(* Author: Andreas Lochbihler, Digital Asset Author: Ognjen Maric, Digital Asset *) theory Merkle_Interface imports Main "HOL-Library.Conditional_Parametricity" "HOL-Library.Monad_Syntax" begin alias vimage2p = BNF_Def.vimage2p alias Grp = BNF_Def.Grp alias setl = Basic_BNFs.setl alias setr = Basic_BNFs.setr alias fsts = Basic_BNFs.fsts alias snds = Basic_BNFs.snds attribute_setup locale_witness = \Scan.succeed Locale.witness_add\ lemma vimage2p_mono': "R \ S \ vimage2p f g R \ vimage2p f g S" by(auto simp add: vimage2p_def le_fun_def) lemma vimage2p_map_rel_prod: "vimage2p (map_prod f g) (map_prod f' g') (rel_prod A B) = rel_prod (vimage2p f f' A) (vimage2p g g' B)" by(simp add: vimage2p_def prod.rel_map) lemma vimage2p_map_list_all2: "vimage2p (map f) (map g) (list_all2 A) = list_all2 (vimage2p f g A)" by(simp add: vimage2p_def list.rel_map) lemma equivclp_least: assumes le: "r \ s" and s: "equivp s" shows "equivclp r \ s" apply(rule predicate2I) subgoal by(induction rule: equivclp_induct)(auto 4 3 intro: equivp_reflp[OF s] equivp_transp[OF s] equivp_symp[OF s] le[THEN predicate2D]) done lemma reflp_eq_onp: "reflp R \ eq_onp (\x. True) \ R" by(auto simp add: reflp_def eq_onp_def) lemma eq_onpE: assumes "eq_onp P x y" obtains "x = y" "P y" using assms by(auto simp add: eq_onp_def) lemma case_unit_parametric [transfer_rule]: "rel_fun A (rel_fun (=) A) case_unit case_unit" by(simp add: rel_fun_def split: unit.split) (************************************************************) section \Authenticated Data Structures\ (************************************************************) (************************************************************) subsection \Interface\ (************************************************************) (************************************************************) subsubsection \ Types \ (************************************************************) type_synonym ('a\<^sub>m, 'a\<^sub>h) hash = "'a\<^sub>m \ 'a\<^sub>h" \ \Type of hash operation\ type_synonym 'a\<^sub>m blinding_of = "'a\<^sub>m \ 'a\<^sub>m \ bool" type_synonym 'a\<^sub>m merge = "'a\<^sub>m \ 'a\<^sub>m \ 'a\<^sub>m option" \ \ merging that can fail for values with different hashes\ (************************************************************) subsubsection \ Properties \ (************************************************************) locale merkle_interface = fixes h :: "('a\<^sub>m, 'a\<^sub>h) hash" and bo :: "'a\<^sub>m blinding_of" and m :: "'a\<^sub>m merge" assumes merge_respects_hashes: "h a = h b \ (\ab. m a b = Some ab)" and idem: "m a a = Some a" and commute: "m a b = m b a" and assoc: "m a b \ m c = m b c \ m a" and bo_def: "bo a b \ m a b = Some b" begin lemma reflp: "reflp bo" unfolding bo_def by(rule reflpI)(simp add: idem) lemma antisymp: "antisymp bo" unfolding bo_def by(rule antisympI)(simp add: commute) lemma transp: "transp bo" apply(rule transpI) subgoal for x y z using assoc[of x y z] by(simp add: commute bo_def) done lemma hash: "bo \ vimage2p h h (=)" unfolding bo_def by(auto simp add: vimage2p_def merge_respects_hashes) lemma join: "m a b = Some ab \ bo a ab \ bo b ab \ (\u. bo a u \ bo b u \ bo ab u)" unfolding bo_def by (smt Option.bind_cong bind.bind_lunit commute idem merkle_interface.assoc merkle_interface_axioms) text \The equivalence closure of the blinding relation are the equivalence classes of the hash function (the kernel).\ lemma equivclp_blinding_of: "equivclp bo = vimage2p h h (=)" (is "?lhs = ?rhs") proof(rule antisym) show "?lhs \ ?rhs" by(rule equivclp_least[OF hash])(rule equivp_vimage2p[OF identity_equivp]) show "?rhs \ ?lhs" unfolding vimage2p_def proof(rule predicate2I) fix x y assume "h x = h y" then obtain xy where "m x y = Some xy" unfolding merge_respects_hashes .. hence "bo x xy" "bo y xy" unfolding join by blast+ hence "equivclp bo x xy" "equivclp bo xy y" by(blast)+ thus "equivclp bo x y" by(rule equivclp_trans) qed qed end (************************************************************) subsection \ Auxiliary definitions \ (************************************************************) text \ Directly proving that an interface satisfies the specification of a Merkle interface as given above is difficult. Instead, we provide several layers of auxiliary definitions that can easily be proved layer-by-layer. In particular, proving that an interface on recursive datatypes is a Merkle interface requires induction. As the induction hypothesis only applies to a subset of values of a type, we add auxiliary definitions equipped with an explicit set @{term A} of values to which the definition applies. Once the induction proof is complete, we can typically instantiate @{term A} with @{term UNIV}. In particular, in the induction proof for a layer, we can assume that properties for the earlier layers hold for \<^emph>\all\ values, not just those in the induction hypothesis. \ (************************************************************) subsubsection \ Blinding \ (************************************************************) locale blinding_respects_hashes = fixes h :: "('a\<^sub>m, 'a\<^sub>h) hash" and bo :: "'a\<^sub>m blinding_of" assumes hash: "bo \ vimage2p h h (=)" begin lemma blinding_hash_eq: "bo x y \ h x = h y" by(drule hash[THEN predicate2D])(simp add: vimage2p_def) end locale blinding_of_on = blinding_respects_hashes h bo for A :: "'a\<^sub>m set" and h :: "('a\<^sub>m, 'a\<^sub>h) hash" and bo :: "'a\<^sub>m blinding_of" + assumes refl: "x \ A \ bo x x" and trans: "\ bo x y; bo y z; x \ A \ \ bo x z" and antisym: "\ bo x y; bo y x; x \ A \ \ x = y" begin lemma refl_pointfree: "eq_onp (\x. x \ A) \ bo" by(auto elim!: eq_onpE intro: refl) lemma blinding_respects_hashes: "blinding_respects_hashes h bo" .. lemmas hash = hash lemma trans_pointfree: "eq_onp (\x. x \ A) OO bo OO bo \ bo" by(auto elim!: eq_onpE intro: trans) lemma antisym_pointfree: "inf (eq_onp (\x. x \ A) OO bo) bo\\ \ (=)" by(auto elim!: eq_onpE dest: antisym) end (************************************************************) subsubsection \ Merging \ (************************************************************) text \ In general, we prove the properties of blinding before the properties of merging. Thus, in the following definitions we assume that the blinding properties already hold on @{term UNIV}. The @{term Ball} restricts the argument of the merge operation on which induction will be done. \ locale merge_on = blinding_of_on UNIV h bo for A :: "'a\<^sub>m set" and h :: "('a\<^sub>m, 'a\<^sub>h) hash" and bo :: "'a\<^sub>m blinding_of" and m :: "'a\<^sub>m merge" + assumes join: "\ h a = h b; a \ A \ \ \ab. m a b = Some ab \ bo a ab \ bo b ab \ (\u. bo a u \ bo b u \ bo ab u)" and undefined: "\ h a \ h b; a \ A \ \ m a b = None" begin lemma same: "a \ A \ m a a = Some a" using join[of a a] refl[of a] by(auto 4 3 intro: antisym) lemma blinding_of_antisym_on: "blinding_of_on UNIV h bo" .. lemma transp: "transp bo" by(auto intro: transpI trans) lemmas hash = hash and refl = refl and antisym = antisym[OF _ _ UNIV_I] lemma respects_hashes: "a \ A \ h a = h b \ (\ab. m a b = Some ab)" using join undefined by fastforce lemma join': "a \ A \ \ab. m a b = Some ab \ bo a ab \ bo b ab \ (\u. bo a u \ bo b u \ bo ab u)" using join undefined by (metis (full_types) hash local.antisym option.distinct(1) option.sel predicate2D vimage2p_def) lemma merge_on_subset: "B \ A \ merge_on B h bo m" by unfold_locales (auto dest: same join undefined) end subsection \ Interface equality \ text \ Here, we prove that the auxiliary definitions specify the same interface as the original ones.\ lemma merkle_interface_aux: "merkle_interface h bo m = merge_on UNIV h bo m" (is "?lhs = ?rhs") proof show ?rhs if ?lhs proof interpret merkle_interface h bo m by(fact that) show "bo \ vimage2p h h (=)" by(fact hash) show "bo x x" for x using reflp by(simp add: reflp_def) show "bo x z" if "bo x y" "bo y z" for x y z using transp that by(rule transpD) show "x = y" if "bo x y" "bo y x" for x y using antisymp that by(rule antisympD) show "\ab. m a b = Some ab \ bo a ab \ bo b ab \ (\u. bo a u \ bo b u \ bo ab u)" if "h a = h b" for a b using that by(simp add: merge_respects_hashes join) show "m a b = None" if "h a \ h b" for a b using that by(simp add: merge_respects_hashes) qed show ?lhs if ?rhs proof interpret merge_on UNIV h bo m by(fact that) show eq: "h a = h b \ (\ab. m a b = Some ab)" for a b by(simp add: respects_hashes) show idem: "m a a = Some a" for a by(simp add: same) show commute: "m a b = m b a" for a b using join[of a b] join[of b a] undefined antisym by(cases "m a b") force+ have undefined_partitioned: "m a c = None" if "m a b = None" "m b c = Some bc" for a b c bc using that eq by (metis option.distinct(1) option.exhaust) have merge_twice: "m a b = Some c \ m a c = Some c" for a b c by (simp add: join') show "m a b \ m c = m b c \ m a" for a b c proof(simp split: Option.bind_split; safe) show "None = m a d" if "m a b = None" "m b c = Some d" for d using that by(metis undefined_partitioned merge_twice) show "m c d = None" if "m a b = Some d" "m b c = None" for d using that by(metis commute merge_twice undefined_partitioned) next fix ab bc assume assms: "m a b = Some ab" "m b c = Some bc" then obtain cab and abc where cab: "m c ab = Some cab" and abc: "m a bc = Some abc" using eq[THEN iffD2, OF exI] eq[THEN iffD1] by (metis merge_twice) thus "m c ab = m a bc" using assms by(clarsimp simp add: join')(metis UNIV_I abc cab local.antisym local.trans) qed show "bo a b \ m a b = Some b" for a b using idem join' by auto qed qed lemma merkle_interfaceI [locale_witness]: assumes "merge_on UNIV h bo m" shows "merkle_interface h bo m" using assms unfolding merkle_interface_aux by auto lemma (in merkle_interface) merkle_interfaceD: "merge_on UNIV h bo m" using merkle_interface_aux[of h bo m, symmetric] by simp unfold_locales subsection \ Parametricity rules \ context includes lifting_syntax begin parametric_constant le_fun_parametric[transfer_rule]: le_fun_def parametric_constant vimage2p_parametric[transfer_rule]: vimage2p_def parametric_constant blinding_respects_hashes_parametric_aux: blinding_respects_hashes_def lemma blinding_respects_hashes_parametric [transfer_rule]: "((A1 ===> A2) ===> (A1 ===> A1 ===> (\)) ===> (\)) blinding_respects_hashes blinding_respects_hashes" if [transfer_rule]: "bi_unique A2" "bi_total A1" by(rule blinding_respects_hashes_parametric_aux that le_fun_parametric | simp add: rel_fun_eq)+ parametric_constant blinding_of_on_axioms_parametric [transfer_rule]: blinding_of_on_axioms_def[folded Ball_def, unfolded le_fun_def le_bool_def eq_onp_def relcompp.simps, simplified] parametric_constant blinding_of_on_parametric [transfer_rule]: blinding_of_on_def parametric_constant antisymp_parametric[transfer_rule]: antisymp_def parametric_constant transp_parametric[transfer_rule]: transp_def parametric_constant merge_on_axioms_parametric [transfer_rule]: merge_on_axioms_def parametric_constant merge_on_parametric[transfer_rule]: merge_on_def parametric_constant merkle_interface_parametric[transfer_rule]: merkle_interface_def end end