(* File: Indexed_PQueue.thy Author: Bohua Zhan *) section \Indexed priority queues\ theory Indexed_PQueue imports Arrays_Ex Mapping_Str begin text \ Verification of indexed priority queue: functional part. The data structure is also verified by Lammich in \cite{Refine_Imperative_HOL-AFP}. \ subsection \Successor functions, eq-pred predicate\ fun s1 :: "nat \ nat" where "s1 m = 2 * m + 1" fun s2 :: "nat \ nat" where "s2 m = 2 * m + 2" lemma s_inj [forward]: "s1 m = s1 m' \ m = m'" "s2 m = s2 m' \ m = m'" by auto lemma s_neq [resolve]: "s1 m \ s2 m'" "s1 m > m" "s2 m > m" "s2 m > s1 m" using s1.simps s2.simps by presburger+ setup \add_forward_prfstep_cond @{thm s_neq(2)} [with_term "s1 ?m"]\ setup \add_forward_prfstep_cond @{thm s_neq(3)} [with_term "s2 ?m"]\ setup \add_forward_prfstep_cond @{thm s_neq(4)} [with_term "s2 ?m", with_term "s1 ?m"]\ inductive eq_pred :: "nat \ nat \ bool" where "eq_pred n n" | "eq_pred n m \ eq_pred n (s1 m)" | "eq_pred n m \ eq_pred n (s2 m)" setup \add_case_induct_rule @{thm eq_pred.cases}\ setup \add_prop_induct_rule @{thm eq_pred.induct}\ setup \add_resolve_prfstep @{thm eq_pred.intros(1)}\ setup \fold add_backward_prfstep @{thms eq_pred.intros(2,3)}\ lemma eq_pred_parent1 [forward]: "eq_pred i (s1 k) \ i \ s1 k \ eq_pred i k" @proof @let "v = s1 k" @prop_induct "eq_pred i v" @qed lemma eq_pred_parent2 [forward]: "eq_pred i (s2 k) \ i \ s2 k \ eq_pred i k" @proof @let "v = s2 k" @prop_induct "eq_pred i v" @qed lemma eq_pred_cases: "eq_pred i j \ eq_pred (s1 i) j \ eq_pred (s2 i) j \ j = i \ j = s1 i \ j = s2 i" @proof @prop_induct "eq_pred i j" @qed setup \add_forward_prfstep_cond @{thm eq_pred_cases} [with_cond "?i \ s1 ?k", with_cond "?i \ s2 ?k"]\ lemma eq_pred_le [forward]: "eq_pred i j \ i \ j" @proof @prop_induct "eq_pred i j" @qed subsection \Heap property\ text \The corresponding tree is a heap\ definition is_heap :: "('a \ 'b::linorder) list \ bool" where [rewrite]: "is_heap xs = (\i j. eq_pred i j \ j < length xs \ snd (xs ! i) \ snd (xs ! j))" lemma is_heapD: "is_heap xs \ j < length xs \ eq_pred i j \ snd (xs ! i) \ snd (xs ! j)" by auto2 setup \add_forward_prfstep_cond @{thm is_heapD} [with_term "?xs ! ?j"]\ setup \del_prfstep_thm_eqforward @{thm is_heap_def}\ subsection \Bubble-down\ text \The corresponding tree is a heap, except k is not necessarily smaller than its descendents.\ definition is_heap_partial1 :: "('a \ 'b::linorder) list \ nat \ bool" where [rewrite]: "is_heap_partial1 xs k = (\i j. eq_pred i j \ i \ k \ j < length xs \ snd (xs ! i) \ snd (xs ! j))" text \Two cases of switching with s1 k.\ lemma bubble_down1: "s1 k < length xs \ is_heap_partial1 xs k \ snd (xs ! k) > snd (xs ! s1 k) \ snd (xs ! s1 k) \ snd (xs ! s2 k) \ is_heap_partial1 (list_swap xs k (s1 k)) (s1 k)" by auto2 setup \add_forward_prfstep_cond @{thm bubble_down1} [with_term "list_swap ?xs ?k (s1 ?k)"]\ lemma bubble_down2: "s1 k < length xs \ is_heap_partial1 xs k \ snd (xs ! k) > snd (xs ! s1 k) \ s2 k \ length xs \ is_heap_partial1 (list_swap xs k (s1 k)) (s1 k)" by auto2 setup \add_forward_prfstep_cond @{thm bubble_down2} [with_term "list_swap ?xs ?k (s1 ?k)"]\ text \One case of switching with s2 k.\ lemma bubble_down3: "s2 k < length xs \ is_heap_partial1 xs k \ snd (xs ! s1 k) > snd (xs ! s2 k) \ snd (xs ! k) > snd (xs ! s2 k) \ xs' = list_swap xs k (s2 k) \ is_heap_partial1 xs' (s2 k)" by auto2 setup \add_forward_prfstep_cond @{thm bubble_down3} [with_term "?xs'"]\ subsection \Bubble-up\ fun par :: "nat \ nat" where "par m = (m - 1) div 2" setup \register_wellform_data ("par m", ["m \ 0"])\ lemma ps_inverse [rewrite]: "par (s1 k) = k" "par (s2 k) = k" by simp+ lemma p_basic: "m \ 0 \ par m < m" by auto setup \add_forward_prfstep_cond @{thm p_basic} [with_term "par ?m"]\ lemma p_cases: "m \ 0 \ m = s1 (par m) \ m = s2 (par m)" by auto setup \add_forward_prfstep_cond @{thm p_cases} [with_term "par ?m"]\ lemma eq_pred_p_next: "i \ 0 \ eq_pred i j \ eq_pred (par i) j" @proof @prop_induct "eq_pred i j" @qed setup \add_forward_prfstep_cond @{thm eq_pred_p_next} [with_term "par ?i"]\ lemma heap_implies_hd_min [resolve]: "is_heap xs \ i < length xs \ xs \ [] \ snd (hd xs) \ snd (xs ! i)" @proof @strong_induct i @case "i = 0" @apply_induct_hyp "par i" @have "eq_pred (par i) i" @qed text \The corresponding tree is a heap, except k is not necessarily greater than its ancestors.\ definition is_heap_partial2 :: "('a \ 'b::linorder) list \ nat \ bool" where [rewrite]: "is_heap_partial2 xs k = (\i j. eq_pred i j \ j < length xs \ j \ k \ snd (xs ! i) \ snd (xs ! j))" lemma bubble_up1 [forward]: "k < length xs \ is_heap_partial2 xs k \ snd (xs ! k) < snd (xs ! par k) \ k \ 0 \ is_heap_partial2 (list_swap xs k (par k)) (par k)" by auto2 lemma bubble_up2 [forward]: "k < length xs \ is_heap_partial2 xs k \ snd (xs ! k) \ snd (xs ! par k) \ k \ 0 \ is_heap xs" by auto2 setup \del_prfstep_thm @{thm p_cases}\ subsection \Indexed priority queue\ type_synonym 'a idx_pqueue = "(nat \ 'a) list \ nat option list" fun index_of_pqueue :: "'a idx_pqueue \ bool" where "index_of_pqueue (xs, m) = ( (\i m ! (fst (xs ! i)) = Some i) \ (\i. \k i < length xs \ fst (xs ! i) = k))" setup \add_rewrite_rule @{thm index_of_pqueue.simps}\ lemma index_of_pqueueD1: "i < length xs \ index_of_pqueue (xs, m) \ fst (xs ! i) < length m \ m ! (fst (xs ! i)) = Some i" by auto2 setup \add_forward_prfstep_cond @{thm index_of_pqueueD1} [with_term "?xs ! ?i"]\ lemma index_of_pqueueD2 [forward]: "k < length m \ index_of_pqueue (xs, m) \ m ! k = Some i \ i < length xs \ fst (xs ! i) = k" by auto2 lemma index_of_pqueueD3 [forward]: "index_of_pqueue (xs, m) \ p \ set xs \ fst p < length m" @proof @obtain i where "i < length xs" "xs ! i = p" @qed setup \del_prfstep_thm_eqforward @{thm index_of_pqueue.simps}\ lemma has_index_unique_key [forward]: "index_of_pqueue (xs, m) \ unique_keys_set (set xs)" @proof @have "\a x y. (a, x) \ set xs \ (a, y) \ set xs \ x = y" @with @obtain i where "i < length xs" "xs ! i = (a, x)" @obtain j where "j < length xs" "xs ! j = (a, y)" @end @qed lemma has_index_keys_of [rewrite]: "index_of_pqueue (xs, m) \ has_key_alist xs k \ (k < length m \ m ! k \ None)" @proof @case "has_key_alist xs k" @with @obtain v' where "(k, v') \ set xs" @obtain i where "i < length xs \ xs ! i = (k, v')" @end @qed lemma has_index_distinct [forward]: "index_of_pqueue (xs, m) \ distinct xs" @proof @have "\ij j \ xs ! i \ xs ! j" @qed subsection \Basic operations on indexed\_queue\ fun idx_pqueue_swap_fun :: "(nat \ 'a) list \ nat option list \ nat \ nat \ (nat \ 'a) list \ nat option list" where "idx_pqueue_swap_fun (xs, m) i j = ( list_swap xs i j, ((m [fst (xs ! i) := Some j]) [fst (xs ! j) := Some i]))" lemma index_of_pqueue_swap [forward_arg]: "i < length xs \ j < length xs \ index_of_pqueue (xs, m) \ index_of_pqueue (idx_pqueue_swap_fun (xs, m) i j)" @proof @unfold "idx_pqueue_swap_fun (xs, m) i j" @qed lemma fst_idx_pqueue_swap [rewrite]: "fst (idx_pqueue_swap_fun (xs, m) i j) = list_swap xs i j" @proof @unfold "idx_pqueue_swap_fun (xs, m) i j" @qed lemma snd_idx_pqueue_swap [rewrite]: "length (snd (idx_pqueue_swap_fun (xs, m) i j)) = length m" @proof @unfold "idx_pqueue_swap_fun (xs, m) i j" @qed fun idx_pqueue_push_fun :: "nat \ 'a \ 'a idx_pqueue \ 'a idx_pqueue" where "idx_pqueue_push_fun k v (xs, m) = (xs @ [(k, v)], list_update m k (Some (length xs)))" lemma idx_pqueue_push_correct [forward_arg]: "index_of_pqueue (xs, m) \ k < length m \ \has_key_alist xs k \ r = idx_pqueue_push_fun k v (xs, m) \ index_of_pqueue r \ fst r = xs @ [(k, v)] \ length (snd r) = length m" @proof @unfold "idx_pqueue_push_fun k v (xs, m)" @qed fun idx_pqueue_pop_fun :: "'a idx_pqueue \ 'a idx_pqueue" where "idx_pqueue_pop_fun (xs, m) = (butlast xs, list_update m (fst (last xs)) None)" lemma idx_pqueue_pop_correct [forward_arg]: "index_of_pqueue (xs, m) \ xs \ [] \ r = idx_pqueue_pop_fun (xs, m) \ index_of_pqueue r \ fst r = butlast xs \ length (snd r) = length m" @proof @unfold "idx_pqueue_pop_fun (xs, m)" @have "length xs = length (butlast xs) + 1" @have "fst (xs ! length (butlast xs)) < length m" (* TODO: remove? *) @qed subsection \Bubble up and down\ function idx_bubble_down_fun :: "'a::linorder idx_pqueue \ nat \ 'a idx_pqueue" where "idx_bubble_down_fun (xs, m) k = ( if s2 k < length xs then if snd (xs ! s1 k) \ snd (xs ! s2 k) then if snd (xs ! k) > snd (xs ! s1 k) then idx_bubble_down_fun (idx_pqueue_swap_fun (xs, m) k (s1 k)) (s1 k) else (xs, m) else if snd (xs ! k) > snd (xs ! s2 k) then idx_bubble_down_fun (idx_pqueue_swap_fun (xs, m) k (s2 k)) (s2 k) else (xs, m) else if s1 k < length xs then if snd (xs ! k) > snd (xs ! s1 k) then idx_bubble_down_fun (idx_pqueue_swap_fun (xs, m) k (s1 k)) (s1 k) else (xs, m) else (xs, m))" by pat_completeness auto termination by (relation "measure (\((xs,_),k). (length xs - k))") (simp_all, auto2+) lemma idx_bubble_down_fun_correct: "r = idx_bubble_down_fun x k \ is_heap_partial1 (fst x) k \ is_heap (fst r) \ mset (fst r) = mset (fst x) \ length (snd r) = length (snd x)" @proof @fun_induct "idx_bubble_down_fun x k" @with @subgoal "(x = (xs, m), k = k)" @unfold "idx_bubble_down_fun (xs, m) k" @case "s2 k < length xs" @with @case "snd (xs ! s1 k) \ snd (xs ! s2 k)" @end @case "s1 k < length xs" @end @qed setup \add_forward_prfstep_cond @{thm idx_bubble_down_fun_correct} [with_term "?r"]\ lemma idx_bubble_down_fun_correct2 [forward]: "index_of_pqueue x \ index_of_pqueue (idx_bubble_down_fun x k)" @proof @fun_induct "idx_bubble_down_fun x k" @with @subgoal "(x = (xs, m), k = k)" @unfold "idx_bubble_down_fun (xs, m) k" @case "s2 k < length xs" @with @case "snd (xs ! s1 k) \ snd (xs ! s2 k)" @end @case "s1 k < length xs" @end @qed fun idx_bubble_up_fun :: "'a::linorder idx_pqueue \ nat \ 'a idx_pqueue" where "idx_bubble_up_fun (xs, m) k = ( if k = 0 then (xs, m) else if k < length xs then if snd (xs ! k) < snd (xs ! par k) then idx_bubble_up_fun (idx_pqueue_swap_fun (xs, m) k (par k)) (par k) else (xs, m) else (xs, m))" lemma idx_bubble_up_fun_correct: "r = idx_bubble_up_fun x k \ is_heap_partial2 (fst x) k \ is_heap (fst r) \ mset (fst r) = mset (fst x) \ length (snd r) = length (snd x)" @proof @fun_induct "idx_bubble_up_fun x k" @with @subgoal "(x = (xs, m), k = k)" @unfold "idx_bubble_up_fun (xs, m) k" @end @qed setup \add_forward_prfstep_cond @{thm idx_bubble_up_fun_correct} [with_term "?r"]\ lemma idx_bubble_up_fun_correct2 [forward]: "index_of_pqueue x \ index_of_pqueue (idx_bubble_up_fun x k)" @proof @fun_induct "idx_bubble_up_fun x k" @with @subgoal "(x = (xs, m), k = k)" @unfold "idx_bubble_up_fun (xs, m) k" @end @qed subsection \Main operations\ fun delete_min_idx_pqueue_fun :: "'a::linorder idx_pqueue \ (nat \ 'a) \ 'a idx_pqueue" where "delete_min_idx_pqueue_fun (xs, m) = ( let (xs', m') = idx_pqueue_swap_fun (xs, m) 0 (length xs - 1); a'' = idx_pqueue_pop_fun (xs', m') in (last xs', idx_bubble_down_fun a'' 0))" lemma delete_min_idx_pqueue_correct: "index_of_pqueue (xs, m) \ xs \ [] \ res = delete_min_idx_pqueue_fun (xs, m) \ index_of_pqueue (snd res)" @proof @unfold "delete_min_idx_pqueue_fun (xs, m)" @qed setup \add_forward_prfstep_cond @{thm delete_min_idx_pqueue_correct} [with_term "?res"]\ lemma hd_last_swap_eval_last [rewrite]: "xs \ [] \ last (list_swap xs 0 (length xs - 1)) = hd xs" @proof @let "xs' = list_swap xs 0 (length xs - 1)" @have "last xs' = xs' ! (length xs - 1)" @qed text \Correctness of delete-min.\ theorem delete_min_idx_pqueue_correct2: "is_heap xs \ xs \ [] \ res = delete_min_idx_pqueue_fun (xs, m) \ index_of_pqueue (xs, m) \ is_heap (fst (snd res)) \ fst res = hd xs \ length (snd (snd res)) = length m \ map_of_alist (fst (snd res)) = delete_map (fst (fst res)) (map_of_alist xs)" @proof @unfold "delete_min_idx_pqueue_fun (xs, m)" @let "xs' = list_swap xs 0 (length xs - 1)" @have "is_heap_partial1 (butlast xs') 0" @qed setup \add_forward_prfstep_cond @{thm delete_min_idx_pqueue_correct2} [with_term "?res"]\ fun insert_idx_pqueue_fun :: "nat \ 'a::linorder \ 'a idx_pqueue \ 'a idx_pqueue" where "insert_idx_pqueue_fun k v x = ( let x' = idx_pqueue_push_fun k v x in idx_bubble_up_fun x' (length (fst x') - 1))" lemma insert_idx_pqueue_correct [forward_arg]: "index_of_pqueue (xs, m) \ k < length m \ \has_key_alist xs k \ index_of_pqueue (insert_idx_pqueue_fun k v (xs, m))" @proof @unfold "insert_idx_pqueue_fun k v (xs, m)" @qed text \Correctness of insertion.\ theorem insert_idx_pqueue_correct2: "index_of_pqueue (xs, m) \ is_heap xs \ k < length m \ \has_key_alist xs k \ r = insert_idx_pqueue_fun k v (xs, m) \ is_heap (fst r) \ length (snd r) = length m \ map_of_alist (fst r) = map_of_alist xs { k \ v }" @proof @unfold "insert_idx_pqueue_fun k v (xs, m)" @have "is_heap_partial2 (xs @ [(k, v)]) (length xs)" @qed setup \add_forward_prfstep_cond @{thm insert_idx_pqueue_correct2} [with_term "?r"]\ fun update_idx_pqueue_fun :: "nat \ 'a::linorder \ 'a idx_pqueue \ 'a idx_pqueue" where "update_idx_pqueue_fun k v (xs, m) = ( if m ! k = None then insert_idx_pqueue_fun k v (xs, m) else let i = the (m ! k); xs' = list_update xs i (k, v) in if snd (xs ! i) \ v then idx_bubble_down_fun (xs', m) i else idx_bubble_up_fun (xs', m) i)" lemma update_idx_pqueue_correct [forward_arg]: "index_of_pqueue (xs, m) \ k < length m \ index_of_pqueue (update_idx_pqueue_fun k v (xs, m))" @proof @unfold "update_idx_pqueue_fun k v (xs, m)" @let "i' = the (m ! k)" @let "xs' = list_update xs i' (k, v)" @case "m ! k = None" @have "index_of_pqueue (xs', m)" @qed text \Correctness of update.\ theorem update_idx_pqueue_correct2: "index_of_pqueue (xs, m) \ is_heap xs \ k < length m \ r = update_idx_pqueue_fun k v (xs, m) \ is_heap (fst r) \ length (snd r) = length m \ map_of_alist (fst r) = map_of_alist xs { k \ v }" @proof @unfold "update_idx_pqueue_fun k v (xs, m)" @let "i = the (m ! k)" @let "xs' = list_update xs i (k, v)" @have "xs' = fst (xs', m)" (* TODO: remove *) @case "m ! k = None" @case "snd (xs ! the (m ! k)) \ v" @with @have "is_heap_partial1 xs' i" @end @have "is_heap_partial2 xs' i" @qed setup \add_forward_prfstep_cond @{thm update_idx_pqueue_correct2} [with_term "?r"]\ end