section \Load Balancing\ theory Approx_LB_Hoare imports Complex_Main "HOL-Hoare.Hoare_Logic" begin text \This is a formalization of the load balancing algorithms and proofs in the book by Kleinberg and Tardos \cite{KleinbergT06}.\ hide_const (open) sorted (* TODO: mv *) lemma sum_le_card_Max: "\ finite A; A \ {} \ \ sum f A \ card A * Max (f ` A)" proof(induction A rule: finite_ne_induct) case (singleton x) then show ?case by simp next case (insert x F) then show ?case by (auto simp: max_def order.trans[of "sum f F" "card F * Max (f ` F)"]) qed lemma Max_const[simp]: "\ finite A; A \ {} \ \ Max ((\_. c) ` A) = c" using Max_in image_is_empty by blast abbreviation Max\<^sub>0 :: "nat set \ nat" where "Max\<^sub>0 N \ (if N={} then 0 else Max N)" fun f_Max\<^sub>0 :: "(nat \ nat) \ nat \ nat" where "f_Max\<^sub>0 f 0 = 0" | "f_Max\<^sub>0 f (Suc x) = max (f (Suc x)) (f_Max\<^sub>0 f x)" lemma f_Max\<^sub>0_equiv: "f_Max\<^sub>0 f n = Max\<^sub>0 (f ` {1..n})" by (induction n) (auto simp: not_le atLeastAtMostSuc_conv) lemma f_Max\<^sub>0_correct: "\x \ {1..m}. T x \ f_Max\<^sub>0 T m" "m > 0 \ \x \ {1..m}. T x = f_Max\<^sub>0 T m" apply (induction m) apply simp_all apply (metis atLeastAtMost_iff le_Suc_eq max.cobounded1 max.coboundedI2) subgoal for m by (cases \m = 0\) (auto simp: max_def) done lemma f_Max\<^sub>0_mono: "y \ T x \ f_Max\<^sub>0 (T (x := y)) m \ f_Max\<^sub>0 T m" "T x \ y \ f_Max\<^sub>0 T m \ f_Max\<^sub>0 (T (x := y)) m" by (induction m) auto lemma f_Max\<^sub>0_out_of_range [simp]: "x \ {1..k} \ f_Max\<^sub>0 (T (x := y)) k = f_Max\<^sub>0 T k" by (induction k) auto lemma fun_upd_f_Max\<^sub>0: assumes "x \ {1..m}" "T x \ y" shows "f_Max\<^sub>0 (T (x := y)) m = max y (f_Max\<^sub>0 T m)" using assms by (induction m) auto locale LoadBalancing = (* Load Balancing *) fixes t :: "nat \ nat" and m :: nat and n :: nat assumes m_gt_0: "m > 0" begin subsection \Formalization of a Correct Load Balancing\ subsubsection \Definition\ definition lb :: "(nat \ nat) \ (nat \ nat set) \ nat \ bool" where "lb T A j = ((\x \ {1..m}. \y \ {1..m}. x \ y \ A x \ A y = {}) \ \No job is assigned to more than one machine\ \ (\x \ {1..m}. A x) = {1..j} \ \Every job is assigned\ \ (\x \ {1..m}. (\j \ A x. t j) = T x) \ \The processing times sum up to the correct load\)" abbreviation makespan :: "(nat \ nat) \ nat" where "makespan T \ f_Max\<^sub>0 T m" lemma makespan_def': "makespan T = Max (T ` {1..m})" using m_gt_0 by (simp add: f_Max\<^sub>0_equiv) (* lemma makespan_correct: "\x \ {1..m}. T x \ makespan T m" "m > 0 \ \x \ {1..m}. T x = makespan T m" apply (induction m) apply simp_all apply (metis atLeastAtMost_iff le_Suc_eq max.cobounded1 max.coboundedI2) subgoal for m by (cases \m = 0\) (auto simp: max_def) done lemma no_machines_lb_iff_no_jobs: "lb T A j 0 \ j = 0" unfolding lb_def by auto lemma machines_if_jobs: "\ lb T A j m; j > 0 \ \ m > 0" using no_machines_lb_iff_no_jobs by (cases m) auto *) lemma makespan_correct: "\x \ {1..m}. T x \ makespan T" "\x \ {1..m}. T x = makespan T" using f_Max\<^sub>0_correct m_gt_0 by auto lemma lbE: assumes "lb T A j" shows "\x \ {1..m}. \y \ {1..m}. x \ y \ A x \ A y = {}" "(\x \ {1..m}. A x) = {1..j}" "\x \ {1..m}. (\y \ A x. t y) = T x" using assms unfolding lb_def by blast+ lemma lbI: assumes "\x \ {1..m}. \y \ {1..m}. x \ y \ A x \ A y = {}" "(\x \ {1..m}. A x) = {1..j}" "\x \ {1..m}. (\y \ A x. t y) = T x" shows "lb T A j" using assms unfolding lb_def by blast lemma A_lb_finite [simp]: assumes "lb T A j" "x \ {1..m}" shows "finite (A x)" by (metis lbE(2) assms finite_UN finite_atLeastAtMost) text \If \A x\ is pairwise disjoint for all \x \ {1..m}\, then the the sum over the sums of the individual \A x\ is equal to the sum over the union of all \A x\.\ lemma sum_sum_eq_sum_Un: fixes A :: "nat \ nat set" assumes "\x \ {1..m}. \y \ {1..m}. x \ y \ A x \ A y = {}" and "\x \ {1..m}. finite (A x)" shows "(\x \ {1..m}. (\y \ A x. t y)) = (\x \ (\y \ {1..m}. A y). t x)" using assms proof (induction m) case (Suc m) have FINITE: "finite (\x \ {1..m}. A x)" "finite (A (Suc m))" using Suc.prems(2) by auto have "\x \ {1..m}. A x \ A (Suc m) = {}" using Suc.prems(1) by simp then have DISJNT: "(\x \ {1..m}. A x) \ (A (Suc m)) = {}" using Union_disjoint by blast have "(\x \ (\y \ {1..m}. A y). t x) + (\x \ A (Suc m). t x) = (\x \ ((\y \ {1..m}. A y) \ A (Suc m)). t x)" using sum.union_disjoint[OF FINITE DISJNT, symmetric] . also have "... = (\x \ (\y \ {1..Suc m}. A y). t x)" by (metis UN_insert image_Suc_lessThan image_insert inf_sup_aci(5) lessThan_Suc) finally show ?case using Suc by auto qed simp text \If \T\ and \A\ are a correct load balancing for \j\ jobs and \m\ machines, then the sum of the loads has to be equal to the sum of the processing times of the jobs\ lemma lb_impl_job_sum: assumes "lb T A j" shows "(\x \ {1..m}. T x) = (\x \ {1..j}. t x)" proof - note lbrules = lbE[OF assms] from assms have FINITE: "\x \ {1..m}. finite (A x)" by simp have "(\x \ {1..m}. T x) = (\x \ {1..m}. (\y \ A x. t y))" using lbrules(3) by simp also have "... = (\x \ {1..j}. t x)" using sum_sum_eq_sum_Un[OF lbrules(1) FINITE] unfolding lbrules(2) . finally show ?thesis . qed subsubsection \Lower Bounds for the Makespan\ text \If \T\ and \A\ are a correct load balancing for \j\ jobs and \m\ machines, then the processing time of any job \x \ {1..j}\ is a lower bound for the load of some machine \y \ {1..m}\\ lemma job_lower_bound_machine: assumes "lb T A j" "x \ {1..j}" shows "\y \ {1..m}. t x \ T y" proof - note lbrules = lbE[OF assms(1)] have "\y \ {1..m}. x \ A y" using lbrules(2) assms(2) by blast then obtain y where y_def: "y \ {1..m}" "x \ A y" .. moreover have "finite (A y)" using assms(1) y_def(1) by simp ultimately have "t x \ (\x \ A y. t x)" using lbrules(1) member_le_sum by fast also have "... = T y" using lbrules(3) y_def(1) by blast finally show ?thesis using y_def(1) by blast qed text \As the load of any machine is a lower bound for the makespan, the processing time of any job \x \ {1..j}\ has to also be a lower bound for the makespan. Follows from @{thm [source] job_lower_bound_machine} and @{thm [source] makespan_correct}.\ lemma job_lower_bound_makespan: assumes "lb T A j" "x \ {1..j}" shows "t x \ makespan T" by (meson job_lower_bound_machine[OF assms] makespan_correct(1) le_trans) text \The makespan over \j\ jobs is a lower bound for the makespan of any correct load balancing for \j\ jobs.\ lemma max_job_lower_bound_makespan: assumes "lb T A j" shows "Max\<^sub>0 (t ` {1..j}) \ makespan T" using job_lower_bound_makespan[OF assms] by fastforce lemma job_dist_lower_bound_makespan: assumes "lb T A j" shows "(\x \ {1..j}. t x) / m \ makespan T" proof - have "(\x \ {1..j}. t x) \ m * makespan T" using assms lb_impl_job_sum[symmetric] and sum_le_card_Max[of "{1..m}"] m_gt_0 by (simp add: makespan_def') then have "real (\x \ {1..j}. t x) \ real m * real (makespan T)" using of_nat_mono by fastforce then show ?thesis by (simp add: field_simps m_gt_0) qed subsection \The Greedy Approximation Algorithm\ text \This function will perform a linear scan from \k \ {1..m}\ and return the index of the machine with minimum load assuming \m > 0\\ fun min_arg :: "(nat \ nat) \ nat \ nat" where "min_arg T 0 = 1" | "min_arg T (Suc x) = (let k = min_arg T x in if T (Suc x) < T k then (Suc x) else k)" lemma min_correct: "\x \ {1..m}. T (min_arg T m) \ T x" by (induction m) (auto simp: Let_def le_Suc_eq, force) lemma min_in_range: "k > 0 \ (min_arg T k) \ {1..k}" by (induction k) (auto simp: Let_def, force+) lemma add_job: assumes "lb T A j" "x \ {1..m}" shows "lb (T (x := T x + t (Suc j))) (A (x := A x \ {Suc j})) (Suc j)" (is \lb ?T ?A _\) proof - note lbrules = lbE[OF assms(1)] \ \Rule 1: @{term ?A} pairwise disjoint\ have NOTIN: "\i \ {1..m}. Suc j \ A i" using lbrules(2) assms(2) by force with lbrules(1) have "\i \ {1..m}. i \ x \ A i \ (A x \ {Suc j}) = {}" using assms(2) by blast then have 1: "\x \ {1..m}. \y \ {1..m}. x \ y \ ?A x \ ?A y = {}" using lbrules(1) by simp \ \Rule 2: @{term ?A} contains all jobs\ have "(\y \ {1..m}. ?A y) = (\y \ {1..m}. A y) \ {Suc j}" using UNION_fun_upd assms(2) by auto also have "... = {1..Suc j}" unfolding lbrules(2) by auto finally have 2: "(\y \ {1..m}. ?A y) = {1..Suc j}" . \ \Rule 3: @{term ?A} sums to @{term ?T}\ have "(\i \ ?A x. t i) = (\i \ A x \ {Suc j}. t i)" by simp moreover have "A x \ {Suc j} = {}" using NOTIN assms(2) by blast moreover have "finite (A x)" "finite {Suc j}" using assms by simp+ ultimately have "(\i \ ?A x. t i) = (\i \ A x. t i) + (\i \ {Suc j}. t i)" using sum.union_disjoint by simp also have "... = T x + t (Suc j)" using lbrules(3) assms(2) by simp finally have "(\i \ ?A x. t i) = ?T x" by simp then have 3: "\i \ {1..m}. (\j \ ?A i. t j) = ?T i" using lbrules(3) assms(2) by simp from lbI[OF 1 2 3] show ?thesis . qed lemma makespan_mono: "y \ T x \ makespan (T (x := y)) \ makespan T" "T x \ y \ makespan T \ makespan (T (x := y))" using f_Max\<^sub>0_mono by auto lemma smaller_optimum: assumes "lb T A (Suc j)" shows "\T' A'. lb T' A' j \ makespan T' \ makespan T" proof - note lbrules = lbE[OF assms] have "\x \ {1..m}. Suc j \ A x" using lbrules(2) by auto then obtain x where x_def: "x \ {1..m}" "Suc j \ A x" .. let ?T = "T (x := T x - t (Suc j))" let ?A = "A (x := A x - {Suc j})" \ \Rule 1: @{term ?A} pairwise disjoint\ from lbrules(1) have "\i \ {1..m}. i \ x \ A i \ (A x - {Suc j}) = {}" using x_def(1) by blast then have 1: "\x \ {1..m}. \y \ {1..m}. x \ y \ ?A x \ ?A y = {}" using lbrules(1) by auto \ \Rule 2: @{term ?A} contains all jobs\ have NOTIN: "\i \ {1..m}. i \ x \ Suc j \ A i" using lbrules(1) x_def by blast then have "(\y \ {1..m}. ?A y) = (\y \ {1..m}. A y) - {Suc j}" using UNION_fun_upd x_def by auto also have "... = {1..j}" unfolding lbrules(2) by auto finally have 2: "(\y \ {1..m}. ?A y) = {1..j}" . \ \Rule 3: @{term ?A} sums to @{term ?T}\ have "(\i \ A x - {Suc j}. t i) = (\i \ A x. t i) - t (Suc j)" by (simp add: sum_diff1_nat x_def(2)) also have "... = T x - t (Suc j)" using lbrules(3) x_def(1) by simp finally have "(\i \ ?A x. t i) = ?T x" by simp then have 3: "\i \ {1..m}. (\j \ ?A i. t j) = ?T i" using lbrules(3) x_def(1) by simp \ \@{term makespan} is not larger\ have "lb ?T ?A j \ makespan ?T \ makespan T" using lbI[OF 1 2 3] makespan_mono(1) by force then show ?thesis by blast qed text \If the processing time \y\ does not contribute to the makespan, we can ignore it.\ lemma remove_small_job: assumes "makespan (T (x := T x + y)) \ T x + y" shows "makespan (T (x := T x + y)) = makespan T" proof - let ?T = "T (x := T x + y)" have NOT_X: "makespan ?T \ ?T x" using assms(1) by simp then have "\i \ {1..m}. makespan ?T = ?T i \ i \ x" using makespan_correct(2) by metis then obtain i where i_def: "i \ {1..m}" "makespan ?T = ?T i" "i \ x" by blast then have "?T i = T i" using NOT_X by simp moreover from this have "makespan T = T i" by (metis i_def(1,2) antisym_conv le_add1 makespan_mono(2) makespan_correct(1)) ultimately show ?thesis using i_def(2) by simp qed lemma greedy_makespan_no_jobs [simp]: "makespan (\_. 0) = 0" using m_gt_0 by (simp add: makespan_def') lemma min_avg: "m * T (min_arg T m) \ (\i \ {1..m}. T i)" (is \_ * ?T \ ?S\) proof - have "(\_ \ {1..m}. ?T) \ ?S" using sum_mono[of \{1..m}\ \\_. ?T\ T] and min_correct by blast then show ?thesis by simp qed definition inv\<^sub>1 :: "(nat \ nat) \ (nat \ nat set) \ nat \ bool" where "inv\<^sub>1 T A j = (lb T A j \ j \ n \ (\T' A'. lb T' A' j \ makespan T \ 2 * makespan T'))" lemma inv\<^sub>1E: assumes "inv\<^sub>1 T A j" shows "lb T A j" "j \ n" "lb T' A' j \ makespan T \ 2 * makespan T'" using assms unfolding inv\<^sub>1_def by blast+ lemma inv\<^sub>1I: assumes "lb T A j" "j \ n" "\T' A'. lb T' A' j \ makespan T \ 2 * makespan T'" shows "inv\<^sub>1 T A j" using assms unfolding inv\<^sub>1_def by blast lemma inv\<^sub>1_step: assumes "inv\<^sub>1 T A j" "j < n" shows "inv\<^sub>1 (T ((min_arg T m) := T (min_arg T m) + t (Suc j))) (A ((min_arg T m) := A (min_arg T m) \ {Suc j})) (Suc j)" (is \inv\<^sub>1 ?T ?A _\) proof - note invrules = inv\<^sub>1E[OF assms(1)] \ \Greedy is correct\ have LB: "lb ?T ?A (Suc j)" using add_job[OF invrules(1) min_in_range[OF m_gt_0]] by blast \ \Greedy maintains approximation factor\ have MK: "\T' A'. lb T' A' (Suc j) \ makespan ?T \ 2 * makespan T'" proof rule+ fix T\<^sub>1 A\<^sub>1 assume "lb T\<^sub>1 A\<^sub>1 (Suc j)" from smaller_optimum[OF this] obtain T\<^sub>0 A\<^sub>0 where "lb T\<^sub>0 A\<^sub>0 j" "makespan T\<^sub>0 \ makespan T\<^sub>1" by blast then have IH: "makespan T \ 2 * makespan T\<^sub>1" using invrules(3) by force show "makespan ?T \ 2 * makespan T\<^sub>1" proof (cases \makespan ?T = T (min_arg T m) + t (Suc j)\) case True have "m * T (min_arg T m) \ (\i \ {1..m}. T i)" by (rule min_avg) also have "... = (\i \ {1..j}. t i)" by (rule lb_impl_job_sum[OF invrules(1)]) finally have "real m * T (min_arg T m) \ (\i \ {1..j}. t i)" by (auto dest: of_nat_mono) with m_gt_0 have "T (min_arg T m) \ (\i \ {1..j}. t i) / m" by (simp add: field_simps) then have "T (min_arg T m) \ makespan T\<^sub>1" using job_dist_lower_bound_makespan[OF \lb T\<^sub>0 A\<^sub>0 j\] and \makespan T\<^sub>0 \ makespan T\<^sub>1\ by linarith moreover have "t (Suc j) \ makespan T\<^sub>1" using job_lower_bound_makespan[OF \lb T\<^sub>1 A\<^sub>1 (Suc j)\] by simp ultimately show ?thesis unfolding True by simp next case False show ?thesis using remove_small_job[OF False] IH by simp qed qed from inv\<^sub>1I[OF LB _ MK] show ?thesis using assms(2) by simp qed lemma simple_greedy_approximation: "VARS T A i j {True} T := (\_. 0); A := (\_. {}); j := 0; WHILE j < n INV {inv\<^sub>1 T A j} DO i := min_arg T m; j := (Suc j); A := A (i := A(i) \ {j}); T := T (i := T(i) + t j) OD {lb T A n \ (\T' A'. lb T' A' n \ makespan T \ 2 * makespan T')}" proof (vcg, goal_cases) case (1 T A i j) then show ?case by (simp add: lb_def inv\<^sub>1_def) next case (2 T A i j) then show ?case using inv\<^sub>1_step by simp next case (3 T A i j) then show ?case unfolding inv\<^sub>1_def by force qed definition sorted :: "nat \ bool" where "sorted j = (\x \ {1..j}. \y \ {1..x}. t x \ t y)" lemma sorted_smaller [simp]: "\ sorted j; j \ j' \ \ sorted j'" unfolding sorted_def by simp lemma j_gt_m_pigeonhole: assumes "lb T A j" "j > m" shows "\x \ {1..j}. \y \ {1..j}. \z \ {1..m}. x \ y \ x \ A z \ y \ A z" proof - have "\x \ {1..j}. \y \ {1..m}. x \ A y" using lbE(2)[OF assms(1)] by blast then have "\f. \x \ {1..j}. x \ A (f x) \ f x \ {1..m}" by metis then obtain f where f_def: "\x \ {1..j}. x \ A (f x) \ f x \ {1..m}" .. then have "card (f ` {1..j}) \ card {1..m}" by (meson card_mono finite_atLeastAtMost image_subset_iff) also have "... < card {1..j}" using assms(2) by simp finally have "card (f ` {1..j}) < card {1..j}" . then have "\ inj_on f {1..j}" using pigeonhole by blast then have "\x \ {1..j}. \y \ {1..j}. x \ y \ f x = f y" unfolding inj_on_def by blast then show ?thesis using f_def by metis qed text \If \T\ and \A\ are a correct load balancing for \j\ jobs and \m\ machines with \j > m\, and the jobs are sorted in descending order, then there exists a machine \x \ {1..m}\ whose load is at least twice as large as the processing time of job \j\.\ lemma sorted_job_lower_bound_machine: assumes "lb T A j" "j > m" "sorted j" shows "\x \ {1..m}. 2 * t j \ T x" proof - \ \Step 1: Obtaining the jobs\ note lbrules = lbE[OF assms(1)] obtain j\<^sub>1 j\<^sub>2 x where *: "j\<^sub>1 \ {1..j}" "j\<^sub>2 \ {1..j}" "x \ {1..m}" "j\<^sub>1 \ j\<^sub>2" "j\<^sub>1 \ A x" "j\<^sub>2 \ A x" using j_gt_m_pigeonhole[OF assms(1,2)] by blast \ \Step 2: Jobs contained in sum\ have "finite (A x)" using assms(1) *(3) by simp then have SUM: "(\i \ A x. t i) = t j\<^sub>1 + t j\<^sub>2 + (\i \ A x - {j\<^sub>1} - {j\<^sub>2}. t i)" using *(4-6) by (simp add: sum.remove) \ \Step 3: Proof of lower bound\ have "t j \ t j\<^sub>1" "t j \ t j\<^sub>2" using assms(3) *(1-2) unfolding sorted_def by auto then have "2 * t j \ t j\<^sub>1 + t j\<^sub>2" by simp also have "... \ (\i \ A x. t i)" unfolding SUM by simp finally have "2 * t j \ T x" using lbrules(3) *(3) by simp then show ?thesis using *(3) by blast qed text \Reasoning analogous to @{thm [source] job_lower_bound_makespan}.\ lemma sorted_job_lower_bound_makespan: assumes "lb T A j" "j > m" "sorted j" shows "2 * t j \ makespan T" proof - obtain x where x_def: "x \ {1..m}" "2 * t j \ T x" using sorted_job_lower_bound_machine[OF assms] .. with makespan_correct(1) have "T x \ makespan T" by blast with x_def(2) show ?thesis by simp qed lemma min_zero: assumes "x \ {1..k}" "T x = 0" shows "T (min_arg T k) = 0" using assms(1) proof (induction k) case (Suc k) show ?case proof (cases \x = Suc k\) case True then show ?thesis using assms(2) by (simp add: Let_def) next case False with Suc have "T (min_arg T k) = 0" by simp then show ?thesis by simp qed qed simp lemma min_zero_index: assumes "x \ {1..k}" "T x = 0" shows "min_arg T k \ x" using assms(1) proof (induction k) case (Suc k) show ?case proof (cases \x = Suc k\) case True then show ?thesis using min_in_range[of "Suc k"] by simp next case False with Suc.prems have "x \ {1..k}" by simp from min_zero[OF this, of T] assms(2) Suc.IH[OF this] show ?thesis by simp qed qed simp definition inv\<^sub>2 :: "(nat \ nat) \ (nat \ nat set) \ nat \ bool" where "inv\<^sub>2 T A j = (lb T A j \ j \ n \ (\T' A'. lb T' A' j \ makespan T \ 3 / 2 * makespan T') \ (\x > j. T x = 0) \ (j \ m \ makespan T = Max\<^sub>0 (t ` {1..j})))" lemma inv\<^sub>2E: assumes "inv\<^sub>2 T A j" shows "lb T A j" "j \ n" "lb T' A' j \ makespan T \ 3 / 2 * makespan T'" "\x > j. T x = 0" "j \ m \ makespan T = Max\<^sub>0 (t ` {1..j})" using assms unfolding inv\<^sub>2_def by blast+ lemma inv\<^sub>2I: assumes "lb T A j" "j \ n" "\T' A'. lb T' A' j \ makespan T \ 3 / 2 * makespan T'" "\x > j. T x = 0" "j \ m \ makespan T = Max\<^sub>0 (t ` {1..j})" shows "inv\<^sub>2 T A j" unfolding inv\<^sub>2_def using assms by blast lemma inv\<^sub>2_step: assumes "sorted n" "inv\<^sub>2 T A j" "j < n" shows "inv\<^sub>2 (T (min_arg T m := T(min_arg T m) + t(Suc j))) (A (min_arg T m := A(min_arg T m) \ {Suc j})) (Suc j)" (is \inv\<^sub>2 ?T ?A _\) proof (cases \Suc j > m\) case True note invrules = inv\<^sub>2E[OF assms(2)] \ \Greedy is correct\ have LB: "lb ?T ?A (Suc j)" using add_job[OF invrules(1) min_in_range[OF m_gt_0]] by blast \ \Greedy maintains approximation factor\ have MK: "\T' A'. lb T' A' (Suc j) \ makespan ?T \ 3 / 2 * makespan T'" proof rule+ fix T\<^sub>1 A\<^sub>1 assume "lb T\<^sub>1 A\<^sub>1 (Suc j)" from smaller_optimum[OF this] obtain T\<^sub>0 A\<^sub>0 where "lb T\<^sub>0 A\<^sub>0 j" "makespan T\<^sub>0 \ makespan T\<^sub>1" by blast then have IH: "makespan T \ 3 / 2 * makespan T\<^sub>1" using invrules(3) by force show "makespan ?T \ 3 / 2 * makespan T\<^sub>1" proof (cases \makespan ?T = T (min_arg T m) + t (Suc j)\) case True have "m * T (min_arg T m) \ (\i \ {1..m}. T i)" by (rule min_avg) also have "... = (\i \ {1..j}. t i)" by (rule lb_impl_job_sum[OF invrules(1)]) finally have "real m * T (min_arg T m) \ (\i \ {1..j}. t i)" by (auto dest: of_nat_mono) with m_gt_0 have "T (min_arg T m) \ (\i \ {1..j}. t i) / m" by (simp add: field_simps) then have "T (min_arg T m) \ makespan T\<^sub>1" using job_dist_lower_bound_makespan[OF \lb T\<^sub>0 A\<^sub>0 j\] and \makespan T\<^sub>0 \ makespan T\<^sub>1\ by linarith moreover have "2 * t (Suc j) \ makespan T\<^sub>1" using sorted_job_lower_bound_makespan[OF \lb T\<^sub>1 A\<^sub>1 (Suc j)\ \Suc j > m\] and assms(1,3) by simp ultimately show ?thesis unfolding True by simp next case False show ?thesis using remove_small_job[OF False] IH by simp qed qed have "\x > Suc j. ?T x = 0" using invrules(4) min_in_range[OF m_gt_0, of T] True by simp with inv\<^sub>2I[OF LB _ MK] show ?thesis using assms(3) True by simp next case False then have IN_RANGE: "Suc j \ {1..m}" by simp note invrules = inv\<^sub>2E[OF assms(2)] then have "T (Suc j) = 0" by blast \ \Greedy is correct\ have LB: "lb ?T ?A (Suc j)" using add_job[OF invrules(1) min_in_range[OF m_gt_0]] by blast \ \Greedy is trivially optimal\ from IN_RANGE \T (Suc j) = 0\ have "min_arg T m \ Suc j" using min_zero_index by blast with invrules(4) have EMPTY: "\x > Suc j. ?T x = 0" by simp from IN_RANGE \T (Suc j) = 0\ have "T (min_arg T m) = 0" using min_zero by blast with fun_upd_f_Max\<^sub>0[OF min_in_range[OF m_gt_0]] invrules(5) False have TRIV: "makespan ?T = Max\<^sub>0 (t ` {1..Suc j})" unfolding f_Max\<^sub>0_equiv[symmetric] by simp have MK: "\T' A'. lb T' A' (Suc j) \ makespan ?T \ 3 / 2 * makespan T'" by (auto simp: TRIV[folded f_Max\<^sub>0_equiv] dest!: max_job_lower_bound_makespan[folded f_Max\<^sub>0_equiv]) from inv\<^sub>2I[OF LB _ MK EMPTY TRIV] show ?thesis using assms(3) by simp qed lemma sorted_greedy_approximation: "sorted n \ VARS T A i j {True} T := (\_. 0); A := (\_. {}); j := 0; WHILE j < n INV {inv\<^sub>2 T A j} DO i := min_arg T m; j := (Suc j); A := A (i := A(i) \ {j}); T := T (i := T(i) + t j) OD {lb T A n \ (\T' A'. lb T' A' n \ makespan T \ 3 / 2 * makespan T')}" proof (vcg, goal_cases) case (1 T A i j) then show ?case by (simp add: lb_def inv\<^sub>2_def) next case (2 T A i j) then show ?case using inv\<^sub>2_step by simp next case (3 T A i j) then show ?case unfolding inv\<^sub>2_def by force qed end (* LoadBalancing *) end (* Theory *)