(* File: Interval_Tree.thy Author: Bohua Zhan *) section \Interval tree\ theory Interval_Tree imports Lists_Ex Interval begin text \ Functional version of interval tree. This is an augmented data structure on top of regular binary search trees (see BST.thy). See \cite[Section 14.3]{cormen2009introduction} for a reference. \ subsection \Definition of an interval tree\ datatype interval_tree = Tip | Node (lsub: interval_tree) (val: "nat idx_interval") (tmax: nat) (rsub: interval_tree) where "tmax Tip = 0" setup \add_resolve_prfstep @{thm interval_tree.distinct(1)}\ setup \fold add_rewrite_rule @{thms interval_tree.sel}\ setup \add_forward_prfstep @{thm interval_tree.collapse}\ setup \add_var_induct_rule @{thm interval_tree.induct}\ subsection \Inorder traversal, and set of elements of a tree\ fun in_traverse :: "interval_tree \ nat idx_interval list" where "in_traverse Tip = []" | "in_traverse (Node l it m r) = in_traverse l @ it # in_traverse r" setup \fold add_rewrite_rule @{thms in_traverse.simps}\ fun tree_set :: "interval_tree \ nat idx_interval set" where "tree_set Tip = {}" | "tree_set (Node l it m r) = {it} \ tree_set l \ tree_set r" setup \fold add_rewrite_rule @{thms tree_set.simps}\ fun tree_sorted :: "interval_tree \ bool" where "tree_sorted Tip = True" | "tree_sorted (Node l it m r) = ((\x\tree_set l. x < it) \ (\x\tree_set r. it < x) \ tree_sorted l \ tree_sorted r)" setup \fold add_rewrite_rule @{thms tree_sorted.simps}\ lemma tree_sorted_lr [forward]: "tree_sorted (Node l it m r) \ tree_sorted l \ tree_sorted r" by auto2 lemma tree_sortedD1 [forward]: "tree_sorted (Node l it m r) \ x \ tree_set l \ x < it" by auto2 lemma tree_sortedD2 [forward]: "tree_sorted (Node l it m r) \ x \ tree_set r \ x > it" by auto2 lemma inorder_preserve_set [rewrite]: "tree_set t = set (in_traverse t)" @proof @induct t @qed lemma inorder_sorted [rewrite]: "tree_sorted t \ strict_sorted (in_traverse t)" @proof @induct t @qed text \Use definition in terms of in\_traverse from now on.\ setup \fold del_prfstep_thm (@{thms tree_set.simps} @ @{thms tree_sorted.simps})\ subsection \Invariant on the maximum\ definition max3 :: "nat idx_interval \ nat \ nat \ nat" where [rewrite]: "max3 it b c = max (high (int it)) (max b c)" fun tree_max_inv :: "interval_tree \ bool" where "tree_max_inv Tip = True" | "tree_max_inv (Node l it m r) \ (tree_max_inv l \ tree_max_inv r \ m = max3 it (tmax l) (tmax r))" setup \fold add_rewrite_rule @{thms tree_max_inv.simps}\ lemma tree_max_is_max [resolve]: "tree_max_inv t \ it \ tree_set t \ high (int it) \ tmax t" @proof @induct t @qed lemma tmax_exists [backward]: "tree_max_inv t \ t \ Tip \ \p\tree_set t. high (int p) = tmax t" @proof @induct t @with @subgoal "t = Node l it m r" @case "l = Tip" @with @case "r = Tip" @end @case "r = Tip" @endgoal @end @qed text \For insertion\ lemma max3_insert [rewrite]: "max3 it 0 0 = high (int it)" by auto2 setup \del_prfstep_thm @{thm max3_def}\ subsection \Condition on the values\ definition tree_interval_inv :: "interval_tree \ bool" where [rewrite]: "tree_interval_inv t \ (\p\tree_set t. is_interval (int p))" definition is_interval_tree :: "interval_tree \ bool" where [rewrite]: "is_interval_tree t \ (tree_sorted t \ tree_max_inv t \ tree_interval_inv t)" lemma is_interval_tree_lr [forward]: "is_interval_tree (Node l x m r) \ is_interval_tree l \ is_interval_tree r" by auto2 subsection \Insertion on trees\ fun insert :: "nat idx_interval \ interval_tree \ interval_tree" where "insert x Tip = Node Tip x (high (int x)) Tip" | "insert x (Node l y m r) = (if x = y then Node l y m r else if x < y then let l' = insert x l in Node l' y (max3 y (tmax l') (tmax r)) r else let r' = insert x r in Node l y (max3 y (tmax l) (tmax r')) r')" setup \fold add_rewrite_rule @{thms insert.simps}\ lemma tree_insert_in_traverse [rewrite]: "tree_sorted t \ in_traverse (insert x t) = ordered_insert x (in_traverse t)" @proof @induct t @qed lemma tree_insert_max_inv [forward]: "tree_max_inv t \ tree_max_inv (insert x t)" @proof @induct t @qed text \Correctness of insertion.\ theorem tree_insert_all_inv [forward]: "is_interval_tree t \ is_interval (int it) \ is_interval_tree (insert it t)" by auto2 theorem tree_insert_on_set [rewrite]: "tree_sorted t \ tree_set (insert it t) = {it} \ tree_set t" by auto2 subsection \Deletion on trees\ fun del_min :: "interval_tree \ nat idx_interval \ interval_tree" where "del_min Tip = undefined" | "del_min (Node lt v m rt) = (if lt = Tip then (v, rt) else let lt' = snd (del_min lt) in (fst (del_min lt), Node lt' v (max3 v (tmax lt') (tmax rt)) rt))" setup \add_rewrite_rule @{thm del_min.simps(2)}\ setup \register_wellform_data ("del_min t", ["t \ Tip"])\ lemma delete_min_del_hd: "t \ Tip \ fst (del_min t) # in_traverse (snd (del_min t)) = in_traverse t" @proof @induct t @qed setup \add_forward_prfstep_cond @{thm delete_min_del_hd} [with_term "in_traverse (snd (del_min ?t))"]\ lemma delete_min_max_inv [forward_arg]: "tree_max_inv t \ t \ Tip \ tree_max_inv (snd (del_min t))" @proof @induct t @qed lemma delete_min_on_set: "t \ Tip \ {fst (del_min t)} \ tree_set (snd (del_min t)) = tree_set t" by auto2 setup \add_forward_prfstep_cond @{thm delete_min_on_set} [with_term "tree_set (snd (del_min ?t))"]\ lemma delete_min_interval_inv [forward_arg]: "tree_interval_inv t \ t \ Tip \ tree_interval_inv (snd (del_min t))" by auto2 lemma delete_min_all_inv [forward_arg]: "is_interval_tree t \ t \ Tip \ is_interval_tree (snd (del_min t))" by auto2 fun delete_elt_tree :: "interval_tree \ interval_tree" where "delete_elt_tree Tip = undefined" | "delete_elt_tree (Node lt x m rt) = (if lt = Tip then rt else if rt = Tip then lt else let x' = fst (del_min rt); rt' = snd (del_min rt); m' = max3 x' (tmax lt) (tmax rt') in Node lt (fst (del_min rt)) m' rt')" setup \add_rewrite_rule @{thm delete_elt_tree.simps(2)}\ lemma delete_elt_in_traverse [rewrite]: "in_traverse (delete_elt_tree (Node lt x m rt)) = in_traverse lt @ in_traverse rt" by auto2 lemma delete_elt_max_inv [forward_arg]: "tree_max_inv t \ t \ Tip \ tree_max_inv (delete_elt_tree t)" by auto2 lemma delete_elt_on_set [rewrite]: "t \ Tip \ tree_set (delete_elt_tree (Node lt x m rt)) = tree_set lt \ tree_set rt" by auto2 lemma delete_elt_interval_inv [forward_arg]: "tree_interval_inv t \ t \ Tip \ tree_interval_inv (delete_elt_tree t)" by auto2 lemma delete_elt_all_inv [forward_arg]: "is_interval_tree t \ t \ Tip \ is_interval_tree (delete_elt_tree t)" by auto2 fun delete :: "nat idx_interval \ interval_tree \ interval_tree" where "delete x Tip = Tip" | "delete x (Node l y m r) = (if x = y then delete_elt_tree (Node l y m r) else if x < y then let l' = delete x l; m' = max3 y (tmax l') (tmax r) in Node l' y m' r else let r' = delete x r; m' = max3 y (tmax l) (tmax r') in Node l y m' r')" setup \fold add_rewrite_rule @{thms delete.simps}\ lemma tree_delete_in_traverse [rewrite]: "tree_sorted t \ in_traverse (delete x t) = remove_elt_list x (in_traverse t)" @proof @induct t @qed lemma tree_delete_max_inv [forward]: "tree_max_inv t \ tree_max_inv (delete x t)" @proof @induct t @qed text \Correctness of deletion.\ theorem tree_delete_all_inv [forward]: "is_interval_tree t \ is_interval_tree (delete x t)" @proof @have "tree_set (delete x t) \ tree_set t" @qed theorem tree_delete_on_set [rewrite]: "tree_sorted t \ tree_set (delete x t) = tree_set t - {x}" by auto2 subsection \Search on interval trees\ fun search :: "interval_tree \ nat interval \ bool" where "search Tip x = False" | "search (Node l y m r) x = (if is_overlap (int y) x then True else if l \ Tip \ tmax l \ low x then search l x else search r x)" setup \fold add_rewrite_rule @{thms search.simps}\ text \Correctness of search\ theorem search_correct [rewrite]: "is_interval_tree t \ is_interval x \ search t x \ has_overlap (tree_set t) x" @proof @induct t @with @subgoal "t = Node l y m r" @let "t = Node l y m r" @case "is_overlap (int y) x" @case "l \ Tip \ tmax l \ low x" @with @obtain "p\tree_set l" where "high (int p) = tmax l" @case "is_overlap (int p) x" @end @case "l = Tip" @endgoal @end @qed end