(* Title: One procedure Author: Tobias Nipkow, 2001/2006 Maintainer: Tobias Nipkow *) section "Hoare Logics for 1 Procedure" theory PLang imports Main begin subsection\The language\ typedecl state type_synonym bexp = "state \ bool" datatype com = Do "(state \ state set)" | Semi com com ("_; _" [60, 60] 10) | Cond bexp com com ("IF _ THEN _ ELSE _" 60) | While bexp com ("WHILE _ DO _" 60) | CALL | Local "(state \ state)" com "(state \ state \ state)" ("LOCAL _; _; _" [0,0,60] 60) text\\noindent There is only one parameterless procedure in the program. Hence @{term CALL} does not even need to mention the procedure name. There is no separate syntax for procedure declarations. Instead we declare a HOL constant that represents the body of the one procedure in the program.\ consts body :: com text\\noindent As before, command execution is described by transitions \s -c\ t\. The only new rule is the one for @{term CALL} --- it requires no comment:\ inductive exec :: "state \ com \ state \ bool" ("_/ -_\/ _" [50,0,50] 50) where Do: "t \ f s \ s -Do f\ t" | Semi: "\ s0 -c1\ s1; s1 -c2\ s2 \ \ s0 -c1;c2\ s2" | IfTrue: "\ b s; s -c1\ t \ \ s -IF b THEN c1 ELSE c2\ t" | IfFalse: "\ \b s; s -c2\ t \ \ s -IF b THEN c1 ELSE c2\ t" | WhileFalse: "\b s \ s -WHILE b DO c\ s" | WhileTrue: "\ b s; s -c\ t; t -WHILE b DO c\ u \ \ s -WHILE b DO c\ u" | "s -body\ t \ s -CALL\ t" | Local: "f s -c\ t \ s -LOCAL f; c; g\ g s t" lemma [iff]: "(s -Do f\ t) = (t \ f s)" by(auto elim: exec.cases intro:exec.intros) lemma [iff]: "(s -c;d\ u) = (\t. s -c\ t \ t -d\ u)" by(auto elim: exec.cases intro:exec.intros) lemma [iff]: "(s -IF b THEN c ELSE d\ t) = (s -if b s then c else d\ t)" apply(rule iffI) apply(auto elim: exec.cases intro:exec.intros) apply(auto intro:exec.intros split:if_split_asm) done lemma unfold_while: "(s -WHILE b DO c\ u) = (s -IF b THEN c;WHILE b DO c ELSE Do(\s. {s})\ u)" by(auto elim: exec.cases intro:exec.intros split:if_split_asm) lemma [iff]: "(s -CALL\ t) = (s -body\ t)" by(blast elim: exec.cases intro:exec.intros) lemma [iff]: "(s -LOCAL f; c; g\ u) = (\t. f s -c\ t \ u = g s t)" by(fastforce elim: exec.cases intro:exec.intros) lemma [simp]: "\b s \ s -WHILE b DO c\ s" by(fast intro:exec.intros) lemma WhileI: "\b s; s -c\ t; t -WHILE b DO c\ u\ \ s -WHILE b DO c\ u" by(fastforce elim:exec.WhileTrue) (*>*) text\This semantics turns out not to be fine-grained enough. The soundness proof for the Hoare logic below proceeds by induction on the call depth during execution. To make this work we define a second semantics \mbox{\s -c-n\ t\} which expresses that the execution uses at most @{term n} nested procedure invocations, where @{term n} is a natural number. The rules are straightforward: @{term n} is just passed around, except for procedure calls, where it is decremented:\ inductive execn :: "state \ com \ nat \ state \ bool" ("_/ -_-_\/ _" [50,0,0,50] 50) where "t \ f s \ s -Do f-n\ t" | "\ s0 -c1-n\ s1; s1 -c2-n\ s2 \ \ s0 -c1;c2-n\ s2" | "\ b s; s -c1-n\ t \ \ s -IF b THEN c1 ELSE c2-n\ t" | "\ \b s; s -c2-n\ t \ \ s -IF b THEN c1 ELSE c2-n\ t" | (*<*)WhileFalse:(*>*)"\b s \ s -WHILE b DO c-n\ s" | (*<*)WhileTrue:(*>*)"\b s; s -c-n\ t; t -WHILE b DO c-n\ u\ \ s -WHILE b DO c-n\ u" | "s -body-n\ t \ s -CALL-Suc n\ t" | "f s -c-n\ t \ s -LOCAL f; c; g-n\ g s t" lemma [iff]: "(s -Do f-n\ t) = (t \ f s)" by(auto elim: execn.cases intro:execn.intros) lemma [iff]: "(s -c1;c2-n\ u) = (\t. s -c1-n\ t \ t -c2-n\ u)" by(best elim: execn.cases intro:execn.intros) lemma [iff]: "(s -IF b THEN c ELSE d-n\ t) = (s -if b s then c else d-n\ t)" apply auto apply(blast elim: execn.cases intro:execn.intros)+ done lemma [iff]: "(s -CALL- 0\ t) = False" by(blast elim: execn.cases intro:execn.intros) lemma [iff]: "(s -CALL-Suc n\ t) = (s -body-n\ t)" by(blast elim: execn.cases intro:execn.intros) lemma [iff]: "(s -LOCAL f; c; g-n\ u) = (\t. f s -c-n\ t \ u = g s t)" by(auto elim: execn.cases intro:execn.intros) text\\noindent By induction on @{prop"s -c-m\ t"} we show monotonicity w.r.t.\ the call depth:\ lemma exec_mono[rule_format]: "s -c-m\ t \ \n. m \ n \ s -c-n\ t" apply(erule execn.induct) apply(blast) apply(blast) apply(simp) apply(simp) apply(simp add:execn.intros) apply(blast intro:execn.intros) apply(clarify) apply(rename_tac m) apply(case_tac m) apply simp apply simp apply blast done text\\noindent With the help of this lemma we prove the expected relationship between the two semantics:\ lemma exec_iff_execn: "(s -c\ t) = (\n. s -c-n\ t)" apply(rule iffI) apply(erule exec.induct) apply blast apply clarify apply(rename_tac m n) apply(rule_tac x = "max m n" in exI) apply(fastforce intro:exec.intros exec_mono simp add:max_def) apply fastforce apply fastforce apply(blast intro:execn.intros) apply clarify apply(rename_tac m n) apply(rule_tac x = "max m n" in exI) apply(fastforce elim:execn.WhileTrue exec_mono simp add:max_def) apply blast apply blast apply(erule exE, erule execn.induct) apply blast apply blast apply fastforce apply fastforce apply(erule exec.WhileFalse) apply(blast intro: exec.intros) apply blast apply blast done lemma while_lemma[rule_format]: "s -w-n\ t \ \b c. w = WHILE b DO c \ P s \ (\s s'. P s \ b s \ s -c-n\ s' \ P s') \ P t \ \b t" apply(erule execn.induct) apply clarify+ defer apply clarify+ apply(subgoal_tac "P t") apply blast apply blast done lemma while_rule: "\s -WHILE b DO c-n\ t; P s; \s s'. \P s; b s; s -c-n\ s' \ \ P s'\ \ P t \ \b t" apply(drule while_lemma) prefer 2 apply assumption apply blast done end