(* Author: Ujkan Sulejmani *) section \Center Selection\ theory Center_Selection imports Complex_Main "HOL-Hoare.Hoare_Logic" begin text \The Center Selection (or metric k-center) problem. Given a set of \textit{sites} \S\ in a metric space, find a subset \C \ S\ that minimizes the maximal distance from any \s \ S\ to some \c \ C\. This theory presents a verified 2-approximation algorithm. It is based on Section 11.2 in the book by Kleinberg and Tardos \cite{KleinbergT06}. In contrast to the proof in the book, our proof is a standard invariant proof.\ locale Center_Selection = fixes S :: "('a :: metric_space) set" and k :: nat assumes finite_sites: "finite S" and non_empty_sites: "S \ {}" and non_zero_k: "k > 0" begin definition distance :: "('a::metric_space) set \ ('a::metric_space) \ real" where "distance C s = Min (dist s ` C)" definition radius :: "('a :: metric_space) set \ real" where "radius C = Max (distance C ` S)" lemma distance_mono: assumes "C\<^sub>1 \ C\<^sub>2" and "C\<^sub>1 \ {}" and "finite C\<^sub>2" shows "distance C\<^sub>1 s \ distance C\<^sub>2 s" by (simp add: Min.subset_imp assms distance_def image_mono) lemma finite_distances: "finite (distance C ` S)" using finite_sites by simp lemma non_empty_distances: "distance C ` S \ {}" using non_empty_sites by simp lemma radius_contained: "radius C \ distance C ` S" using finite_distances non_empty_distances Max_in radius_def by simp lemma radius_def2: "\s \ S. distance C s = radius C" using radius_contained image_iff by metis lemma dist_lemmas_aux: assumes "finite C" and "C \ {}" shows "finite (dist s ` C)" and "finite (dist s ` C) \ distance C s \ dist s ` C" and "distance C s \ dist s ` C \ \c \ C. dist s c = distance C s" and "\c \ C. dist s c = distance C s \ distance C s \ 0" proof show "finite C" using assms(1) by simp next assume "finite (dist s ` C)" then show "distance C s \ dist s ` C" using distance_def eq_Min_iff assms(2) by blast next assume "distance C s \ dist s ` C" then show "\c \ C. dist s c = distance C s" by auto next assume "\c \ C. dist s c = distance C s" then show "distance C s \ 0" by (metis zero_le_dist) qed lemma dist_lemmas: assumes "finite C" and "C \ {}" shows "finite (dist s ` C)" and "distance C s \ dist s ` C" and "\c \ C. dist s c = distance C s" and "distance C s \ 0" using dist_lemmas_aux assms by auto lemma radius_max_prop: "(\s \ S. distance C s \ r) \ (radius C \ r)" by (metis image_iff radius_contained) lemma dist_ins: assumes "\c\<^sub>1 \ C. \c\<^sub>2 \ C. c\<^sub>1 \ c\<^sub>2 \ x < dist c\<^sub>1 c\<^sub>2" and "distance C s > x" and "finite C" and "C \ {}" shows "\c\<^sub>1 \ (C \ {s}). \c\<^sub>2 \ (C \ {s}). c\<^sub>1 \ c\<^sub>2 \ x < dist c\<^sub>1 c\<^sub>2" proof (rule+) fix c\<^sub>1 c\<^sub>2 assume local_assms: "c\<^sub>1\C \ {s}" "c\<^sub>2\C \ {s}" "c\<^sub>1 \ c\<^sub>2" then have "c\<^sub>1 \ C \ c\<^sub>2 \ C \ c\<^sub>1 \C \ c\<^sub>2\ {s} \ c\<^sub>2\C \ c\<^sub>1 \ {s} \ c\<^sub>1 \ {s} \ c\<^sub>2\ {s}" by auto then show "x < dist c\<^sub>1 c\<^sub>2" proof (elim disjE) assume "c\<^sub>1 \C \ c\<^sub>2\C" then show ?thesis using assms(1) local_assms(3) by simp next assume case_assm: "c\<^sub>1 \ C \ c\<^sub>2 \ {s}" have "x < distance C c\<^sub>2" using assms(2) case_assm by simp also have " ... \ dist c\<^sub>2 c\<^sub>1" using Min.coboundedI distance_def assms(3,4) dist_lemmas(1, 2) case_assm by simp also have " ... = dist c\<^sub>1 c\<^sub>2" using dist_commute by metis finally show ?thesis . next assume case_assm: "c\<^sub>2 \ C \ c\<^sub>1 \ {s}" have "x < distance C c\<^sub>1" using assms(2) case_assm by simp also have " ... \ dist c\<^sub>1 c\<^sub>2" using Min.coboundedI distance_def assms(3,4) dist_lemmas(1, 2) case_assm by simp finally show ?thesis . next assume "c\<^sub>1 \ {s} \ c\<^sub>2 \ {s}" then have False using local_assms by simp then show ?thesis by simp qed qed subsection \A Preliminary Algorithm and Proof\ text \This subsection verifies an auxiliary algorithm by Kleinberg and Tardos. Our proof of the main algorithm does not does not rely on this auxiliary algorithm at all but we do reuse part off its invariant proof later on.\ definition inv :: "('a :: metric_space) set \ ('a :: metric_space set) \ real \ bool" where "inv S' C r = ((\s \ (S - S'). distance C s \ 2*r) \ S' \ S \ C \ S \ (\c \ C. \s \ S'. S' \ {} \ dist c s > 2 * r) \ (S' = S \ C \ {}) \ (\c\<^sub>1 \ C. \c\<^sub>2 \ C. c\<^sub>1 \ c\<^sub>2 \ dist c\<^sub>1 c\<^sub>2 > 2 * r))" lemma inv_init: "inv S {} r" unfolding inv_def non_empty_sites by simp lemma inv_step: assumes "S' \ {}" and IH: "inv S' C r" defines[simp]: "s \ (SOME s. s \ S')" shows "inv (S' - {s' . s' \ S' \ dist s s' \ 2*r}) (C \ {s}) r" proof - have s_def: "s \ S'" using assms(1) some_in_eq by auto have "finite (C \ {s})" using IH finite_subset[OF _ finite_sites] by (simp add: inv_def) moreover have "(\s' \ (S - (S' - {s' . s' \ S' \ dist s s' \ 2*r})). distance (C \ {s}) s' \ 2*r)" proof fix s'' assume "s'' \ S - (S' - {s' . s' \ S' \ dist s s' \ 2*r})" then have "s'' \ S - S' \ s'' \ {s' . s' \ S' \ dist s s' \ 2*r}" by simp then show "distance (C \ {s}) s'' \ 2 * r" proof (elim disjE) assume local_assm: "s'' \ S - S'" have "S' = S \ C \ {}" using IH by (simp add: inv_def) then show ?thesis proof (elim disjE) assume "S' = S" then have "s'' \ {}" using local_assm by simp then show ?thesis by simp next assume C_not_empty: "C \ {}" have "finite C" using IH finite_subset[OF _ finite_sites] by (simp add: inv_def) then have "distance (C \ {s}) s'' \ distance C s''" using distance_mono C_not_empty by (meson Un_upper1 calculation) also have " ... \ 2 * r" using IH local_assm inv_def by simp finally show ?thesis . qed next assume local_assm: "s'' \ {s' . s' \ S' \ dist s s' \ 2*r}" then have "distance (C \ {s}) s'' \ dist s'' s" using Min.coboundedI distance_def dist_lemmas calculation by auto also have " ... \ 2 * r" using local_assm by (smt dist_self dist_triangle2 mem_Collect_eq) finally show ?thesis . qed qed moreover have "S' - {s' . s' \ S' \ dist s s' \ 2*r} \ S" using IH by (auto simp: inv_def) moreover { have "s \ S" using IH inv_def s_def by auto then have "C \ {s} \ S" using IH by (simp add: inv_def) } moreover have "(\c\C \ {s}. \c\<^sub>2\C \ {s}. c \ c\<^sub>2 \ 2 * r < dist c c\<^sub>2)" proof (rule+) fix c\<^sub>1 c\<^sub>2 assume local_assms: "c\<^sub>1 \ C \ {s}" "c\<^sub>2 \ C \ {s}" "c\<^sub>1 \ c\<^sub>2" then have "(c\<^sub>1 \ C \ c\<^sub>2 \ C) \ (c\<^sub>1 = s \ c\<^sub>2 \ C) \ (c\<^sub>1 \ C \ c\<^sub>2 = s) \ (c\<^sub>1 = s \ c\<^sub>2 = s)" using assms by auto then show "2 * r < dist c\<^sub>1 c\<^sub>2" proof (elim disjE) assume "c\<^sub>1 \ C \ c\<^sub>2 \ C" then show "2 * r < dist c\<^sub>1 c\<^sub>2" using IH inv_def local_assms by simp next assume case_assm: "c\<^sub>1 = s \ c\<^sub>2 \ C" have "(\c \ C. \s\S'. S' \ {} \ 2 * r < dist c s)" using IH inv_def by simp then show ?thesis by (smt case_assm s_def assms(1) dist_self dist_triangle3 singletonD) next assume case_assm: "c\<^sub>1 \ C \ c\<^sub>2 = s" have "(\c \ C. \s\S'. S' \ {} \ 2 * r < dist c s)" using IH inv_def by simp then show ?thesis by (smt case_assm s_def assms(1) dist_self dist_triangle3 singletonD) next assume "c\<^sub>1 = s \ c\<^sub>2 = s" then have False using local_assms(3) by simp then show ?thesis by simp qed qed moreover have "(\c\C \ {s}. \s'' \ S' - {s' \ S'. dist s s' \ 2 * r}. S' - {s' \ S'. dist s s' \ 2 * r} \ {} \ 2 * r < dist c s'')" using IH inv_def by fastforce moreover have "(S' - {s' \ S'. dist s s' \ 2 * r} = S \ C \ {s} \ {})" by simp ultimately show ?thesis unfolding inv_def by blast qed lemma inv_last_1: assumes "\s \ (S - S'). distance C s \ 2*r" and "S' = {}" shows "radius C \ 2*r" by (metis Diff_empty assms image_iff radius_contained) lemma inv_last_2: assumes "finite C" and "card C > n" and "C \ S" and "\c\<^sub>1 \ C. \c\<^sub>2 \ C. c\<^sub>1 \ c\<^sub>2 \ dist c\<^sub>1 c\<^sub>2 > 2*r" shows "\C'. card C' \ n \ card C' > 0 \ radius C' > r" (is ?P) proof (rule ccontr) assume "\ ?P" then obtain C' where card_C': "card C' \ n \ card C' > 0" and radius_C': "radius C' \ r" by auto have "\c \ C. (\c'. c' \ C' \ dist c c' \ r)" proof fix c assume "c \ C" then have "c \ S" using assms(3) by blast then have "distance C' c \ radius C'" using finite_distances by (simp add: radius_def) then have "distance C' c \ r" using radius_C' by simp then show "\c'. c' \ C' \ dist c c' \ r" using dist_lemmas by (metis card_C' card_gt_0_iff) qed then obtain f where f: "\c\C. f c \ C' \ dist c (f c) \ r" by metis have "\inj_on f C" proof assume "inj_on f C" then have "card C' \ card C" using \inj_on f C\ card_inj_on_le card_ge_0_finite card_C' f by blast then show False using card_C' \n < card C\ by linarith qed then obtain c1 c2 where defs: "c1 \ C \ c2 \ C \ c1 \ c2 \ f c1 = f c2" using inj_on_def by blast then have *: "dist c1 (f c1) \ r \ dist c2 (f c1) \ r" using f by auto have "2 * r < dist c1 c2" using assms defs by simp also have " ... \ dist c1 (f c1) + dist (f c1) c2" by(rule dist_triangle) also have " ... = dist c1 (f c1) + dist c2 (f c1)" using dist_commute by simp also have " ... \ 2 * r" using * by simp finally show False by simp qed lemma inv_last: assumes "inv {} C r" shows "(card C \ k \ radius C \ 2*r) \ (card C > k \ (\C'. card C' > 0 \ card C' \ k \ radius C' > r))" using assms inv_def inv_last_1 inv_last_2 finite_subset[OF _ finite_sites] by auto theorem Center_Selection_r: "VARS (S' :: ('a :: metric_space) set) (C :: ('a :: metric_space) set) (r :: real) (s :: 'a) {True} S' := S; C := {}; WHILE S' \ {} INV {inv S' C r} DO s := (SOME s. s \ S'); C := C \ {s}; S' := S' - {s' . s' \ S' \ dist s s' \ 2*r} OD {(card C \ k \ radius C \ 2*r) \ (card C > k \ (\C'. card C' > 0 \ card C' \ k \ radius C' > r))}" proof (vcg, goal_cases) case (1 S' C r) then show ?case using inv_init by simp next case (2 S' C r) then show ?case using inv_step by simp next case (3 S' C r) then show ?case using inv_last by blast qed subsection \The Main Algorithm\ definition invar :: "('a :: metric_space) set \ bool" where "invar C = (C \ {} \ card C \ k \ C \ S \ (\C'. (\c\<^sub>1 \ C. \c\<^sub>2 \ C. c\<^sub>1 \ c\<^sub>2 \ dist c\<^sub>1 c\<^sub>2 > 2 * radius C') \ (\s \ S. distance C s \ 2 * radius C')))" abbreviation some where "some A \ (SOME s. s \ A)" lemma invar_init: "invar {some S}" proof - let ?s = "some S" have s_in_S: "?s \ S" using some_in_eq non_empty_sites by blast have "{?s} \ {}" by simp moreover have "{SOME s. s \ S} \ S" using s_in_S by simp moreover have "card {SOME s. s \ S} \ k" using non_zero_k by simp ultimately show ?thesis by (auto simp: invar_def) qed abbreviation furthest_from where "furthest_from C \ (SOME s. s \ S \ distance C s = Max (distance C ` S))" lemma invar_step: assumes "invar C" and "card C < k" shows "invar (C \ {furthest_from C})" proof - have furthest_from_C_props: "furthest_from C \ S \ distance C (furthest_from C) = radius C " using someI_ex[of "\x. x \ S \ distance C x = radius C"] radius_def2 radius_def by auto have C_props: "finite C \ C \ {}" using finite_subset[OF _ finite_sites] assms(1) unfolding invar_def by blast { have "card (C \ {furthest_from C}) \ card C + 1" using assms(1) C_props unfolding invar_def by (simp add: card_insert_if) then have "card (C \ {furthest_from C}) < k + 1" using assms(2) by simp then have "card (C \ {furthest_from C}) \ k" by simp } moreover have "C \ {furthest_from C} \ {}" by simp moreover have "(C \ {furthest_from C}) \ S" using assms(1) furthest_from_C_props unfolding invar_def by simp moreover have "\C'. (\s \ S. distance (C \ {furthest_from C}) s \ 2 * radius C') \ (\c\<^sub>1 \ C \ {furthest_from C}. \c\<^sub>2 \ C \ {furthest_from C}. c\<^sub>1 \ c\<^sub>2 \ 2 * radius C' < dist c\<^sub>1 c\<^sub>2)" proof fix C' have "distance C (furthest_from C) > 2 * radius C' \ distance C (furthest_from C) \ 2 * radius C'" by auto then show "(\s \ S. distance (C \ {furthest_from C}) s \ 2 * radius C') \ (\c\<^sub>1 \ C \ {furthest_from C}. \c\<^sub>2 \ C \ {furthest_from C}. c\<^sub>1 \ c\<^sub>2 \ 2 * radius C' < dist c\<^sub>1 c\<^sub>2)" proof (elim disjE) assume asm: "distance C (furthest_from C) > 2 * radius C'" then have "\(\s \ S. distance C s \ 2 * radius C')" using furthest_from_C_props by force then have IH: "\c\<^sub>1 \ C. \c\<^sub>2 \ C. c\<^sub>1 \ c\<^sub>2 \ 2 * radius C' < dist c\<^sub>1 c\<^sub>2" using assms(1) unfolding invar_def by blast have "(\c\<^sub>1 \ C \ {furthest_from C}. (\c\<^sub>2 \ C \ {furthest_from C}. c\<^sub>1 \ c\<^sub>2 \ 2 * radius C' < dist c\<^sub>1 c\<^sub>2))" using dist_ins[of "C" "2 * radius C'" "furthest_from C"] IH C_props asm by simp then show ?thesis by simp next assume main_assm: "2 * radius C' \ distance C (furthest_from C)" have "(\s \ S. distance (C \ {furthest_from C}) s \ 2 * radius C')" proof fix s assume local_assm: "s \ S" then show "distance (C \ {furthest_from C}) s \ 2 * radius C'" proof - have "distance (C \ {furthest_from C}) s \ distance C s" using distance_mono[of C "C \ {furthest_from C}"] C_props by auto also have " ... \ distance C (furthest_from C)" using Max.coboundedI local_assm finite_distances radius_def furthest_from_C_props by auto also have " ... \ 2 * radius C'" using main_assm by simp finally show ?thesis . qed qed then show ?thesis by blast qed qed ultimately show ?thesis unfolding invar_def by blast qed lemma invar_last: assumes "invar C" and "\card C < k" shows "card C = k" and "card C' > 0 \ card C' \ k \ radius C \ 2 * radius C'" proof - show "card C = k" using assms(1, 2) unfolding invar_def by simp next have C_props: "finite C \ C \ {}" using finite_sites assms(1) unfolding invar_def by (meson finite_subset) show "card C' > 0 \ card C' \ k \ radius C \ 2 * radius C'" proof (rule impI) assume C'_assms: "0 < card (C' :: 'a set) \ card C' \ k" let ?r = "radius C'" have "(\c\<^sub>1 \ C. \c\<^sub>2 \ C. c\<^sub>1 \ c\<^sub>2 \ 2 * ?r < dist c\<^sub>1 c\<^sub>2) \ (\s \ S. distance C s \ 2 * ?r)" using assms(1) unfolding invar_def by simp then show "radius C \ 2 * ?r" proof assume case_assm: "\c\<^sub>1\C. \c\<^sub>2\C. c\<^sub>1 \ c\<^sub>2 \ 2 * ?r < dist c\<^sub>1 c\<^sub>2" obtain s where s_def: "radius C = distance C s \ s \ S" using radius_def2 by metis show ?thesis proof (rule ccontr) assume contr_assm: "\ radius C \ 2 * ?r" then have s_prop: "distance C s > 2 * ?r" using s_def by simp then have \\c\<^sub>1 \ C \ {s}. \c\<^sub>2 \ C \ {s}. c\<^sub>1 \ c\<^sub>2 \ dist c\<^sub>1 c\<^sub>2 > 2 * ?r\ using C_props dist_ins[of "C" "2*?r" "s"] case_assm by blast moreover { have "s \ C" proof assume "s \ C" then have "distance C s \ dist s s" using Min.coboundedI[of "distance C ` S" "dist s s"] by (simp add: distance_def C_props) also have " ... = 0" by simp finally have "distance C s = 0" using dist_lemmas(4) by (smt C_props) then have radius_le_zero: "2 * ?r < 0" using contr_assm s_def by simp obtain x where x_def: "?r = distance C' x" using radius_def2 by metis obtain l where l_def: "distance C' x = dist x l" using dist_lemmas(3) by (metis C'_assms card_gt_0_iff) then have "dist x l = ?r" by (simp add: x_def) also have "... < 0" using C'_assms radius_le_zero by simp finally show False by simp qed then have "card (C \ {s}) > k" using assms(1,2) C_props unfolding invar_def by simp } moreover have "C \ {s} \ S" using assms(1) s_def unfolding invar_def by simp moreover have "finite (C \ {s})" using calculation(3) finite_subset finite_sites by auto ultimately have "\C. card C \ k \ card C > 0 \ radius C > ?r" using inv_last_2 by metis then have "?r > ?r" using C'_assms by blast then show False by simp qed next assume "\s\S. distance C s \ 2 * radius C'" then show ?thesis by (metis image_iff radius_contained) qed qed qed theorem Center_Selection: "VARS (C :: ('a :: metric_space) set) (s :: ('a :: metric_space)) {k \ card S} C := {some S}; WHILE card C < k INV {invar C} DO C := C \ {furthest_from C} OD {card C = k \ (\C'. card C' > 0 \ card C' \ k \ radius C \ 2 * radius C')}" proof (vcg, goal_cases) case (1 C s) show ?case using invar_init by simp next case (2 C s) then show ?case using invar_step by blast next case (3 C s) then show ?case using invar_last by blast qed end end