(* File: Eval_Numeral.thy Author: Manuel Eberl Evaluation of terms involving rational numerals with the simplifier. *) section \Evaluating expressions with rational numerals\ theory Eval_Numeral imports Complex_Main begin lemma real_numeral_to_Ratreal: "(0::real) = Ratreal (Frct (0, 1))" "(1::real) = Ratreal (Frct (1, 1))" "(numeral x :: real) = Ratreal (Frct (numeral x, 1))" "(1::int) = numeral Num.One" by (simp_all add: rat_number_collapse) lemma real_equals_code: "Ratreal x = Ratreal y \ x = y" by simp lemma Rat_normalize_idempotent: "Rat.normalize (Rat.normalize x) = Rat.normalize x" apply (cases "Rat.normalize x") using Rat.normalize_stable[OF normalize_denom_pos normalize_coprime] apply auto done lemma uminus_pow_Numeral1: "(-(x::_::monoid_mult)) ^ Numeral1 = -x" by simp lemmas power_numeral_simps = power_0 uminus_pow_Numeral1 power_minus_Bit0 power_minus_Bit1 lemma Fract_normalize: "Fract (fst (Rat.normalize (x,y))) (snd (Rat.normalize (x,y))) = Fract x y" by (rule quotient_of_inject) (simp add: quotient_of_Fract Rat_normalize_idempotent) lemma Frct_add: "Frct (a, numeral b) + Frct (c, numeral d) = Frct (Rat.normalize (a * numeral d + c * numeral b, numeral (b*d)))" by (auto simp: rat_number_collapse Fract_normalize) lemma Frct_uminus: "-(Frct (a,b)) = Frct (-a,b)" by simp lemma Frct_diff: "Frct (a, numeral b) - Frct (c, numeral d) = Frct (Rat.normalize (a * numeral d - c * numeral b, numeral (b*d)))" by (auto simp: rat_number_collapse Fract_normalize) lemma Frct_mult: "Frct (a, numeral b) * Frct (c, numeral d) = Frct (a*c, numeral (b*d))" by simp lemma Frct_inverse: "inverse (Frct (a, b)) = Frct (b, a)" by simp lemma Frct_divide: "Frct (a, numeral b) / Frct (c, numeral d) = Frct (a*numeral d, numeral b * c)" by simp lemma Frct_pow: "Frct (a, numeral b) ^ c = Frct (a ^ c, numeral b ^ c)" by (induction c) (simp_all add: rat_number_collapse) lemma Frct_less: "Frct (a, numeral b) < Frct (c, numeral d) \ a * numeral d < c * numeral b" by simp lemma Frct_le: "Frct (a, numeral b) \ Frct (c, numeral d) \ a * numeral d \ c * numeral b" by simp lemma Frct_equals: "Frct (a, numeral b) = Frct (c, numeral d) \ a * numeral d = c * numeral b" apply (intro iffI antisym) apply (subst Frct_le[symmetric], simp)+ apply (subst Frct_le, simp)+ done lemma real_power_code: "(Ratreal x) ^ y = Ratreal (x ^ y)" by (simp add: of_rat_power) lemmas real_arith_code = real_plus_code real_minus_code real_times_code real_uminus_code real_inverse_code real_divide_code real_power_code real_less_code real_less_eq_code real_equals_code lemmas rat_arith_code = Frct_add Frct_uminus Frct_diff Frct_mult Frct_inverse Frct_divide Frct_pow Frct_less Frct_le Frct_equals lemma gcd_numeral_red: "gcd (numeral x::int) (numeral y) = gcd (numeral y) (numeral x mod numeral y)" by (fact gcd_red_int) lemma divmod_one: "divmod (Num.One) (Num.One) = (Numeral1, 0)" "divmod (Num.One) (Num.Bit0 x) = (0, Numeral1)" "divmod (Num.One) (Num.Bit1 x) = (0, Numeral1)" "divmod x (Num.One) = (numeral x, 0)" unfolding divmod_def by simp_all lemmas divmod_numeral_simps = div_0 div_by_0 mod_0 mod_by_0 fst_divmod [symmetric] snd_divmod [symmetric] divmod_cancel divmod_steps [simplified rel_simps if_True] divmod_trivial rel_simps lemma Suc_0_to_numeral: "Suc 0 = Numeral1" by simp lemmas Suc_to_numeral = Suc_0_to_numeral Num.Suc_1 Num.Suc_numeral lemma rat_powr: "0 powr y = 0" "x > 0 \ x powr Ratreal (Frct (0, Numeral1)) = Ratreal (Frct (Numeral1, Numeral1))" "x > 0 \ x powr Ratreal (Frct (numeral a, Numeral1)) = x ^ numeral a" "x > 0 \ x powr Ratreal (Frct (-numeral a, Numeral1)) = inverse (x ^ numeral a)" by (simp_all add: rat_number_collapse powr_minus) lemmas eval_numeral_simps = real_numeral_to_Ratreal real_arith_code rat_arith_code Num.arith_simps Rat.normalize_def fst_conv snd_conv gcd_0_int gcd_0_left_int gcd.bottom_right_bottom gcd.bottom_left_bottom gcd_neg1_int gcd_neg2_int gcd_numeral_red zmod_numeral_Bit0 zmod_numeral_Bit1 power_numeral_simps divmod_numeral_simps numeral_One [symmetric] Groups.Let_0 Num.Let_numeral Suc_to_numeral power_numeral greaterThanLessThan_iff atLeastAtMost_iff atLeastLessThan_iff greaterThanAtMost_iff rat_powr Num.pow.simps Num.sqr.simps Product_Type.split of_int_numeral of_int_neg_numeral of_nat_numeral ML \ signature EVAL_NUMERAL = sig val eval_numeral_tac : Proof.context -> int -> tactic end structure Eval_Numeral : EVAL_NUMERAL = struct fun eval_numeral_tac ctxt = let val ctxt' = put_simpset HOL_ss ctxt addsimps @{thms eval_numeral_simps} in SELECT_GOAL (SOLVE (Simplifier.simp_tac ctxt' 1)) end end \ lemma "21254387548659589512*314213523632464357453884361*2342523623324234*564327438587241734743* 12561712738645824362329316482973164398214286 powr 2 / (1130246312978423123+231212374631082764842731842*122474378389424362347451251263) > (12313244512931247243543279768645745929475829310651205623844::real)" by (tactic \Eval_Numeral.eval_numeral_tac @{context} 1\) end