(* File: RBTree.thy Author: Bohua Zhan *) section \Red-black trees\ theory RBTree imports Lists_Ex begin text \ Verification of functional red-black trees. For general technique, see Lists\_Ex.thy. \ subsection \Definition of RBT\ datatype color = R | B datatype ('a, 'b) rbt = Leaf | Node (lsub: "('a, 'b) rbt") (cl: color) (key: 'a) (val: 'b) (rsub: "('a, 'b) rbt") where "cl Leaf = B" setup \add_resolve_prfstep @{thm color.distinct(1)}\ setup \add_resolve_prfstep @{thm rbt.distinct(1)}\ setup \fold add_rewrite_rule @{thms rbt.sel}\ setup \add_forward_prfstep @{thm rbt.collapse}\ setup \add_var_induct_rule @{thm rbt.induct}\ lemma not_R [forward]: "c \ R \ c = B" using color.exhaust by blast lemma not_B [forward]: "c \ B \ c = R" using color.exhaust by blast lemma red_not_leaf [forward]: "cl t = R \ t \ Leaf" by auto subsection \RBT invariants\ fun black_depth :: "('a, 'b) rbt \ nat" where "black_depth Leaf = 0" | "black_depth (Node l R k v r) = black_depth l" | "black_depth (Node l B k v r) = black_depth l + 1" setup \fold add_rewrite_rule @{thms black_depth.simps}\ fun cl_inv :: "('a, 'b) rbt \ bool" where "cl_inv Leaf = True" | "cl_inv (Node l R k v r) = (cl_inv l \ cl_inv r \ cl l = B \ cl r = B)" | "cl_inv (Node l B k v r) = (cl_inv l \ cl_inv r)" setup \fold add_rewrite_rule @{thms cl_inv.simps}\ fun bd_inv :: "('a, 'b) rbt \ bool" where "bd_inv Leaf = True" | "bd_inv (Node l c k v r) = (bd_inv l \ bd_inv r \ black_depth l = black_depth r)" setup \fold add_rewrite_rule @{thms bd_inv.simps}\ definition is_rbt :: "('a, 'b) rbt \ bool" where [rewrite]: "is_rbt t = (cl_inv t \ bd_inv t)" lemma cl_invI: "cl_inv l \ cl_inv r \ cl_inv (Node l B k v r)" by auto2 setup \add_forward_prfstep_cond @{thm cl_invI} [with_term "Node ?l B ?k ?v ?r"]\ lemma bd_invI: "bd_inv l \ bd_inv r \ black_depth l = black_depth r \ bd_inv (Node l c k v r)" by auto2 setup \add_forward_prfstep_cond @{thm bd_invI} [with_term "Node ?l ?c ?k ?v ?r"]\ lemma is_rbt_rec [forward]: "is_rbt (Node l c k v r) \ is_rbt l \ is_rbt r" @proof @case "c = R" @qed subsection \Balancedness of RBT\ (* TODO: remove after having general normalization procedure for nats. *) lemma two_distrib [rewrite]: "(2::nat) * (a + 1) = 2 * a + 2" by simp fun min_depth :: "('a, 'b) rbt \ nat" where "min_depth Leaf = 0" | "min_depth (Node l c k v r) = min (min_depth l) (min_depth r) + 1" setup \fold add_rewrite_rule @{thms min_depth.simps}\ fun max_depth :: "('a, 'b) rbt \ nat" where "max_depth Leaf = 0" | "max_depth (Node l c k v r) = max (max_depth l) (max_depth r) + 1" setup \fold add_rewrite_rule @{thms max_depth.simps}\ text \Balancedness of red-black trees.\ theorem rbt_balanced: "is_rbt t \ max_depth t \ 2 * min_depth t + 1" @proof @induct t for "is_rbt t \ black_depth t \ min_depth t" @with @subgoal "t = Node l c k v r" @case "c = R" @endgoal @end @induct t for "is_rbt t \ (if cl t = R then max_depth t \ 2 * black_depth t + 1 else max_depth t \ 2 * black_depth t)" @with @subgoal "t = Node l c k v r" @case "c = R" @endgoal @end @have "max_depth t \ 2 * black_depth t + 1" @qed subsection \Definition and basic properties of cl\_inv'\ fun cl_inv' :: "('a, 'b) rbt \ bool" where "cl_inv' Leaf = True" | "cl_inv' (Node l c k v r) = (cl_inv l \ cl_inv r)" setup \fold add_rewrite_rule @{thms cl_inv'.simps}\ lemma cl_inv'B [forward, backward1]: "cl_inv' t \ cl t = B \ cl_inv t" @proof @case "t = Leaf" @qed lemma cl_inv'R [forward]: "cl_inv' (Node l R k v r) \ cl l = B \ cl r = B \ cl_inv (Node l R k v r)" by auto2 lemma cl_inv_to_cl_inv' [forward]: "cl_inv t \ cl_inv' t" @proof @case "t = Leaf" @case "cl t = R" @qed lemma cl_inv'I [forward_arg]: "cl_inv l \ cl_inv r \ cl_inv' (Node l c k v r)" by auto subsection \Set of keys, sortedness\ fun rbt_in_traverse :: "('a, 'b) rbt \ 'a list" where "rbt_in_traverse Leaf = []" | "rbt_in_traverse (Node l c k v r) = rbt_in_traverse l @ k # rbt_in_traverse r" setup \fold add_rewrite_rule @{thms rbt_in_traverse.simps}\ fun rbt_set :: "('a, 'b) rbt \ 'a set" where "rbt_set Leaf = {}" | "rbt_set (Node l c k v r) = {k} \ rbt_set l \ rbt_set r" setup \fold add_rewrite_rule @{thms rbt_set.simps}\ fun rbt_in_traverse_pairs :: "('a, 'b) rbt \ ('a \ 'b) list" where "rbt_in_traverse_pairs Leaf = []" | "rbt_in_traverse_pairs (Node l c k v r) = rbt_in_traverse_pairs l @ (k, v) # rbt_in_traverse_pairs r" setup \fold add_rewrite_rule @{thms rbt_in_traverse_pairs.simps}\ lemma rbt_in_traverse_fst [rewrite]: "map fst (rbt_in_traverse_pairs t) = rbt_in_traverse t" @proof @induct t @qed definition rbt_map :: "('a, 'b) rbt \ ('a, 'b) map" where "rbt_map t = map_of_alist (rbt_in_traverse_pairs t)" setup \add_rewrite_rule @{thm rbt_map_def}\ fun rbt_sorted :: "('a::linorder, 'b) rbt \ bool" where "rbt_sorted Leaf = True" | "rbt_sorted (Node l c k v r) = ((\x\rbt_set l. x < k) \ (\x\rbt_set r. k < x) \ rbt_sorted l \ rbt_sorted r)" setup \fold add_rewrite_rule @{thms rbt_sorted.simps}\ lemma rbt_sorted_lr [forward]: "rbt_sorted (Node l c k v r) \ rbt_sorted l \ rbt_sorted r" by auto2 lemma rbt_inorder_preserve_set [rewrite]: "rbt_set t = set (rbt_in_traverse t)" @proof @induct t @qed lemma rbt_inorder_sorted [rewrite]: "rbt_sorted t \ strict_sorted (map fst (rbt_in_traverse_pairs t))" @proof @induct t @qed setup \fold del_prfstep_thm (@{thms rbt_set.simps} @ @{thms rbt_sorted.simps})\ subsection \Balance function\ definition balanceR :: "('a, 'b) rbt \ 'a \ 'b \ ('a, 'b) rbt \ ('a, 'b) rbt" where [rewrite]: "balanceR l k v r = (if cl r = R then let lr = lsub r; rr = rsub r in if cl lr = R then Node (Node l B k v (lsub lr)) R (key lr) (val lr) (Node (rsub lr) B (key r) (val r) rr) else if cl rr = R then Node (Node l B k v lr) R (key r) (val r) (Node (lsub rr) B (key rr) (val rr) (rsub rr)) else Node l B k v r else Node l B k v r)" definition balance :: "('a, 'b) rbt \ 'a \ 'b \ ('a, 'b) rbt \ ('a, 'b) rbt" where [rewrite]: "balance l k v r = (if cl l = R then let ll = lsub l; rl = rsub l in if cl ll = R then Node (Node (lsub ll) B (key ll) (val ll) (rsub ll)) R (key l) (val l) (Node (rsub l) B k v r) else if cl rl = R then Node (Node (lsub l) B (key l) (val l) (lsub rl)) R (key rl) (val rl) (Node (rsub rl) B k v r) else balanceR l k v r else balanceR l k v r)" setup \register_wellform_data ("balance l k v r", ["black_depth l = black_depth r"])\ setup \add_prfstep_check_req ("balance l k v r", "black_depth l = black_depth r")\ lemma balance_non_Leaf [resolve]: "balance l k v r \ Leaf" by auto2 lemma balance_bdinv [forward_arg]: "bd_inv l \ bd_inv r \ black_depth l = black_depth r \ bd_inv (balance l k v r)" @proof @have "bd_inv (balanceR l k v r)" @qed lemma balance_bd [rewrite]: "bd_inv l \ bd_inv r \ black_depth l = black_depth r \ black_depth (balance l k v r) = black_depth l + 1" @proof @have "black_depth (balanceR l k v r) = black_depth l + 1" @qed lemma balance_cl1 [forward]: "cl_inv' l \ cl_inv r \ cl_inv (balance l k v r)" by auto2 lemma balance_cl2 [forward]: "cl_inv l \ cl_inv' r \ cl_inv (balance l k v r)" by auto2 lemma balanceR_inorder_pairs [rewrite]: "rbt_in_traverse_pairs (balanceR l k v r) = rbt_in_traverse_pairs l @ (k, v) # rbt_in_traverse_pairs r" by auto2 lemma balance_inorder_pairs [rewrite]: "rbt_in_traverse_pairs (balance l k v r) = rbt_in_traverse_pairs l @ (k, v) # rbt_in_traverse_pairs r" by auto2 setup \fold del_prfstep_thm [@{thm balanceR_def}, @{thm balance_def}]\ subsection \ins function\ fun ins :: "'a::order \ 'b \ ('a, 'b) rbt \ ('a, 'b) rbt" where "ins x v Leaf = Node Leaf R x v Leaf" | "ins x v (Node l c y w r) = (if c = B then (if x = y then Node l B x v r else if x < y then balance (ins x v l) y w r else balance l y w (ins x v r)) else (if x = y then Node l R x v r else if x < y then Node (ins x v l) R y w r else Node l R y w (ins x v r)))" setup \fold add_rewrite_rule @{thms ins.simps}\ lemma ins_non_Leaf [resolve]: "ins x v t \ Leaf" @proof @case "t = Leaf" @qed lemma cl_inv_ins [forward]: "cl_inv t \ cl_inv' (ins x v t)" @proof @induct t for "cl_inv t \ (if cl t = B then cl_inv (ins x v t) else cl_inv' (ins x v t))" @qed lemma bd_inv_ins: "bd_inv t \ bd_inv (ins x v t) \ black_depth t = black_depth (ins x v t)" @proof @induct t @qed setup \add_forward_prfstep_cond (conj_left_th @{thm bd_inv_ins}) [with_term "ins ?x ?v ?t"]\ lemma ins_inorder_pairs [rewrite]: "rbt_sorted t \ rbt_in_traverse_pairs (ins x v t) = ordered_insert_pairs x v (rbt_in_traverse_pairs t)" @proof @induct t @qed subsection \Paint function\ fun paint :: "color \ ('a, 'b) rbt \ ('a, 'b) rbt" where "paint c Leaf = Leaf" | "paint c (Node l c' x v r) = Node l c x v r" setup \fold add_rewrite_rule @{thms paint.simps}\ setup \register_wellform_data ("paint c t", ["t \ Leaf"])\ setup \add_prfstep_check_req ("paint c t", "t \ Leaf")\ lemma paint_cl_inv' [forward]: "cl_inv' t \ cl_inv' (paint c t)" by auto2 lemma paint_bd_inv [forward]: "bd_inv t \ bd_inv (paint c t)" by auto2 lemma paint_bd [rewrite]: "bd_inv t \ t \ Leaf \ cl t = B \ black_depth (paint R t) = black_depth t - 1" by auto2 lemma paint_in_traverse_pairs [rewrite]: "rbt_in_traverse_pairs (paint c t) = rbt_in_traverse_pairs t" by auto2 subsection \Insert function\ definition rbt_insert :: "'a::order \ 'b \ ('a, 'b) rbt \ ('a, 'b) rbt" where [rewrite]: "rbt_insert x v t = paint B (ins x v t)" text \Correctness results for insertion.\ theorem insert_is_rbt [forward]: "is_rbt t \ is_rbt (rbt_insert x v t)" by auto2 theorem insert_sorted [forward]: "rbt_sorted t \ rbt_sorted (rbt_insert x v t)" by auto2 theorem insert_rbt_map [rewrite]: "rbt_sorted t \ rbt_map (rbt_insert x v t) = (rbt_map t) {x \ v}" by auto2 subsection \Search on sorted trees and its correctness\ fun rbt_search :: "('a::ord, 'b) rbt \ 'a \ 'b option" where "rbt_search Leaf x = None" | "rbt_search (Node l c y w r) x = (if x = y then Some w else if x < y then rbt_search l x else rbt_search r x)" setup \fold add_rewrite_rule @{thms rbt_search.simps}\ text \Correctness of search\ theorem rbt_search_correct [rewrite]: "rbt_sorted t \ rbt_search t x = (rbt_map t)\x\" @proof @induct t @qed subsection \balL and balR\ definition balL :: "('a, 'b) rbt \ 'a \ 'b \ ('a, 'b) rbt \ ('a, 'b) rbt" where [rewrite]: "balL l k v r = (let lr = lsub r in if cl l = R then Node (Node (lsub l) B (key l) (val l) (rsub l)) R k v r else if r = Leaf then Node l R k v r else if cl r = B then balance l k v (Node (lsub r) R (key r) (val r) (rsub r)) else if lr = Leaf then Node l R k v r else if cl lr = B then Node (Node l B k v (lsub lr)) R (key lr) (val lr) (balance (rsub lr) (key r) (val r) (paint R (rsub r))) else Node l R k v r)" setup \register_wellform_data ("balL l k v r", ["black_depth l + 1 = black_depth r"])\ setup \add_prfstep_check_req ("balL l k v r", "black_depth l + 1 = black_depth r")\ definition balR :: "('a, 'b) rbt \ 'a \ 'b \ ('a, 'b) rbt \ ('a, 'b) rbt" where [rewrite]: "balR l k v r = (let rl = rsub l in if cl r = R then Node l R k v (Node (lsub r) B (key r) (val r) (rsub r)) else if l = Leaf then Node l R k v r else if cl l = B then balance (Node (lsub l) R (key l) (val l) (rsub l)) k v r else if rl = Leaf then Node l R k v r else if cl rl = B then Node (balance (paint R (lsub l)) (key l) (val l) (lsub rl)) R (key rl) (val rl) (Node (rsub rl) B k v r) else Node l R k v r)" setup \register_wellform_data ("balR l k v r", ["black_depth l = black_depth r + 1"])\ setup \add_prfstep_check_req ("balR l k v r", "black_depth l = black_depth r + 1")\ lemma balL_bd [forward_arg]: "bd_inv l \ bd_inv r \ cl r = B \ black_depth l + 1 = black_depth r \ bd_inv (balL l k v r) \ black_depth (balL l k v r) = black_depth l + 1" by auto2 lemma balL_bd' [forward_arg]: "bd_inv l \ bd_inv r \ cl_inv r \ black_depth l + 1 = black_depth r \ bd_inv (balL l k v r) \ black_depth (balL l k v r) = black_depth l + 1" by auto2 lemma balL_cl [forward_arg]: "cl_inv' l \ cl_inv r \ cl r = B \ cl_inv (balL l k v r)" by auto2 lemma balL_cl' [forward]: "cl_inv' l \ cl_inv r \ cl_inv' (balL l k v r)" by auto2 lemma balR_bd [forward_arg]: "bd_inv l \ bd_inv r \ cl_inv l \ black_depth l = black_depth r + 1 \ bd_inv (balR l k v r) \ black_depth (balR l k v r) = black_depth l" by auto2 lemma balR_cl [forward_arg]: "cl_inv l \ cl_inv' r \ cl l = B \ cl_inv (balR l k v r)" by auto2 lemma balR_cl' [forward]: "cl_inv l \ cl_inv' r \ cl_inv' (balR l k v r)" by auto2 lemma balL_in_traverse_pairs [rewrite]: "rbt_in_traverse_pairs (balL l k v r) = rbt_in_traverse_pairs l @ (k, v) # rbt_in_traverse_pairs r" by auto2 lemma balR_in_traverse_pairs [rewrite]: "rbt_in_traverse_pairs (balR l k v r) = rbt_in_traverse_pairs l @ (k, v) # rbt_in_traverse_pairs r" by auto2 setup \fold del_prfstep_thm [@{thm balL_def}, @{thm balR_def}]\ subsection \Combine\ fun combine :: "('a, 'b) rbt \ ('a, 'b) rbt \ ('a, 'b) rbt" where "combine Leaf t = t" | "combine t Leaf = t" | "combine (Node l1 c1 k1 v1 r1) (Node l2 c2 k2 v2 r2) = ( if c1 = R then if c2 = R then let tm = combine r1 l2 in if cl tm = R then Node (Node l1 R k1 v1 (lsub tm)) R (key tm) (val tm) (Node (rsub tm) R k2 v2 r2) else Node l1 R k1 v1 (Node tm R k2 v2 r2) else Node l1 R k1 v1 (combine r1 (Node l2 c2 k2 v2 r2)) else if c2 = B then let tm = combine r1 l2 in if cl tm = R then Node (Node l1 B k1 v1 (lsub tm)) R (key tm) (val tm) (Node (rsub tm) B k2 v2 r2) else balL l1 k1 v1 (Node tm B k2 v2 r2) else Node (combine (Node l1 c1 k1 v1 r1) l2) R k2 v2 r2)" setup \fold add_rewrite_rule @{thms combine.simps(1,2)}\ lemma combine_bd [forward_arg]: "bd_inv lt \ bd_inv rt \ black_depth lt = black_depth rt \ bd_inv (combine lt rt) \ black_depth (combine lt rt) = black_depth lt" @proof @fun_induct "combine lt rt" @with @subgoal "(lt = Node l1 c1 k1 v1 r1, rt = Node l2 c2 k2 v2 r2)" @unfold "combine (Node l1 c1 k1 v1 r1) (Node l2 c2 k2 v2 r2)" @case "c1 = B" @with @case "c2 = B" @with @case "cl (combine r1 l2) = B" @with @have "cl (Node (combine r1 l2) B k2 v2 r2) = B" @end @end @end @endgoal @end @qed lemma combine_cl: "cl_inv lt \ cl_inv rt \ (cl lt = B \ cl rt = B \ cl_inv (combine lt rt)) \ cl_inv' (combine lt rt)" @proof @fun_induct "combine lt rt" @with @subgoal "(lt = Node l1 c1 k1 v1 r1, rt = Node l2 c2 k2 v2 r2)" @unfold "combine (Node l1 c1 k1 v1 r1) (Node l2 c2 k2 v2 r2)" @case "c1 = B" @with @case "c2 = B" @with @case "cl (combine r1 l2) = B" @with @have "cl (Node (combine r1 l2) B k2 v2 r2) = B" @end @end @end @endgoal @end @qed setup \add_forward_prfstep_cond @{thm combine_cl} [with_term "combine ?lt ?rt"]\ lemma combine_in_traverse_pairs [rewrite]: "rbt_in_traverse_pairs (combine lt rt) = rbt_in_traverse_pairs lt @ rbt_in_traverse_pairs rt" @proof @fun_induct "combine lt rt" @with @subgoal "(lt = Node l1 c1 k1 v1 r1, rt = Node l2 c2 k2 v2 r2)" @unfold "combine (Node l1 c1 k1 v1 r1) (Node l2 c2 k2 v2 r2)" @case "c1 = R" @with @case "c2 = R" @with @case "cl (combine r1 l2) = R" @with @have "rbt_in_traverse_pairs (combine (Node l1 c1 k1 v1 r1) (Node l2 c2 k2 v2 r2)) = rbt_in_traverse_pairs l1 @ (k1, v1) # rbt_in_traverse_pairs (combine r1 l2) @ (k2, v2) # rbt_in_traverse_pairs r2" @end @end @end @case "c1 = B" @with @case "c2 = B" @with @case "cl (combine r1 l2) = R" @with @have "rbt_in_traverse_pairs (combine (Node l1 c1 k1 v1 r1) (Node l2 c2 k2 v2 r2)) = rbt_in_traverse_pairs l1 @ (k1, v1) # rbt_in_traverse_pairs (combine r1 l2) @ (k2, v2) # rbt_in_traverse_pairs r2" @end @end @end @endgoal @end @qed subsection \Deletion\ fun del :: "'a::linorder \ ('a, 'b) rbt \ ('a, 'b) rbt" where "del x Leaf = Leaf" | "del x (Node l _ k v r) = (if x = k then combine l r else if x < k then if l = Leaf then Node Leaf R k v r else if cl l = B then balL (del x l) k v r else Node (del x l) R k v r else if r = Leaf then Node l R k v Leaf else if cl r = B then balR l k v (del x r) else Node l R k v (del x r))" setup \add_rewrite_rule @{thm del.simps(1)}\ lemma del_bd [forward_arg]: "bd_inv t \ cl_inv t \ bd_inv (del x t) \ ( if cl t = R then black_depth (del x t) = black_depth t else black_depth (del x t) = black_depth t - 1)" @proof @induct t @with @subgoal "t = Node l c k v r" @unfold "del x (Node l c k v r)" @case "x = k" @case "x < k" @with @case "l = Leaf" @case "cl l = B" @end @case "x > k" @with @case "r = Leaf" @case "cl r = B" @end @endgoal @end @qed lemma del_cl: "cl_inv t \ if cl t = R then cl_inv (del x t) else cl_inv' (del x t)" @proof @induct t @with @subgoal "t = Node l c k v r" @unfold "del x (Node l c k v r)" @case "x = k" @case "x < k" @endgoal @end @qed setup \add_forward_prfstep_cond @{thm del_cl} [with_term "del ?x ?t"]\ lemma del_in_traverse_pairs [rewrite]: "rbt_sorted t \ rbt_in_traverse_pairs (del x t) = remove_elt_pairs x (rbt_in_traverse_pairs t)" @proof @induct t @with @subgoal "t = Node l c k v r" @unfold "del x (Node l c k v r)" @endgoal @end @qed definition delete :: "'a::linorder \ ('a, 'b) rbt \ ('a, 'b) rbt" where [rewrite]: "delete x t = paint B (del x t)" text \Correctness results for deletion.\ theorem delete_is_rbt [forward]: "is_rbt t \ is_rbt (delete x t)" by auto2 theorem delete_sorted [forward]: "rbt_sorted t \ rbt_sorted (delete x t)" by auto2 theorem delete_rbt_map [rewrite]: "rbt_sorted t \ rbt_map (delete x t) = delete_map x (rbt_map t)" by auto2 setup \del_prfstep "RBTree.balance_case"\ setup \del_prfstep "RBTree.balL_case"\ setup \del_prfstep "RBTree.balR_case"\ setup \del_prfstep "RBTree.paint_case"\ end