(* Title: Inductive definition of termination Author: Tobias Nipkow, 2001/2006 Maintainer: Tobias Nipkow *) theory Termi imports Lang begin subsection\Termination\ text\Although partial correctness appeals because of its simplicity, in many cases one would like the additional assurance that the command is guaranteed to termiate if started in a state that satisfies the precondition. Even to express this we need to define when a command is guaranteed to terminate. We can do this without modifying our existing semantics by merely adding a second inductively defined judgement \c\s\ that expresses guaranteed termination of @{term c} started in state @{term s}:\ inductive termi :: "com \ state \ bool" (infixl "\" 50) where (*<*)Do[iff]:(*>*) "f s \ {} \ Do f \ s" | (*<*)Semi[intro!]:(*>*) "\ c\<^sub>1 \ s\<^sub>0; \s\<^sub>1. s\<^sub>0 -c\<^sub>1\ s\<^sub>1 \ c\<^sub>2 \ s\<^sub>1 \ \ (c\<^sub>1;c\<^sub>2) \ s\<^sub>0" | (*<*)IfT[intro,simp]:(*>*) "\ b s; c\<^sub>1 \ s \ \ IF b THEN c\<^sub>1 ELSE c\<^sub>2 \ s" | (*<*)IfF[intro,simp]:(*>*) "\ \b s; c\<^sub>2 \ s \ \ IF b THEN c\<^sub>1 ELSE c\<^sub>2 \ s" | (*<*)WhileFalse:(*>*) "\b s \ WHILE b DO c \ s" | (*<*)WhileTrue:(*>*) "\ b s; c \ s; \t. s -c\ t \ WHILE b DO c \ t \ \ WHILE b DO c \ s" | (*<*)Local:(*>*) "c \ f s \ LOCAL f;c;g \ s" lemma [iff]: "Do f \ s = (f s \ {})" apply(rule iffI) prefer 2 apply(best intro:termi.intros) apply(erule termi.cases) apply blast+ done lemma [iff]: "((c\<^sub>1;c\<^sub>2) \ s\<^sub>0) = (c\<^sub>1 \ s\<^sub>0 \ (\s\<^sub>1. s\<^sub>0 -c\<^sub>1\ s\<^sub>1 \ c\<^sub>2 \ s\<^sub>1))" apply(rule iffI) prefer 2 apply(best intro:termi.intros) apply(erule termi.cases) apply blast+ done lemma [iff]: "(IF b THEN c\<^sub>1 ELSE c\<^sub>2 \ s) = ((if b s then c\<^sub>1 else c\<^sub>2) \ s)" apply simp apply(rule conjI) apply(rule impI) apply(rule iffI) prefer 2 apply(blast intro:termi.intros) apply(erule termi.cases) apply blast+ apply(rule impI) apply(rule iffI) prefer 2 apply(blast intro:termi.intros) apply(erule termi.cases) apply blast+ done lemma [iff]: "(LOCAL f;c;g \ s) = (c \ f s)" by(fast elim: termi.cases intro:termi.intros) lemma termi_while_lemma[rule_format]: "w\fk \ (\k b c. fk = f k \ w = WHILE b DO c \ (\i. f i -c\ f(Suc i)) \ (\i. \b(f i)))" apply(erule termi.induct) apply simp_all apply blast apply blast done lemma termi_while: "\ (WHILE b DO c) \ f k; \i. f i -c\ f(Suc i) \ \ \i. \b(f i)" by(blast intro:termi_while_lemma) lemma wf_termi: "wf {(t,s). WHILE b DO c \ s \ b s \ s -c\ t}" apply(subst wf_iff_no_infinite_down_chain) apply(rule notI) apply clarsimp apply(insert termi_while) apply blast done end