(* Title: AVL Trees Author: Tobias Nipkow and Cornelia Pusch, converted to Isar by Gerwin Klein contributions by Achim Brucker, Burkhart Wolff and Jan Smaus Maintainer: Gerwin Klein see the file Changelog for a list of changes *) section \AVL Trees in 2 Stages\ theory AVL2 imports Main begin text \ This development of AVL trees leads to the same implementation as the monolithic one (in theorey AVL) but via an intermediate abstraction: AVL trees where the height is recomputed rather than stored in the tree. This two-stage devlopment is longer than the monolithic one but each individual step is simpler. It should really be viewed as a blueprint for the development of data structures where some of the fields contain redundant information (for efficiency reasons). \ subsection \Step 1: Pure binary and AVL trees\ text \ The basic formulation of AVL trees builds on pure binary trees and recomputes all height information whenever it is required. This simplifies the correctness proofs. \ datatype (set_of: 'a) tree\<^sub>0 = ET\<^sub>0 | MKT\<^sub>0 'a "'a tree\<^sub>0" "'a tree\<^sub>0" subsubsection \Auxiliary functions\ primrec height :: "'a tree\<^sub>0 \ nat" where "height ET\<^sub>0 = 0" | "height (MKT\<^sub>0 n l r) = 1 + max (height l) (height r)" primrec is_ord :: "('a::preorder) tree\<^sub>0 \ bool" where "is_ord ET\<^sub>0 = True" | "is_ord (MKT\<^sub>0 n l r) = ((\n'\ set_of l. n' < n) \ (\n'\ set_of r. n < n') \ is_ord l \ is_ord r)" primrec is_bal :: "'a tree\<^sub>0 \ bool" where "is_bal ET\<^sub>0 = True" | "is_bal (MKT\<^sub>0 n l r) = ((height l = height r \ height l = 1+height r \ height r = 1+height l) \ is_bal l \ is_bal r)" subsubsection \AVL interface and simple implementation\ primrec is_in\<^sub>0 :: "('a::preorder) \ 'a tree\<^sub>0 \ bool" where "is_in\<^sub>0 k ET\<^sub>0 = False" | "is_in\<^sub>0 k (MKT\<^sub>0 n l r) = (if k = n then True else if k0 k l) else (is_in\<^sub>0 k r))" primrec l_bal\<^sub>0 :: "'a \ 'a tree\<^sub>0 \ 'a tree\<^sub>0 \ 'a tree\<^sub>0" where "l_bal\<^sub>0 n (MKT\<^sub>0 ln ll lr) r = (if height ll < height lr then case lr of ET\<^sub>0 \ ET\<^sub>0 \ \impossible\ | MKT\<^sub>0 lrn lrl lrr \ MKT\<^sub>0 lrn (MKT\<^sub>0 ln ll lrl) (MKT\<^sub>0 n lrr r) else MKT\<^sub>0 ln ll (MKT\<^sub>0 n lr r))" primrec r_bal\<^sub>0 :: "'a \ 'a tree\<^sub>0 \ 'a tree\<^sub>0 \ 'a tree\<^sub>0" where "r_bal\<^sub>0 n l (MKT\<^sub>0 rn rl rr) = (if height rl > height rr then case rl of ET\<^sub>0 \ ET\<^sub>0 \ \impossible\ | MKT\<^sub>0 rln rll rlr \ MKT\<^sub>0 rln (MKT\<^sub>0 n l rll) (MKT\<^sub>0 rn rlr rr) else MKT\<^sub>0 rn (MKT\<^sub>0 n l rl) rr)" primrec insrt\<^sub>0 :: "'a::preorder \ 'a tree\<^sub>0 \ 'a tree\<^sub>0" where "insrt\<^sub>0 x ET\<^sub>0 = MKT\<^sub>0 x ET\<^sub>0 ET\<^sub>0" | "insrt\<^sub>0 x (MKT\<^sub>0 n l r) = (if x=n then MKT\<^sub>0 n l r else if x0 x l in if height l' = 2+height r then l_bal\<^sub>0 n l' r else MKT\<^sub>0 n l' r else let r' = insrt\<^sub>0 x r in if height r' = 2+height l then r_bal\<^sub>0 n l r' else MKT\<^sub>0 n l r')" subsubsection \Insertion maintains AVL balance\ lemma height_l_bal: "height l = height r + 2 \ height (l_bal\<^sub>0 n l r) = height r + 2 \ height (l_bal\<^sub>0 n l r) = height r + 3" by (cases l) (auto split: tree\<^sub>0.split if_split_asm) lemma height_r_bal: "height r = height l + 2 \ height (r_bal\<^sub>0 n l r) = height l + 2 \ height (r_bal\<^sub>0 n l r) = height l + 3" by (cases r) (auto split: tree\<^sub>0.split if_split_asm) lemma height_insrt: "is_bal t \ height (insrt\<^sub>0 x t) = height t \ height (insrt\<^sub>0 x t) = height t + 1" proof (induct t) case ET\<^sub>0 show ?case by simp next case (MKT\<^sub>0 n t1 t2) then show ?case proof (cases "x < n") case True show ?thesis proof (cases "height (insrt\<^sub>0 x t1) = height t2 + 2") case True with height_l_bal [of _ _ n] have "height (l_bal\<^sub>0 n (insrt\<^sub>0 x t1) t2) = height t2 + 2 \ height (l_bal\<^sub>0 n (insrt\<^sub>0 x t1) t2) = height t2 + 3" by simp with \x < n\ MKT\<^sub>0 show ?thesis by auto next case False with \x < n\ MKT\<^sub>0 show ?thesis by auto qed next case False show ?thesis proof (cases "height (insrt\<^sub>0 x t2) = height t1 + 2") case True with height_r_bal [of _ _ n] have "height (r_bal\<^sub>0 n t1 (insrt\<^sub>0 x t2)) = height t1 + 2 \ height (r_bal\<^sub>0 n t1 (insrt\<^sub>0 x t2)) = height t1 + 3" by simp with \\ x < n\ MKT\<^sub>0 show ?thesis by auto next case False with \\ x < n\ MKT\<^sub>0 show ?thesis by auto qed qed qed lemma is_bal_l_bal: "is_bal l \ is_bal r \ height l = height r + 2 \ is_bal (l_bal\<^sub>0 n l r)" by (cases l) (auto, auto split: tree\<^sub>0.split) \ \separating the two auto's is just for speed\ lemma is_bal_r_bal: "is_bal l \ is_bal r \ height r = height l + 2 \ is_bal (r_bal\<^sub>0 n l r)" by (cases r) (auto, auto split: tree\<^sub>0.split) \ \separating the two auto's is just for speed\ theorem is_bal_insrt: "is_bal t \ is_bal(insrt\<^sub>0 x t)" proof (induct t) case ET\<^sub>0 show ?case by simp next case (MKT\<^sub>0 n t1 t2) show ?case proof (cases "x < n") case True show ?thesis proof (cases "height (insrt\<^sub>0 x t1) = height t2 + 2") case True with \x < n\ MKT\<^sub>0 show ?thesis by (simp add: is_bal_l_bal) next case False with \x < n\ MKT\<^sub>0 show ?thesis using height_insrt [of t1 x] by auto qed next case False show ?thesis proof (cases "height (insrt\<^sub>0 x t2) = height t1 + 2") case True with \\ x < n\ MKT\<^sub>0 show ?thesis by (simp add: is_bal_r_bal) next case False with \\ x < n\ MKT\<^sub>0 show ?thesis using height_insrt [of t2 x] by auto qed qed qed subsubsection \Correctness of insertion\ lemma set_of_l_bal: "height l = height r + 2 \ set_of (l_bal\<^sub>0 x l r) = insert x (set_of l \ set_of r)" by (cases l) (auto split: tree\<^sub>0.splits) lemma set_of_r_bal: "height r = height l + 2 \ set_of (r_bal\<^sub>0 x l r) = insert x (set_of l \ set_of r)" by (cases r) (auto split: tree\<^sub>0.splits) theorem set_of_insrt: "set_of (insrt\<^sub>0 x t) = insert x (set_of t)" by (induct t) (auto simp add:set_of_l_bal set_of_r_bal Let_def) subsubsection \Correctness of lookup\ theorem is_in_correct: "is_ord t \ is_in\<^sub>0 k t = (k : set_of t)" by (induct t) (auto simp add: less_le_not_le) subsubsection \Insertion maintains order\ lemma is_ord_l_bal: "is_ord (MKT\<^sub>0 x l r) \ height l = Suc (Suc (height r)) \ is_ord (l_bal\<^sub>0 x l r)" by (cases l) (auto split: tree\<^sub>0.splits intro: order_less_trans) lemma is_ord_r_bal: "is_ord (MKT\<^sub>0 x l r) \ height r = height l + 2 \ is_ord (r_bal\<^sub>0 x l r)" by (cases r) (auto split:tree\<^sub>0.splits intro: order_less_trans) text \If the order is linear, @{const insrt\<^sub>0} maintains the order:\ theorem is_ord_insrt: "is_ord t \ is_ord (insrt\<^sub>0 (x::'a::linorder) t)" by (induct t) (simp_all add:is_ord_l_bal is_ord_r_bal set_of_insrt linorder_not_less order_neq_le_trans Let_def) subsection \Step 2: Binary and AVL trees with height information\ datatype 'a tree = ET | MKT 'a "'a tree" "'a tree" nat subsubsection \Auxiliary functions\ primrec erase :: "'a tree \ 'a tree\<^sub>0" where "erase ET = ET\<^sub>0" | "erase (MKT x l r h) = MKT\<^sub>0 x (erase l) (erase r)" primrec hinv :: "'a tree \ bool" where "hinv ET \ True" | "hinv (MKT x l r h) \ h = 1 + max (height (erase l)) (height (erase r)) \ hinv l \ hinv r" definition avl :: "'a tree \ bool" where "avl t \ is_bal (erase t) \ hinv t" subsubsection \AVL interface and efficient implementation\ primrec is_in :: "('a::preorder) \ 'a tree \ bool" where "is_in k ET \ False" | "is_in k (MKT n l r h) \ (if k = n then True else if k < n then (is_in k l) else (is_in k r))" primrec ht :: "'a tree \ nat" where "ht ET = 0" | "ht (MKT x l r h) = h" definition mkt :: "'a \ 'a tree \ 'a tree \ 'a tree" where "mkt x l r = MKT x l r (max (ht l) (ht r) + 1)" primrec l_bal :: "'a \ 'a tree \ 'a tree \ 'a tree" where "l_bal n (MKT ln ll lr h) r = (if ht ll < ht lr then case lr of ET \ ET \ \impossible\ | MKT lrn lrl lrr lrh \ mkt lrn (mkt ln ll lrl) (mkt n lrr r) else mkt ln ll (mkt n lr r))" primrec r_bal :: "'a \ 'a tree \ 'a tree \ 'a tree" where "r_bal n l (MKT rn rl rr h) = (if ht rl > ht rr then case rl of ET \ ET \ \impossible\ | MKT rln rll rlr h \ mkt rln (mkt n l rll) (mkt rn rlr rr) else mkt rn (mkt n l rl) rr)" primrec insrt :: "'a::preorder \ 'a tree \ 'a tree" where "insrt x ET = MKT x ET ET 1" | "insrt x (MKT n l r h) = (if x=n then MKT n l r h else if xCorrectness proof\ text\The auxiliary functions are implemented correctly:\ lemma height_hinv: "hinv t \ ht t = height (erase t)" by (induct t) simp_all lemma erase_mkt: "erase (mkt n l r) = MKT\<^sub>0 n (erase l) (erase r)" by (simp add: mkt_def) lemma erase_l_bal: "hinv l \ hinv r \ height (erase l) = height(erase r) + 2 \ erase (l_bal n l r) = l_bal\<^sub>0 n (erase l) (erase r)" by (cases l) (simp_all add: height_hinv erase_mkt split: tree.split) lemma erase_r_bal: "hinv l \ hinv r \ height(erase r) = height(erase l) + 2 \ erase (r_bal n l r) = r_bal\<^sub>0 n (erase l) (erase r)" by (cases r) (simp_all add: height_hinv erase_mkt split: tree.split) text \Function @{const insrt} maintains the invariant:\ lemma hinv_mkt: "hinv l \ hinv r \ hinv (mkt x l r)" by (simp add: height_hinv mkt_def) lemma hinv_l_bal: "hinv l \ hinv r \ height(erase l) = height(erase r) + 2 \ hinv (l_bal n l r)" by (cases l) (auto simp add: hinv_mkt split: tree.splits) lemma hinv_r_bal: "hinv l \ hinv r \ height(erase r) = height(erase l) + 2 \ hinv (r_bal n l r)" by (cases r) (auto simp add: hinv_mkt split: tree.splits) theorem hinv_insrt: "hinv t \ hinv (insrt x t)" by (induct t) (simp_all add: Let_def height_hinv hinv_l_bal hinv_r_bal) text\Function @{const insrt} implements @{const insrt\<^sub>0}:\ lemma erase_insrt: "hinv t \ erase (insrt x t) = insrt\<^sub>0 x (erase t)" by (induct t) (simp_all add: Let_def hinv_insrt height_hinv erase_l_bal erase_r_bal) text\Function @{const insrt} meets its spec:\ corollary "avl t \ set_of (erase (insrt x t)) = insert x (set_of (erase t))" by (simp add: avl_def erase_insrt set_of_insrt) text\Function @{const insrt} preserves the invariants:\ corollary "avl t \ avl (insrt x t)" by (simp add: hinv_insrt avl_def erase_insrt is_bal_insrt) corollary "avl t \ is_ord (erase t) \ is_ord (erase (insrt (x::'a::linorder) t))" by (simp add: avl_def erase_insrt is_ord_insrt) text\Function @{const is_in} implements @{const is_in}:\ theorem is_in: "is_in x t = is_in\<^sub>0 x (erase t)" by (induct t) simp_all text\Function @{const is_in} meets its spec:\ corollary "is_ord (erase t) \ is_in x t \ x \ set_of (erase t)" by (simp add:is_in is_in_correct) end