(* Author: René Thiemann License: BSD *) section \Explicit Constants for External Code\ theory Algebraic_Numbers_External_Code imports Algebraic_Number_Tests begin text \We define constants for most operations on real- and complex- algebraic numbers, so that they are easily accessible in target languages. In particular, we use target languages integers, pairs of integers, strings, and integer lists, resp., in order to represent the Isabelle types @{typ int}/@{typ nat}, @{typ rat}, @{typ string}, and @{typ "int poly"}, resp.\ definition "decompose_rat = map_prod integer_of_int integer_of_int o quotient_of" subsection \Operations on Real Algebraic Numbers\ definition "zero_ra = (0 :: real_alg)" definition "one_ra = (1 :: real_alg)" definition "of_integer_ra = (of_int o int_of_integer :: integer \ real_alg)" definition "of_rational_ra = ((\ (num, denom). of_rat_real_alg (Rat.Fract (int_of_integer num) (int_of_integer denom))) :: integer \ integer \ real_alg)" definition "plus_ra = ((+) :: real_alg \ real_alg \ real_alg)" definition "minus_ra = ((-) :: real_alg \ real_alg \ real_alg)" definition "uminus_ra = (uminus :: real_alg \ real_alg)" definition "times_ra = ((*) :: real_alg \ real_alg \ real_alg)" definition "divide_ra = ((/) :: real_alg \ real_alg \ real_alg)" definition "inverse_ra = (inverse :: real_alg \ real_alg)" definition "abs_ra = (abs :: real_alg \ real_alg)" definition "floor_ra = (integer_of_int o floor :: real_alg \ integer)" definition "ceiling_ra = (integer_of_int o ceiling :: real_alg \ integer)" definition "minimum_ra = (min :: real_alg \ real_alg \ real_alg)" definition "maximum_ra = (max :: real_alg \ real_alg \ real_alg)" definition "equals_ra = ((=) :: real_alg \ real_alg \ bool)" definition "less_ra = ((<) :: real_alg \ real_alg \ bool)" definition "less_equal_ra = ((\) :: real_alg \ real_alg \ bool)" definition "compare_ra = (compare :: real_alg \ real_alg \ order)" definition "roots_of_poly_ra = (roots_of_real_alg o poly_of_list o map int_of_integer :: integer list \ real_alg list)" definition "root_ra = (root_real_alg o nat_of_integer :: integer \ real_alg \ real_alg)" definition "show_ra = ((String.implode o show) :: real_alg \ String.literal)" definition "is_rational_ra = (is_rat_real_alg :: real_alg \ bool)" definition "to_rational_ra = (decompose_rat o to_rat_real_alg :: real_alg \ integer \ integer)" definition "sign_ra = (fst o to_rational_ra o sgn :: real_alg \ integer)" definition "decompose_ra = (map_sum decompose_rat (map_prod (map integer_of_int o coeffs) integer_of_nat) o info_real_alg :: real_alg \ integer \ integer + integer list \ integer)" subsection \Operations on Complex Algebraic Numbers\ definition "zero_ca = (0 :: complex)" definition "one_ca = (1 :: complex)" definition "imag_unit_ca = (\ :: complex)" definition "of_integer_ca = (of_int o int_of_integer :: integer \ complex)" definition "of_rational_ca = ((\ (num, denom). of_rat (Rat.Fract (int_of_integer num) (int_of_integer denom))) :: integer \ integer \ complex)" definition "of_real_imag_ca = ((\ (real, imag). Complex (real_of real) (real_of imag)) :: real_alg \ real_alg \ complex)" definition "plus_ca = ((+) :: complex \ complex \ complex)" definition "minus_ca = ((-) :: complex \ complex \ complex)" definition "uminus_ca = (uminus :: complex \ complex)" definition "times_ca = ((*) :: complex \ complex \ complex)" definition "divide_ca = ((/) :: complex \ complex \ complex)" definition "inverse_ca = (inverse :: complex \ complex)" definition "equals_ca = ((=) :: complex \ complex \ bool)" definition "roots_of_poly_ca = (complex_roots_of_int_poly o poly_of_list o map int_of_integer :: integer list \ complex list)" definition "csqrt_ca = (csqrt :: complex \ complex)" definition "show_ca = ((String.implode o show) :: complex \ String.literal)" definition "real_of_ca = (real_alg_of_real o Re :: complex \ real_alg)" definition "imag_of_ca = (real_alg_of_real o Im :: complex \ real_alg)" subsection \Export Constants in Haskell\ export_code (* preliminary operations *) order.Eq order.Lt order.Gt \ \for comparison\ Inl Inr \ \make disjoint sums available for decomposition information\ (* real algebraic operations *) zero_ra one_ra of_integer_ra of_rational_ra plus_ra minus_ra uminus_ra times_ra divide_ra inverse_ra abs_ra floor_ra ceiling_ra minimum_ra maximum_ra equals_ra less_ra less_equal_ra compare_ra roots_of_poly_ra root_ra show_ra is_rational_ra to_rational_ra sign_ra decompose_ra (* complex algebraic operations *) zero_ca one_ca imag_unit_ca of_integer_ca of_rational_ca of_real_imag_ca plus_ca minus_ca uminus_ca times_ca divide_ca inverse_ca equals_ca roots_of_poly_ca csqrt_ca show_ca real_of_ca imag_of_ca in Haskell module_name Algebraic_Numbers (* file \~/Code/Algebraic_Numbers\ *) end