(* Author: René Thiemann Akihisa Yamada License: BSD *) section \Algebraic Number Tests\ text \We provide a sequence of examples which demonstrate what can be done with the implementation of algebraic numbers.\ theory Algebraic_Number_Tests imports Jordan_Normal_Form.Char_Poly Jordan_Normal_Form.Determinant_Impl Show.Show_Complex "HOL-Library.Code_Target_Nat" "HOL-Library.Code_Target_Int" Berlekamp_Zassenhaus.Factorize_Rat_Poly Complex_Algebraic_Numbers Show_Real_Precise begin subsection \Stand-Alone Examples\ abbreviation (input) "show_lines x \ shows_lines x Nil" fun show_factorization :: "'a :: {semiring_1,show} \ (('a poly \ nat)list) \ string" where "show_factorization (c,[]) = show c" | "show_factorization (c,((p,i) # ps)) = show_factorization (c,ps) @ '' * ('' @ show p @ '')'' @ (if i = 1 then [] else ''^'' @ show i)" definition show_sf_factorization :: "'a :: {semiring_1,show} \ (('a poly \ nat)list) \ string" where "show_sf_factorization x = show_factorization (map_prod id (map (map_prod id Suc)) x) " text \Determine the roots over the rational, real, and complex numbers.\ definition "testpoly = [:5/2, -7/2, 1/2, -5, 7, -1, 5/2, -7/2, 1/2:]" definition "test = show_lines ( real_roots_of_rat_poly testpoly)" value [code] "show_lines ( roots_of_rat_poly testpoly)" value [code] "show_lines ( real_roots_of_rat_poly testpoly)" value [code] "show_lines (complex_roots_of_rat_poly testpoly)" text \Compute real and complex roots of a polynomial with rational coefficients.\ value [code] "show (complex_roots_of_rat_poly testpoly)" value [code] "show (real_roots_of_rat_poly testpoly)" text \A sequence of calculations.\ value [code] "show (- sqrt 2 - sqrt 3)" lemma "root 3 4 > sqrt (root 4 3) + \1/10 * root 3 7\" by eval lemma "csqrt (4 + 3 * \) \ \" by eval value [code] "show (csqrt (4 + 3 * \))" value [code] "show (csqrt (1 + \))" subsection \Example Application: Compute Norms of Eigenvalues\ text \For complexity analysis of some matrix $A$ it is important to compute the spectral radius of a matrix, i.e., the maximal norm of all complex eigenvalues, since the spectral radius determines the growth rates of matrix-powers $A^n$, cf.~\cite{JNF-AFP} for a formalized statement of this fact.\ definition eigenvalues :: "rat mat \ complex list" where "eigenvalues A = complex_roots_of_rat_poly (char_poly A)" definition "testmat = mat_of_rows_list 3 [ [1,-4,2], [1/5,7,9], [7,1,5 :: rat] ]" definition "spectral_radius_test = show (Max (set [ norm ev. ev \ eigenvalues testmat]))" value [code] "char_poly testmat" value [code] spectral_radius_test end