(* File: Akra_Bazzi.thy Author: Manuel Eberl The Akra-Bazzi theorem for functions on the naturals. *) section \The discrete Akra-Bazzi theorem\ theory Akra_Bazzi imports Complex_Main "HOL-Library.Landau_Symbols" Akra_Bazzi_Real begin lemma ex_mono: "(\x. P x) \ (\x. P x \ Q x) \ (\x. Q x)" by blast lemma x_over_ln_mono: assumes "(e::real) > 0" assumes "x > exp e" assumes "x \ y" shows "x / ln x powr e \ y / ln y powr e" proof (rule DERIV_nonneg_imp_mono[of _ _ "\x. x / ln x powr e"]) fix t assume t: "t \ {x..y}" from assms(1) have "1 < exp e" by simp from this and assms(2) have "x > 1" by (rule less_trans) with t have t': "t > 1" by simp from \x > exp e\ and t have "t > exp e" by simp with t' have "ln t > ln (exp e)" by (subst ln_less_cancel_iff) simp_all hence t'': "ln t > e" by simp show "((\x. x / ln x powr e) has_real_derivative (ln t - e) / ln t powr (e+1)) (at t)" using assms t t' t'' by (force intro!: derivative_eq_intros simp: powr_diff field_simps powr_add) from t'' show "(ln t - e) / ln t powr (e + 1) \ 0" by (intro divide_nonneg_nonneg) simp_all qed (simp_all add: assms) definition akra_bazzi_term :: "nat \ nat \ real \ (nat \ nat) \ bool" where "akra_bazzi_term x\<^sub>0 x\<^sub>1 b t = (\e h. e > 0 \ (\x. h x) \ O(\x. real x / ln (real x) powr (1+e)) \ (\x\x\<^sub>1. t x \ x\<^sub>0 \ t x < x \ b*x + h x = real (t x)))" lemma akra_bazzi_termI [intro?]: assumes "e > 0" "(\x. h x) \ O(\x. real x / ln (real x) powr (1+e))" "\x. x \ x\<^sub>1 \ t x \ x\<^sub>0" "\x. x \ x\<^sub>1 \ t x < x" "\x. x \ x\<^sub>1 \ b*x + h x = real (t x)" shows "akra_bazzi_term x\<^sub>0 x\<^sub>1 b t" using assms unfolding akra_bazzi_term_def by blast lemma akra_bazzi_term_imp_less: assumes "akra_bazzi_term x\<^sub>0 x\<^sub>1 b t" "x \ x\<^sub>1" shows "t x < x" using assms unfolding akra_bazzi_term_def by blast lemma akra_bazzi_term_imp_less': assumes "akra_bazzi_term x\<^sub>0 (Suc x\<^sub>1) b t" "x > x\<^sub>1" shows "t x < x" using assms unfolding akra_bazzi_term_def by force locale akra_bazzi_recursion = fixes x\<^sub>0 x\<^sub>1 k :: nat and as bs :: "real list" and ts :: "(nat \ nat) list" and f :: "nat \ real" assumes k_not_0: "k \ 0" and length_as: "length as = k" and length_bs: "length bs = k" and length_ts: "length ts = k" and a_ge_0: "a \ set as \ a \ 0" and b_bounds: "b \ set bs \ b \ {0<..<1}" and ts: "i < length bs \ akra_bazzi_term x\<^sub>0 x\<^sub>1 (bs!i) (ts!i)" begin sublocale akra_bazzi_params k as bs using length_as length_bs k_not_0 a_ge_0 b_bounds by unfold_locales lemma ts_nonempty: "ts \ []" using length_ts k_not_0 by (cases ts) simp_all definition e_hs :: "real \ (nat \ real) list" where "e_hs = (SOME (e,hs). e > 0 \ length hs = k \ (\h\set hs. (\x. h x) \ O(\x. real x / ln (real x) powr (1+e))) \ (\t\set ts. \x\x\<^sub>1. t x \ x\<^sub>0 \ t x < x) \ (\ix\x\<^sub>1. (bs!i)*x + (hs!i) x = real ((ts!i) x)) )" definition "e = (case e_hs of (e,_) \ e)" definition "hs = (case e_hs of (_,hs) \ hs)" lemma filterlim_powr_zero_cong: "filterlim (\x. P (x::real) (x powr (0::real))) F at_top = filterlim (\x. P x 1) F at_top" apply (rule filterlim_cong[OF refl refl]) using eventually_gt_at_top[of "0::real"] by eventually_elim simp_all lemma e_hs_aux: "0 < e \ length hs = k \ (\h\set hs. (\x. h x) \ O(\x. real x / ln (real x) powr (1 + e))) \ (\t\set ts. \x\x\<^sub>1. x\<^sub>0 \ t x \ t x < x) \ (\ix\x\<^sub>1. (bs!i)*x + (hs!i) x = real ((ts!i) x))" proof- have "Ex (\(e,hs). e > 0 \ length hs = k \ (\h\set hs. (\x. h x) \ O(\x. real x / ln (real x) powr (1+e))) \ (\t\set ts. \x\x\<^sub>1. t x \ x\<^sub>0 \ t x < x) \ (\ix\x\<^sub>1. (bs!i)*x + (hs!i) x = real ((ts!i) x)))" proof- from ts have A: "\i\{..0 x\<^sub>1 (bs!i) (ts!i)" by (auto simp: length_bs) hence "\e h. (\i 0 \ (\x. h i x) \ O(\x. real x / ln (real x) powr (1+e i)) \ (\x\x\<^sub>1. (ts!i) x \ x\<^sub>0 \ (ts!i) x < x) \ (\ix\x\<^sub>1. (bs!i)*real x + h i x = real ((ts!i) x)))" unfolding akra_bazzi_term_def by (subst (asm) bchoice_iff, subst (asm) bchoice_iff) blast then guess ee :: "_ \ real" and hh :: "_ \ nat \ real" by (elim exE conjE) note eh = this define e where "e = Min {ee i |i. i < k}" define hs where "hs = map hh (upt 0 k)" have e_pos: "e > 0" unfolding e_def using eh k_not_0 by (subst Min_gr_iff) auto moreover have "length hs = k" unfolding hs_def by (simp_all add: length_ts) moreover have hs_growth: "\h\set hs. (\x. h x) \ O(\x. real x / ln (real x) powr (1+e))" proof fix h assume "h \ set hs" then obtain i where t: "i < k" "h = hh i" unfolding hs_def by force hence "(\x. h x) \ O(\x. real x / ln (real x) powr (1+ee i))" using eh by blast also from t k_not_0 have "e \ ee i" unfolding e_def by (subst Min_le_iff) auto hence "(\x::nat. real x / ln (real x) powr (1+ee i)) \ O(\x. real x / ln (real x) powr (1+e))" by (intro bigo_real_nat_transfer) auto finally show "(\x. h x) \ O(\x. real x / ln (real x) powr (1+e))" . qed moreover have "\t\set ts. (\x\x\<^sub>1. t x \ x\<^sub>0 \ t x < x)" proof (rule ballI) fix t assume "t \ set ts" then obtain i where "i < k" "t = ts!i" using length_ts by (subst (asm) in_set_conv_nth) auto with eh show "\x\x\<^sub>1. t x \ x\<^sub>0 \ t x < x" unfolding hs_def by force qed moreover have "\ix\x\<^sub>1. (bs!i)*x + (hs!i) x = real ((ts!i) x)" proof (rule allI, rule impI) fix i assume i: "i < k" with eh show "\x\x\<^sub>1. (bs!i)*x + (hs!i) x = real ((ts!i) x)" using length_ts unfolding hs_def by fastforce qed ultimately show ?thesis by blast qed from someI_ex[OF this, folded e_hs_def] show ?thesis unfolding e_def hs_def by (intro conjI) fastforce+ qed lemma e_pos: "e > 0" and length_hs: "length hs = k" and hs_growth: "\h. h \ set hs \ (\x. h x) \ O(\x. real x / ln (real x) powr (1 + e))" and step_ge_x0: "\t x. t \ set ts \ x \ x\<^sub>1 \ x\<^sub>0 \ t x" and step_less: "\t x. t \ set ts \ x \ x\<^sub>1 \ t x < x" and decomp: "\i x. i < k \ x \ x\<^sub>1 \ (bs!i)*x + (hs!i) x = real ((ts!i) x)" by (insert e_hs_aux) simp_all lemma h_in_hs [intro, simp]: "i < k \ hs ! i \ set hs" by (rule nth_mem) (simp add: length_hs) lemma t_in_ts [intro, simp]: "i < k \ ts ! i \ set ts" by (rule nth_mem) (simp add: length_ts) lemma x0_less_x1: "x\<^sub>0 < x\<^sub>1" and x0_le_x1: "x\<^sub>0 \ x\<^sub>1" proof- from ts_nonempty have "x\<^sub>0 \ hd ts x\<^sub>1" using step_ge_x0[of "hd ts" x\<^sub>1] by simp also from ts_nonempty have "... < x\<^sub>1" by (intro step_less) simp_all finally show "x\<^sub>0 < x\<^sub>1" by simp thus "x\<^sub>0 \ x\<^sub>1" by simp qed lemma akra_bazzi_induct [consumes 1, case_names base rec]: assumes "x \ x\<^sub>0" assumes base: "\x. x \ x\<^sub>0 \ x < x\<^sub>1 \ P x" assumes rec: "\x. x \ x\<^sub>1 \ (\t. t \ set ts \ P (t x)) \ P x" shows "P x" proof (insert assms(1), induction x rule: less_induct) case (less x) with assms step_less step_ge_x0 show "P x" by (cases "x < x\<^sub>1") auto qed end locale akra_bazzi_function = akra_bazzi_recursion + fixes integrable integral assumes integral: "akra_bazzi_integral integrable integral" fixes g :: "nat \ real" assumes f_nonneg_base: "x \ x\<^sub>0 \ x < x\<^sub>1 \ f x \ 0" and f_rec: "x \ x\<^sub>1 \ f x = g x + (\i x\<^sub>1 \ g x \ 0" and ex_pos_a: "\a\set as. a > 0" begin lemma ex_pos_a': "\i 0" using ex_pos_a by (auto simp: in_set_conv_nth length_as) sublocale akra_bazzi_params_nonzero using length_as length_bs ex_pos_a a_ge_0 b_bounds by unfold_locales definition g_real :: "real \ real" where "g_real x = g (nat \x\)" lemma g_real_real[simp]: "g_real (real x) = g x" unfolding g_real_def by simp lemma f_nonneg: "x \ x\<^sub>0 \ f x \ 0" proof (induction x rule: akra_bazzi_induct) case (base x) with f_nonneg_base show "f x \ 0" by simp next case (rec x) from rec.hyps have "g x \ 0" by (intro g_nonneg) simp moreover have "(\i 0" using rec.hyps length_ts length_as by (intro sum_nonneg ballI mult_nonneg_nonneg[OF a_ge_0 rec.IH]) simp_all ultimately show "f x \ 0" using rec.hyps by (simp add: f_rec) qed definition "hs' = map (\h x. h (nat \x::real\)) hs" lemma length_hs': "length hs' = k" unfolding hs'_def by (simp add: length_hs) lemma hs'_real: "i < k \ (hs'!i) (real x) = (hs!i) x" unfolding hs'_def by (simp add: length_hs) lemma h_bound: obtains hb where "hb > 0" and "eventually (\x. \h\set hs'. \h x\ \ hb * x / ln x powr (1 + e)) at_top" proof- have "\h\set hs. \c>0. eventually (\x. \h x\ \ c * real x / ln (real x) powr (1 + e)) at_top" proof fix h assume h: "h \ set hs" hence "(\x. h x) \ O(\x. real x / ln (real x) powr (1 + e))" by (rule hs_growth) thus "\c>0. eventually (\x. \h x\ \ c * x / ln x powr (1 + e)) at_top" unfolding bigo_def by auto qed from bchoice[OF this] obtain hb where hb: "\h\set hs. hb h > 0 \ eventually (\x. \h x\ \ hb h * real x / ln (real x) powr (1 + e)) at_top" by blast define hb' where "hb' = max 1 (Max {hb h |h. h \ set hs})" have "hb' > 0" unfolding hb'_def by simp moreover have "\h\set hs. eventually (\x. \h (nat \x\)\ \ hb' * x / ln x powr (1 + e)) at_top" proof (intro ballI, rule eventually_mp[OF always_eventually eventually_conj], clarify) fix h assume h: "h \ set hs" with hb have hb_pos: "hb h > 0" by auto show "eventually (\x. x > exp (1 + e) + 1) at_top" by (rule eventually_gt_at_top) from h hb have e: "eventually (\x. \h (nat \x :: real\)\ \ hb h * real (nat \x\) / ln (real (nat \x\)) powr (1 + e)) at_top" by (intro eventually_natfloor) blast show "eventually (\x. \h (nat \x :: real\)\ \ hb' * x / ln x powr (1 + e)) at_top" using e eventually_gt_at_top proof eventually_elim fix x :: real assume x: "x > exp (1 + e) + 1" have x': "x > 0" by (rule le_less_trans[OF _ x]) simp_all assume "\h (nat \x\)\ \ hb h*real (nat \x\)/ln (real (nat \x\)) powr (1 + e)" also { from x have "exp (1 + e) < real (nat \x\)" by linarith moreover have "x > 0" by (rule le_less_trans[OF _ x]) simp_all hence "real (nat \x\) \ x" by simp ultimately have "real (nat \x\)/ln (real (nat \x\)) powr (1+e) \ x/ln x powr (1+e)" using e_pos by (intro x_over_ln_mono) simp_all from hb_pos mult_left_mono[OF this, of "hb h"] have "hb h * real (nat \x\)/ln (real (nat \x\)) powr (1+e) \ hb h * x / ln x powr (1+e)" by (simp add: algebra_simps) } also from h have "hb h \ hb'" unfolding hb'_def f_rec by (intro order.trans[OF Max.coboundedI max.cobounded2]) auto with x' have "hb h*x/ln x powr (1+e) \ hb'*x/ln x powr (1+e)" by (intro mult_right_mono divide_right_mono) simp_all finally show "\h (nat \x\)\ \ hb' * x / ln x powr (1 + e)" . qed qed hence "\h\set hs'. eventually (\x. \h x\ \ hb' * x / ln x powr (1 + e)) at_top" by (auto simp: hs'_def) hence "eventually (\x. \h\set hs'. \h x\ \ hb' * x / ln x powr (1 + e)) at_top" by (intro eventually_ball_finite) simp_all ultimately show ?thesis by (rule that) qed lemma C_bound: assumes "\b. b \ set bs \ C < b" "hb > 0" shows "eventually (\x::real. \b\set bs. C*x \ b*x - hb*x/ln x powr (1+e)) at_top" proof- from e_pos have "((\x. hb * ln x powr -(1+e)) \ 0) at_top" by (intro tendsto_mult_right_zero tendsto_neg_powr ln_at_top) simp_all with assms have "\b\set bs. eventually (\x. \hb * ln x powr -(1+e)\ < b - C) at_top" by (force simp: tendsto_iff dist_real_def) hence "eventually (\x. \b\set bs. \hb * ln x powr -(1+e)\ < b - C) at_top" by (intro eventually_ball_finite) simp_all note A = eventually_conj[OF this eventually_gt_at_top] show ?thesis using A apply eventually_elim proof clarify fix x b :: real assume x: "x > 0" and b: "b \ set bs" assume A: "\b\set bs. \hb * ln x powr -(1+e)\ < b - C" from b A assms have "hb * ln x powr -(1+e) < b - C" by simp with x have "x * (hb * ln x powr -(1+e)) < x * (b - C)" by (intro mult_strict_left_mono) thus "C*x \ b*x - hb*x / ln x powr (1+e)" by (subst (asm) powr_minus) (simp_all add: field_simps) qed qed end locale akra_bazzi_lower = akra_bazzi_function + fixes g' :: "real \ real" assumes f_pos: "eventually (\x. f x > 0) at_top" and g_growth2: "\C c2. c2 > 0 \ C < Min (set bs) \ eventually (\x. \u\{C*x..x}. g' u \ c2 * g' x) at_top" and g'_integrable: "\a. \b\a. integrable (\u. g' u / u powr (p + 1)) a b" and g'_bounded: "eventually (\a::real. (\b>a. \c. \x\{a..b}. g' x \ c)) at_top" and g_bigomega: "g \ \(\x. g' (real x))" and g'_nonneg: "eventually (\x. g' x \ 0) at_top" begin definition "gc2 \ SOME gc2. gc2 > 0 \ eventually (\x. g x \ gc2 * g' (real x)) at_top" lemma gc2: "gc2 > 0" "eventually (\x. g x \ gc2 * g' (real x)) at_top" proof- from g_bigomega guess c by (elim landau_omega.bigE) note c = this from g'_nonneg have "eventually (\x::nat. g' (real x) \ 0) at_top" by (rule eventually_nat_real) with c(2) have "eventually (\x. g x \ c * g' (real x)) at_top" using eventually_ge_at_top[of x\<^sub>1] by eventually_elim (insert g_nonneg, simp_all) with c(1) have "\gc2. gc2 > 0 \ eventually (\x. g x \ gc2 * g' (real x)) at_top" by blast from someI_ex[OF this] show "gc2 > 0" "eventually (\x. g x \ gc2 * g' (real x)) at_top" unfolding gc2_def by blast+ qed definition "gx0 \ max x\<^sub>1 (SOME gx0. \x\gx0. g x \ gc2 * g' (real x) \ f x > 0 \ g' (real x) \ 0)" definition "gx1 \ max gx0 (SOME gx1. \x\gx1. \i gx0)" lemma gx0: assumes "x \ gx0" shows "g x \ gc2 * g' (real x)" "f x > 0" "g' (real x) \ 0" proof- from eventually_conj[OF gc2(2) eventually_conj[OF f_pos eventually_nat_real[OF g'_nonneg]]] have "\gx0. \x\gx0. g x \ gc2 * g' (real x) \ f x > 0 \ g' (real x) \ 0" by (simp add: eventually_at_top_linorder) note someI_ex[OF this] moreover have "x \ (SOME gx0. \x\gx0. g x \ gc2 * g' (real x) \f x > 0 \ g' (real x) \ 0)" using assms unfolding gx0_def by simp ultimately show "g x \ gc2 * g' (real x)" "f x > 0" "g' (real x) \ 0" unfolding gx0_def by blast+ qed lemma gx1: assumes "x \ gx1" "i < k" shows "(ts!i) x \ gx0" proof- define mb where "mb = Min (set bs)/2" from b_bounds bs_nonempty have mb_pos: "mb > 0" unfolding mb_def by simp from h_bound guess hb . note hb = this from e_pos have "((\x. hb * ln x powr -(1 + e)) \ 0) at_top" by (intro tendsto_mult_right_zero tendsto_neg_powr ln_at_top) simp_all moreover note mb_pos ultimately have "eventually (\x. hb * ln x powr -(1 + e) < mb) at_top" using hb(1) by (subst (asm) tendsto_iff) (simp_all add: dist_real_def) from eventually_nat_real[OF hb(2)] eventually_nat_real[OF this] eventually_ge_at_top eventually_ge_at_top have "eventually (\x. \i gx0) at_top" apply eventually_elim proof clarify fix i x :: nat assume A: "hb * ln (real x) powr -(1+e) < mb" and i: "i < k" assume B: "\h\set hs'. \h (real x)\ \ hb * real x / ln (real x) powr (1+e)" with i have B': "\(hs'!i) (real x)\ \ hb * real x / ln (real x) powr (1+e)" using length_hs'[symmetric] by auto assume C: "x \ nat \gx0/mb\" hence C': "real gx0/mb \ real x" by linarith assume D: "x \ x\<^sub>1" from mb_pos have "real gx0 = mb * (real gx0/mb)" by simp also from i bs_nonempty have "mb \ bs!i/2" unfolding mb_def by simp hence "mb * (real gx0/mb) \ bs!i/2 * x" using C' i b_bounds[of "bs!i"] mb_pos by (intro mult_mono) simp_all also have "... = bs!i*x + -bs!i/2 * x" by simp also { have "-(hs!i) x \ \(hs!i) x\" by simp also from i B' length_hs have "\(hs!i) x\ \ hb * real x / ln (real x) powr (1+e)" by (simp add: hs'_def) also from A have "hb / ln x powr (1+e) \ mb" by (subst (asm) powr_minus) (simp add: field_simps) hence "hb / ln x powr (1+e) * x \ mb * x" by (intro mult_right_mono) simp_all hence "hb * x / ln x powr (1+e) \ mb * x" by simp also from i have "... \ (bs!i/2) * x" unfolding mb_def by (intro mult_right_mono) simp_all finally have "-bs!i/2 * x \ (hs!i) x" by simp } also have "bs!i*real x + (hs!i) x = real ((ts!i) x)" using i D decomp by simp finally show "(ts!i) x \ gx0" by simp qed hence "\gx1. \x\gx1. \i (ts!i) x" (is "Ex ?P") by (simp add: eventually_at_top_linorder) from someI_ex[OF this] have "?P (SOME x. ?P x)" . moreover have "\x. x \ gx1 \ x \ (SOME x. ?P x)" unfolding gx1_def by simp ultimately have "?P gx1" by blast with assms show ?thesis by blast qed lemma gx0_ge_x1: "gx0 \ x\<^sub>1" unfolding gx0_def by simp lemma gx0_le_gx1: "gx0 \ gx1" unfolding gx1_def by simp function f2' :: "nat \ real" where "x < gx1 \ f2' x = max 0 (f x / gc2)" | "x \ gx1 \ f2' x = g' (real x) + (\ix. x)") (insert gx0_le_gx1 gx0_ge_x1, simp_all add: step_less) lemma f2'_nonneg: "x \ gx0 \ f2' x \ 0" by (induction x rule: f2'.induct) (auto intro!: add_nonneg_nonneg sum_nonneg gx0 gx1 mult_nonneg_nonneg[OF a_ge_0]) lemma f2'_le_f: "x \ x\<^sub>0 \ gc2 * f2' x \ f x" proof (induction rule: f2'.induct) case (1 x) with gc2 f_nonneg show ?case by (simp add: max_def field_simps) next case prems: (2 x) with gx0 gx0_le_gx1 have "gc2 * g' (real x) \ g x" by force moreover from step_ge_x0 prems(1) gx0_ge_x1 gx0_le_gx1 have "\i. i < k \ x\<^sub>0 \ (ts!i) x" by simp hence "\i. i < k \ as!i * (gc2 * f2' ((ts!i) x)) \ as!i * f ((ts!i) x)" using prems(1) by (intro mult_left_mono a_ge_0 prems(2)) auto hence "gc2 * (\i (\ix. f2' x > 0) at_top" proof (subst eventually_at_top_linorder, intro exI allI impI) fix x :: nat assume "x \ gx0" thus "f2' x > 0" proof (induction x rule: f2'.induct) case (1 x) with gc2 gx0(2)[of x] show ?case by (simp add: max_def field_simps) next case prems: (2 x) have "(\i 0" proof (rule sum_pos') from ex_pos_a' guess i by (elim exE conjE) note i = this with prems(1) gx0 gx1 have "as!i * f2' ((ts!i) x) > 0" by (intro mult_pos_pos prems(2)) simp_all with i show "\i\{.. 0" by blast next fix i assume i: "i \ {.. 0" by (intro prems(2) gx1) simp_all with i show "as!i * f2' ((ts!i) x) \ 0" by (intro mult_nonneg_nonneg[OF a_ge_0]) simp_all qed simp_all with prems(1) gx0_le_gx1 show ?case by (auto intro!: add_nonneg_pos gx0) qed qed lemma bigomega_f_aux: obtains a where "a \ A" "\a'\a. a' \ \ \ f \ \(\x. x powr p *(1 + integral (\u. g' u / u powr (p + 1)) a' x))" proof- from g'_integrable guess a0 by (elim exE) note a0 = this from h_bound guess hb . note hb = this moreover from g_growth2 guess C c2 by (elim conjE exE) note C = this hence "eventually (\x. \b\set bs. C*x \ b*x - hb*x/ln x powr (1 + e)) at_top" using hb(1) bs_nonempty by (intro C_bound) simp_all moreover from b_bounds hb(1) e_pos have "eventually (\x. \b\set bs. akra_bazzi_asymptotics b hb e p x) at_top" by (rule akra_bazzi_asymptotics) moreover note g'_bounded C(3) g'_nonneg eventually_natfloor[OF f2'_pos] eventually_natfloor[OF gc2(2)] ultimately have "eventually (\x. (\h\set hs'. \h x\ \ hb*x/ln x powr (1+e)) \ (\b\set bs. C*x \ b*x - hb*x/ln x powr (1+e)) \ (\b\set bs. akra_bazzi_asymptotics b hb e p x) \ (\b>x. \c. \x\{x..b}. g' x \ c) \ f2' (nat \x\) > 0 \ (\u\{C * x..x}. g' u \ c2 * g' x) \ g' x \ 0) at_top" by (intro eventually_conj) (force elim!: eventually_conjE)+ then have "\X. (\x\X. (\h\set hs'. \h x\ \ hb*x/ln x powr (1+e)) \ (\b\set bs. C*x \ b*x - hb*x/ln x powr (1+e)) \ (\b\set bs. akra_bazzi_asymptotics b hb e p x) \ (\b>x. \c. \x\{x..b}. g' x \ c) \ (\u\{C * x..x}. g' u \ c2 * g' x) \ f2' (nat \x\) > 0 \ g' x \ 0)" by (subst (asm) eventually_at_top_linorder) (erule ex_mono, blast) then guess X by (elim exE conjE) note X = this define x\<^sub>0'_min where "x\<^sub>0'_min = max A (max X (max a0 (max gx1 (max 1 (real x\<^sub>1 + 1)))))" { fix x\<^sub>0' :: real assume x0'_props: "x\<^sub>0' \ x\<^sub>0'_min" "x\<^sub>0' \ \" hence x0'_ge_x1: "x\<^sub>0' \ real (x\<^sub>1+1)" and x0'_ge_1: "x\<^sub>0' \ 1" and x0'_ge_X: "x\<^sub>0' \ X" unfolding x\<^sub>0'_min_def by linarith+ hence x0'_pos: "x\<^sub>0' > 0" and x0'_nonneg: "x\<^sub>0' \ 0" by simp_all have x0': "\x\x\<^sub>0'. (\h\set hs'. \h x\ \ hb*x/ln x powr (1+e))" "\x\x\<^sub>0'. (\b\set bs. C*x \ b*x - hb*x/ln x powr (1+e))" "\x\x\<^sub>0'. (\b\set bs. akra_bazzi_asymptotics b hb e p x)" "\a\x\<^sub>0'. \b>a. \c. \x\{a..b}. g' x \ c" "\x\x\<^sub>0'. \u\{C * x..x}. g' u \ c2 * g' x" "\x\x\<^sub>0'. f2' (nat \x\) > 0" "\x\x\<^sub>0'. g' x \ 0" using X x0'_ge_X by auto from x0'_props(2) have x0'_int: "real (nat \x\<^sub>0'\) = x\<^sub>0'" by (rule real_natfloor_nat) from x0'_props have x0'_ge_gx1: "x\<^sub>0' \ gx1" and x0'_ge_a0: "x\<^sub>0' \ a0" unfolding x\<^sub>0'_min_def by simp_all with gx0_le_gx1 have f2'_nonneg: "\x. x \ x\<^sub>0' \ f2' x \ 0" by (force intro!: f2'_nonneg) define bm where "bm = Min (set bs)" define x\<^sub>1' where "x\<^sub>1' = 2 * x\<^sub>0' * inverse bm" define fb2 where "fb2 = Min {f2' x |x. x \ {x\<^sub>0'..x\<^sub>1'}}" define gb2 where "gb2 = (SOME c. \x\{x\<^sub>0'..x\<^sub>1'}. g' x \ c)" from b_bounds bs_nonempty have "bm > 0" "bm < 1" unfolding bm_def by auto hence "1 < 2 * inverse bm" by (simp add: field_simps) from mult_strict_left_mono[OF this x0'_pos] have x0'_lt_x1': "x\<^sub>0' < x\<^sub>1'" and x0'_le_x1': "x\<^sub>0' \ x\<^sub>1'" unfolding x\<^sub>1'_def by simp_all from x0_le_x1 x0'_ge_x1 have ge_x0'D: "\x. x\<^sub>0' \ real x \ x\<^sub>0 \ x" by simp from x0'_ge_x1 x0'_le_x1' have gt_x1'D: "\x. x\<^sub>1' < real x \ x\<^sub>1 \ x" by simp have x0'_x1': "\b\set bs. 2 * x\<^sub>0' * inverse b \ x\<^sub>1'" proof fix b assume b: "b \ set bs" hence "bm \ b" by (simp add: bm_def) moreover from b bs_nonempty b_bounds have "bm > 0" "b > 0" unfolding bm_def by auto ultimately have "inverse b \ inverse bm" by simp with x0'_nonneg show "2 * x\<^sub>0' * inverse b \ x\<^sub>1'" unfolding x\<^sub>1'_def by (intro mult_left_mono) simp_all qed note f_nonneg' = f_nonneg have "\x. real x \ x\<^sub>0' \ x \ nat \x\<^sub>0'\" "\x. real x \ x\<^sub>1' \ x \ nat \x\<^sub>1'\" by linarith+ hence "{x |x. real x \ {x\<^sub>0'..x\<^sub>1'}} \ {x |x. x \ {nat \x\<^sub>0'\..nat \x\<^sub>1'\}}" by auto hence "finite {x |x::nat. real x \ {x\<^sub>0'..x\<^sub>1'}}" by (rule finite_subset) auto hence fin: "finite {f2' x |x::nat. real x \ {x\<^sub>0'..x\<^sub>1'}}" by force note facts = hs'_real e_pos length_hs' length_as length_bs k_not_0 a_ge_0 p_props x0'_ge_1 f2'_nonneg f_rec[OF gt_x1'D] x0' x0'_int x0'_x1' gc2(1) decomp from b_bounds x0'_le_x1' x0'_ge_gx1 gx0_le_gx1 x0'_ge_x1 interpret abr: akra_bazzi_nat_to_real as bs hs' k x\<^sub>0' x\<^sub>1' hb e p f2' g' by (unfold_locales) (auto simp: facts simp del: f2'.simps intro!: f2'.simps(2)) have f'_nat: "\x::nat. abr.f' (real x) = f2' x" proof- fix x :: nat show "abr.f' (real (x::nat)) = f2' x" proof (induction "real x" arbitrary: x rule: abr.f'.induct) case (2 x) note x = this(1) and IH = this(2) from x have "abr.f' (real x) = g' (real x) + (\iii0' x\<^sub>1' hb e p integrable integral abr.f' g' C fb2 gb2 c2 proof unfold_locales fix x assume "x \ x\<^sub>0'" "x \ x\<^sub>1'" thus "abr.f' x \ 0" by (intro abr.f'_base) simp_all next fix x assume x:"x \ x\<^sub>0'" show "integrable (\x. g' x / x powr (p + 1)) x\<^sub>0' x" by (rule integrable_subinterval[of _ a0 x]) (insert a0 x0'_ge_a0 x, auto) next fix x assume x: "x \ x\<^sub>0'" "x \ x\<^sub>1'" have "x\<^sub>0' = real (nat \x\<^sub>0'\)" by (simp add: x0'_int) also from x have "... \ real (nat \x\)" by (auto intro!: nat_mono floor_mono) finally have "x\<^sub>0' \ real (nat \x\)" . moreover have "real (nat \x\) \ x\<^sub>1'" using x x0'_ge_1 by linarith ultimately have "f2' (nat \x\) \ {f2' x |x. real x \ {x\<^sub>0'..x\<^sub>1'}}" by force from fin and this have "f2' (nat \x\) \ fb2" unfolding fb2_def by (rule Min_le) with x show "abr.f' x \ fb2" by simp next from x0'_int x0'_le_x1' have "\x::nat. real x \ x\<^sub>0' \ real x \ x\<^sub>1'" by (intro exI[of _ "nat \x\<^sub>0'\"]) simp_all moreover { fix x :: nat assume "real x \ x\<^sub>0' \ real x \ x\<^sub>1'" with x0'(6) have "f2' (nat \real x\) > 0" by blast hence "f2' x > 0" by simp } ultimately show "fb2 > 0" unfolding fb2_def using fin by (subst Min_gr_iff) auto next fix x assume x: "x\<^sub>0' \ x" "x \ x\<^sub>1'" with x0'(4) x0'_lt_x1' have "\c. \x\{x\<^sub>0'..x\<^sub>1'}. g' x \ c" by force from someI_ex[OF this] x show "g' x \ gb2" unfolding gb2_def by simp qed (insert g_nonneg integral x0'(2) C x0'_le_x1' x0'_ge_x1, simp_all add: facts) from akra_bazzi_lower guess c5 . note c5 = this have "eventually (\x. \f x\ \ gc2 * c5 * \f_approx (real x)\) at_top" proof (unfold eventually_at_top_linorder, intro exI allI impI) fix x :: nat assume "x \ nat \x\<^sub>0'\" hence x: "real x \ x\<^sub>0'" by linarith note c5(1)[OF x] also have "abr.f' (real x) = f2' x" by (rule f'_nat) also have "gc2 * ... \ f x" using x x0'_ge_x1 x0_le_x1 by (intro f2'_le_f) simp_all also have "f x = \f x\" using x f_nonneg' x0'_ge_x1 x0_le_x1 by simp finally show "gc2 * c5 * \f_approx (real x)\ \ \f x\" using gc2 f_approx_nonneg[OF x] by (simp add: algebra_simps) qed hence "f \ \(\x. f_approx (real x))" using gc2(1) f_nonneg' f_approx_nonneg by (intro landau_omega.bigI[of "gc2 * c5"] eventually_conj mult_pos_pos c5 eventually_nat_real) (auto simp: eventually_at_top_linorder) note this[unfolded f_approx_def] } moreover have "x\<^sub>0'_min \ A" unfolding x\<^sub>0'_min_def gx0_ge_x1 by simp ultimately show ?thesis by (intro that) auto qed lemma bigomega_f: obtains a where "a \ A" "f \ \(\x. x powr p *(1 + integral (\u. g' u / u powr (p+1)) a x))" proof- from bigomega_f_aux[of A] guess a . note a = this define a' where "a' = real (max (nat \a\) 0) + 1" note a moreover have "a' \ \" by (auto simp: max_def a'_def) moreover have *: "a' \ a + 1" unfolding a'_def by linarith moreover from * and a have "a' \ A" by simp ultimately show ?thesis by (intro that[of a']) auto qed end locale akra_bazzi_upper = akra_bazzi_function + fixes g' :: "real \ real" assumes g'_integrable: "\a. \b\a. integrable (\u. g' u / u powr (p + 1)) a b" and g_growth1: "\C c1. c1 > 0 \ C < Min (set bs) \ eventually (\x. \u\{C*x..x}. g' u \ c1 * g' x) at_top" and g_bigo: "g \ O(g')" and g'_nonneg: "eventually (\x. g' x \ 0) at_top" begin definition "gc1 \ SOME gc1. gc1 > 0 \ eventually (\x. g x \ gc1 * g' (real x)) at_top" lemma gc1: "gc1 > 0" "eventually (\x. g x \ gc1 * g' (real x)) at_top" proof- from g_bigo guess c by (elim landau_o.bigE) note c = this from g'_nonneg have "eventually (\x::nat. g' (real x) \ 0) at_top" by (rule eventually_nat_real) with c(2) have "eventually (\x. g x \ c * g' (real x)) at_top" using eventually_ge_at_top[of x\<^sub>1] by eventually_elim (insert g_nonneg, simp_all) with c(1) have "\gc1. gc1 > 0 \ eventually (\x. g x \ gc1 * g' (real x)) at_top" by blast from someI_ex[OF this] show "gc1 > 0" "eventually (\x. g x \ gc1 * g' (real x)) at_top" unfolding gc1_def by blast+ qed definition "gx3 \ max x\<^sub>1 (SOME gx0. \x\gx0. g x \ gc1 * g' (real x))" lemma gx3: assumes "x \ gx3" shows "g x \ gc1 * g' (real x)" proof- from gc1(2) have "\gx3. \x\gx3. g x \ gc1 * g' (real x)" by (simp add: eventually_at_top_linorder) note someI_ex[OF this] moreover have "x \ (SOME gx0. \x\gx0. g x \ gc1 * g' (real x))" using assms unfolding gx3_def by simp ultimately show "g x \ gc1 * g' (real x)" unfolding gx3_def by blast qed lemma gx3_ge_x1: "gx3 \ x\<^sub>1" unfolding gx3_def by simp function f' :: "nat \ real" where "x < gx3 \ f' x = max 0 (f x / gc1)" | "x \ gx3 \ f' x = g' (real x) + (\ix. x)") (insert gx3_ge_x1, simp_all add: step_less) lemma f'_ge_f: "x \ x\<^sub>0 \ gc1 * f' x \ f x" proof (induction rule: f'.induct) case (1 x) with gc1 f_nonneg show ?case by (simp add: max_def field_simps) next case prems: (2 x) with gx3 have "gc1 * g' (real x) \ g x" by force moreover from step_ge_x0 prems(1) gx3_ge_x1 have "\i. i < k \ x\<^sub>0 \ nat \(ts!i) x\" by (intro le_nat_floor) simp hence "\i. i < k \ as!i * (gc1 * f' ((ts!i) x)) \ as!i * f ((ts!i) x)" using prems(1) by (intro mult_left_mono a_ge_0 prems(2)) auto hence "gc1 * (\i (\i A" "\a'\a. a' \ \ \ f \ O(\x. x powr p *(1 + integral (\u. g' u / u powr (p + 1)) a' x))" proof- from g'_integrable guess a0 by (elim exE) note a0 = this from h_bound guess hb . note hb = this moreover from g_growth1 guess C c1 by (elim conjE exE) note C = this hence "eventually (\x. \b\set bs. C*x \ b*x - hb*x/ln x powr (1 + e)) at_top" using hb(1) bs_nonempty by (intro C_bound) simp_all moreover from b_bounds hb(1) e_pos have "eventually (\x. \b\set bs. akra_bazzi_asymptotics b hb e p x) at_top" by (rule akra_bazzi_asymptotics) moreover note gc1(2) C(3) g'_nonneg ultimately have "eventually (\x. (\h\set hs'. \h x\ \ hb*x/ln x powr (1+e)) \ (\b\set bs. C*x \ b*x - hb*x/ln x powr (1+e)) \ (\b\set bs. akra_bazzi_asymptotics b hb e p x) \ (\u\{C*x..x}. g' u \ c1 * g' x) \ g' x \ 0) at_top" by (intro eventually_conj) (force elim!: eventually_conjE)+ then have "\X. (\x\X. (\h\set hs'. \h x\ \ hb*x/ln x powr (1+e)) \ (\b\set bs. C*x \ b*x - hb*x/ln x powr (1+e)) \ (\b\set bs. akra_bazzi_asymptotics b hb e p x) \ (\u\{C*x..x}. g' u \ c1 * g' x) \ g' x \ 0)" by (subst (asm) eventually_at_top_linorder) fast then guess X by (elim exE conjE) note X = this define x\<^sub>0'_min where "x\<^sub>0'_min = max A (max X (max 1 (max a0 (max gx3 (real x\<^sub>1 + 1)))))" { fix x\<^sub>0' :: real assume x0'_props: "x\<^sub>0' \ x\<^sub>0'_min" "x\<^sub>0' \ \" hence x0'_ge_x1: "x\<^sub>0' \ real (x\<^sub>1+1)" and x0'_ge_1: "x\<^sub>0' \ 1" and x0'_ge_X: "x\<^sub>0' \ X" unfolding x\<^sub>0'_min_def by linarith+ hence x0'_pos: "x\<^sub>0' > 0" and x0'_nonneg: "x\<^sub>0' \ 0" by simp_all have x0': "\x\x\<^sub>0'. (\h\set hs'. \h x\ \ hb*x/ln x powr (1+e))" "\x\x\<^sub>0'. (\b\set bs. C*x \ b*x - hb*x/ln x powr (1+e))" "\x\x\<^sub>0'. (\b\set bs. akra_bazzi_asymptotics b hb e p x)" "\x\x\<^sub>0'. \u\{C*x..x}. g' u \ c1 * g' x" "\x\x\<^sub>0'. g' x \ 0" using X x0'_ge_X by auto from x0'_props(2) have x0'_int: "real (nat \x\<^sub>0'\) = x\<^sub>0'" by (rule real_natfloor_nat) from x0'_props have x0'_ge_gx0: "x\<^sub>0' \ gx3" and x0'_ge_a0: "x\<^sub>0' \ a0" unfolding x\<^sub>0'_min_def by simp_all hence f'_nonneg: "\x. x \ x\<^sub>0' \ f' x \ 0" using order.trans[OF f_nonneg f'_ge_f] gc1(1) x0'_ge_x1 x0_le_x1 by (simp add: zero_le_mult_iff del: f'.simps) define bm where "bm = Min (set bs)" define x\<^sub>1' where "x\<^sub>1' = 2 * x\<^sub>0' * inverse bm" define fb1 where "fb1 = Max {f' x |x. x \ {x\<^sub>0'..x\<^sub>1'}}" from b_bounds bs_nonempty have "bm > 0" "bm < 1" unfolding bm_def by auto hence "1 < 2 * inverse bm" by (simp add: field_simps) from mult_strict_left_mono[OF this x0'_pos] have x0'_lt_x1': "x\<^sub>0' < x\<^sub>1'" and x0'_le_x1': "x\<^sub>0' \ x\<^sub>1'" unfolding x\<^sub>1'_def by simp_all from x0_le_x1 x0'_ge_x1 have ge_x0'D: "\x. x\<^sub>0' \ real x \ x\<^sub>0 \ x" by simp from x0'_ge_x1 x0'_le_x1' have gt_x1'D: "\x. x\<^sub>1' < real x \ x\<^sub>1 \ x" by simp have x0'_x1': "\b\set bs. 2 * x\<^sub>0' * inverse b \ x\<^sub>1'" proof fix b assume b: "b \ set bs" hence "bm \ b" by (simp add: bm_def) moreover from b b_bounds bs_nonempty have "bm > 0" "b > 0" unfolding bm_def by auto ultimately have "inverse b \ inverse bm" by simp with x0'_nonneg show "2 * x\<^sub>0' * inverse b \ x\<^sub>1'" unfolding x\<^sub>1'_def by (intro mult_left_mono) simp_all qed note f_nonneg' = f_nonneg have "\x. real x \ x\<^sub>0' \ x \ nat \x\<^sub>0'\" "\x. real x \ x\<^sub>1' \ x \ nat \x\<^sub>1'\" by linarith+ hence "{x |x. real x \ {x\<^sub>0'..x\<^sub>1'}} \ {x |x. x \ {nat \x\<^sub>0'\..nat \x\<^sub>1'\}}" by auto hence "finite {x |x::nat. real x \ {x\<^sub>0'..x\<^sub>1'}}" by (rule finite_subset) auto hence fin: "finite {f' x |x::nat. real x \ {x\<^sub>0'..x\<^sub>1'}}" by force note facts = hs'_real e_pos length_hs' length_as length_bs k_not_0 a_ge_0 p_props x0'_ge_1 f'_nonneg f_rec[OF gt_x1'D] x0' x0'_int x0'_x1' gc1(1) decomp from b_bounds x0'_le_x1' x0'_ge_gx0 x0'_ge_x1 interpret abr: akra_bazzi_nat_to_real as bs hs' k x\<^sub>0' x\<^sub>1' hb e p f' g' by (unfold_locales) (auto simp add: facts simp del: f'.simps intro!: f'.simps(2)) have f'_nat: "\x::nat. abr.f' (real x) = f' x" proof- fix x :: nat show "abr.f' (real (x::nat)) = f' x" proof (induction "real x" arbitrary: x rule: abr.f'.induct) case (2 x) note x = this(1) and IH = this(2) from x have "abr.f' (real x) = g' (real x) + (\iii0' x\<^sub>1' hb e p integrable integral abr.f' g' C fb1 c1 proof (unfold_locales) fix x assume "x \ x\<^sub>0'" "x \ x\<^sub>1'" thus "abr.f' x \ 0" by (intro abr.f'_base) simp_all next fix x assume x:"x \ x\<^sub>0'" show "integrable (\x. g' x / x powr (p + 1)) x\<^sub>0' x" by (rule integrable_subinterval[of _ a0 x]) (insert a0 x0'_ge_a0 x, auto) next fix x assume x: "x \ x\<^sub>0'" "x \ x\<^sub>1'" have "x\<^sub>0' = real (nat \x\<^sub>0'\)" by (simp add: x0'_int) also from x have "... \ real (nat \x\)" by (auto intro!: nat_mono floor_mono) finally have "x\<^sub>0' \ real (nat \x\)" . moreover have "real (nat \x\) \ x\<^sub>1'" using x x0'_ge_1 by linarith ultimately have "f' (nat \x\) \ {f' x |x. real x \ {x\<^sub>0'..x\<^sub>1'}}" by force from fin and this have "f' (nat \x\) \ fb1" unfolding fb1_def by (rule Max_ge) with x show "abr.f' x \ fb1" by simp qed (insert x0'(2) x0'_le_x1' x0'_ge_x1 C, simp_all add: facts) from akra_bazzi_upper guess c6 . note c6 = this { fix x :: nat assume "x \ nat \x\<^sub>0'\" hence x: "real x \ x\<^sub>0'" by linarith have "f x \ gc1 * f' x" using x x0'_ge_x1 x0_le_x1 by (intro f'_ge_f) simp_all also have "f' x = abr.f' (real x)" by (simp add: f'_nat) also note c6(1)[OF x] also from f_nonneg' x x0'_ge_x1 x0_le_x1 have "f x = \f x\" by simp also from f_approx_nonneg x have "f_approx (real x) = \f_approx (real x)\" by simp finally have "gc1 * c6 * \f_approx (real x)\ \ \f x\" using gc1 by (simp add: algebra_simps) } hence "eventually (\x. \f x\ \ gc1 * c6 * \f_approx (real x)\) at_top" using eventually_ge_at_top[of "nat \x\<^sub>0'\"] by (auto elim!: eventually_mono) hence "f \ O(\x. f_approx (real x))" using gc1(1) f_nonneg' f_approx_nonneg by (intro landau_o.bigI[of "gc1 * c6"] eventually_conj mult_pos_pos c6 eventually_nat_real) (auto simp: eventually_at_top_linorder) note this[unfolded f_approx_def] } moreover have "x\<^sub>0'_min \ A" unfolding x\<^sub>0'_min_def gx3_ge_x1 by simp ultimately show ?thesis by (intro that) auto qed lemma bigo_f: obtains a where "a > A" "f \ O(\x. x powr p *(1 + integral (\u. g' u / u powr (p + 1)) a x))" proof- from bigo_f_aux[of A] guess a . note a = this define a' where "a' = real (max (nat \a\) 0) + 1" note a moreover have "a' \ \" by (auto simp: max_def a'_def) moreover have *: "a' \ a + 1" unfolding a'_def by linarith moreover from * and a have "a' > A" by simp ultimately show ?thesis by (intro that[of a']) auto qed end locale akra_bazzi = akra_bazzi_function + fixes g' :: "real \ real" assumes f_pos: "eventually (\x. f x > 0) at_top" and g'_nonneg: "eventually (\x. g' x \ 0) at_top" assumes g'_integrable: "\a. \b\a. integrable (\u. g' u / u powr (p + 1)) a b" and g_growth1: "\C c1. c1 > 0 \ C < Min (set bs) \ eventually (\x. \u\{C*x..x}. g' u \ c1 * g' x) at_top" and g_growth2: "\C c2. c2 > 0 \ C < Min (set bs) \ eventually (\x. \u\{C*x..x}. g' u \ c2 * g' x) at_top" and g_bounded: "eventually (\a::real. (\b>a. \c. \x\{a..b}. g' x \ c)) at_top" and g_bigtheta: "g \ \(g')" begin sublocale akra_bazzi_lower using f_pos g_growth2 g_bounded bigthetaD2[OF g_bigtheta] g'_nonneg g'_integrable by unfold_locales sublocale akra_bazzi_upper using g_growth1 bigthetaD1[OF g_bigtheta] g'_nonneg g'_integrable by unfold_locales lemma bigtheta_f: obtains a where "a > A" "f \ \(\x. x powr p *(1 + integral (\u. g' u / u powr (p + 1)) a x))" proof- from bigo_f_aux[of A] guess a . note a = this moreover from bigomega_f_aux[of A] guess b . note b = this let ?a = "real (max (max (nat \a\) (nat \b\)) 0) + 1" have "?a \ \" by (auto simp: max_def) moreover have "?a \ a" "?a \ b" by linarith+ ultimately have "f \ \(\x. x powr p *(1 + integral (\u. g' u / u powr (p + 1)) ?a x))" using a b by (intro bigthetaI) blast+ moreover from a b have "?a > A" by linarith ultimately show ?thesis by (intro that[of ?a]) simp_all qed end named_theorems akra_bazzi_term_intros "introduction rules for Akra-Bazzi terms" lemma akra_bazzi_term_floor_add [akra_bazzi_term_intros]: assumes "(b::real) > 0" "b < 1" "real x\<^sub>0 \ b * real x\<^sub>1 + c" "c < (1 - b) * real x\<^sub>1" "x\<^sub>1 > 0" shows "akra_bazzi_term x\<^sub>0 x\<^sub>1 b (\x. nat \b*real x + c\)" proof (rule akra_bazzi_termI[OF zero_less_one]) fix x assume x: "x \ x\<^sub>1" from assms x have "real x\<^sub>0 \ b * real x\<^sub>1 + c" by simp also from x assms have "... \ b * real x + c" by auto finally have step_ge_x0: "b * real x + c \ real x\<^sub>0" by simp thus "nat \b * real x + c\ \ x\<^sub>0" by (subst le_nat_iff) (simp_all add: le_floor_iff) from assms x have "c < (1 - b) * real x\<^sub>1" by simp also from assms x have "... \ (1 - b) * real x" by (intro mult_left_mono) simp_all finally show "nat \b * real x + c\ < x" using assms step_ge_x0 by (subst nat_less_iff) (simp_all add: floor_less_iff algebra_simps) from step_ge_x0 have "real_of_int \c + b * real x\ = real_of_int (nat \c + b * real x\)" by linarith thus "(b * real x) + (\b * real x + c\ - (b * real x)) = real (nat \b * real x + c\)" by linarith next have "(\x::nat. real_of_int \b * real x + c\ - b * real x) \ O(\_. \c\ + 1)" by (intro landau_o.big_mono always_eventually allI, unfold real_norm_def) linarith also have "(\_::nat. \c\ + 1) \ O(\x. real x / ln (real x) powr (1 + 1))" by force finally show "(\x::nat. real_of_int \b * real x + c\ - b * real x) \ O(\x. real x / ln (real x) powr (1+1))" . qed lemma akra_bazzi_term_floor_add' [akra_bazzi_term_intros]: assumes "(b::real) > 0" "b < 1" "real x\<^sub>0 \ b * real x\<^sub>1 + real c" "real c < (1 - b) * real x\<^sub>1" "x\<^sub>1 > 0" shows "akra_bazzi_term x\<^sub>0 x\<^sub>1 b (\x. nat \b*real x\ + c)" proof- from assms have "akra_bazzi_term x\<^sub>0 x\<^sub>1 b (\x. nat \b*real x + real c\)" by (rule akra_bazzi_term_floor_add) also have "(\x. nat \b*real x + real c\) = (\x::nat. nat \b*real x\ + c)" proof fix x :: nat have "\b * real x + real c\ = \b * real x\ + int c" by linarith also from assms have "nat ... = nat \b * real x\ + c" by (simp add: nat_add_distrib) finally show "nat \b * real x + real c\ = nat \b * real x\ + c" . qed finally show ?thesis . qed lemma akra_bazzi_term_floor_subtract [akra_bazzi_term_intros]: assumes "(b::real) > 0" "b < 1" "real x\<^sub>0 \ b * real x\<^sub>1 - c" "0 < c + (1 - b) * real x\<^sub>1" "x\<^sub>1 > 0" shows "akra_bazzi_term x\<^sub>0 x\<^sub>1 b (\x. nat \b*real x - c\)" by (subst diff_conv_add_uminus, rule akra_bazzi_term_floor_add, insert assms) simp_all lemma akra_bazzi_term_floor_subtract' [akra_bazzi_term_intros]: assumes "(b::real) > 0" "b < 1" "real x\<^sub>0 \ b * real x\<^sub>1 - real c" "0 < real c + (1 - b) * real x\<^sub>1" "x\<^sub>1 > 0" shows "akra_bazzi_term x\<^sub>0 x\<^sub>1 b (\x. nat \b*real x\ - c)" proof- from assms have "akra_bazzi_term x\<^sub>0 x\<^sub>1 b (\x. nat \b*real x - real c\)" by (intro akra_bazzi_term_floor_subtract) simp_all also have "(\x. nat \b*real x - real c\) = (\x::nat. nat \b*real x\ - c)" proof fix x :: nat have "\b * real x - real c\ = \b * real x\ - int c" by linarith also from assms have "nat ... = nat \b * real x\ - c" by (simp add: nat_diff_distrib) finally show "nat \b * real x - real c\ = nat \b * real x\ - c" . qed finally show ?thesis . qed lemma akra_bazzi_term_floor [akra_bazzi_term_intros]: assumes "(b::real) > 0" "b < 1" "real x\<^sub>0 \ b * real x\<^sub>1" "0 < (1 - b) * real x\<^sub>1" "x\<^sub>1 > 0" shows "akra_bazzi_term x\<^sub>0 x\<^sub>1 b (\x. nat \b*real x\)" using assms akra_bazzi_term_floor_add[where c = 0] by simp lemma akra_bazzi_term_ceiling_add [akra_bazzi_term_intros]: assumes "(b::real) > 0" "b < 1" "real x\<^sub>0 \ b * real x\<^sub>1 + c" "c + 1 \ (1 - b) * x\<^sub>1" shows "akra_bazzi_term x\<^sub>0 x\<^sub>1 b (\x. nat \b*real x + c\)" proof (rule akra_bazzi_termI[OF zero_less_one]) fix x assume x: "x \ x\<^sub>1" have "0 \ real x\<^sub>0" by simp also from assms have "real x\<^sub>0 \ b * real x\<^sub>1 + c" by simp also from assms x have "b * real x\<^sub>1 \ b * real x" by (intro mult_left_mono) simp_all hence "b * real x\<^sub>1 + c \ b * real x + c" by simp also have "b * real x + c \ real_of_int \b * real x + c\" by linarith finally have bx_nonneg: "real_of_int \b * real x + c\ \ 0" . have "c + 1 \ (1 - b) * x\<^sub>1" by fact also have "(1 - b) * x\<^sub>1 \ (1 - b) * x" using assms x by (intro mult_left_mono) simp_all finally have "b * real x + c + 1 \ real x" using assms by (simp add: algebra_simps) with bx_nonneg show "nat \b * real x + c\ < x" by (subst nat_less_iff) (simp_all add: ceiling_less_iff) have "real x\<^sub>0 \ b * real x\<^sub>1 + c" by fact also have "... \ real_of_int \...\" by linarith also have "x\<^sub>1 \ x" by fact finally show "x\<^sub>0 \ nat \b * real x + c\" using assms by (force simp: ceiling_mono) show "b * real x + (\b * real x + c\ - b * real x) = real (nat \b * real x + c\)" using assms bx_nonneg by simp next have "(\x::nat. real_of_int \b * real x + c\ - b * real x) \ O(\_. \c\ + 1)" by (intro landau_o.big_mono always_eventually allI, unfold real_norm_def) linarith also have "(\_::nat. \c\ + 1) \ O(\x. real x / ln (real x) powr (1 + 1))" by force finally show "(\x::nat. real_of_int \b * real x + c\ - b * real x) \ O(\x. real x / ln (real x) powr (1+1))" . qed lemma akra_bazzi_term_ceiling_add' [akra_bazzi_term_intros]: assumes "(b::real) > 0" "b < 1" "real x\<^sub>0 \ b * real x\<^sub>1 + real c" "real c + 1 \ (1 - b) * x\<^sub>1" shows "akra_bazzi_term x\<^sub>0 x\<^sub>1 b (\x. nat \b*real x\ + c)" proof- from assms have "akra_bazzi_term x\<^sub>0 x\<^sub>1 b (\x. nat \b*real x + real c\)" by (rule akra_bazzi_term_ceiling_add) also have "(\x. nat \b*real x + real c\) = (\x::nat. nat \b*real x\ + c)" proof fix x :: nat from assms have "0 \ b * real x" by simp also have "b * real x \ real_of_int \b * real x\" by linarith finally have bx_nonneg: "\b * real x\ \ 0" by simp have "\b * real x + real c\ = \b * real x\ + int c" by linarith also from assms bx_nonneg have "nat ... = nat \b * real x\ + c" by (subst nat_add_distrib) simp_all finally show "nat \b * real x + real c\ = nat \b * real x\ + c" . qed finally show ?thesis . qed lemma akra_bazzi_term_ceiling_subtract [akra_bazzi_term_intros]: assumes "(b::real) > 0" "b < 1" "real x\<^sub>0 \ b * real x\<^sub>1 - c" "1 \ c + (1 - b) * x\<^sub>1" shows "akra_bazzi_term x\<^sub>0 x\<^sub>1 b (\x. nat \b*real x - c\)" by (subst diff_conv_add_uminus, rule akra_bazzi_term_ceiling_add, insert assms) simp_all lemma akra_bazzi_term_ceiling_subtract' [akra_bazzi_term_intros]: assumes "(b::real) > 0" "b < 1" "real x\<^sub>0 \ b * real x\<^sub>1 - real c" "1 \ real c + (1 - b) * x\<^sub>1" shows "akra_bazzi_term x\<^sub>0 x\<^sub>1 b (\x. nat \b*real x\ - c)" proof- from assms have "akra_bazzi_term x\<^sub>0 x\<^sub>1 b (\x. nat \b*real x - real c\)" by (intro akra_bazzi_term_ceiling_subtract) simp_all also have "(\x. nat \b*real x - real c\) = (\x::nat. nat \b*real x\ - c)" proof fix x :: nat from assms have "0 \ b * real x" by simp also have "b * real x \ real_of_int \b * real x\" by linarith finally have bx_nonneg: "\b * real x\ \ 0" by simp have "\b * real x - real c\ = \b * real x\ - int c" by linarith also from assms bx_nonneg have "nat ... = nat \b * real x\ - c" by simp finally show "nat \b * real x - real c\ = nat \b * real x\ - c" . qed finally show ?thesis . qed lemma akra_bazzi_term_ceiling [akra_bazzi_term_intros]: assumes "(b::real) > 0" "b < 1" "real x\<^sub>0 \ b * real x\<^sub>1" "1 \ (1 - b) * x\<^sub>1" shows "akra_bazzi_term x\<^sub>0 x\<^sub>1 b (\x. nat \b*real x\)" using assms akra_bazzi_term_ceiling_add[where c = 0] by simp end