(* File: Interval.thy Author: Bohua Zhan *) section \Intervals\ theory Interval imports "Auto2_HOL.Auto2_Main" begin text \Basic definition of intervals.\ subsection \Definition of interval\ datatype 'a interval = Interval (low: 'a) (high: 'a) setup \add_simple_datatype "interval"\ instantiation interval :: (linorder) linorder begin definition int_less: "(a < b) = (low a < low b | (low a = low b \ high a < high b))" definition int_less_eq: "(a \ b) = (low a < low b | (low a = low b \ high a \ high b))" instance proof fix x y z :: "'a interval" show a: "(x < y) = (x \ y \ \ y \ x)" using int_less int_less_eq by force show b: "x \ x" by (simp add: int_less_eq) show c: "x \ y \ y \ z \ x \ z" by (smt int_less_eq dual_order.trans less_trans) show d: "x \ y \ y \ x \ x = y" using int_less_eq a interval.expand int_less by fastforce show e: "x \ y \ y \ x" by (meson int_less_eq leI not_less_iff_gr_or_eq) qed end definition is_interval :: "('a::linorder) interval \ bool" where [rewrite]: "is_interval it \ (low it \ high it)" subsection \Definition of interval with an index\ datatype 'a idx_interval = IdxInterval (int: "'a interval") (idx: nat) setup \add_simple_datatype "idx_interval"\ instantiation idx_interval :: (linorder) linorder begin definition iint_less: "(a < b) = (int a < int b | (int a = int b \ idx a < idx b))" definition iint_less_eq: "(a \ b) = (int a < int b | (int a = int b \ idx a \ idx b))" instance proof fix x y z :: "'a idx_interval" show a: "(x < y) = (x \ y \ \ y \ x)" using iint_less iint_less_eq by force show b: "x \ x" by (simp add: iint_less_eq) show c: "x \ y \ y \ z \ x \ z" by (smt iint_less_eq dual_order.trans less_trans) show d: "x \ y \ y \ x \ x = y" using a idx_interval.expand iint_less iint_less_eq by auto show e: "x \ y \ y \ x" by (meson iint_less_eq leI not_less_iff_gr_or_eq) qed end lemma interval_less_to_le_low [forward]: "(a::('a::linorder idx_interval)) < b \ low (int a) \ low (int b)" by (metis eq_iff iint_less int_less less_imp_le) subsection \Overlapping intervals\ definition is_overlap :: "('a::linorder) interval \ 'a interval \ bool" where [rewrite]: "is_overlap x y \ (high x \ low y \ high y \ low x)" definition has_overlap :: "('a::linorder) idx_interval set \ 'a interval \ bool" where [rewrite]: "has_overlap xs y \ (\x\xs. is_overlap (int x) y)" end