(* Title: BDD Author: Veronika Ortner and Norbert Schirmer, 2004 Maintainer: Norbert Schirmer, norbert.schirmer at web de License: LGPL *) (* General.thy Copyright (C) 2004-2008 Veronika Ortner and Norbert Schirmer Some rights reserved, TU Muenchen This library is free software; you can redistribute it and/or modify it under the terms of the GNU Lesser General Public License as published by the Free Software Foundation; either version 2.1 of the License, or (at your option) any later version. This library is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License for more details. You should have received a copy of the GNU Lesser General Public License along with this library; if not, write to the Free Software Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA *) section \General Lemmas on BDD Abstractions\ theory General imports BinDag begin definition subdag_eq:: "dag \ dag \ bool" where "subdag_eq t\<^sub>1 t\<^sub>2 = (t\<^sub>1 = t\<^sub>2 \ subdag t\<^sub>1 t\<^sub>2)" (*"subtree_eq Tip t = (if t = Tip then True else False)" "subtree_eq (Node l a r) t = (t=(Node l a r) \ subtree_eq l t \ subtree_eq r t)"*) primrec root :: "dag \ ref" where "root Tip = Null" | "root (Node l a r) = a" fun isLeaf :: "dag \ bool" where "isLeaf Tip = False" | "isLeaf (Node Tip v Tip) = True" | "isLeaf (Node (Node l v\<^sub>1 r) v\<^sub>2 Tip) = False" | "isLeaf (Node Tip v\<^sub>1 (Node l v\<^sub>2 r)) = False" datatype bdt = Zero | One | Bdt_Node bdt nat bdt fun bdt_fn :: "dag \ (ref \ nat) \ bdt option" where "bdt_fn Tip = (\bdtvar . None)" | "bdt_fn (Node Tip vref Tip) = (\bdtvar . (if (bdtvar vref = 0) then Some Zero else (if (bdtvar vref = 1) then Some One else None)))" | "bdt_fn (Node Tip vref (Node l vref1 r)) = (\bdtvar . None)" | "bdt_fn (Node (Node l vref1 r) vref Tip) = (\bdtvar . None)" | "bdt_fn (Node (Node l1 vref1 r1) vref (Node l2 vref2 r2)) = (\bdtvar . (if (bdtvar vref = 0 \ bdtvar vref = 1) then None else (case (bdt_fn (Node l1 vref1 r1) bdtvar) of None \ None |(Some b1) \ (case (bdt_fn (Node l2 vref2 r2) bdtvar) of None \ None |(Some b2) \ Some (Bdt_Node b1 (bdtvar vref) b2)))))" (* Kongruenzregeln sind das Feintuning für den Simplifier (siehe Kapitel 9 im Isabelle Tutorial). Im Fall von case wird standardmäßig nur die case bedingung nicht aber die einzelnen Fälle simplifiziert, analog dazu beim if. Dies simuliert die Auswertungsstrategie einer Programmiersprache, da wird auch zunächst nur die Bedingung vereinfacht. Will man mehr so kann man die entsprechenden Kongruenz regeln dazunehmen. *) abbreviation "bdt == bdt_fn" primrec eval :: "bdt \ bool list \ bool" where "eval Zero env = False" | "eval One env = True" | "eval (Bdt_Node l v r) env = (if (env ! v) then eval r env else eval l env)" (*A given bdt is ordered if it is a One or Zero or its value is smaller than its parents value*) fun ordered_bdt:: "bdt \ bool" where "ordered_bdt Zero = True" | "ordered_bdt One = True" | "ordered_bdt (Bdt_Node (Bdt_Node l1 v1 r1) v (Bdt_Node l2 v2 r2)) = ((v1 < v) \ (v2 < v) \ (ordered_bdt (Bdt_Node l1 v1 r1)) \ (ordered_bdt (Bdt_Node l2 v2 r2)))" | "ordered_bdt (Bdt_Node (Bdt_Node l1 v1 r1) v r) = ((v1 < v) \ (ordered_bdt (Bdt_Node l1 v1 r1)))" | "ordered_bdt (Bdt_Node l v (Bdt_Node l2 v2 r2)) = ((v2 < v) \ (ordered_bdt (Bdt_Node l2 v2 r2)))" | "ordered_bdt (Bdt_Node l v r) = True" (*In case t = (Node Tip v Tip) v should have the values 0 or 1. This is not checked by this function*) fun ordered:: "dag \ (ref\nat) \ bool" where "ordered Tip = (\ var. True)" | "ordered (Node (Node l\<^sub>1 v\<^sub>1 r\<^sub>1) v (Node l\<^sub>2 v\<^sub>2 r\<^sub>2)) = (\ var. (var v\<^sub>1 < var v \ var v\<^sub>2 < var v) \ (ordered (Node l\<^sub>1 v\<^sub>1 r\<^sub>1) var) \ (ordered (Node l\<^sub>2 v\<^sub>2 r\<^sub>2) var))" | "ordered (Node Tip v Tip) = (\ var. (True))" | "ordered (Node Tip v r) = (\ var. (var (root r) < var v) \ (ordered r var))" | "ordered (Node l v Tip) = (\ var. (var (root l) < var v) \ (ordered l var))" (*Calculates maximal value in a non ordered bdt. Does not test parents of the given bdt*) primrec max_var :: "bdt \ nat" where "max_var Zero = 0" | "max_var One = 1" | "max_var (Bdt_Node l v r) = max v (max (max_var l) (max_var r))" lemma eval_zero: "\bdt (Node l v r) var = Some x; var (root (Node l v r)) = (0::nat)\ \ x = Zero" apply (cases l) apply (cases r) apply simp apply simp apply (cases r) apply simp apply simp done lemma bdt_Some_One_iff [simp]: "(bdt t var = Some One) = (\ p. t = Node Tip p Tip \ var p = 1)" apply (induct t rule: bdt_fn.induct) apply (auto split: option.splits) (*in order to split the cases Zero and One*) done lemma bdt_Some_Zero_iff [simp]: "(bdt t var = Some Zero) = (\ p. t = Node Tip p Tip \ var p = 0)" apply (induct t rule: bdt_fn.induct) apply (auto split: option.splits) done lemma bdt_Some_Node_iff [simp]: "(bdt t var = Some (Bdt_Node bdt1 v bdt2)) = (\ p l r. t = Node l p r \ bdt l var = Some bdt1 \ bdt r var = Some bdt2 \ 1 < v \ var p = v )" apply (induct t rule: bdt_fn.induct) prefer 5 apply (fastforce split: if_splits option.splits) apply auto done lemma balanced_bdt: "\ p bdt1. \ Dag p low high t; bdt t var = Some bdt1; no \ set_of t\ \ (low no = Null) = (high no = Null)" proof (induct t) case Tip then show ?case by simp next case (Node lt a rt) note NN= this have bdt1: "bdt (Node lt a rt) var = Some bdt1" by fact have no_in_t: " no \ set_of (Node lt a rt)" by fact have p_tree: "Dag p low high (Node lt a rt)" by fact from Node.prems obtain lt: "Dag (low p) low high lt" and rt: "Dag (high p) low high rt" by auto show ?case proof (cases lt) case (Node llt l rlt) note Nlt=this show ?thesis proof (cases rt) case (Node lrt r rrt) note Nrt=this from Nlt Nrt bdt1 obtain lbdt rbdt where lbdt_def: "bdt lt var = Some lbdt" and rbdt_def: "bdt rt var = Some rbdt" and bdt1_def: "bdt1 = Bdt_Node lbdt (var a) rbdt" by (auto split: if_split_asm option.splits) from no_in_t show ?thesis proof (simp, elim disjE) assume " no = a" with p_tree Nlt Nrt show ?thesis by auto next assume "no \ set_of lt" with Node.hyps lbdt_def lt show ?thesis by simp next assume "no \ set_of rt" with Node.hyps rbdt_def rt show ?thesis by simp qed next case Tip with Nlt bdt1 show ?thesis by simp qed next case Tip note ltTip=this show ?thesis proof (cases rt) case Tip with ltTip bdt1 no_in_t p_tree show ?thesis by auto next case (Node rlt r rrt) with bdt1 ltTip show ?thesis by simp qed qed qed primrec dag_map :: "(ref \ ref) \ dag \ dag" where "dag_map f Tip = Tip" | "dag_map f (Node l a r) = (Node (dag_map f l) (f a) (dag_map f r))" definition wf_marking :: "dag \ (ref \ bool) \ (ref \ bool) \ bool \ bool" where "wf_marking t mark_old mark_new marked = (case t of Tip \ mark_new = mark_old | (Node lt p rt) \ (\ n. n \ set_of t \ mark_new n = mark_old n) \ (\ n. n \ set_of t \ mark_new n = marked))" definition dag_in_levellist:: "dag \ (ref list list) \ (ref \ nat) \ bool" where "dag_in_levellist t levellist var = (t \ Tip \ (\ st. subdag_eq t st \ root st \ set (levellist ! (var (root st)))))" lemma set_of_nn: "\ Dag p low high t; n \ set_of t\ \ n \ Null" apply (induct t) apply simp apply auto done lemma subnodes_ordered [rule_format]: "\p. n \ set_of t \ Dag p low high t \ ordered t var \ var n <= var p" apply (induct t) apply simp apply (intro allI) apply (erule_tac x="low p" in allE) apply (erule_tac x="high p" in allE) apply clarsimp apply (case_tac t1) apply (case_tac t2) apply simp apply fastforce apply (case_tac t2) apply fastforce apply fastforce done lemma ordered_set_of: "\ x. \ordered t var; x \ set_of t\ \ var x <= var (root t)" apply (induct t) apply simp apply simp apply (elim disjE) apply simp apply (case_tac t1) apply simp apply (case_tac t2) apply fastforce apply fastforce apply (case_tac t2) apply simp apply (case_tac t1) apply fastforce apply fastforce done lemma dag_setofD: "\ p low high n. \ Dag p low high t; n \ set_of t \ \ (\ nt. Dag n low high nt) \ (\ nt. Dag n low high nt \ set_of nt \ set_of t)" apply (induct t) apply simp apply auto apply fastforce apply (fastforce dest: Dag_unique) apply (fastforce dest: Dag_unique) apply blast apply blast done lemma dag_setof_exD: "\Dag p low high t; n \ set_of t\ \ \ nt. Dag n low high nt" apply (simp add: dag_setofD) done lemma dag_setof_subsetD: "\Dag p low high t; n \ set_of t; Dag n low high nt\ \ set_of nt \ set_of t" apply (simp add: dag_setofD) done lemma subdag_parentdag_low: "not <= lt \ not <= (Node lt p rt)" for not apply (cases "not = lt") apply (cases lt) apply simp apply (cases rt) apply simp apply (simp add: le_dag_def less_dag_def) apply (simp add: le_dag_def less_dag_def) apply (simp add: le_dag_def less_dag_def) apply (simp add: le_dag_def less_dag_def) done lemma subdag_parentdag_high: "not <= rt \ not <= (Node lt p rt)" for not apply (cases "not = rt") apply (cases lt) apply simp apply (cases rt) apply simp apply (simp add: le_dag_def less_dag_def) apply (simp add: le_dag_def less_dag_def) apply (simp add: le_dag_def less_dag_def) apply (simp add: le_dag_def less_dag_def) done lemma set_of_subdag: "\ p not no. \Dag p low high t; Dag no low high not; no \ set_of t\ \ not <= t" proof (induct t) case Tip then show ?case by simp next case (Node lt po rt) note rtNode=this from Node.prems have ppo: "p=po" by simp show ?case proof (cases "no = p") case True with ppo Node.prems have "not = (Node lt po rt)" by (simp add: Dag_unique del: Dag_Ref) with Node.prems ppo show ?thesis by (simp add: subdag_eq_def) next assume " no \ p" with Node.prems have no_in_ltorrt: "no \ set_of lt \ no \ set_of rt" by simp show ?thesis proof (cases "no \ set_of lt") case True from Node.prems ppo have "Dag (low po) low high lt" by simp with Node.prems ppo True have "not <= lt" apply - apply (rule Node.hyps) apply assumption+ done with Node.prems no_in_ltorrt show ?thesis apply - apply (rule subdag_parentdag_low) apply simp done next assume "no \ set_of lt" with no_in_ltorrt have no_in_rt: "no \ set_of rt" by simp from Node.prems ppo have "Dag (high po) low high rt" by simp with Node.prems ppo no_in_rt have "not <= rt" apply - apply (rule Node.hyps) apply assumption+ done with Node.prems no_in_rt show ?thesis apply - apply (rule subdag_parentdag_high) apply simp done qed qed qed lemma children_ordered: "\ordered (Node lt p rt) var\ \ ordered lt var \ ordered rt var" proof (cases lt) case Tip note ltTip=this assume orderedNode: "ordered (Node lt p rt) var" show ?thesis proof (cases rt) case Tip note rtTip = this with ltTip show ?thesis by simp next case (Node lrt r rrt) with orderedNode ltTip show ?thesis by simp qed next case (Node llt l rlt) note ltNode=this assume orderedNode: "ordered (Node lt p rt) var" show ?thesis proof (cases rt) case Tip note rtTip = this with orderedNode ltNode show ?thesis by simp next case (Node lrt r rrt) note rtNode = this with orderedNode ltNode show ?thesis by simp qed qed lemma ordered_subdag: "\ordered t var; not <= t\ \ ordered not var" for not proof (induct t) case Tip then show ?thesis by (simp add: less_dag_def le_dag_def) next case (Node lt p rt) show ?case proof (cases "not = Node lt p rt") case True with Node.prems show ?thesis by simp next assume notnt: "not \ Node lt p rt" with Node.prems have notstltorrt: "not <= lt \ not <= rt" apply - apply (simp add: less_dag_def le_dag_def) apply fastforce done from Node.prems have ord_lt: "ordered lt var" apply - apply (drule children_ordered) apply simp done from Node.prems have ord_rt: "ordered rt var" apply - apply (drule children_ordered) apply simp done show ?thesis proof (cases "not <= lt") case True with ord_lt show ?thesis apply - apply (rule Node.hyps) apply assumption+ done next assume "\ not \ lt" with notstltorrt have notinrt: "not <= rt" by simp from Node.hyps have hyprt: "\ordered rt var; not \ rt\ \ ordered not var" by simp from notinrt ord_rt show ?thesis apply - apply (rule hyprt) apply assumption+ done qed qed qed lemma subdag_ordered: "\ not no p. \ordered t var; Dag p low high t; Dag no low high not; no \ set_of t\ \ ordered not var" proof (induct t) case Tip from Tip.prems show ?case by simp next case (Node lt po rt) note nN=this show ?case proof (cases lt) case Tip note ltTip=this show ?thesis proof (cases rt) case Tip from Node.prems have ppo: "p=po" by simp from Tip ltTip Node.prems have "no=p" by simp with ppo Node.prems have "not=(Node lt po rt)" by (simp del: Dag_Ref add: Dag_unique) with Node.prems show ?thesis by simp next case (Node lrnot rn rrnot) from Node.prems ltTip Node have ord_rt: "ordered rt var" by simp from Node.prems have ppo: "p=po" by simp from Node.prems have ponN: "po \ Null" by auto with ppo ponN ltTip Node.prems have *: "Dag (high po) low high rt" by auto show ?thesis proof (cases "no=po") case True with ppo Node.prems have "not = Node lt po rt" by (simp del: Dag_Ref add: Dag_unique) with Node.prems show ?thesis by simp next case False with Node.prems ltTip have "no \ set_of rt" by simp with ord_rt * \Dag no low high not\ show ?thesis by (rule Node.hyps) qed qed next case (Node llt l rlt) note ltNode=this show ?thesis proof (cases rt) case Tip from Node.prems Tip ltNode have ord_lt: "ordered lt var" by simp from Node.prems have ppo: "p=po" by simp from Node.prems have ponN: "po \ Null" by auto with ppo ponN Tip Node.prems ltNode have *: "Dag (low po) low high lt" by auto show ?thesis proof (cases "no=po") case True with ppo Node.prems have "not = (Node lt po rt)" by (simp del: Dag_Ref add: Dag_unique) with Node.prems show ?thesis by simp next case False with Node.prems Tip have "no \ set_of lt" by simp with ord_lt * \Dag no low high not\ show ?thesis by (rule Node.hyps) qed next case (Node lrt r rrt) from Node.prems have ppo: "p=po" by simp from Node.prems Node ltNode have ord_lt: "ordered lt var" by simp from Node.prems Node ltNode have ord_rt: "ordered rt var" by simp from Node.prems have ponN: "po \ Null" by auto with ppo ponN Node Node.prems ltNode have lt_Dag: "Dag (low po) low high lt" by auto with ppo ponN Node Node.prems ltNode have rt_Dag: "Dag (high po) low high rt" by auto show ?thesis proof (cases "no = po") case True with ppo Node.prems have "not = (Node lt po rt)" by (simp del: Dag_Ref add: Dag_unique) with Node.prems show ?thesis by simp next assume "no \ po" with Node.prems have no_in_lt_or_rt: "no \ set_of lt \ no \ set_of rt" by simp show ?thesis proof (cases "no \ set_of lt") case True with ord_lt lt_Dag Node.prems show ?thesis apply - apply (rule Node.hyps) apply assumption+ done next assume " no \ set_of lt" with no_in_lt_or_rt have no_in_rt: "no \ set_of rt" by simp from Node.hyps have hyp2: "\p no not. \ordered rt var; Dag p low high rt; Dag no low high not; no \ set_of rt\ \ ordered not var" apply - apply assumption done from no_in_rt ord_rt rt_Dag Node.prems show ?thesis apply - apply (rule hyp2) apply assumption+ done qed qed qed qed qed lemma elem_set_of: "\ x st. \x \ set_of st; set_of st \ set_of t\ \ x \ set_of t" by blast (*procedure Levellist converts a dag with root p in a ref list list (levellist) with nodes of var = i in levellist ! i. In order to convert the two datastructures a dag traversal is required using a mark on nodes. m indicates the value which is assumed for a node to be marked. (\ nt. Dag n \<^bsup>\\<^esup>low \<^bsup>\\<^esup>high nt \ {\<^bsup>\\<^esup>m} = set_of (dag_map \<^bsup>\\<^esup>mark nt))*) definition wf_ll :: "dag \ ref list list \ (ref \ nat) \ bool" where "wf_ll t levellist var = ((\p. p \ set_of t \ p \ set (levellist ! var p)) \ (\k < length levellist. \p \ set (levellist ! k). p \ set_of t \ var p = k))" definition cong_eval :: "bdt \ bdt \ bool" (infix "\" 60) where "cong_eval bdt\<^sub>1 bdt\<^sub>2 = (eval bdt\<^sub>1 = eval bdt\<^sub>2)" lemma cong_eval_sym: "l \ r = r \ l" by (auto simp add: cong_eval_def) lemma cong_eval_trans: "\ l \ r; r \ t\ \ l \ t" by (simp add: cong_eval_def) lemma cong_eval_child_high: " l \ r \ r \ (Bdt_Node l v r)" apply (simp add: cong_eval_def ) apply (rule ext) apply auto done lemma cong_eval_child_low: " l \ r \ l \ (Bdt_Node l v r)" apply (simp add: cong_eval_def ) apply (rule ext) apply auto done definition null_comp :: "(ref \ ref) \ (ref \ ref) \ (ref \ ref)" (infix "\" 60) where "null_comp a b = (\ p. (if (b p) = Null then Null else ((a \ b) p)))" lemma null_comp_not_Null [simp]: "h q \ Null \ (g \ h) q = g (h q)" by (simp add: null_comp_def) lemma id_trans: "(a \ id) (b (c p)) = (a \ b) (c p)" by (simp add: null_comp_def) definition Nodes :: "nat \ ref list list \ ref set" where "Nodes i levellist = (\k\{k. k < i} . set (levellist ! k))" inductive_set Dags :: "ref set \ (ref \ ref) \ (ref \ ref) \ dag set" for "nodes" "low" "high" where DagsI: "\ set_of t \ nodes; Dag p low high t; t \ Tip\ \ t \ Dags nodes low high" lemma empty_Dags [simp]: "Dags {} low high = {}" apply rule apply rule apply (erule Dags.cases) apply (case_tac t) apply simp apply simp apply rule done definition isLeaf_pt :: "ref \ (ref \ ref) \ (ref \ ref) \ bool" where "isLeaf_pt p low high = (low p = Null \ high p = Null)" definition repNodes_eq :: "ref \ ref \ (ref \ ref) \ (ref \ ref) \ (ref \ ref) \ bool" where "repNodes_eq p q low high rep == (rep \ high) p = (rep \ high) q \ (rep \ low) p = (rep \ low) q" definition isomorphic_dags_eq :: "dag \ dag \ (ref \ nat) \ bool" where "isomorphic_dags_eq st\<^sub>1 st\<^sub>2 var = (\bdt\<^sub>1 bdt\<^sub>2. (bdt st\<^sub>1 var = Some bdt\<^sub>1 \ bdt st\<^sub>2 var = Some bdt\<^sub>2 \ (bdt\<^sub>1 = bdt\<^sub>2)) \ st\<^sub>1 = st\<^sub>2)" lemma isomorphic_dags_eq_sym: "isomorphic_dags_eq st\<^sub>1 st\<^sub>2 var = isomorphic_dags_eq st\<^sub>2 st\<^sub>1 var" by (auto simp add: isomorphic_dags_eq_def) (*consts subdags_shared :: "dag \ dag \ (ref \ nat) \ bool" defs subdags_shared_def : "subdags_shared t1 t2 var == \ st1 st2. (st1 <= t1 \ st2 <= t2) \ shared_prop st1 st2 var" consts shared :: " dag \ dag \ (ref \ nat) \ bool" defs shared_def: "shared t1 t2 var == subdags_shared t1 t1 var \ subdags_shared t2 t2 var \ subdags_shared t1 t2 var"*) definition shared :: "dag \ (ref \ nat) \ bool" where "shared t var = (\st\<^sub>1 st\<^sub>2. (st\<^sub>1 <= t \ st\<^sub>2 <= t) \ isomorphic_dags_eq st\<^sub>1 st\<^sub>2 var)" (* shared returns True if the Dag has no different subdags which represent the same bdts. Note: The two subdags can have different references and code the same bdt nevertheless! consts shared :: "dag \ (ref \ nat) \ bool" defs shared_def: "shared t bdtvar \ \ st1 st2. (subdag t st1 \ subdag t st2 \ (bdt st1 bdtvar = bdt st2 bdtvar \ st1 = st2))" consts shared_lower_levels :: "dag \ nat \ (ref \ nat) \ bool" defs shared_lower_levels_def : "shared_lower_levels t i bdtvar == \ st1 st2. (st1 < t \ st2 < t \ bdtvar (root st1) < i \ bdtvar (root st2) < i \ (bdt st1 bdtvar = bdt st2 bdtvar \ st1 = st2))" *) fun reduced :: "dag \ bool" where "reduced Tip = True" | "reduced (Node Tip v Tip) = True" | "reduced (Node l v r) = (l \ r \ reduced l \ reduced r)" primrec reduced_bdt :: "bdt \ bool" where "reduced_bdt Zero = True" | "reduced_bdt One = True" | "reduced_bdt (Bdt_Node lbdt v rbdt) = (if lbdt = rbdt then False else (reduced_bdt lbdt \ reduced_bdt rbdt))" lemma replicate_elem: "i < n ==> (replicate n x !i) = x" apply (induct n) apply simp apply (cases i) apply auto done lemma no_in_one_ll: "\wf_ll pret levellista var; i set (levellista ! i); i\j\ \ no \ set (levellista ! j) " apply (unfold wf_ll_def) apply (erule conjE) apply (rotate_tac 5) apply (frule_tac x = i and ?R= "no \ set_of pret \ var no = i" in allE) apply (erule impE) apply simp apply (rotate_tac 6) apply (erule_tac x=no in ballE) apply assumption apply simp apply (cases "no \ set (levellista ! j)") apply assumption apply (erule_tac x=j in allE) apply (erule impE) apply assumption apply (rotate_tac 7) apply (erule_tac x=no in ballE) prefer 2 apply assumption apply (elim conjE) apply (thin_tac "\q. q \ set_of pret \ q \ set (levellista ! var q)") apply fastforce done lemma nodes_in_wf_ll: "\wf_ll pret levellista var; i < length levellista; no \ set (levellista ! i)\ \ var no = i \ no \ set_of pret" apply (simp add: wf_ll_def) done lemma subelem_set_of_low: "\ p. \ x \ set_of t; x \ Null; low x \ Null; Dag p low high t \ \ (low x) \ set_of t" proof (induct t) case Tip then show ?case by simp next case (Node lt po rt) note tNode=this then have ppo: "p=po" by simp show ?case proof (cases "x=p") case True with Node.prems have lxrootlt: "low x = root lt" proof (cases lt) case Tip with True Node.prems show ?thesis by auto next case (Node llt l rlt) with Node.prems True show ?thesis by auto qed with True Node.prems have "low x \ set_of (Node lt p rt)" proof (cases lt) case Tip with lxrootlt Node.prems show ?thesis by simp next case (Node llt l rlt) with lxrootlt Node.prems show ?thesis by simp qed with ppo show ?thesis by simp next assume xnp: " x \ p" with Node.prems have "x \ set_of lt \ x \ set_of rt" by simp show ?thesis proof (cases "x \ set_of lt") case True note xinlt=this from Node.prems have "Dag (low p) low high lt" by fastforce with Node.prems True have "low x \ set_of lt" apply - apply (rule Node.hyps) apply assumption+ done with Node.prems show ?thesis by auto next assume xnotinlt: " x \ set_of lt" with xnp Node.prems have xinrt: "x \ set_of rt" by simp from Node.prems have "Dag (high p) low high rt" by fastforce with Node.prems xinrt have "low x \ set_of rt" apply - apply (rule Node.hyps) apply assumption+ done with Node.prems show ?thesis by auto qed qed qed lemma subelem_set_of_high: "\ p. \ x \ set_of t; x \ Null; high x \ Null; Dag p low high t \ \ (high x) \ set_of t" proof (induct t) case Tip then show ?case by simp next case (Node lt po rt) note tNode=this then have ppo: "p=po" by simp show ?case proof (cases "x=p") case True with Node.prems have lxrootlt: "high x = root rt" proof (cases rt) case Tip with True Node.prems show ?thesis by auto next case (Node lrt l rrt) with Node.prems True show ?thesis by auto qed with True Node.prems have "high x \ set_of (Node lt p rt)" proof (cases rt) case Tip with lxrootlt Node.prems show ?thesis by simp next case (Node lrt l rrt) with lxrootlt Node.prems show ?thesis by simp qed with ppo show ?thesis by simp next assume xnp: " x \ p" with Node.prems have "x \ set_of lt \ x \ set_of rt" by simp show ?thesis proof (cases "x \ set_of lt") case True note xinlt=this from Node.prems have "Dag (low p) low high lt" by fastforce with Node.prems True have "high x \ set_of lt" apply - apply (rule Node.hyps) apply assumption+ done with Node.prems show ?thesis by auto next assume xnotinlt: " x \ set_of lt" with xnp Node.prems have xinrt: "x \ set_of rt" by simp from Node.prems have "Dag (high p) low high rt" by fastforce with Node.prems xinrt have "high x \ set_of rt" apply - apply (rule Node.hyps) apply assumption+ done with Node.prems show ?thesis by auto qed qed qed lemma set_split: "{k. k<(Suc n)} = {k. k {n}" apply auto done lemma Nodes_levellist_subset_t: "\wf_ll t levellist var; i<= length levellist\ \ Nodes i levellist \ set_of t" proof (induct i) case 0 show ?case by (simp add: Nodes_def) next case (Suc n) from Suc.prems Suc.hyps have Nodesn_in_t: "Nodes n levellist \ set_of t" by simp from Suc.prems have "\ x \ set (levellist ! n). x \ set_of t" apply - apply (rule ballI) apply (simp add: wf_ll_def) apply (erule conjE) apply (thin_tac " \q. q \ set_of t \ q \ set (levellist ! var q)") apply (erule_tac x=n in allE) apply (erule impE) apply simp apply fastforce done with Suc.prems have "set (levellist ! n) \ set_of t" apply blast done with Suc.prems Nodesn_in_t show ?case apply (simp add: Nodes_def) apply (simp add: set_split) done qed lemma bdt_child: "\ bdt (Node (Node llt l rlt) p (Node lrt r rrt)) var = Some bdt1\ \ \ lbdt rbdt. bdt (Node llt l rlt) var = Some lbdt \ bdt (Node lrt r rrt) var = Some rbdt" by (simp split: option.splits) lemma subbdt_ex_dag_def: "\ bdt1 p. \Dag p low high t; bdt t var = Some bdt1; Dag no low high not; no \ set_of t\ \ \ bdt2. bdt not var = Some bdt2" for not proof (induct t) case Tip then show ?case by simp next case (Node lt po rt) note pNode=this with Node.prems have p_po: "p=po" by simp show ?case proof (cases "no = po") case True note no_eq_po=this from p_po Node.prems no_eq_po have "not = (Node lt po rt)" by (simp add: Dag_unique del: Dag_Ref) with Node.prems have "bdt not var = Some bdt1" by (simp add: le_dag_def) then show ?thesis by simp next assume "no \ po" with Node.prems have no_in_lt_or_rt: "no \ set_of lt \ no \ set_of rt" by simp show ?thesis proof (cases "no \ set_of lt") case True note no_in_lt=this from Node.prems p_po have lt_dag: "Dag (low po) low high lt" by simp from Node.prems have lbdt_def: "\ lbdt. bdt lt var = Some lbdt" proof (cases lt) case Tip with Node.prems no_in_lt show ?thesis by (simp add: le_dag_def) next case (Node llt l rlt) note lNode=this show ?thesis proof (cases rt) case Tip note rNode=this with lNode Node.prems show ?thesis by simp next case (Node lrt r rrt) note rNode=this with lNode Node.prems show ?thesis by (simp split: option.splits) qed qed then obtain lbdt where "bdt lt var = Some lbdt".. with Node.prems lt_dag no_in_lt show ?thesis apply - apply (rule Node.hyps) apply assumption+ done next assume "no \ set_of lt" with no_in_lt_or_rt have no_in_rt: "no \ set_of rt" by simp from Node.prems p_po have rt_dag: "Dag (high po) low high rt" by simp from Node.hyps have hyp2: "\ rbdt. \Dag (high po) low high rt; bdt rt var = Some rbdt; Dag no low high not; no \ set_of rt\ \ \bdt2. bdt not var = Some bdt2" by simp from Node.prems have lbdt_def: "\ rbdt. bdt rt var = Some rbdt" proof (cases rt) case Tip with Node.prems no_in_rt show ?thesis by (simp add: le_dag_def) next case (Node lrt l rrt) note rNode=this show ?thesis proof (cases lt) case Tip note lTip=this with rNode Node.prems show ?thesis by simp next case (Node llt r rlt) note lNode=this with rNode Node.prems show ?thesis by (simp split: option.splits) qed qed then obtain rbdt where "bdt rt var = Some rbdt".. with Node.prems rt_dag no_in_rt show ?thesis apply - apply (rule hyp2) apply assumption+ done qed qed qed lemma subbdt_ex: "\ bdt1. \ (Node lst stp rst) <= t; bdt t var = Some bdt1\ \ \ bdt2. bdt (Node lst stp rst) var = Some bdt2" proof (induct t) case Tip then show ?case by (simp add: le_dag_def) next case (Node lt p rt) note pNode=this show ?case proof (cases "Node lst stp rst = Node lt p rt") case True with Node.prems show ?thesis by simp next assume " Node lst stp rst \ Node lt p rt" with Node.prems have "Node lst stp rst < Node lt p rt" apply (simp add: le_dag_def) apply auto done then have in_ltrt: "Node lst stp rst <= lt \ Node lst stp rst <= rt" by (simp add: less_dag_Node) show ?thesis proof (cases "Node lst stp rst <= lt") case True note in_lt=this from Node.prems have lbdt_def: "\ lbdt. bdt lt var = Some lbdt" proof (cases lt) case Tip with Node.prems in_lt show ?thesis by (simp add: le_dag_def) next case (Node llt l rlt) note lNode=this show ?thesis proof (cases rt) case Tip note rNode=this with lNode Node.prems show ?thesis by simp next case (Node lrt r rrt) note rNode=this with lNode Node.prems show ?thesis by (simp split: option.splits) qed qed then obtain lbdt where "bdt lt var = Some lbdt".. with Node.prems in_lt show ?thesis apply - apply (rule Node.hyps) apply assumption+ done next assume " \ Node lst stp rst \ lt" with in_ltrt have in_rt: "Node lst stp rst <= rt" by simp from Node.hyps have hyp2: "\ rbdt. \Node lst stp rst <= rt; bdt rt var = Some rbdt\ \ \bdt2. bdt (Node lst stp rst) var = Some bdt2" by simp from Node.prems have rbdt_def: "\ rbdt. bdt rt var = Some rbdt" proof (cases rt) case Tip with Node.prems in_rt show ?thesis by (simp add: le_dag_def) next case (Node lrt l rrt) note rNode=this show ?thesis proof (cases lt) case Tip note lNode=this with rNode Node.prems show ?thesis by simp next case (Node lrt r rrt) note lNode=this with rNode Node.prems show ?thesis by (simp split: option.splits) qed qed then obtain rbdt where "bdt rt var = Some rbdt".. with Node.prems in_rt show ?thesis apply - apply (rule hyp2) apply assumption+ done qed qed qed lemma var_ordered_children: "\ p. \ Dag p low high t; ordered t var; no \ set_of t; low no \ Null; high no \ Null\ \ var (low no) < var no \ var (high no) < var no" proof (induct t) case Tip then show ?case by simp next case (Node lt po rt) then have ppo: "p=po" by simp show ?case proof (cases "no = po") case True note no_po=this from Node.prems have "var (low po) < var po \ var (high po) < var po" proof (cases lt) case Tip note ltTip=this with Node.prems no_po ppo show ?thesis by simp next case (Node llt l rlt) note lNode=this show ?thesis proof (cases rt) case Tip note rTip=this with Node.prems no_po ppo show ?thesis by simp next case (Node lrt r rrt) note rNode=this with Node.prems ppo no_po lNode show ?thesis by (simp del: Dag_Ref) qed qed with no_po show ?thesis by simp next assume " no \ po" with Node.prems have no_in_ltrt: "no \ set_of lt \ no \ set_of rt" by simp show ?thesis proof (cases "no \ set_of lt") case True note no_in_lt=this from Node.prems ppo have lt_dag: "Dag (low po) low high lt" by simp from Node.prems have ord_lt: "ordered lt var" apply - apply (drule children_ordered) apply simp done from no_in_lt lt_dag ord_lt Node.prems show ?thesis apply - apply (rule Node.hyps) apply assumption+ done next assume " no \ set_of lt" with no_in_ltrt have no_in_rt: "no \ set_of rt" by simp from Node.prems ppo have rt_dag: "Dag (high po) low high rt" by simp from Node.hyps have hyp2: " \Dag (high po) low high rt; ordered rt var; no \ set_of rt; low no \ Null; high no \ Null\ \ var (low no) < var no \ var (high no) < var no" by simp from Node.prems have ord_rt: "ordered rt var" apply - apply (drule children_ordered) apply simp done from rt_dag ord_rt no_in_rt Node.prems show ?thesis apply - apply (rule hyp2) apply assumption+ done qed qed qed lemma nort_null_comp: assumes pret_dag: "Dag p low high pret" and prebdt_pret: "bdt pret var = Some prebdt" and nort_dag: "Dag (repc no) (repb \ low) (repb \ high) nort" and ord_pret: "ordered pret var" and wf_llb: "wf_ll pret levellistb var" and nbsll: "nb < length levellistb" and repbc_nc: "\ nt. nt \ set (levellistb ! nb) \ repb nt = repc nt" and xsnb_in_pret: "\ x \ set_of nort. var x < nb \ x \ set_of pret" shows "\ x \ set_of nort. ((repc \ low) x = (repb \ low) x \ (repc \ high) x = (repb \ high) x)" proof (rule ballI) fix x assume x_in_nort: "x \ set_of nort" with nort_dag have xnN: "x \ Null" apply - apply (rule set_of_nn [rule_format]) apply auto done from x_in_nort xsnb_in_pret have xsnb: "var x set_of pret" by blast show " (repc \ low) x = (repb \ low) x \ (repc \ high) x = (repb \ high) x" proof (cases "(low x) \ Null") case True with pret_dag prebdt_pret x_in_pret have highnN: "(high x) \ Null" apply - apply (drule balanced_bdt) apply assumption+ apply simp done from x_in_pret ord_pret highnN True have children_var_smaller: "var (low x) < var x \ var (high x) < var x" apply - apply (rule var_ordered_children) apply (rule pret_dag) apply (rule ord_pret) apply (rule x_in_pret) apply (rule True) apply (rule highnN) done with xsnb have lowxsnb: "var (low x) < nb" by arith from children_var_smaller xsnb have highxsnb: "var (high x) < nb" by arith from x_in_pret xnN True pret_dag have lowxinpret: "(low x) \ set_of pret" apply - apply (drule subelem_set_of_low) apply assumption apply (thin_tac "x \ Null") apply assumption+ done with wf_llb have "low x \ set (levellistb ! (var (low x)))" by (simp add: wf_ll_def) with wf_llb nbsll lowxsnb have "low x \ set (levellistb ! nb)" apply - apply (rule_tac ?i="(var (low x))" and ?j=nb in no_in_one_ll) apply auto done with repbc_nc have repclow: "repc (low x) = repb (low x)" by auto from x_in_pret xnN highnN pret_dag have highxinpret: "(high x) \ set_of pret" apply - apply (drule subelem_set_of_high) apply assumption apply (thin_tac "x \ Null") apply assumption+ done with wf_llb have "high x \ set (levellistb ! (var (high x)))" by (simp add: wf_ll_def) with wf_llb nbsll highxsnb have "high x \ set (levellistb ! nb)" apply - apply (rule_tac ?i="(var (high x))" and ?j=nb in no_in_one_ll) apply auto done with repbc_nc have repchigh: "repc (high x) = repb (high x)" by auto with repclow show ?thesis by (simp add: null_comp_def) next assume " \ low x \ Null" then have lowxNull: "low x = Null" by simp with pret_dag x_in_pret prebdt_pret have highxNull: "high x =Null" apply - apply (drule balanced_bdt) apply simp apply simp apply simp done from lowxNull have repclowNull: "(repc \ low) x = Null" by (simp add: null_comp_def) from lowxNull have repblowNull: "(repb \ low) x = Null" by (simp add: null_comp_def) with repclowNull have lowxrepbc: "(repc \ low) x = (repb \ low) x" by simp from highxNull have repchighNull: "(repc \ high) x = Null" by (simp add: null_comp_def) from highxNull have "(repb \ high) x = Null" by (simp add: null_comp_def) with repchighNull have highxrepbc: "(repc \ high) x = (repb \ high) x" by simp with lowxrepbc show ?thesis by simp qed qed lemma wf_ll_Nodes_pret: "\wf_ll pret levellista var; nb < length levellista; x \ Nodes nb levellista\ \ x \ set_of pret \ var x < nb" apply (simp add: wf_ll_def Nodes_def) apply (erule conjE) apply (thin_tac " \q. q \ set_of pret \ q \ set (levellista ! var q)") apply (erule exE) apply (elim conjE) apply (erule_tac x=xa in allE) apply (erule impE) apply arith apply (erule_tac x=x in ballE) apply auto done lemma bdt_Some_var1_One: "\ x. \ bdt t var = Some x; var (root t) = 1\ \ x = One \ t = (Node Tip (root t) Tip)" proof (induct t) case Tip then show ?case by simp next case (Node lt p rt) note tNode = this show ?case proof (cases lt) case Tip note ltTip=this show ?thesis proof (cases rt) case Tip note rtTip = this with ltTip Node.prems show ?thesis by auto next case (Node lrt r rrt) note rtNode=this with Node.prems ltTip show ?thesis by auto qed next case (Node llt l rlt) note ltNode=this show ?thesis proof (cases rt) case Tip with ltNode Node.prems show ?thesis by auto next case (Node lrt r rrt) note rtNode=this with ltNode Node.prems show ?thesis by auto qed qed qed lemma bdt_Some_var0_Zero: "\ x. \ bdt t var = Some x; var (root t) = 0\ \ x = Zero \ t = (Node Tip (root t) Tip)" proof (induct t) case Tip then show ?case by simp next case (Node lt p rt) note tNode = this show ?case proof (cases lt) case Tip note ltTip=this show ?thesis proof (cases rt) case Tip note rtTip = this with ltTip Node.prems show ?thesis by auto next case (Node lrt r rrt) note rtNode=this with Node.prems ltTip show ?thesis by auto qed next case (Node llt l rlt) note ltNode=this show ?thesis proof (cases rt) case Tip with ltNode Node.prems show ?thesis by auto next case (Node lrt r rrt) note rtNode=this with ltNode Node.prems show ?thesis by auto qed qed qed lemma reduced_children_parent: "\ reduced l; l= (Node llt lp rlt); reduced r; r=(Node lrt rp rrt); lp \ rp \ \ reduced (Node l p r)" by simp (*Die allgemeine Form mit i <=j \ Nodes i levellista \ Nodes j levellista wäre schöner, aber wie beweist man das? *) lemma Nodes_subset: "Nodes i levellista \ Nodes (Suc i) levellista" apply (simp add: Nodes_def) apply (simp add: set_split) done lemma Nodes_levellist: "\ wf_ll pret levellista var; nb < length levellista; p \ Nodes nb levellista\ \ p \ set (levellista ! nb)" apply (simp add: Nodes_def) apply (erule exE) apply (rule_tac i=x and j=nb in no_in_one_ll) apply auto done lemma Nodes_var_pret: "\wf_ll pret levellista var; nb < length levellista; p \ Nodes nb levellista\ \ var p < nb \ p \ set_of pret" apply (simp add: Nodes_def wf_ll_def) apply (erule conjE) apply (thin_tac "\q. q \ set_of pret \ q \ set (levellista ! var q)") apply (erule exE) apply (erule_tac x=x in allE) apply (erule impE) apply arith apply (erule_tac x=p in ballE) apply arith apply simp done lemma Dags_root_in_Nodes: assumes t_in_DagsSucnb: "t \ Dags (Nodes (Suc nb) levellista) low high" shows "\ p . Dag p low high t \ p \ Nodes (Suc nb) levellista" proof - from t_in_DagsSucnb obtain p where t_dag: "Dag p low high t" and t_subset_Nodes: "set_of t \ Nodes (Suc nb) levellista" and t_nTip: "t\ Tip" by (fastforce elim: Dags.cases) from t_dag t_nTip have "p\Null" by (cases t) auto with t_subset_Nodes t_dag have "p \ Nodes (Suc nb) levellista" by (cases t) auto with t_dag show ?thesis by auto qed lemma subdag_dag: "\ p. \Dag p low high t; st <= t\ \ \ stp. Dag stp low high st" proof (induct t) case Tip then show ?case by (simp add: less_dag_def le_dag_def) next case (Node lt po rt) note t_Node=this with Node.prems have p_po: "p=po" by simp show ?case proof (cases "st = Node lt po rt") case True note st_t=this with Node.prems show ?thesis by auto next assume st_nt: "st \ Node lt po rt" with Node.prems p_po have st_subdag_lt_rt: "st<=lt \ st <=rt" by (auto simp add:le_dag_def less_dag_def) from Node.prems p_po obtain lp rp where lt_dag: "Dag lp low high lt" and rt_dag: "Dag rp low high rt" by auto show ?thesis proof (cases "st<=lt") case True note st_lt=this with lt_dag show ?thesis apply- apply (rule Node.hyps) apply auto done next assume "\ st \ lt" with st_subdag_lt_rt have st_rt: "st <= rt" by simp from Node.hyps have rhyp: "\Dag rp low high rt; st \ rt\ \ \stp. Dag stp low high st" by simp from st_rt rt_dag show ?thesis apply - apply (rule rhyp) apply auto done qed qed qed lemma Dags_subdags: assumes t_in_Dags: "t \ Dags nodes low high" and st_t: "st <= t" and st_nTip: "st \ Tip" shows "st \ Dags nodes low high" proof - from t_in_Dags obtain p where t_dag: "Dag p low high t" and t_subset_Nodes: "set_of t \ nodes" and t_nTip: "t\ Tip" by (fastforce elim: Dags.cases) from st_t have "set_of st \ set_of t" by (simp add: le_dag_set_of) with t_subset_Nodes have st_subset_fnctNodes: "set_of st \ nodes" by blast from st_t t_dag obtain stp where "Dag stp low high st" apply - apply (drule subdag_dag) apply auto done with st_subset_fnctNodes st_nTip show ?thesis apply - apply (rule DagsI) apply auto done qed lemma Dags_Nodes_cases: assumes P_sym: "\ t1 t2. P t1 t2 var = P t2 t1 var" and dags_in_lower_levels: "\ t1 t2. \t1 \ Dags (fnct `(Nodes n levellista)) low high; t2 \ Dags (fnct `(Nodes n levellista)) low high\ \ P t1 t2 var" and dags_in_mixed_levels: "\ t1 t2. \t1 \ Dags (fnct `(Nodes n levellista)) low high; t2 \ Dags (fnct `(Nodes (Suc n) levellista)) low high; t2 \ Dags (fnct `(Nodes n levellista)) low high\ \ P t1 t2 var" and dags_in_high_level: "\ t1 t2. \t1 \ Dags (fnct `(Nodes (Suc n) levellista)) low high; t1 \ Dags (fnct `(Nodes n levellista)) low high; t2 \ Dags (fnct `(Nodes (Suc n) levellista)) low high; t2 \ Dags (fnct `(Nodes n levellista)) low high\ \ P t1 t2 var" shows "\ t1 t2. t1 \ Dags (fnct `(Nodes (Suc n) levellista)) low high \ t2 \ Dags (fnct `(Nodes (Suc n) levellista)) low high \ P t1 t2 var" proof (intro allI impI , elim conjE) fix t1 t2 assume t1_in_higher_levels: "t1 \ Dags (fnct ` Nodes (Suc n) levellista) low high" assume t2_in_higher_levels: "t2 \ Dags (fnct ` Nodes (Suc n) levellista) low high" show "P t1 t2 var" proof (cases "t1 \ Dags (fnct ` Nodes n levellista) low high") case True note t1_in_ll = this show ?thesis proof (cases "t2 \ Dags (fnct ` Nodes n levellista) low high") case True note t2_in_ll=this with t1_in_ll dags_in_lower_levels show ?thesis by simp next assume t2_notin_ll: "t2 \ Dags (fnct ` Nodes n levellista) low high" with t1_in_ll t2_in_higher_levels dags_in_mixed_levels show ?thesis by simp qed next assume t1_notin_ll: "t1 \ Dags (fnct ` Nodes n levellista) low high" show ?thesis proof (cases "t2 \ Dags (fnct ` Nodes n levellista) low high") case True note t2_in_ll=this with dags_in_mixed_levels t1_in_higher_levels t1_notin_ll P_sym show ?thesis by auto next assume t2_notin_ll: "t2 \ Dags (fnct ` Nodes n levellista) low high" with t1_notin_ll t1_in_higher_levels t2_in_higher_levels dags_in_high_level show ?thesis by simp qed qed qed lemma Null_notin_Nodes: "\Dag p low high t; nb <= length levellista; wf_ll t levellista var\ \ Null \ Nodes nb levellista" apply (simp add: Nodes_def wf_ll_def del: Dag_Ref) apply (rule allI) apply (rule impI) apply (elim conjE) apply (thin_tac "\q. P q" for P) apply (erule_tac x=x in allE) apply (erule impE) apply simp apply (erule_tac x=Null in ballE) apply (erule conjE) apply (drule set_of_nn [rule_format]) apply auto done lemma Nodes_in_pret: "\wf_ll t levellista var; nb <= length levellista\ \ Nodes nb levellista \ set_of t" apply - apply rule apply (simp add: wf_ll_def Nodes_def) apply (erule exE) apply (elim conjE) apply (thin_tac "\q. q \ set_of t \ q \ set (levellista ! var q)") apply (erule_tac x=xa in allE) apply (erule impE) apply simp apply (erule_tac x=x in ballE) apply auto done lemma restrict_root_Node: "\t \ Dags (repc `Nodes (Suc nb) levellista) (repc \ low) (repc \ high); t \ Dags (repc `Nodes nb levellista) (repc \ low) (repc \ high); ordered t var; \ no \ Nodes (Suc nb) levellista. var (repc no) <= var no \ repc (repc no) = repc no; wf_ll pret levellista var; nb < length levellista;repc `Nodes (Suc nb) levellista \ Nodes (Suc nb) levellista\ \ \ q. Dag (repc q) (repc \ low) (repc \ high) t \ q \ set (levellista ! nb)" proof (elim Dags.cases) fix p and ta :: "dag" assume t_notin_DagsNodesnb: "t \ Dags (repc ` Nodes nb levellista) (repc \ low) (repc \ high)" assume t_ta: "t = ta" assume ta_in_repc_NodesSucnb: "set_of ta \ repc ` Nodes (Suc nb) levellista" assume ta_dag: "Dag p (repc \ low) (repc \ high) ta" assume ta_nTip: "ta \ Tip" assume ord_t: "ordered t var" assume varrep_prop: "\ no \ Nodes (Suc nb) levellista. var (repc no) <= var no \ repc (repc no) = repc no" assume wf_lla: "wf_ll pret levellista var" assume nbslla: "nb < length levellista" assume repcNodes_in_Nodes: "repc `Nodes (Suc nb) levellista \ Nodes (Suc nb) levellista" from ta_nTip ta_dag have p_nNull: "p\ Null" by auto with ta_nTip ta_dag obtain lt rt where ta_Node: " ta = Node lt p rt" by auto with ta_nTip ta_dag have p_in_ta: "p \ set_of ta" by auto with ta_in_repc_NodesSucnb have p_in_repcNodes_Sucnb: "p \ repc `Nodes (Suc nb) levellista" by auto show ?thesis proof (cases "p \ repc `(set (levellista ! nb))") case True then obtain q where p_repca: "p=repc q" and a_in_llanb: "q \ set (levellista ! nb)" by auto with ta_dag t_ta show ?thesis apply - apply (rule_tac x=q in exI) apply simp done next assume p_notin_repc_llanb: "p \ repc ` set (levellista ! nb)" with p_in_repcNodes_Sucnb have p_in_repc_Nodesnb: "p \ repc `Nodes nb levellista" apply - apply (erule imageE) apply rule apply (simp add: Nodes_def) apply (simp add: Nodes_def) apply (erule exE conjE) apply (case_tac "xa=nb") apply simp apply (rule_tac x=xa in exI) apply auto done have "t \ Dags (repc `Nodes nb levellista) (repc \ low) (repc \ high)" proof - have "set_of t \ repc `Nodes nb levellista" proof (rule) fix x :: ref assume x_in_t: "x \ set_of t" with ord_t have "var x <= var (root t)" apply - apply (rule ordered_set_of) apply auto done with t_ta ta_Node have varx_varp: "var x <= var p" by auto from p_in_repc_Nodesnb obtain k where ksnb: "k < nb" and p_in_repc_llak: "p \ repc `(set (levellista ! k))" by (auto simp add: Nodes_def ImageE) then obtain q where p_repcq: "p=repc q" and q_in_llak: "q \ set (levellista ! k)" by auto from q_in_llak wf_lla nbslla ksnb have varqk: "var q = k" by (simp add: wf_ll_def) have Nodesnb_in_NodesSucnb: "Nodes nb levellista \ Nodes (Suc nb) levellista" by (rule Nodes_subset) from q_in_llak ksnb have "q \ Nodes nb levellista" by (auto simp add: Nodes_def) with varrep_prop Nodesnb_in_NodesSucnb have "var (repc q) <= var q" by auto with varqk ksnb p_repcq have "var p < nb" by auto with varx_varp have varx_snb: "var x < nb" by auto from x_in_t t_ta ta_in_repc_NodesSucnb obtain a where x_repca: "x= repc a" and a_in_NodesSucnb: "a \ Nodes (Suc nb) levellista" by auto with varrep_prop have rx_x: "repc x = x" by auto have "x \ set_of pret" proof - from wf_lla nbslla have "Nodes (Suc nb) levellista \ set_of pret" apply - apply (rule Nodes_in_pret) apply auto done with x_in_t t_ta ta_in_repc_NodesSucnb repcNodes_in_Nodes show ?thesis by auto qed with wf_lla have "x \ set (levellista ! (var x))" by (auto simp add: wf_ll_def) with varx_snb have "x \ Nodes nb levellista" by (auto simp add: Nodes_def) with rx_x show "x \ repc `Nodes nb levellista" apply - apply rule apply (subgoal_tac "x=repc x") apply auto done qed with ta_nTip ta_dag t_ta show ?thesis apply - apply (rule DagsI) apply auto done qed with t_notin_DagsNodesnb show ?thesis by auto qed qed lemma same_bdt_var: "\bdt (Node lt1 p1 rt1) var = Some bdt1; bdt (Node lt2 p2 rt2) var = Some bdt1\ \ var p1 = var p2" proof (induct bdt1) case Zero then obtain var_p1: "var p1 = 0" and var_p2: "var p2 = 0" by simp then show ?case by simp next case One then obtain var_p1: "var p1 = 1" and var_p2: "var p2 = 1" by simp then show ?case by simp next case (Bdt_Node lbdt v rbdt) then obtain var_p1: "var p1 = v" and var_p2: "var p2 = v" by simp then show ?case by simp qed lemma bdt_Some_Leaf_var_le_1: "\Dag p low high t; bdt t var = Some x; isLeaf_pt p low high\ \ var p <= 1" proof (induct t) case Tip thus ?case by simp next case (Node lt p rt) note tNode=this from Node.prems tNode show ?case apply (simp add: isLeaf_pt_def) apply (case_tac "var p = 0") apply simp apply (case_tac "var p = Suc 0") apply simp apply simp done qed lemma subnode_dag_cons: "\ p. \Dag p low high t; no \ set_of t\ \ \ not. Dag no low high not" proof (induct t) case Tip thus ?case by simp next case (Node lt q rt) with Node.prems have q_p: "p = q" by simp from Node.prems have lt_dag: "Dag (low p) low high lt" by auto from Node.prems have rt_dag: "Dag (high p) low high rt" by auto show ?case proof (cases "no \ set_of lt") case True with Node.hyps lt_dag show ?thesis by simp next assume no_notin_lt: "no \ set_of lt" show ?thesis proof (cases "no=p") case True with Node.prems q_p show ?thesis by auto next assume no_neq_p: "no \ p" with Node.prems no_notin_lt have no_in_rt: "no \ set_of rt" by simp with rt_dag Node.hyps show ?thesis by auto qed qed qed (*theorems for the proof of share_reduce_rep_list*) lemma nodes_in_taken_in_takeSucn: "no \ set (take n nodeslist) \ no \ set (take (Suc n) nodeslist) " proof - assume no_in_taken: "no \ set (take n nodeslist)" have "set (take n nodeslist) \ set (take (Suc n) nodeslist)" apply - apply (rule set_take_subset_set_take) apply simp done with no_in_taken show ?thesis by blast qed lemma ind_in_higher_take: "\n k. \n < k; n < length xs\ \ xs ! n \ set (take k xs)" apply (induct xs) apply simp apply simp apply (case_tac n) apply simp apply (case_tac k) apply simp apply simp apply simp apply (case_tac k) apply simp apply simp done lemma take_length_set: "\n. n=length xs \ set (take n xs) = set xs" apply (induct xs) apply (auto simp add: take_Cons split: nat.splits) done lemma repNodes_eq_ext_rep: "\low no \ nodeslist! n; high no \ nodeslist ! n; low sn \ nodeslist ! n; high sn \ nodeslist ! n\ \ repNodes_eq sn no low high repa = repNodes_eq sn no low high (repa(nodeslist ! n := repa (low (nodeslist ! n))))" by (simp add: repNodes_eq_def null_comp_def) lemma filter_not_empty: "\x \ set xs; P x\ \ filter P xs \ []" by (induct xs) auto lemma "x \ set (filter P xs) \ P x" by auto lemma hd_filter_in_list: "filter P xs \ [] \ hd (filter P xs) \ set xs" by (induct xs) auto lemma hd_filter_in_filter: "filter P xs \ [] \ hd (filter P xs) \ set (filter P xs)" by (induct xs) auto lemma hd_filter_prop: assumes non_empty: "filter P xs \ []" shows "P (hd (filter P xs))" proof - from non_empty have "hd (filter P xs) \ set (filter P xs)" by (rule hd_filter_in_filter) thus ?thesis by auto qed lemma index_elem: "x \ set xs \ \i\x. P x x; \a b. P x a \ P a b \ P x b; filter (P x) xs \ []\ \ hd (filter (P (hd (filter (P x) xs))) xs) = hd (filter (P x) xs)" apply (induct xs) apply simp apply (case_tac "P x a") using [[simp_depth_limit=2]] apply (simp) apply clarsimp apply (fastforce dest: hd_filter_prop) done lemma take_Suc_not_last: "\n. \x \ set (take (Suc n) xs); x\xs!n; n < length xs\ \ x \ set (take n xs)" apply (induct xs) apply simp apply (case_tac n) apply simp using [[simp_depth_limit=2]] apply fastforce done lemma P_eq_list_filter: "\x \ set xs. P x = Q x \ filter P xs = filter Q xs" apply (induct xs) apply auto done lemma hd_filter_take_more: "\n m.\filter P (take n xs) \ []; n \ m\ \ hd (filter P (take n xs)) = hd (filter P (take m xs))" apply (induct xs) apply simp apply (case_tac n) apply simp apply (case_tac m) apply simp apply clarsimp done (* consts wf_levellist :: "dag \ ref list list \ ref list list \ (ref \ nat) \ bool" defs wf_levellist_def: "wf_levellist t levellist_old levellist_new var \ case t of Tip \ levellist_old = levellist_new | (Node lt p rt) \ (\ q. q \ set_of t \ q \ set (levellist_new ! (var q))) \ (\ i \ var p. (\ prx. (levellist_new ! i) = prx@(levellist_old ! i) \ (\ pt \ set prx. pt \ set_of t \ var pt = i))) \ (\ i. (var p) < i \ (levellist_new ! i) = (levellist_old ! i)) \ (length levellist_new = length levellist_old)" *) end