snd (id p), q)) \<sigma>
|
307 |
+
= initmissing \<sigma>"
|
308 |
+
unfolding opq.initmissing_def opq.someinit_def initmissing_def
|
309 |
+
unfolding \<sigma>\<^sub>A\<^sub>O\<^sub>D\<^sub>V_def \<sigma>\<^sub>Q\<^sub>M\<^sub>S\<^sub>G_def by (clarsimp cong: option.case_cong)
|
310 |
+
thus "openproc.initmissing (\<lambda>i. paodv i \<langle>\<langle> qmsg) (\<lambda>(p, q). (fst (id p), snd (id p), q)) = initmissing"
|
311 |
+
by (rule ext)
|
312 |
+
have "\<And>P \<sigma>. openproc.netglobal (\<lambda>i. paodv i \<langle>\<langle> qmsg) (\<lambda>(p, q). (fst (id p), snd (id p), q)) P \<sigma>
|
313 |
+
= netglobal P \<sigma>"
|
314 |
+
unfolding opq.netglobal_def netglobal_def opq.initmissing_def initmissing_def opq.someinit_def
|
315 |
+
unfolding \<sigma>\<^sub>A\<^sub>O\<^sub>D\<^sub>V_def \<sigma>\<^sub>Q\<^sub>M\<^sub>S\<^sub>G_def
|
316 |
+
by (clarsimp cong: option.case_cong
|
317 |
+
simp del: One_nat_def
|
318 |
+
simp add: fst_initmissing_netgmap_default_aodv_init_netlift
|
319 |
+
[symmetric, unfolded initmissing_def])
|
320 |
+
thus "openproc.netglobal (\<lambda>i. paodv i \<langle>\<langle> qmsg) (\<lambda>(p, q). (fst (id p), snd (id p), q)) = netglobal"
|
321 |
+
by auto
|
322 |
+
qed
|
323 |
+
|
324 |
+
lemma net_nhop_quality_increases:
|
325 |
+
assumes "wf_net_tree n"
|
326 |
+
shows "closed (pnet (\<lambda>i. paodv i \<langle>\<langle> qmsg) n) \<TTurnstile> netglobal
|
327 |
+
(\<lambda>\<sigma>. \<forall>i dip. let nhip = the (nhop (rt (\<sigma> i)) dip)
|
328 |
+
in dip \<in> vD (rt (\<sigma> i)) \<inter> vD (rt (\<sigma> nhip)) \<and> nhip \<noteq> dip
|
329 |
+
\<longrightarrow> (rt (\<sigma> i)) \<sqsubset>\<^bsub>dip\<^esub> (rt (\<sigma> nhip)))"
|
330 |
+
(is "_ \<TTurnstile> netglobal (\<lambda>\<sigma>. \<forall>i. ?inv \<sigma> i)")
|
331 |
+
proof -
|
332 |
+
from \<open>wf_net_tree n\<close>
|
333 |
+
have proto: "closed (pnet (\<lambda>i. paodv i \<langle>\<langle> qmsg) n) \<TTurnstile> netglobal (\<lambda>\<sigma>. \<forall>i\<in>net_tree_ips n. \<forall>dip.
|
334 |
+
let nhip = the (nhop (rt (\<sigma> i)) dip)
|
335 |
+
in dip \<in> vD (rt (\<sigma> i)) \<inter> vD (rt (\<sigma> nhip)) \<and> nhip \<noteq> dip
|
336 |
+
\<longrightarrow> (rt (\<sigma> i)) \<sqsubset>\<^bsub>dip\<^esub> (rt (\<sigma> nhip)))"
|
337 |
+
by (rule aodv_openproc_par_qmsg.close_opnet [OF _ onet_nhop_quality_increases])
|
338 |
+
show ?thesis
|
339 |
+
unfolding invariant_def opnet_sos.opnet_tau1
|
340 |
+
proof (rule, simp only: aodv_openproc_par_qmsg.netglobalsimp
|
341 |
+
fst_initmissing_netgmap_pair_fst, rule allI)
|
342 |
+
fix \<sigma> i
|
343 |
+
assume sr: "\<sigma> \<in> reachable (closed (pnet (\<lambda>i. paodv i \<langle>\<langle> qmsg) n)) TT"
|
344 |
+
hence "\<forall>i\<in>net_tree_ips n. ?inv (fst (initmissing (netgmap fst \<sigma>))) i"
|
345 |
+
by - (drule invariantD [OF proto],
|
346 |
+
simp only: aodv_openproc_par_qmsg.netglobalsimp
|
347 |
+
fst_initmissing_netgmap_pair_fst)
|
348 |
+
thus "?inv (fst (initmissing (netgmap fst \<sigma>))) i"
|
349 |
+
proof (cases "i\<in>net_tree_ips n")
|
350 |
+
assume "i\<notin>net_tree_ips n"
|
351 |
+
from sr have "\<sigma> \<in> reachable (pnet (\<lambda>i. paodv i \<langle>\<langle> qmsg) n) TT" ..
|
352 |
+
hence "net_ips \<sigma> = net_tree_ips n" ..
|
353 |
+
with \<open>i\<notin>net_tree_ips n\<close> have "i\<notin>net_ips \<sigma>" by simp
|
354 |
+
hence "(fst (initmissing (netgmap fst \<sigma>))) i = aodv_init i"
|
355 |
+
by simp
|
356 |
+
thus ?thesis by simp
|
357 |
+
qed metis
|
358 |
+
qed
|
359 |
+
qed
|
360 |
+
|
361 |
+
subsection \<open>Loop freedom of AODV\<close>
|
362 |
+
|
363 |
+
theorem aodv_loop_freedom:
|
364 |
+
assumes "wf_net_tree n"
|
365 |
+
shows "closed (pnet (\<lambda>i. paodv i \<langle>\<langle> qmsg) n) \<TTurnstile> netglobal (\<lambda>\<sigma>. \<forall>dip. irrefl ((rt_graph \<sigma> dip)\<^sup>+))"
|
366 |
+
using assms by (rule aodv_openproc_par_qmsg.netglobal_weakenE
|
367 |
+
[OF net_nhop_quality_increases inv_to_loop_freedom])
|
368 |
+
|
369 |
+
end
|
formal/afp/AODV/variants/b_fwdrreps/B_Aodv_Message.thy
ADDED
@@ -0,0 +1,74 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
(* Title: variants/b_fwdrreps/Aodv_Message.thy
|
2 |
+
License: BSD 2-Clause. See LICENSE.
|
3 |
+
Author: Timothy Bourke, Inria
|
4 |
+
*)
|
5 |
+
|
6 |
+
section "AODV protocol messages"
|
7 |
+
|
8 |
+
theory B_Aodv_Message
|
9 |
+
imports B_Fwdrreps
|
10 |
+
begin
|
11 |
+
|
12 |
+
datatype msg =
|
13 |
+
Rreq nat rreqid ip sqn k ip sqn ip
|
14 |
+
| Rrep nat ip sqn ip ip
|
15 |
+
| Rerr "ip \<rightharpoonup> sqn" ip
|
16 |
+
| Newpkt data ip
|
17 |
+
| Pkt data ip ip
|
18 |
+
|
19 |
+
instantiation msg :: msg
|
20 |
+
begin
|
21 |
+
definition newpkt_def [simp]: "newpkt \<equiv> \<lambda>(d, dip). Newpkt d dip"
|
22 |
+
definition eq_newpkt_def: "eq_newpkt m \<equiv> case m of Newpkt d dip \<Rightarrow> True | _ \<Rightarrow> False"
|
23 |
+
|
24 |
+
instance by intro_classes (simp add: eq_newpkt_def)
|
25 |
+
end
|
26 |
+
|
27 |
+
text \<open>The @{type msg} type models the different messages used within AODV.
|
28 |
+
The instantiation as a @{class msg} is a technicality due to the special
|
29 |
+
treatment of @{term newpkt} messages in the AWN SOS rules.
|
30 |
+
This use of classes allows a clean separation of the AWN-specific definitions
|
31 |
+
and these AODV-specific definitions.\<close>
|
32 |
+
|
33 |
+
definition rreq :: "nat \<times> rreqid \<times> ip \<times> sqn \<times> k \<times> ip \<times> sqn \<times> ip \<Rightarrow> msg"
|
34 |
+
where "rreq \<equiv> \<lambda>(hops, rreqid, dip, dsn, dsk, oip, osn, sip).
|
35 |
+
Rreq hops rreqid dip dsn dsk oip osn sip"
|
36 |
+
|
37 |
+
lemma rreq_simp [simp]:
|
38 |
+
"rreq(hops, rreqid, dip, dsn, dsk, oip, osn, sip) = Rreq hops rreqid dip dsn dsk oip osn sip"
|
39 |
+
unfolding rreq_def by simp
|
40 |
+
|
41 |
+
definition rrep :: "nat \<times> ip \<times> sqn \<times> ip \<times> ip \<Rightarrow> msg"
|
42 |
+
where "rrep \<equiv> \<lambda>(hops, dip, dsn, oip, sip). Rrep hops dip dsn oip sip"
|
43 |
+
|
44 |
+
lemma rrep_simp [simp]:
|
45 |
+
"rrep(hops, dip, dsn, oip, sip) = Rrep hops dip dsn oip sip"
|
46 |
+
unfolding rrep_def by simp
|
47 |
+
|
48 |
+
definition rerr :: "(ip \<rightharpoonup> sqn) \<times> ip \<Rightarrow> msg"
|
49 |
+
where "rerr \<equiv> \<lambda>(dests, sip). Rerr dests sip"
|
50 |
+
|
51 |
+
lemma rerr_simp [simp]:
|
52 |
+
"rerr(dests, sip) = Rerr dests sip"
|
53 |
+
unfolding rerr_def by simp
|
54 |
+
|
55 |
+
lemma not_eq_newpkt_rreq [simp]: "\<not>eq_newpkt (Rreq hops rreqid dip dsn dsk oip osn sip)"
|
56 |
+
unfolding eq_newpkt_def by simp
|
57 |
+
|
58 |
+
lemma not_eq_newpkt_rrep [simp]: "\<not>eq_newpkt (Rrep hops dip dsn oip sip)"
|
59 |
+
unfolding eq_newpkt_def by simp
|
60 |
+
|
61 |
+
lemma not_eq_newpkt_rerr [simp]: "\<not>eq_newpkt (Rerr dests sip)"
|
62 |
+
unfolding eq_newpkt_def by simp
|
63 |
+
|
64 |
+
lemma not_eq_newpkt_pkt [simp]: "\<not>eq_newpkt (Pkt d dip sip)"
|
65 |
+
unfolding eq_newpkt_def by simp
|
66 |
+
|
67 |
+
definition pkt :: "data \<times> ip \<times> ip \<Rightarrow> msg"
|
68 |
+
where "pkt \<equiv> \<lambda>(d, dip, sip). Pkt d dip sip"
|
69 |
+
|
70 |
+
lemma pkt_simp [simp]:
|
71 |
+
"pkt(d, dip, sip) = Pkt d dip sip"
|
72 |
+
unfolding pkt_def by simp
|
73 |
+
|
74 |
+
end
|
formal/afp/AODV/variants/b_fwdrreps/B_Aodv_Predicates.thy
ADDED
@@ -0,0 +1,136 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
(* Title: variants/b_fwdrreps/Aodv_Predicates.thy
|
2 |
+
License: BSD 2-Clause. See LICENSE.
|
3 |
+
Author: Timothy Bourke, Inria
|
4 |
+
*)
|
5 |
+
|
6 |
+
section "Invariant assumptions and properties"
|
7 |
+
|
8 |
+
theory B_Aodv_Predicates
|
9 |
+
imports B_Aodv
|
10 |
+
begin
|
11 |
+
|
12 |
+
text \<open>Definitions for expression assumptions on incoming messages and properties of
|
13 |
+
outgoing messages.\<close>
|
14 |
+
|
15 |
+
abbreviation not_Pkt :: "msg \<Rightarrow> bool"
|
16 |
+
where "not_Pkt m \<equiv> case m of Pkt _ _ _ \<Rightarrow> False | _ \<Rightarrow> True"
|
17 |
+
|
18 |
+
definition msg_sender :: "msg \<Rightarrow> ip"
|
19 |
+
where "msg_sender m \<equiv> case m of Rreq _ _ _ _ _ _ _ ipc \<Rightarrow> ipc
|
20 |
+
| Rrep _ _ _ _ ipc \<Rightarrow> ipc
|
21 |
+
| Rerr _ ipc \<Rightarrow> ipc
|
22 |
+
| Pkt _ _ ipc \<Rightarrow> ipc"
|
23 |
+
|
24 |
+
lemma msg_sender_simps [simp]:
|
25 |
+
"\<And>hops rreqid dip dsn dsk oip osn sip.
|
26 |
+
msg_sender (Rreq hops rreqid dip dsn dsk oip osn sip) = sip"
|
27 |
+
"\<And>hops dip dsn oip sip. msg_sender (Rrep hops dip dsn oip sip) = sip"
|
28 |
+
"\<And>dests sip. msg_sender (Rerr dests sip) = sip"
|
29 |
+
"\<And>d dip sip. msg_sender (Pkt d dip sip) = sip"
|
30 |
+
unfolding msg_sender_def by simp_all
|
31 |
+
|
32 |
+
definition msg_zhops :: "msg \<Rightarrow> bool"
|
33 |
+
where "msg_zhops m \<equiv> case m of
|
34 |
+
Rreq hopsc _ dipc _ _ oipc _ sipc \<Rightarrow> hopsc = 0 \<longrightarrow> oipc = sipc
|
35 |
+
| Rrep hopsc dipc _ _ sipc \<Rightarrow> hopsc = 0 \<longrightarrow> dipc = sipc
|
36 |
+
| _ \<Rightarrow> True"
|
37 |
+
|
38 |
+
lemma msg_zhops_simps [simp]:
|
39 |
+
"\<And>hops rreqid dip dsn dsk oip osn sip.
|
40 |
+
msg_zhops (Rreq hops rreqid dip dsn dsk oip osn sip) = (hops = 0 \<longrightarrow> oip = sip)"
|
41 |
+
"\<And>hops dip dsn oip sip. msg_zhops (Rrep hops dip dsn oip sip) = (hops = 0 \<longrightarrow> dip = sip)"
|
42 |
+
"\<And>dests sip. msg_zhops (Rerr dests sip) = True"
|
43 |
+
"\<And>d dip. msg_zhops (Newpkt d dip) = True"
|
44 |
+
"\<And>d dip sip. msg_zhops (Pkt d dip sip) = True"
|
45 |
+
unfolding msg_zhops_def by simp_all
|
46 |
+
|
47 |
+
definition rreq_rrep_sn :: "msg \<Rightarrow> bool"
|
48 |
+
where "rreq_rrep_sn m \<equiv> case m of Rreq _ _ _ _ _ _ osnc _ \<Rightarrow> osnc \<ge> 1
|
49 |
+
| Rrep _ _ dsnc _ _ \<Rightarrow> dsnc \<ge> 1
|
50 |
+
| _ \<Rightarrow> True"
|
51 |
+
|
52 |
+
lemma rreq_rrep_sn_simps [simp]:
|
53 |
+
"\<And>hops rreqid dip dsn dsk oip osn sip.
|
54 |
+
rreq_rrep_sn (Rreq hops rreqid dip dsn dsk oip osn sip) = (osn \<ge> 1)"
|
55 |
+
"\<And>hops dip dsn oip sip. rreq_rrep_sn (Rrep hops dip dsn oip sip) = (dsn \<ge> 1)"
|
56 |
+
"\<And>dests sip. rreq_rrep_sn (Rerr dests sip) = True"
|
57 |
+
"\<And>d dip. rreq_rrep_sn (Newpkt d dip) = True"
|
58 |
+
"\<And>d dip sip. rreq_rrep_sn (Pkt d dip sip) = True"
|
59 |
+
unfolding rreq_rrep_sn_def by simp_all
|
60 |
+
|
61 |
+
definition rreq_rrep_fresh :: "rt \<Rightarrow> msg \<Rightarrow> bool"
|
62 |
+
where "rreq_rrep_fresh crt m \<equiv> case m of Rreq hopsc _ _ _ _ oipc osnc ipcc \<Rightarrow> (ipcc \<noteq> oipc \<longrightarrow>
|
63 |
+
oipc\<in>kD(crt) \<and> (sqn crt oipc > osnc
|
64 |
+
\<or> (sqn crt oipc = osnc
|
65 |
+
\<and> the (dhops crt oipc) \<le> hopsc
|
66 |
+
\<and> the (flag crt oipc) = val)))
|
67 |
+
| Rrep hopsc dipc dsnc _ ipcc \<Rightarrow> (ipcc \<noteq> dipc \<longrightarrow>
|
68 |
+
dipc\<in>kD(crt)
|
69 |
+
\<and> sqn crt dipc = dsnc
|
70 |
+
\<and> the (dhops crt dipc) = hopsc
|
71 |
+
\<and> the (flag crt dipc) = val)
|
72 |
+
| _ \<Rightarrow> True"
|
73 |
+
|
74 |
+
lemma rreq_rrep_fresh [simp]:
|
75 |
+
"\<And>hops rreqid dip dsn dsk oip osn sip.
|
76 |
+
rreq_rrep_fresh crt (Rreq hops rreqid dip dsn dsk oip osn sip) =
|
77 |
+
(sip \<noteq> oip \<longrightarrow> oip\<in>kD(crt)
|
78 |
+
\<and> (sqn crt oip > osn
|
79 |
+
\<or> (sqn crt oip = osn
|
80 |
+
\<and> the (dhops crt oip) \<le> hops
|
81 |
+
\<and> the (flag crt oip) = val)))"
|
82 |
+
"\<And>hops dip dsn oip sip. rreq_rrep_fresh crt (Rrep hops dip dsn oip sip) =
|
83 |
+
(sip \<noteq> dip \<longrightarrow> dip\<in>kD(crt)
|
84 |
+
\<and> sqn crt dip = dsn
|
85 |
+
\<and> the (dhops crt dip) = hops
|
86 |
+
\<and> the (flag crt dip) = val)"
|
87 |
+
"\<And>dests sip. rreq_rrep_fresh crt (Rerr dests sip) = True"
|
88 |
+
"\<And>d dip. rreq_rrep_fresh crt (Newpkt d dip) = True"
|
89 |
+
"\<And>d dip sip. rreq_rrep_fresh crt (Pkt d dip sip) = True"
|
90 |
+
unfolding rreq_rrep_fresh_def by simp_all
|
91 |
+
|
92 |
+
definition rerr_invalid :: "rt \<Rightarrow> msg \<Rightarrow> bool"
|
93 |
+
where "rerr_invalid crt m \<equiv> case m of Rerr destsc _ \<Rightarrow> (\<forall>ripc\<in>dom(destsc).
|
94 |
+
(ripc\<in>iD(crt) \<and> the (destsc ripc) = sqn crt ripc))
|
95 |
+
| _ \<Rightarrow> True"
|
96 |
+
|
97 |
+
lemma rerr_invalid [simp]:
|
98 |
+
"\<And>hops rreqid dip dsn dsk oip osn sip.
|
99 |
+
rerr_invalid crt (Rreq hops rreqid dip dsn dsk oip osn sip) = True"
|
100 |
+
"\<And>hops dip dsn oip sip. rerr_invalid crt (Rrep hops dip dsn oip sip) = True"
|
101 |
+
"\<And>dests sip. rerr_invalid crt (Rerr dests sip) = (\<forall>rip\<in>dom(dests).
|
102 |
+
rip\<in>iD(crt) \<and> the (dests rip) = sqn crt rip)"
|
103 |
+
"\<And>d dip. rerr_invalid crt (Newpkt d dip) = True"
|
104 |
+
"\<And>d dip sip. rerr_invalid crt (Pkt d dip sip) = True"
|
105 |
+
unfolding rerr_invalid_def by simp_all
|
106 |
+
|
107 |
+
definition
|
108 |
+
initmissing :: "(nat \<Rightarrow> state option) \<times> 'a \<Rightarrow> (nat \<Rightarrow> state) \<times> 'a"
|
109 |
+
where
|
110 |
+
"initmissing \<sigma> = (\<lambda>i. case (fst \<sigma>) i of None \<Rightarrow> aodv_init i | Some s \<Rightarrow> s, snd \<sigma>)"
|
111 |
+
|
112 |
+
lemma not_in_net_ips_fst_init_missing [simp]:
|
113 |
+
assumes "i \<notin> net_ips \<sigma>"
|
114 |
+
shows "fst (initmissing (netgmap fst \<sigma>)) i = aodv_init i"
|
115 |
+
using assms unfolding initmissing_def by simp
|
116 |
+
|
117 |
+
lemma fst_initmissing_netgmap_pair_fst [simp]:
|
118 |
+
"fst (initmissing (netgmap (\<lambda>(p, q). (fst (id p), snd (id p), q)) s))
|
119 |
+
= fst (initmissing (netgmap fst s))"
|
120 |
+
unfolding initmissing_def by auto
|
121 |
+
|
122 |
+
text \<open>We introduce a streamlined alternative to @{term initmissing} with @{term netgmap}
|
123 |
+
to simplify invariant statements and thus facilitate their comprehension and
|
124 |
+
presentation.\<close>
|
125 |
+
|
126 |
+
lemma fst_initmissing_netgmap_default_aodv_init_netlift:
|
127 |
+
"fst (initmissing (netgmap fst s)) = default aodv_init (netlift fst s)"
|
128 |
+
unfolding initmissing_def default_def
|
129 |
+
by (simp add: fst_netgmap_netlift del: One_nat_def)
|
130 |
+
|
131 |
+
definition
|
132 |
+
netglobal :: "((nat \<Rightarrow> state) \<Rightarrow> bool) \<Rightarrow> ((state \<times> 'b) \<times> 'c) net_state \<Rightarrow> bool"
|
133 |
+
where
|
134 |
+
"netglobal P \<equiv> (\<lambda>s. P (default aodv_init (netlift fst s)))"
|
135 |
+
|
136 |
+
end
|
formal/afp/AODV/variants/b_fwdrreps/B_Fresher.thy
ADDED
@@ -0,0 +1,799 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
(* Title: variants/b_fwdrreps/Fresher.thy
|
2 |
+
License: BSD 2-Clause. See LICENSE.
|
3 |
+
Author: Timothy Bourke, Inria
|
4 |
+
*)
|
5 |
+
|
6 |
+
section "Quality relations between routes"
|
7 |
+
|
8 |
+
theory B_Fresher
|
9 |
+
imports B_Aodv_Data
|
10 |
+
begin
|
11 |
+
|
12 |
+
subsection "Net sequence numbers"
|
13 |
+
|
14 |
+
subsubsection "On individual routes"
|
15 |
+
|
16 |
+
definition
|
17 |
+
nsqn\<^sub>r :: "r \<Rightarrow> sqn"
|
18 |
+
where
|
19 |
+
"nsqn\<^sub>r r \<equiv> if \<pi>\<^sub>4(r) = val \<or> \<pi>\<^sub>2(r) = 0 then \<pi>\<^sub>2(r) else (\<pi>\<^sub>2(r) - 1)"
|
20 |
+
|
21 |
+
lemma nsqnr_def':
|
22 |
+
"nsqn\<^sub>r r = (if \<pi>\<^sub>4(r) = inv then \<pi>\<^sub>2(r) - 1 else \<pi>\<^sub>2(r))"
|
23 |
+
unfolding nsqn\<^sub>r_def by simp
|
24 |
+
|
25 |
+
lemma nsqn\<^sub>r_zero [simp]:
|
26 |
+
"\<And>dsn dsk flag hops nhip pre. nsqn\<^sub>r (0, dsk, flag, hops, nhip, pre) = 0"
|
27 |
+
unfolding nsqn\<^sub>r_def by clarsimp
|
28 |
+
|
29 |
+
lemma nsqn\<^sub>r_val [simp]:
|
30 |
+
"\<And>dsn dsk hops nhip pre. nsqn\<^sub>r (dsn, dsk, val, hops, nhip, pre) = dsn"
|
31 |
+
unfolding nsqn\<^sub>r_def by clarsimp
|
32 |
+
|
33 |
+
lemma nsqn\<^sub>r_inv [simp]:
|
34 |
+
"\<And>dsn dsk hops nhip pre. nsqn\<^sub>r (dsn, dsk, inv, hops, nhip, pre) = dsn - 1"
|
35 |
+
unfolding nsqn\<^sub>r_def by clarsimp
|
36 |
+
|
37 |
+
lemma nsqn\<^sub>r_lte_dsn [simp]:
|
38 |
+
"\<And>dsn dsk flag hops nhip pre. nsqn\<^sub>r (dsn, dsk, flag, hops, nhip, pre) \<le> dsn"
|
39 |
+
unfolding nsqn\<^sub>r_def by clarsimp
|
40 |
+
|
41 |
+
subsubsection "On routes in routing tables"
|
42 |
+
|
43 |
+
definition
|
44 |
+
nsqn :: "rt \<Rightarrow> ip \<Rightarrow> sqn"
|
45 |
+
where
|
46 |
+
"nsqn \<equiv> \<lambda>rt dip. case \<sigma>\<^bsub>route\<^esub>(rt, dip) of None \<Rightarrow> 0 | Some r \<Rightarrow> nsqn\<^sub>r(r)"
|
47 |
+
|
48 |
+
lemma nsqn_sqn_def:
|
49 |
+
"\<And>rt dip. nsqn rt dip = (if flag rt dip = Some val \<or> sqn rt dip = 0
|
50 |
+
then sqn rt dip else sqn rt dip - 1)"
|
51 |
+
unfolding nsqn_def sqn_def by (clarsimp split: option.split)
|
52 |
+
|
53 |
+
lemma not_in_kD_nsqn [simp]:
|
54 |
+
assumes "dip \<notin> kD(rt)"
|
55 |
+
shows "nsqn rt dip = 0"
|
56 |
+
using assms unfolding nsqn_def by simp
|
57 |
+
|
58 |
+
lemma kD_nsqn:
|
59 |
+
assumes "dip \<in> kD(rt)"
|
60 |
+
shows "nsqn rt dip = nsqn\<^sub>r(the (\<sigma>\<^bsub>route\<^esub>(rt, dip)))"
|
61 |
+
using assms [THEN kD_Some] unfolding nsqn_def by clarsimp
|
62 |
+
|
63 |
+
lemma nsqnr_r_flag_pred [simp, intro]:
|
64 |
+
fixes dsn dsk flag hops nhip pre
|
65 |
+
assumes "P (nsqn\<^sub>r (dsn, dsk, val, hops, nhip, pre))"
|
66 |
+
and "P (nsqn\<^sub>r (dsn, dsk, inv, hops, nhip, pre))"
|
67 |
+
shows "P (nsqn\<^sub>r (dsn, dsk, flag, hops, nhip, pre))"
|
68 |
+
using assms by (cases flag) auto
|
69 |
+
|
70 |
+
lemma nsqn\<^sub>r_addpreRT_inv [simp]:
|
71 |
+
"\<And>rt dip npre dip'. dip \<in> kD(rt) \<Longrightarrow>
|
72 |
+
nsqn\<^sub>r (the (the (addpreRT rt dip npre) dip')) = nsqn\<^sub>r (the (rt dip'))"
|
73 |
+
unfolding addpreRT_def nsqn\<^sub>r_def
|
74 |
+
by (frule kD_Some) (clarsimp split: option.split)
|
75 |
+
|
76 |
+
lemma sqn_nsqn:
|
77 |
+
"\<And>rt dip. sqn rt dip - 1 \<le> nsqn rt dip"
|
78 |
+
unfolding sqn_def nsqn_def by (clarsimp split: option.split)
|
79 |
+
|
80 |
+
lemma nsqn_sqn: "nsqn rt dip \<le> sqn rt dip"
|
81 |
+
unfolding sqn_def nsqn_def by (cases "rt dip") auto
|
82 |
+
|
83 |
+
lemma val_nsqn_sqn [elim, simp]:
|
84 |
+
assumes "ip\<in>kD(rt)"
|
85 |
+
and "the (flag rt ip) = val"
|
86 |
+
shows "nsqn rt ip = sqn rt ip"
|
87 |
+
using assms unfolding nsqn_sqn_def by auto
|
88 |
+
|
89 |
+
lemma vD_nsqn_sqn [elim, simp]:
|
90 |
+
assumes "ip\<in>vD(rt)"
|
91 |
+
shows "nsqn rt ip = sqn rt ip"
|
92 |
+
proof -
|
93 |
+
from \<open>ip\<in>vD(rt)\<close> have "ip\<in>kD(rt)"
|
94 |
+
and "the (flag rt ip) = val" by auto
|
95 |
+
thus ?thesis ..
|
96 |
+
qed
|
97 |
+
|
98 |
+
lemma inv_nsqn_sqn [elim, simp]:
|
99 |
+
assumes "ip\<in>kD(rt)"
|
100 |
+
and "the (flag rt ip) = inv"
|
101 |
+
shows "nsqn rt ip = sqn rt ip - 1"
|
102 |
+
using assms unfolding nsqn_sqn_def by auto
|
103 |
+
|
104 |
+
lemma iD_nsqn_sqn [elim, simp]:
|
105 |
+
assumes "ip\<in>iD(rt)"
|
106 |
+
shows "nsqn rt ip = sqn rt ip - 1"
|
107 |
+
proof -
|
108 |
+
from \<open>ip\<in>iD(rt)\<close> have "ip\<in>kD(rt)"
|
109 |
+
and "the (flag rt ip) = inv" by auto
|
110 |
+
thus ?thesis ..
|
111 |
+
qed
|
112 |
+
|
113 |
+
lemma nsqn_update_changed_kno_val [simp]: "\<And>rt ip dsn dsk hops nhip.
|
114 |
+
rt \<noteq> update rt ip (dsn, kno, val, hops, nhip, {})
|
115 |
+
\<Longrightarrow> nsqn (update rt ip (dsn, kno, val, hops, nhip, {})) ip = dsn"
|
116 |
+
unfolding nsqn\<^sub>r_def update_def
|
117 |
+
by (clarsimp simp: kD_nsqn split: option.split_asm option.split if_split_asm)
|
118 |
+
(metis fun_upd_triv)
|
119 |
+
|
120 |
+
lemma nsqn_addpreRT_inv [simp]:
|
121 |
+
"\<And>rt dip npre dip'. dip \<in> kD(rt) \<Longrightarrow>
|
122 |
+
nsqn (the (addpreRT rt dip npre)) dip' = nsqn rt dip'"
|
123 |
+
unfolding addpreRT_def nsqn_def nsqn\<^sub>r_def
|
124 |
+
by (frule kD_Some) (clarsimp split: option.split)
|
125 |
+
|
126 |
+
lemma nsqn_update_other [simp]:
|
127 |
+
fixes dsn dsk flag hops dip nhip pre rt ip
|
128 |
+
assumes "dip \<noteq> ip"
|
129 |
+
shows "nsqn (update rt ip (dsn, dsk, flag, hops, nhip, pre)) dip = nsqn rt dip"
|
130 |
+
using assms unfolding nsqn_def
|
131 |
+
by (clarsimp split: option.split)
|
132 |
+
|
133 |
+
lemma nsqn_invalidate_eq:
|
134 |
+
assumes "dip \<in> kD(rt)"
|
135 |
+
and "dests dip = Some rsn"
|
136 |
+
shows "nsqn (invalidate rt dests) dip = rsn - 1"
|
137 |
+
using assms
|
138 |
+
proof -
|
139 |
+
from assms obtain dsk hops nhip pre
|
140 |
+
where "invalidate rt dests dip = Some (rsn, dsk, inv, hops, nhip, pre)"
|
141 |
+
unfolding invalidate_def
|
142 |
+
by auto
|
143 |
+
moreover from \<open>dip \<in> kD(rt)\<close> have "dip \<in> kD(invalidate rt dests)" by simp
|
144 |
+
ultimately show ?thesis
|
145 |
+
using \<open>dests dip = Some rsn\<close> by simp
|
146 |
+
qed
|
147 |
+
|
148 |
+
lemma nsqn_invalidate_other [simp]:
|
149 |
+
assumes "dip\<in>kD(rt)"
|
150 |
+
and "dip\<notin>dom dests"
|
151 |
+
shows "nsqn (invalidate rt dests) dip = nsqn rt dip"
|
152 |
+
using assms by (clarsimp simp add: kD_nsqn)
|
153 |
+
|
154 |
+
subsection "Comparing routes "
|
155 |
+
|
156 |
+
definition
|
157 |
+
fresher :: "r \<Rightarrow> r \<Rightarrow> bool" ("(_/ \<sqsubseteq> _)" [51, 51] 50)
|
158 |
+
where
|
159 |
+
"fresher r r' \<equiv> ((nsqn\<^sub>r r < nsqn\<^sub>r r') \<or> (nsqn\<^sub>r r = nsqn\<^sub>r r' \<and> \<pi>\<^sub>5(r) \<ge> \<pi>\<^sub>5(r')))"
|
160 |
+
|
161 |
+
lemma fresherI1 [intro]:
|
162 |
+
assumes "nsqn\<^sub>r r < nsqn\<^sub>r r'"
|
163 |
+
shows "r \<sqsubseteq> r'"
|
164 |
+
unfolding fresher_def using assms by simp
|
165 |
+
|
166 |
+
lemma fresherI2 [intro]:
|
167 |
+
assumes "nsqn\<^sub>r r = nsqn\<^sub>r r'"
|
168 |
+
and "\<pi>\<^sub>5(r) \<ge> \<pi>\<^sub>5(r')"
|
169 |
+
shows "r \<sqsubseteq> r'"
|
170 |
+
unfolding fresher_def using assms by simp
|
171 |
+
|
172 |
+
lemma fresherI [intro]:
|
173 |
+
assumes "(nsqn\<^sub>r r < nsqn\<^sub>r r') \<or> (nsqn\<^sub>r r = nsqn\<^sub>r r' \<and> \<pi>\<^sub>5(r) \<ge> \<pi>\<^sub>5(r'))"
|
174 |
+
shows "r \<sqsubseteq> r'"
|
175 |
+
unfolding fresher_def using assms .
|
176 |
+
|
177 |
+
lemma fresherE [elim]:
|
178 |
+
assumes "r \<sqsubseteq> r'"
|
179 |
+
and "nsqn\<^sub>r r < nsqn\<^sub>r r' \<Longrightarrow> P r r'"
|
180 |
+
and "nsqn\<^sub>r r = nsqn\<^sub>r r' \<and> \<pi>\<^sub>5(r) \<ge> \<pi>\<^sub>5(r') \<Longrightarrow> P r r'"
|
181 |
+
shows "P r r'"
|
182 |
+
using assms unfolding fresher_def by auto
|
183 |
+
|
184 |
+
lemma fresher_refl [simp]: "r \<sqsubseteq> r"
|
185 |
+
unfolding fresher_def by simp
|
186 |
+
|
187 |
+
lemma fresher_trans [elim, trans]:
|
188 |
+
"\<lbrakk> x \<sqsubseteq> y; y \<sqsubseteq> z \<rbrakk> \<Longrightarrow> x \<sqsubseteq> z"
|
189 |
+
unfolding fresher_def by auto
|
190 |
+
|
191 |
+
lemma not_fresher_trans [elim, trans]:
|
192 |
+
"\<lbrakk> \<not>(x \<sqsubseteq> y); \<not>(z \<sqsubseteq> x) \<rbrakk> \<Longrightarrow> \<not>(z \<sqsubseteq> y)"
|
193 |
+
unfolding fresher_def by auto
|
194 |
+
|
195 |
+
lemma fresher_dsn_flag_hops_const [simp]:
|
196 |
+
fixes dsn dsk dsk' flag hops nhip nhip' pre pre'
|
197 |
+
shows "(dsn, dsk, flag, hops, nhip, pre) \<sqsubseteq> (dsn, dsk', flag, hops, nhip', pre')"
|
198 |
+
unfolding fresher_def by (cases flag) simp_all
|
199 |
+
|
200 |
+
lemma addpre_fresher [simp]: "\<And>r npre. r \<sqsubseteq> (addpre r npre)"
|
201 |
+
by clarsimp
|
202 |
+
|
203 |
+
subsection "Comparing routing tables "
|
204 |
+
|
205 |
+
definition
|
206 |
+
rt_fresher :: "ip \<Rightarrow> rt \<Rightarrow> rt \<Rightarrow> bool"
|
207 |
+
where
|
208 |
+
"rt_fresher \<equiv> \<lambda>dip rt rt'. (the (\<sigma>\<^bsub>route\<^esub>(rt, dip))) \<sqsubseteq> (the (\<sigma>\<^bsub>route\<^esub>(rt', dip)))"
|
209 |
+
|
210 |
+
abbreviation
|
211 |
+
rt_fresher_syn :: "rt \<Rightarrow> ip \<Rightarrow> rt \<Rightarrow> bool" ("(_/ \<sqsubseteq>\<^bsub>_\<^esub> _)" [51, 999, 51] 50)
|
212 |
+
where
|
213 |
+
"rt1 \<sqsubseteq>\<^bsub>i\<^esub> rt2 \<equiv> rt_fresher i rt1 rt2"
|
214 |
+
|
215 |
+
lemma rt_fresher_def':
|
216 |
+
"(rt\<^sub>1 \<sqsubseteq>\<^bsub>i\<^esub> rt\<^sub>2) = (nsqn\<^sub>r (the (rt\<^sub>1 i)) < nsqn\<^sub>r (the (rt\<^sub>2 i)) \<or>
|
217 |
+
nsqn\<^sub>r (the (rt\<^sub>1 i)) = nsqn\<^sub>r (the (rt\<^sub>2 i)) \<and> \<pi>\<^sub>5 (the (rt\<^sub>2 i)) \<le> \<pi>\<^sub>5 (the (rt\<^sub>1 i)))"
|
218 |
+
unfolding rt_fresher_def fresher_def by (rule refl)
|
219 |
+
|
220 |
+
lemma single_rt_fresher [intro]:
|
221 |
+
assumes "the (rt1 ip) \<sqsubseteq> the (rt2 ip)"
|
222 |
+
shows "rt1 \<sqsubseteq>\<^bsub>ip\<^esub> rt2"
|
223 |
+
using assms unfolding rt_fresher_def .
|
224 |
+
|
225 |
+
lemma rt_fresher_single [intro]:
|
226 |
+
assumes "rt1 \<sqsubseteq>\<^bsub>ip\<^esub> rt2"
|
227 |
+
shows "the (rt1 ip) \<sqsubseteq> the (rt2 ip)"
|
228 |
+
using assms unfolding rt_fresher_def .
|
229 |
+
|
230 |
+
lemma rt_fresher_def2:
|
231 |
+
assumes "dip \<in> kD(rt1)"
|
232 |
+
and "dip \<in> kD(rt2)"
|
233 |
+
shows "(rt1 \<sqsubseteq>\<^bsub>dip\<^esub> rt2) = (nsqn rt1 dip < nsqn rt2 dip
|
234 |
+
\<or> (nsqn rt1 dip = nsqn rt2 dip
|
235 |
+
\<and> the (dhops rt1 dip) \<ge> the (dhops rt2 dip)))"
|
236 |
+
using assms unfolding rt_fresher_def fresher_def by (simp add: kD_nsqn proj5_eq_dhops)
|
237 |
+
|
238 |
+
lemma rt_fresherI1 [intro]:
|
239 |
+
assumes "dip \<in> kD(rt1)"
|
240 |
+
and "dip \<in> kD(rt2)"
|
241 |
+
and "nsqn rt1 dip < nsqn rt2 dip"
|
242 |
+
shows "rt1 \<sqsubseteq>\<^bsub>dip\<^esub> rt2"
|
243 |
+
unfolding rt_fresher_def2 [OF assms(1-2)] using assms(3) by simp
|
244 |
+
|
245 |
+
lemma rt_fresherI2 [intro]:
|
246 |
+
assumes "dip \<in> kD(rt1)"
|
247 |
+
and "dip \<in> kD(rt2)"
|
248 |
+
and "nsqn rt1 dip = nsqn rt2 dip"
|
249 |
+
and "the (dhops rt1 dip) \<ge> the (dhops rt2 dip)"
|
250 |
+
shows "rt1 \<sqsubseteq>\<^bsub>dip\<^esub> rt2"
|
251 |
+
unfolding rt_fresher_def2 [OF assms(1-2)] using assms(3-4) by simp
|
252 |
+
|
253 |
+
lemma rt_fresherE [elim]:
|
254 |
+
assumes "rt1 \<sqsubseteq>\<^bsub>dip\<^esub> rt2"
|
255 |
+
and "dip \<in> kD(rt1)"
|
256 |
+
and "dip \<in> kD(rt2)"
|
257 |
+
and "\<lbrakk> nsqn rt1 dip < nsqn rt2 dip \<rbrakk> \<Longrightarrow> P rt1 rt2 dip"
|
258 |
+
and "\<lbrakk> nsqn rt1 dip = nsqn rt2 dip;
|
259 |
+
the (dhops rt1 dip) \<ge> the (dhops rt2 dip) \<rbrakk> \<Longrightarrow> P rt1 rt2 dip"
|
260 |
+
shows "P rt1 rt2 dip"
|
261 |
+
using assms(1) unfolding rt_fresher_def2 [OF assms(2-3)]
|
262 |
+
using assms(4-5) by auto
|
263 |
+
|
264 |
+
lemma rt_fresher_refl [simp]: "rt \<sqsubseteq>\<^bsub>dip\<^esub> rt"
|
265 |
+
unfolding rt_fresher_def by simp
|
266 |
+
|
267 |
+
lemma rt_fresher_trans [elim, trans]:
|
268 |
+
assumes "rt1 \<sqsubseteq>\<^bsub>dip\<^esub> rt2"
|
269 |
+
and "rt2 \<sqsubseteq>\<^bsub>dip\<^esub> rt3"
|
270 |
+
shows "rt1 \<sqsubseteq>\<^bsub>dip\<^esub> rt3"
|
271 |
+
using assms unfolding rt_fresher_def by auto
|
272 |
+
|
273 |
+
lemma rt_fresher_if_Some [intro!]:
|
274 |
+
assumes "the (rt dip) \<sqsubseteq> r"
|
275 |
+
shows "rt \<sqsubseteq>\<^bsub>dip\<^esub> (\<lambda>ip. if ip = dip then Some r else rt ip)"
|
276 |
+
using assms unfolding rt_fresher_def by simp
|
277 |
+
|
278 |
+
definition rt_fresh_as :: "ip \<Rightarrow> rt \<Rightarrow> rt \<Rightarrow> bool"
|
279 |
+
where
|
280 |
+
"rt_fresh_as \<equiv> \<lambda>dip rt1 rt2. (rt1 \<sqsubseteq>\<^bsub>dip\<^esub> rt2) \<and> (rt2 \<sqsubseteq>\<^bsub>dip\<^esub> rt1)"
|
281 |
+
|
282 |
+
abbreviation
|
283 |
+
rt_fresh_as_syn :: "rt \<Rightarrow> ip \<Rightarrow> rt \<Rightarrow> bool" ("(_/ \<approx>\<^bsub>_\<^esub> _)" [51, 999, 51] 50)
|
284 |
+
where
|
285 |
+
"rt1 \<approx>\<^bsub>i\<^esub> rt2 \<equiv> rt_fresh_as i rt1 rt2"
|
286 |
+
|
287 |
+
lemma rt_fresh_as_refl [simp]: "\<And>rt dip. rt \<approx>\<^bsub>dip\<^esub> rt"
|
288 |
+
unfolding rt_fresh_as_def by simp
|
289 |
+
|
290 |
+
lemma rt_fresh_as_trans [simp, intro, trans]:
|
291 |
+
"\<And>rt1 rt2 rt3 dip. \<lbrakk> rt1 \<approx>\<^bsub>dip\<^esub> rt2; rt2 \<approx>\<^bsub>dip\<^esub> rt3 \<rbrakk> \<Longrightarrow> rt1 \<approx>\<^bsub>dip\<^esub> rt3"
|
292 |
+
unfolding rt_fresh_as_def rt_fresher_def
|
293 |
+
by (metis (mono_tags) fresher_trans)
|
294 |
+
|
295 |
+
lemma rt_fresh_asI [intro!]:
|
296 |
+
assumes "rt1 \<sqsubseteq>\<^bsub>dip\<^esub> rt2"
|
297 |
+
and "rt2 \<sqsubseteq>\<^bsub>dip\<^esub> rt1"
|
298 |
+
shows "rt1 \<approx>\<^bsub>dip\<^esub> rt2"
|
299 |
+
using assms unfolding rt_fresh_as_def by simp
|
300 |
+
|
301 |
+
lemma rt_fresh_as_fresherI [intro]:
|
302 |
+
assumes "dip\<in>kD(rt1)"
|
303 |
+
and "dip\<in>kD(rt2)"
|
304 |
+
and "the (rt1 dip) \<sqsubseteq> the (rt2 dip)"
|
305 |
+
and "the (rt2 dip) \<sqsubseteq> the (rt1 dip)"
|
306 |
+
shows "rt1 \<approx>\<^bsub>dip\<^esub> rt2"
|
307 |
+
using assms unfolding rt_fresh_as_def
|
308 |
+
by (clarsimp dest!: single_rt_fresher)
|
309 |
+
|
310 |
+
lemma nsqn_rt_fresh_asI:
|
311 |
+
assumes "dip \<in> kD(rt)"
|
312 |
+
and "dip \<in> kD(rt')"
|
313 |
+
and "nsqn rt dip = nsqn rt' dip"
|
314 |
+
and "\<pi>\<^sub>5(the (rt dip)) = \<pi>\<^sub>5(the (rt' dip))"
|
315 |
+
shows "rt \<approx>\<^bsub>dip\<^esub> rt'"
|
316 |
+
proof
|
317 |
+
from assms(1-2,4) have dhops': "the (dhops rt' dip) \<le> the (dhops rt dip)"
|
318 |
+
by (simp add: proj5_eq_dhops)
|
319 |
+
with assms(1-3) show "rt \<sqsubseteq>\<^bsub>dip\<^esub> rt'"
|
320 |
+
by (rule rt_fresherI2)
|
321 |
+
next
|
322 |
+
from assms(1-2,4) have dhops: "the (dhops rt dip) \<le> the (dhops rt' dip)"
|
323 |
+
by (simp add: proj5_eq_dhops)
|
324 |
+
with assms(2,1) assms(3) [symmetric] show "rt' \<sqsubseteq>\<^bsub>dip\<^esub> rt"
|
325 |
+
by (rule rt_fresherI2)
|
326 |
+
qed
|
327 |
+
|
328 |
+
lemma rt_fresh_asE [elim]:
|
329 |
+
assumes "rt1 \<approx>\<^bsub>dip\<^esub> rt2"
|
330 |
+
and "\<lbrakk> rt1 \<sqsubseteq>\<^bsub>dip\<^esub> rt2; rt2 \<sqsubseteq>\<^bsub>dip\<^esub> rt1 \<rbrakk> \<Longrightarrow> P rt1 rt2 dip"
|
331 |
+
shows "P rt1 rt2 dip"
|
332 |
+
using assms unfolding rt_fresh_as_def by simp
|
333 |
+
|
334 |
+
lemma rt_fresh_asD1 [dest]:
|
335 |
+
assumes "rt1 \<approx>\<^bsub>dip\<^esub> rt2"
|
336 |
+
shows "rt1 \<sqsubseteq>\<^bsub>dip\<^esub> rt2"
|
337 |
+
using assms unfolding rt_fresh_as_def by simp
|
338 |
+
|
339 |
+
lemma rt_fresh_asD2 [dest]:
|
340 |
+
assumes "rt1 \<approx>\<^bsub>dip\<^esub> rt2"
|
341 |
+
shows "rt2 \<sqsubseteq>\<^bsub>dip\<^esub> rt1"
|
342 |
+
using assms unfolding rt_fresh_as_def by simp
|
343 |
+
|
344 |
+
lemma rt_fresh_as_sym:
|
345 |
+
assumes "rt1 \<approx>\<^bsub>dip\<^esub> rt2"
|
346 |
+
shows "rt2 \<approx>\<^bsub>dip\<^esub> rt1"
|
347 |
+
using assms unfolding rt_fresh_as_def by simp
|
348 |
+
|
349 |
+
lemma not_rt_fresh_asI1 [intro]:
|
350 |
+
assumes "\<not> (rt1 \<sqsubseteq>\<^bsub>dip\<^esub> rt2)"
|
351 |
+
shows "\<not> (rt1 \<approx>\<^bsub>dip\<^esub> rt2)"
|
352 |
+
proof
|
353 |
+
assume "rt1 \<approx>\<^bsub>dip\<^esub> rt2"
|
354 |
+
hence "rt1 \<sqsubseteq>\<^bsub>dip\<^esub> rt2" ..
|
355 |
+
with \<open>\<not> (rt1 \<sqsubseteq>\<^bsub>dip\<^esub> rt2)\<close> show False ..
|
356 |
+
qed
|
357 |
+
|
358 |
+
lemma not_rt_fresh_asI2 [intro]:
|
359 |
+
assumes "\<not> (rt2 \<sqsubseteq>\<^bsub>dip\<^esub> rt1)"
|
360 |
+
shows "\<not> (rt1 \<approx>\<^bsub>dip\<^esub> rt2)"
|
361 |
+
proof
|
362 |
+
assume "rt1 \<approx>\<^bsub>dip\<^esub> rt2"
|
363 |
+
hence "rt2 \<sqsubseteq>\<^bsub>dip\<^esub> rt1" ..
|
364 |
+
with \<open>\<not> (rt2 \<sqsubseteq>\<^bsub>dip\<^esub> rt1)\<close> show False ..
|
365 |
+
qed
|
366 |
+
|
367 |
+
lemma not_single_rt_fresher [elim]:
|
368 |
+
assumes "\<not>(the (rt1 ip) \<sqsubseteq> the (rt2 ip))"
|
369 |
+
shows "\<not>(rt1 \<sqsubseteq>\<^bsub>ip\<^esub> rt2)"
|
370 |
+
proof
|
371 |
+
assume "rt1 \<sqsubseteq>\<^bsub>ip\<^esub> rt2"
|
372 |
+
hence "the (rt1 ip) \<sqsubseteq> the (rt2 ip)" ..
|
373 |
+
with \<open>\<not>(the (rt1 ip) \<sqsubseteq> the (rt2 ip))\<close> show False ..
|
374 |
+
qed
|
375 |
+
|
376 |
+
lemmas not_single_rt_fresh_asI1 [intro] = not_rt_fresh_asI1 [OF not_single_rt_fresher]
|
377 |
+
lemmas not_single_rt_fresh_asI2 [intro] = not_rt_fresh_asI2 [OF not_single_rt_fresher]
|
378 |
+
|
379 |
+
lemma not_rt_fresher_single [elim]:
|
380 |
+
assumes "\<not>(rt1 \<sqsubseteq>\<^bsub>ip\<^esub> rt2)"
|
381 |
+
shows "\<not>(the (rt1 ip) \<sqsubseteq> the (rt2 ip))"
|
382 |
+
proof
|
383 |
+
assume "the (rt1 ip) \<sqsubseteq> the (rt2 ip)"
|
384 |
+
hence "rt1 \<sqsubseteq>\<^bsub>ip\<^esub> rt2" ..
|
385 |
+
with \<open>\<not>(rt1 \<sqsubseteq>\<^bsub>ip\<^esub> rt2)\<close> show False ..
|
386 |
+
qed
|
387 |
+
|
388 |
+
lemma rt_fresh_as_nsqnr:
|
389 |
+
assumes "dip \<in> kD(rt1)"
|
390 |
+
and "dip \<in> kD(rt2)"
|
391 |
+
and "rt1 \<approx>\<^bsub>dip\<^esub> rt2"
|
392 |
+
shows "nsqn\<^sub>r (the (rt2 dip)) = nsqn\<^sub>r (the (rt1 dip))"
|
393 |
+
using assms(3) unfolding rt_fresh_as_def
|
394 |
+
by (auto simp: rt_fresher_def2 [OF \<open>dip \<in> kD(rt1)\<close> \<open>dip \<in> kD(rt2)\<close>]
|
395 |
+
rt_fresher_def2 [OF \<open>dip \<in> kD(rt2)\<close> \<open>dip \<in> kD(rt1)\<close>]
|
396 |
+
kD_nsqn [OF \<open>dip \<in> kD(rt1)\<close>]
|
397 |
+
kD_nsqn [OF \<open>dip \<in> kD(rt2)\<close>])
|
398 |
+
|
399 |
+
lemma rt_fresher_mapupd [intro!]:
|
400 |
+
assumes "dip\<in>kD(rt)"
|
401 |
+
and "the (rt dip) \<sqsubseteq> r"
|
402 |
+
shows "rt \<sqsubseteq>\<^bsub>dip\<^esub> rt(dip \<mapsto> r)"
|
403 |
+
using assms unfolding rt_fresher_def by simp
|
404 |
+
|
405 |
+
lemma rt_fresher_map_update_other [intro!]:
|
406 |
+
assumes "dip\<in>kD(rt)"
|
407 |
+
and "dip \<noteq> ip"
|
408 |
+
shows "rt \<sqsubseteq>\<^bsub>dip\<^esub> rt(ip \<mapsto> r)"
|
409 |
+
using assms unfolding rt_fresher_def by simp
|
410 |
+
|
411 |
+
lemma rt_fresher_update_other [simp]:
|
412 |
+
assumes inkD: "dip\<in>kD(rt)"
|
413 |
+
and "dip \<noteq> ip"
|
414 |
+
shows "rt \<sqsubseteq>\<^bsub>dip\<^esub> update rt ip r"
|
415 |
+
using assms unfolding update_def
|
416 |
+
by (clarsimp split: option.split) (fastforce)
|
417 |
+
|
418 |
+
theorem rt_fresher_update [simp]:
|
419 |
+
assumes "dip\<in>kD(rt)"
|
420 |
+
and "the (dhops rt dip) \<ge> 1"
|
421 |
+
and "update_arg_wf r"
|
422 |
+
shows "rt \<sqsubseteq>\<^bsub>dip\<^esub> update rt ip r"
|
423 |
+
proof (cases "dip = ip")
|
424 |
+
assume "dip \<noteq> ip" with \<open>dip\<in>kD(rt)\<close> show ?thesis
|
425 |
+
by (rule rt_fresher_update_other)
|
426 |
+
next
|
427 |
+
assume "dip = ip"
|
428 |
+
|
429 |
+
from \<open>dip\<in>kD(rt)\<close> obtain dsn\<^sub>n dsk\<^sub>n f\<^sub>n hops\<^sub>n nhip\<^sub>n pre\<^sub>n
|
430 |
+
where rtn [simp]: "the (rt dip) = (dsn\<^sub>n, dsk\<^sub>n, f\<^sub>n, hops\<^sub>n, nhip\<^sub>n, pre\<^sub>n)"
|
431 |
+
by (metis prod_cases6)
|
432 |
+
with \<open>the (dhops rt dip) \<ge> 1\<close> and \<open>dip\<in>kD(rt)\<close> have "hops\<^sub>n \<ge> 1"
|
433 |
+
by (metis proj5_eq_dhops projs(4))
|
434 |
+
from \<open>dip\<in>kD(rt)\<close> rtn have [simp]: "sqn rt dip = dsn\<^sub>n"
|
435 |
+
and [simp]: "the (dhops rt dip) = hops\<^sub>n"
|
436 |
+
and [simp]: "the (flag rt dip) = f\<^sub>n"
|
437 |
+
by (simp add: sqn_def proj5_eq_dhops [symmetric]
|
438 |
+
proj4_eq_flag [symmetric])+
|
439 |
+
|
440 |
+
from \<open>update_arg_wf r\<close> have "(dsn\<^sub>n, dsk\<^sub>n, f\<^sub>n, hops\<^sub>n, nhip\<^sub>n, pre\<^sub>n)
|
441 |
+
\<sqsubseteq> the ((update rt dip r) dip)"
|
442 |
+
proof (rule wf_r_cases)
|
443 |
+
fix nhip pre
|
444 |
+
from \<open>hops\<^sub>n \<ge> 1\<close> have "\<And>pre'. (dsn\<^sub>n, dsk\<^sub>n, f\<^sub>n, hops\<^sub>n, nhip\<^sub>n, pre\<^sub>n)
|
445 |
+
\<sqsubseteq> (dsn\<^sub>n, unk, val, Suc 0, nhip, pre')"
|
446 |
+
unfolding fresher_def sqn_def by (cases f\<^sub>n) auto
|
447 |
+
thus "(dsn\<^sub>n, dsk\<^sub>n, f\<^sub>n, hops\<^sub>n, nhip\<^sub>n, pre\<^sub>n)
|
448 |
+
\<sqsubseteq> the (update rt dip (0, unk, val, Suc 0, nhip, pre) dip)"
|
449 |
+
using \<open>dip\<in>kD(rt)\<close> by - (rule update_cases_kD, simp_all)
|
450 |
+
next
|
451 |
+
fix dsn :: sqn and hops nhip pre
|
452 |
+
assume "0 < dsn"
|
453 |
+
show "(dsn\<^sub>n, dsk\<^sub>n, f\<^sub>n, hops\<^sub>n, nhip\<^sub>n, pre\<^sub>n)
|
454 |
+
\<sqsubseteq> the (update rt dip (dsn, kno, val, hops, nhip, pre) dip)"
|
455 |
+
proof (rule update_cases_kD [OF _ \<open>dip\<in>kD(rt)\<close>], simp_all add: \<open>0 < dsn\<close>)
|
456 |
+
assume "dsn\<^sub>n < dsn"
|
457 |
+
thus "(dsn\<^sub>n, dsk\<^sub>n, f\<^sub>n, hops\<^sub>n, nhip\<^sub>n, pre\<^sub>n)
|
458 |
+
\<sqsubseteq> (dsn, kno, val, hops, nhip, pre \<union> pre\<^sub>n)"
|
459 |
+
unfolding fresher_def by auto
|
460 |
+
next
|
461 |
+
assume "dsn\<^sub>n = dsn"
|
462 |
+
and "hops < hops\<^sub>n"
|
463 |
+
thus "(dsn, dsk\<^sub>n, f\<^sub>n, hops\<^sub>n, nhip\<^sub>n, pre\<^sub>n)
|
464 |
+
\<sqsubseteq> (dsn, kno, val, hops, nhip, pre \<union> pre\<^sub>n)"
|
465 |
+
unfolding fresher_def nsqn\<^sub>r_def by simp
|
466 |
+
next
|
467 |
+
assume "dsn\<^sub>n = dsn"
|
468 |
+
with \<open>0 < dsn\<close>
|
469 |
+
show "(dsn, dsk\<^sub>n, inv, hops\<^sub>n, nhip\<^sub>n, pre\<^sub>n)
|
470 |
+
\<sqsubseteq> (dsn, kno, val, hops, nhip, pre \<union> pre\<^sub>n)"
|
471 |
+
unfolding fresher_def by simp
|
472 |
+
qed
|
473 |
+
qed
|
474 |
+
hence "rt \<sqsubseteq>\<^bsub>dip\<^esub> update rt dip r"
|
475 |
+
by - (rule single_rt_fresher, simp)
|
476 |
+
with \<open>dip = ip\<close> show ?thesis by simp
|
477 |
+
qed
|
478 |
+
|
479 |
+
theorem rt_fresher_invalidate [simp]:
|
480 |
+
assumes "dip\<in>kD(rt)"
|
481 |
+
and indests: "\<forall>rip\<in>dom(dests). rip\<in>vD(rt) \<and> sqn rt rip < the (dests rip)"
|
482 |
+
shows "rt \<sqsubseteq>\<^bsub>dip\<^esub> invalidate rt dests"
|
483 |
+
proof (cases "dip\<in>dom(dests)")
|
484 |
+
assume "dip\<notin>dom(dests)"
|
485 |
+
thus ?thesis using \<open>dip\<in>kD(rt)\<close>
|
486 |
+
by - (rule single_rt_fresher, simp)
|
487 |
+
next
|
488 |
+
assume "dip\<in>dom(dests)"
|
489 |
+
moreover with indests have "dip\<in>vD(rt)"
|
490 |
+
and "sqn rt dip < the (dests dip)"
|
491 |
+
by auto
|
492 |
+
ultimately show ?thesis
|
493 |
+
unfolding invalidate_def sqn_def
|
494 |
+
by - (rule single_rt_fresher, auto simp: fresher_def)
|
495 |
+
qed
|
496 |
+
|
497 |
+
lemma nsqn\<^sub>r_invalidate [simp]:
|
498 |
+
assumes "dip\<in>kD(rt)"
|
499 |
+
and "dip\<in>dom(dests)"
|
500 |
+
shows "nsqn\<^sub>r (the (invalidate rt dests dip)) = the (dests dip) - 1"
|
501 |
+
using assms unfolding invalidate_def by auto
|
502 |
+
|
503 |
+
lemma rt_fresh_as_inc_invalidate [simp]:
|
504 |
+
assumes "dip\<in>kD(rt)"
|
505 |
+
and "\<forall>rip\<in>dom(dests). rip\<in>vD(rt) \<and> the (dests rip) = inc (sqn rt rip)"
|
506 |
+
shows "rt \<approx>\<^bsub>dip\<^esub> invalidate rt dests"
|
507 |
+
proof (cases "dip\<in>dom(dests)")
|
508 |
+
assume "dip\<notin>dom(dests)"
|
509 |
+
with \<open>dip\<in>kD(rt)\<close> have "dip\<in>kD(invalidate rt dests)"
|
510 |
+
by simp
|
511 |
+
with \<open>dip\<in>kD(rt)\<close> show ?thesis
|
512 |
+
by rule (simp_all add: \<open>dip\<notin>dom(dests)\<close>)
|
513 |
+
next
|
514 |
+
assume "dip\<in>dom(dests)"
|
515 |
+
with assms(2) have "dip\<in>vD(rt)"
|
516 |
+
and "the (dests dip) = inc (sqn rt dip)" by auto
|
517 |
+
from \<open>dip\<in>vD(rt)\<close> have "dip\<in>kD(rt)" by simp
|
518 |
+
moreover then have "dip\<in>kD(invalidate rt dests)" by simp
|
519 |
+
ultimately show ?thesis
|
520 |
+
proof (rule nsqn_rt_fresh_asI)
|
521 |
+
from \<open>dip\<in>vD(rt)\<close> have "nsqn rt dip = sqn rt dip" by simp
|
522 |
+
also have "sqn rt dip = nsqn\<^sub>r (the (invalidate rt dests dip))"
|
523 |
+
proof -
|
524 |
+
from \<open>dip\<in>kD(rt)\<close> have "nsqn\<^sub>r (the (invalidate rt dests dip)) = the (dests dip) - 1"
|
525 |
+
using \<open>dip\<in>dom(dests)\<close> by (rule nsqn\<^sub>r_invalidate)
|
526 |
+
with \<open>the (dests dip) = inc (sqn rt dip)\<close>
|
527 |
+
show "sqn rt dip = nsqn\<^sub>r (the (invalidate rt dests dip))" by simp
|
528 |
+
qed
|
529 |
+
also from \<open>dip\<in>kD(invalidate rt dests)\<close>
|
530 |
+
have "nsqn\<^sub>r (the (invalidate rt dests dip)) = nsqn (invalidate rt dests) dip"
|
531 |
+
by (simp add: kD_nsqn)
|
532 |
+
finally show "nsqn rt dip = nsqn (invalidate rt dests) dip" .
|
533 |
+
qed simp
|
534 |
+
qed
|
535 |
+
|
536 |
+
lemmas rt_fresher_inc_invalidate [simp] = rt_fresh_as_inc_invalidate [THEN rt_fresh_asD1]
|
537 |
+
|
538 |
+
lemma rt_fresh_as_addpreRT [simp]:
|
539 |
+
assumes "ip\<in>kD(rt)"
|
540 |
+
shows "rt \<approx>\<^bsub>dip\<^esub> the (addpreRT rt ip npre)"
|
541 |
+
using assms [THEN kD_Some] by (auto simp: addpreRT_def)
|
542 |
+
|
543 |
+
lemmas rt_fresher_addpreRT [simp] = rt_fresh_as_addpreRT [THEN rt_fresh_asD1]
|
544 |
+
|
545 |
+
subsection "Strictly comparing routing tables "
|
546 |
+
|
547 |
+
definition rt_strictly_fresher :: "ip \<Rightarrow> rt \<Rightarrow> rt \<Rightarrow> bool"
|
548 |
+
where
|
549 |
+
"rt_strictly_fresher \<equiv> \<lambda>dip rt1 rt2. (rt1 \<sqsubseteq>\<^bsub>dip\<^esub> rt2) \<and> \<not>(rt1 \<approx>\<^bsub>dip\<^esub> rt2)"
|
550 |
+
|
551 |
+
abbreviation
|
552 |
+
rt_strictly_fresher_syn :: "rt \<Rightarrow> ip \<Rightarrow> rt \<Rightarrow> bool" ("(_/ \<sqsubset>\<^bsub>_\<^esub> _)" [51, 999, 51] 50)
|
553 |
+
where
|
554 |
+
"rt1 \<sqsubset>\<^bsub>i\<^esub> rt2 \<equiv> rt_strictly_fresher i rt1 rt2"
|
555 |
+
|
556 |
+
lemma rt_strictly_fresher_def'':
|
557 |
+
"rt1 \<sqsubset>\<^bsub>i\<^esub> rt2 = ((rt1 \<sqsubseteq>\<^bsub>i\<^esub> rt2) \<and> \<not>(rt2 \<sqsubseteq>\<^bsub>i\<^esub> rt1))"
|
558 |
+
unfolding rt_strictly_fresher_def rt_fresh_as_def by auto
|
559 |
+
|
560 |
+
lemma rt_strictly_fresherI' [intro]:
|
561 |
+
assumes "rt1 \<sqsubseteq>\<^bsub>i\<^esub> rt2"
|
562 |
+
and "\<not>(rt2 \<sqsubseteq>\<^bsub>i\<^esub> rt1)"
|
563 |
+
shows "rt1 \<sqsubset>\<^bsub>i\<^esub> rt2"
|
564 |
+
using assms unfolding rt_strictly_fresher_def'' by simp
|
565 |
+
|
566 |
+
lemma rt_strictly_fresherE' [elim]:
|
567 |
+
assumes "rt1 \<sqsubset>\<^bsub>i\<^esub> rt2"
|
568 |
+
and "\<lbrakk> rt1 \<sqsubseteq>\<^bsub>i\<^esub> rt2; \<not>(rt2 \<sqsubseteq>\<^bsub>i\<^esub> rt1) \<rbrakk> \<Longrightarrow> P rt1 rt2 i"
|
569 |
+
shows "P rt1 rt2 i"
|
570 |
+
using assms unfolding rt_strictly_fresher_def'' by simp
|
571 |
+
|
572 |
+
lemma rt_strictly_fresherI [intro]:
|
573 |
+
assumes "rt1 \<sqsubseteq>\<^bsub>i\<^esub> rt2"
|
574 |
+
and "\<not>(rt1 \<approx>\<^bsub>i\<^esub> rt2)"
|
575 |
+
shows "rt1 \<sqsubset>\<^bsub>i\<^esub> rt2"
|
576 |
+
unfolding rt_strictly_fresher_def using assms ..
|
577 |
+
|
578 |
+
lemmas rt_strictly_fresher_singleI [elim] = rt_strictly_fresherI [OF single_rt_fresher]
|
579 |
+
|
580 |
+
lemma rt_strictly_fresherE [elim]:
|
581 |
+
assumes "rt1 \<sqsubset>\<^bsub>i\<^esub> rt2"
|
582 |
+
and "\<lbrakk> rt1 \<sqsubseteq>\<^bsub>i\<^esub> rt2; \<not>(rt1 \<approx>\<^bsub>i\<^esub> rt2) \<rbrakk> \<Longrightarrow> P rt1 rt2 i"
|
583 |
+
shows "P rt1 rt2 i"
|
584 |
+
using assms(1) unfolding rt_strictly_fresher_def
|
585 |
+
by rule (erule(1) assms(2))
|
586 |
+
|
587 |
+
lemma rt_strictly_fresher_def':
|
588 |
+
"rt1 \<sqsubset>\<^bsub>i\<^esub> rt2 =
|
589 |
+
(nsqn\<^sub>r (the (rt1 i)) < nsqn\<^sub>r (the (rt2 i))
|
590 |
+
\<or> (nsqn\<^sub>r (the (rt1 i)) = nsqn\<^sub>r (the (rt2 i)) \<and> \<pi>\<^sub>5(the (rt1 i)) > \<pi>\<^sub>5(the (rt2 i))))"
|
591 |
+
unfolding rt_strictly_fresher_def'' rt_fresher_def fresher_def by auto
|
592 |
+
|
593 |
+
lemma rt_strictly_fresher_fresherD [dest]:
|
594 |
+
assumes "rt1 \<sqsubset>\<^bsub>dip\<^esub> rt2"
|
595 |
+
shows "the (rt1 dip) \<sqsubseteq> the (rt2 dip)"
|
596 |
+
using assms unfolding rt_strictly_fresher_def rt_fresher_def by auto
|
597 |
+
|
598 |
+
lemma rt_strictly_fresher_not_fresh_asD [dest]:
|
599 |
+
assumes "rt1 \<sqsubset>\<^bsub>dip\<^esub> rt2"
|
600 |
+
shows "\<not> rt1 \<approx>\<^bsub>dip\<^esub> rt2"
|
601 |
+
using assms unfolding rt_strictly_fresher_def by auto
|
602 |
+
|
603 |
+
lemma rt_strictly_fresher_trans [elim, trans]:
|
604 |
+
assumes "rt1 \<sqsubset>\<^bsub>dip\<^esub> rt2"
|
605 |
+
and "rt2 \<sqsubset>\<^bsub>dip\<^esub> rt3"
|
606 |
+
shows "rt1 \<sqsubset>\<^bsub>dip\<^esub> rt3"
|
607 |
+
using assms proof -
|
608 |
+
from \<open>rt1 \<sqsubset>\<^bsub>dip\<^esub> rt2\<close> obtain "the (rt1 dip) \<sqsubseteq> the (rt2 dip)" by auto
|
609 |
+
also from \<open>rt2 \<sqsubset>\<^bsub>dip\<^esub> rt3\<close> obtain "the (rt2 dip) \<sqsubseteq> the (rt3 dip)" by auto
|
610 |
+
finally have "the (rt1 dip) \<sqsubseteq> the (rt3 dip)" .
|
611 |
+
|
612 |
+
moreover have "\<not> (rt1 \<approx>\<^bsub>dip\<^esub> rt3)"
|
613 |
+
proof -
|
614 |
+
from \<open>rt1 \<sqsubset>\<^bsub>dip\<^esub> rt2\<close> obtain "\<not>(the (rt2 dip) \<sqsubseteq> the (rt1 dip))" by auto
|
615 |
+
also from \<open>rt2 \<sqsubset>\<^bsub>dip\<^esub> rt3\<close> obtain "\<not>(the (rt3 dip) \<sqsubseteq> the (rt2 dip))" by auto
|
616 |
+
finally have "\<not>(the (rt3 dip) \<sqsubseteq> the (rt1 dip))" .
|
617 |
+
thus ?thesis ..
|
618 |
+
qed
|
619 |
+
ultimately show "rt1 \<sqsubset>\<^bsub>dip\<^esub> rt3" ..
|
620 |
+
qed
|
621 |
+
|
622 |
+
lemma rt_strictly_fresher_irefl [simp]: "\<not> (rt \<sqsubset>\<^bsub>dip\<^esub> rt)"
|
623 |
+
unfolding rt_strictly_fresher_def
|
624 |
+
by clarsimp
|
625 |
+
|
626 |
+
lemma rt_fresher_trans_rt_strictly_fresher [elim, trans]:
|
627 |
+
assumes "rt1 \<sqsubset>\<^bsub>dip\<^esub> rt2"
|
628 |
+
and "rt2 \<sqsubseteq>\<^bsub>dip\<^esub> rt3"
|
629 |
+
shows "rt1 \<sqsubset>\<^bsub>dip\<^esub> rt3"
|
630 |
+
proof -
|
631 |
+
from \<open>rt1 \<sqsubset>\<^bsub>dip\<^esub> rt2\<close> have "rt1 \<sqsubseteq>\<^bsub>dip\<^esub> rt2"
|
632 |
+
and "\<not>(rt2 \<sqsubseteq>\<^bsub>dip\<^esub> rt1)"
|
633 |
+
unfolding rt_strictly_fresher_def'' by auto
|
634 |
+
from this(1) and \<open>rt2 \<sqsubseteq>\<^bsub>dip\<^esub> rt3\<close> have "rt1 \<sqsubseteq>\<^bsub>dip\<^esub> rt3" ..
|
635 |
+
|
636 |
+
moreover from \<open>\<not>(rt2 \<sqsubseteq>\<^bsub>dip\<^esub> rt1)\<close> have "\<not>(rt3 \<sqsubseteq>\<^bsub>dip\<^esub> rt1)"
|
637 |
+
proof (rule contrapos_nn)
|
638 |
+
assume "rt3 \<sqsubseteq>\<^bsub>dip\<^esub> rt1"
|
639 |
+
with \<open>rt2 \<sqsubseteq>\<^bsub>dip\<^esub> rt3\<close> show "rt2 \<sqsubseteq>\<^bsub>dip\<^esub> rt1" ..
|
640 |
+
qed
|
641 |
+
|
642 |
+
ultimately show "rt1 \<sqsubset>\<^bsub>dip\<^esub> rt3"
|
643 |
+
unfolding rt_strictly_fresher_def'' by auto
|
644 |
+
qed
|
645 |
+
|
646 |
+
lemma rt_fresher_trans_rt_strictly_fresher' [elim, trans]:
|
647 |
+
assumes "rt1 \<sqsubseteq>\<^bsub>dip\<^esub> rt2"
|
648 |
+
and "rt2 \<sqsubset>\<^bsub>dip\<^esub> rt3"
|
649 |
+
shows "rt1 \<sqsubset>\<^bsub>dip\<^esub> rt3"
|
650 |
+
proof -
|
651 |
+
from \<open>rt2 \<sqsubset>\<^bsub>dip\<^esub> rt3\<close> have "rt2 \<sqsubseteq>\<^bsub>dip\<^esub> rt3"
|
652 |
+
and "\<not>(rt3 \<sqsubseteq>\<^bsub>dip\<^esub> rt2)"
|
653 |
+
unfolding rt_strictly_fresher_def'' by auto
|
654 |
+
from \<open>rt1 \<sqsubseteq>\<^bsub>dip\<^esub> rt2\<close> and this(1) have "rt1 \<sqsubseteq>\<^bsub>dip\<^esub> rt3" ..
|
655 |
+
|
656 |
+
moreover from \<open>\<not>(rt3 \<sqsubseteq>\<^bsub>dip\<^esub> rt2)\<close> have "\<not>(rt3 \<sqsubseteq>\<^bsub>dip\<^esub> rt1)"
|
657 |
+
proof (rule contrapos_nn)
|
658 |
+
assume "rt3 \<sqsubseteq>\<^bsub>dip\<^esub> rt1"
|
659 |
+
thus "rt3 \<sqsubseteq>\<^bsub>dip\<^esub> rt2" using \<open>rt1 \<sqsubseteq>\<^bsub>dip\<^esub> rt2\<close> ..
|
660 |
+
qed
|
661 |
+
|
662 |
+
ultimately show "rt1 \<sqsubset>\<^bsub>dip\<^esub> rt3"
|
663 |
+
unfolding rt_strictly_fresher_def'' by auto
|
664 |
+
qed
|
665 |
+
|
666 |
+
lemma rt_fresher_imp_nsqn_le:
|
667 |
+
assumes "rt1 \<sqsubseteq>\<^bsub>ip\<^esub> rt2"
|
668 |
+
and "ip \<in> kD rt1"
|
669 |
+
and "ip \<in> kD rt2"
|
670 |
+
shows "nsqn rt1 ip \<le> nsqn rt2 ip"
|
671 |
+
using assms(1)
|
672 |
+
by (auto simp add: rt_fresher_def2 [OF assms(2-3)])
|
673 |
+
|
674 |
+
lemma rt_strictly_fresher_ltI [intro]:
|
675 |
+
assumes "dip \<in> kD(rt1)"
|
676 |
+
and "dip \<in> kD(rt2)"
|
677 |
+
and "nsqn rt1 dip < nsqn rt2 dip"
|
678 |
+
shows "rt1 \<sqsubset>\<^bsub>dip\<^esub> rt2"
|
679 |
+
proof
|
680 |
+
from assms show "rt1 \<sqsubseteq>\<^bsub>dip\<^esub> rt2" ..
|
681 |
+
next
|
682 |
+
show "\<not>(rt1 \<approx>\<^bsub>dip\<^esub> rt2)"
|
683 |
+
proof
|
684 |
+
assume "rt1 \<approx>\<^bsub>dip\<^esub> rt2"
|
685 |
+
hence "rt2 \<sqsubseteq>\<^bsub>dip\<^esub> rt1" ..
|
686 |
+
hence "nsqn rt2 dip \<le> nsqn rt1 dip"
|
687 |
+
using \<open>dip \<in> kD(rt2)\<close> \<open>dip \<in> kD(rt1)\<close>
|
688 |
+
by (rule rt_fresher_imp_nsqn_le)
|
689 |
+
with \<open>nsqn rt1 dip < nsqn rt2 dip\<close> show "False"
|
690 |
+
by simp
|
691 |
+
qed
|
692 |
+
qed
|
693 |
+
|
694 |
+
lemma rt_strictly_fresher_eqI [intro]:
|
695 |
+
assumes "i\<in>kD(rt1)"
|
696 |
+
and "i\<in>kD(rt2)"
|
697 |
+
and "nsqn rt1 i = nsqn rt2 i"
|
698 |
+
and "\<pi>\<^sub>5(the (rt2 i)) < \<pi>\<^sub>5(the (rt1 i))"
|
699 |
+
shows "rt1 \<sqsubset>\<^bsub>i\<^esub> rt2"
|
700 |
+
using assms unfolding rt_strictly_fresher_def' by (auto simp add: kD_nsqn)
|
701 |
+
|
702 |
+
lemma invalidate_rtsf_left [simp]:
|
703 |
+
"\<And>dests dip rt rt'. dests dip = None \<Longrightarrow> (invalidate rt dests \<sqsubset>\<^bsub>dip\<^esub> rt') = (rt \<sqsubset>\<^bsub>dip\<^esub> rt')"
|
704 |
+
unfolding invalidate_def rt_strictly_fresher_def'
|
705 |
+
by (rule iffI) (auto split: option.split_asm)
|
706 |
+
|
707 |
+
lemma vD_invalidate_rt_strictly_fresher [simp]:
|
708 |
+
assumes "dip \<in> vD(invalidate rt1 dests)"
|
709 |
+
shows "(invalidate rt1 dests \<sqsubset>\<^bsub>dip\<^esub> rt2) = (rt1 \<sqsubset>\<^bsub>dip\<^esub> rt2)"
|
710 |
+
proof (cases "dip \<in> dom(dests)")
|
711 |
+
assume "dip \<in> dom(dests)"
|
712 |
+
hence "dip \<notin> vD(invalidate rt1 dests)"
|
713 |
+
unfolding invalidate_def vD_def
|
714 |
+
by clarsimp (metis assms option.simps(3) vD_invalidate_vD_not_dests)
|
715 |
+
with \<open>dip \<in> vD(invalidate rt1 dests)\<close> show ?thesis by simp
|
716 |
+
next
|
717 |
+
assume "dip \<notin> dom(dests)"
|
718 |
+
hence "dests dip = None" by auto
|
719 |
+
moreover with \<open>dip \<in> vD(invalidate rt1 dests)\<close> have "dip \<in> vD(rt1)"
|
720 |
+
unfolding invalidate_def vD_def
|
721 |
+
by clarsimp (metis (opaque_lifting, no_types) assms vD_Some vD_invalidate_vD_not_dests)
|
722 |
+
ultimately show ?thesis
|
723 |
+
unfolding invalidate_def rt_strictly_fresher_def' by auto
|
724 |
+
qed
|
725 |
+
|
726 |
+
lemma rt_strictly_fresher_update_other [elim!]:
|
727 |
+
"\<And>dip ip rt r rt'. \<lbrakk> dip \<noteq> ip; rt \<sqsubset>\<^bsub>dip\<^esub> rt' \<rbrakk> \<Longrightarrow> update rt ip r \<sqsubset>\<^bsub>dip\<^esub> rt'"
|
728 |
+
unfolding rt_strictly_fresher_def' by clarsimp
|
729 |
+
|
730 |
+
lemma addpreRT_strictly_fresher [simp]:
|
731 |
+
assumes "dip \<in> kD(rt)"
|
732 |
+
shows "(the (addpreRT rt dip npre) \<sqsubset>\<^bsub>ip\<^esub> rt2) = (rt \<sqsubset>\<^bsub>ip\<^esub> rt2)"
|
733 |
+
using assms unfolding rt_strictly_fresher_def' by clarsimp
|
734 |
+
|
735 |
+
lemma lt_sqn_imp_update_strictly_fresher:
|
736 |
+
assumes "dip \<in> vD (rt2 nhip)"
|
737 |
+
and *: "osn < sqn (rt2 nhip) dip"
|
738 |
+
and **: "rt \<noteq> update rt dip (osn, kno, val, hops, nhip, {})"
|
739 |
+
shows "update rt dip (osn, kno, val, hops, nhip, {}) \<sqsubset>\<^bsub>dip\<^esub> rt2 nhip"
|
740 |
+
unfolding rt_strictly_fresher_def'
|
741 |
+
proof (rule disjI1)
|
742 |
+
from ** have "nsqn (update rt dip (osn, kno, val, hops, nhip, {})) dip = osn"
|
743 |
+
by (rule nsqn_update_changed_kno_val)
|
744 |
+
with \<open>dip\<in>vD(rt2 nhip)\<close>
|
745 |
+
have "nsqn\<^sub>r (the (update rt dip (osn, kno, val, hops, nhip, {}) dip)) = osn"
|
746 |
+
by (simp add: kD_nsqn)
|
747 |
+
also have "osn < sqn (rt2 nhip) dip" by (rule *)
|
748 |
+
also have "sqn (rt2 nhip) dip = nsqn\<^sub>r (the (rt2 nhip dip))"
|
749 |
+
unfolding nsqn\<^sub>r_def using \<open>dip \<in> vD (rt2 nhip)\<close>
|
750 |
+
by - (metis vD_flag_val proj2_eq_sqn proj4_eq_flag vD_iD_gives_kD(1))
|
751 |
+
finally show "nsqn\<^sub>r (the (update rt dip (osn, kno, val, hops, nhip, {}) dip))
|
752 |
+
< nsqn\<^sub>r (the (rt2 nhip dip))" .
|
753 |
+
qed
|
754 |
+
|
755 |
+
lemma dhops_le_hops_imp_update_strictly_fresher:
|
756 |
+
assumes "dip \<in> vD(rt2 nhip)"
|
757 |
+
and sqn: "sqn (rt2 nhip) dip = osn"
|
758 |
+
and hop: "the (dhops (rt2 nhip) dip) \<le> hops"
|
759 |
+
and **: "rt \<noteq> update rt dip (osn, kno, val, Suc hops, nhip, {})"
|
760 |
+
shows "update rt dip (osn, kno, val, Suc hops, nhip, {}) \<sqsubset>\<^bsub>dip\<^esub> rt2 nhip"
|
761 |
+
unfolding rt_strictly_fresher_def'
|
762 |
+
proof (rule disjI2, rule conjI)
|
763 |
+
from ** have "nsqn (update rt dip (osn, kno, val, Suc hops, nhip, {})) dip = osn"
|
764 |
+
by (rule nsqn_update_changed_kno_val)
|
765 |
+
with \<open>dip\<in>vD(rt2 nhip)\<close>
|
766 |
+
have "nsqn\<^sub>r (the (update rt dip (osn, kno, val, Suc hops, nhip, {}) dip)) = osn"
|
767 |
+
by (simp add: kD_nsqn)
|
768 |
+
also have "osn = sqn (rt2 nhip) dip" by (rule sqn [symmetric])
|
769 |
+
also have "sqn (rt2 nhip) dip = nsqn\<^sub>r (the (rt2 nhip dip))"
|
770 |
+
unfolding nsqn\<^sub>r_def using \<open>dip \<in> vD(rt2 nhip)\<close>
|
771 |
+
by - (metis vD_flag_val proj2_eq_sqn proj4_eq_flag vD_iD_gives_kD(1))
|
772 |
+
finally show "nsqn\<^sub>r (the (update rt dip (osn, kno, val, Suc hops, nhip, {}) dip))
|
773 |
+
= nsqn\<^sub>r (the (rt2 nhip dip))" .
|
774 |
+
next
|
775 |
+
have "the (dhops (rt2 nhip) dip) \<le> hops" by (rule hop)
|
776 |
+
also have "hops < hops + 1" by simp
|
777 |
+
also have "hops + 1 = the (dhops (update rt dip (osn, kno, val, Suc hops, nhip, {})) dip)"
|
778 |
+
using ** by simp
|
779 |
+
finally have "the (dhops (rt2 nhip) dip)
|
780 |
+
< the (dhops (update rt dip (osn, kno, val, Suc hops, nhip, {})) dip)" .
|
781 |
+
thus "\<pi>\<^sub>5 (the (rt2 nhip dip)) < \<pi>\<^sub>5 (the (update rt dip (osn, kno, val, Suc hops, nhip, {}) dip))"
|
782 |
+
using \<open>dip \<in> vD(rt2 nhip)\<close> by (simp add: proj5_eq_dhops)
|
783 |
+
qed
|
784 |
+
|
785 |
+
lemma nsqn_invalidate:
|
786 |
+
assumes "dip \<in> kD(rt)"
|
787 |
+
and "\<forall>ip\<in>dom(dests). ip \<in> vD(rt) \<and> the (dests ip) = inc (sqn rt ip)"
|
788 |
+
shows "nsqn (invalidate rt dests) dip = nsqn rt dip"
|
789 |
+
proof -
|
790 |
+
from \<open>dip \<in> kD(rt)\<close> have "dip \<in> kD(invalidate rt dests)" by simp
|
791 |
+
|
792 |
+
from assms have "rt \<approx>\<^bsub>dip\<^esub> invalidate rt dests"
|
793 |
+
by (rule rt_fresh_as_inc_invalidate)
|
794 |
+
with \<open>dip \<in> kD(rt)\<close> \<open>dip \<in> kD(invalidate rt dests)\<close> show ?thesis
|
795 |
+
by (simp add: kD_nsqn del: invalidate_kD_inv)
|
796 |
+
(erule(2) rt_fresh_as_nsqnr)
|
797 |
+
qed
|
798 |
+
|
799 |
+
end
|
formal/afp/AODV/variants/b_fwdrreps/B_Fwdrreps.thy
ADDED
@@ -0,0 +1,33 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
(* Title: variants/b_fwdrreps/B_Fwdrreps.thy
|
2 |
+
License: BSD 2-Clause. See LICENSE.
|
3 |
+
Author: Timothy Bourke, Inria
|
4 |
+
Author: Peter Höfner, NICTA
|
5 |
+
*)
|
6 |
+
|
7 |
+
theory %invisible B_Fwdrreps
|
8 |
+
imports "../../Aodv_Basic"
|
9 |
+
begin
|
10 |
+
|
11 |
+
chapter "Variant B: Forwarding the Route Reply"
|
12 |
+
|
13 |
+
text \<open>
|
14 |
+
Explanation~\cite[\textsection 10.2]{FehnkerEtAl:AWN:2013}:
|
15 |
+
In AODV's route discovery process, a RREP message from the destination
|
16 |
+
node is unicast back along a route towards the originator of the RREQ
|
17 |
+
message. Every intermediate node on the selected route will process the
|
18 |
+
RREP message and, in most cases, forward it towards the originator node.
|
19 |
+
However, there is a possibility that the RREP message is discarded at an
|
20 |
+
intermediate node, which results in the originator node not receiving a
|
21 |
+
reply. The discarding of the RREP message is due to the RFC specification
|
22 |
+
of AODV~\cite{RFC3561} stating that an intermediate node only forwards the
|
23 |
+
RREP message if it is not the originator node and it has created or
|
24 |
+
updated a routing table entry to the destination node described in the
|
25 |
+
RREP message. The latter requirement means that if a valid routing table
|
26 |
+
entry to the destination node already exists, and is not updated when
|
27 |
+
processing the RREP message, then the intermediate node will not forward
|
28 |
+
the message. A solution to this problem is to require intermediate nodes
|
29 |
+
to forward all RREP messages that they receive.
|
30 |
+
\<close>
|
31 |
+
|
32 |
+
end %invisible
|
33 |
+
|