(* Author: Andreas Lochbihler, ETH Zurich Author: Joshua Schneider, ETH Zurich *) section \Axiomatisation\ theory Axiomatised_BNF_CC imports Preliminaries "HOL-Library.Rewrite" begin unbundle cardinal_syntax text \ This theory axiomatises two \BNFCC{}s, which will be used to demonstrate the closedness of \BNFCC{}s under various operations. \ subsection \First abstract \BNFCC{}\ subsubsection \Axioms and basic definitions\ typedecl ('l1, 'l2, 'l3, 'co1, 'co2, 'co3, 'contra1, 'contra2, 'contra3, 'f) F text \@{type F} has each three live, co-, and contravariant parameters, and one fixed parameter.\ consts rel_F :: "('l1 \ 'l1' \ bool) \ ('l2 \ 'l2' \ bool) \ ('l3 \ 'l3' \ bool) \ ('co1 \ 'co1' \ bool) \ ('co2 \ 'co2' \ bool) \ ('co3 \ 'co3' \ bool) \ ('contra1 \ 'contra1' \ bool) \ ('contra2 \ 'contra2' \ bool) \ ('contra3 \ 'contra3' \ bool) \ ('l1, 'l2, 'l3, 'co1, 'co2, 'co3, 'contra1, 'contra2, 'contra3, 'f) F \ ('l1', 'l2', 'l3', 'co1', 'co2', 'co3', 'contra1', 'contra2', 'contra3', 'f) F \ bool" map_F :: "('l1 \ 'l1') \ ('l2 \ 'l2') \ ('l3 \ 'l3') \ ('co1 \ 'co1') \ ('co2 \ 'co2') \ ('co3 \ 'co3') \ ('contra1' \ 'contra1) \ ('contra2' \ 'contra2) \ ('contra3' \ 'contra3) \ ('l1, 'l2, 'l3, 'co1, 'co2, 'co3, 'contra1, 'contra2, 'contra3, 'f) F \ ('l1', 'l2', 'l3', 'co1', 'co2', 'co3', 'contra1', 'contra2', 'contra3', 'f) F" axiomatization where rel_F_mono [mono]: "\L1 L1' L2 L2' L3 L3' Co1 Co1' Co2 Co2' Co3 Co3' Contra1 Contra1' Contra2 Contra2' Contra3 Contra3'. \ L1 \ L1'; L2 \ L2'; L3 \ L3'; Co1 \ Co1'; Co2 \ Co2'; Co3 \ Co3'; Contra1' \ Contra1; Contra2' \ Contra2; Contra3' \ Contra3 \ \ rel_F L1 L2 L3 Co1 Co2 Co3 Contra1 Contra2 Contra3 \ rel_F L1' L2' L3' Co1' Co2' Co3' Contra1' Contra2' Contra3'" and rel_F_eq: "rel_F (=) (=) (=) (=) (=) (=) (=) (=) (=) = (=)" and rel_F_conversep: "\L1 L2 L3 Co1 Co2 Co3 Contra1 Contra2 Contra3. rel_F L1\\ L2\\ L3\\ Co1\\ Co2\\ Co3\\ Contra1\\ Contra2\\ Contra3\\ = (rel_F L1 L2 L3 Co1 Co2 Co3 Contra1 Contra2 Contra3)\\" and map_F_id0: "map_F id id id id id id id id id = id" and map_F_comp: "\l1 l1' l2 l2' l3 l3' co1 co1' co2 co2' co3 co3' contra1 contra1' contra2 contra2' contra3 contra3'. map_F l1 l2 l3 co1 co2 co3 contra1 contra2 contra3 \ map_F l1' l2' l3' co1' co2' co3' contra1' contra2' contra3' = map_F (l1 \ l1') (l2 \ l2') (l3 \ l3') (co1 \ co1') (co2 \ co2') (co3 \ co3') (contra1' \ contra1) (contra2' \ contra2) (contra3' \ contra3)" and map_F_parametric: "\L1 L1' L2 L2' L3 L3' Co1 Co1' Co2 Co2' Co3 Co3' Contra1 Contra1' Contra2 Contra2' Contra3 Contra3'. rel_fun (rel_fun L1 L1') (rel_fun (rel_fun L2 L2') (rel_fun (rel_fun L3 L3') (rel_fun (rel_fun Co1 Co1') (rel_fun (rel_fun Co2 Co2') (rel_fun (rel_fun Co3 Co3') (rel_fun (rel_fun Contra1' Contra1) (rel_fun (rel_fun Contra2' Contra2) (rel_fun (rel_fun Contra3' Contra3) (rel_fun (rel_F L1 L2 L3 Co1 Co2 Co3 Contra1 Contra2 Contra3) (rel_F L1' L2' L3' Co1' Co2' Co3' Contra1' Contra2' Contra3')))))))))) map_F map_F" definition rel_F_pos_distr_cond :: "('co1 \ 'co1' \ bool) \ ('co1' \ 'co1'' \ bool) \ ('co2 \ 'co2' \ bool) \ ('co2' \ 'co2'' \ bool) \ ('co3 \ 'co3' \ bool) \ ('co3' \ 'co3'' \ bool) \ ('contra1 \ 'contra1' \ bool) \ ('contra1' \ 'contra1'' \ bool) \ ('contra2 \ 'contra2' \ bool) \ ('contra2' \ 'contra2'' \ bool) \ ('contra3 \ 'contra3' \ bool) \ ('contra3' \ 'contra3'' \ bool) \ ('l1 \ 'l1' \ 'l1'' \ 'l2 \ 'l2' \ 'l2'' \ 'l3 \ 'l3' \ 'l3'' \ 'f) itself \ bool" where "rel_F_pos_distr_cond Co1 Co1' Co2 Co2' Co3 Co3' Contra1 Contra1' Contra2 Contra2' Contra3 Contra3' _ \ (\(L1 :: 'l1 \ 'l1' \ bool) (L1' :: 'l1' \ 'l1'' \ bool) (L2 :: 'l2 \ 'l2' \ bool) (L2' :: 'l2' \ 'l2'' \ bool) (L3 :: 'l3 \ 'l3' \ bool) (L3' :: 'l3' \ 'l3'' \ bool). (rel_F L1 L2 L3 Co1 Co2 Co3 Contra1 Contra2 Contra3 :: (_, _, _, _, _, _, _, _, _, 'f) F \ _) OO rel_F L1' L2' L3' Co1' Co2' Co3' Contra1' Contra2' Contra3' \ rel_F (L1 OO L1') (L2 OO L2') (L3 OO L3') (Co1 OO Co1') (Co2 OO Co2') (Co3 OO Co3') (Contra1 OO Contra1') (Contra2 OO Contra2') (Contra3 OO Contra3'))" definition rel_F_neg_distr_cond :: "('co1 \ 'co1' \ bool) \ ('co1' \ 'co1'' \ bool) \ ('co2 \ 'co2' \ bool) \ ('co2' \ 'co2'' \ bool) \ ('co3 \ 'co3' \ bool) \ ('co3' \ 'co3'' \ bool) \ ('contra1 \ 'contra1' \ bool) \ ('contra1' \ 'contra1'' \ bool) \ ('contra2 \ 'contra2' \ bool) \ ('contra2' \ 'contra2'' \ bool) \ ('contra3 \ 'contra3' \ bool) \ ('contra3' \ 'contra3'' \ bool) \ ('l1 \ 'l1' \ 'l1'' \ 'l2 \ 'l2' \ 'l2'' \ 'l3 \ 'l3' \ 'l3'' \ 'f) itself \ bool" where "rel_F_neg_distr_cond Co1 Co1' Co2 Co2' Co3 Co3' Contra1 Contra1' Contra2 Contra2' Contra3 Contra3' _ \ (\(L1 :: 'l1 \ 'l1' \ bool) (L1' :: 'l1' \ 'l1'' \ bool) (L2 :: 'l2 \ 'l2' \ bool) (L2' :: 'l2' \ 'l2'' \ bool) (L3 :: 'l3 \ 'l3' \ bool) (L3' :: 'l3' \ 'l3'' \ bool). rel_F (L1 OO L1') (L2 OO L2') (L3 OO L3') (Co1 OO Co1') (Co2 OO Co2') (Co3 OO Co3') (Contra1 OO Contra1') (Contra2 OO Contra2') (Contra3 OO Contra3') \ (rel_F L1 L2 L3 Co1 Co2 Co3 Contra1 Contra2 Contra3 :: (_, _, _, _, _, _, _, _, _, 'f) F \ _) OO rel_F L1' L2' L3' Co1' Co2' Co3' Contra1' Contra2' Contra3')" axiomatization where rel_F_pos_distr_cond_eq: "\tytok. rel_F_pos_distr_cond (=) (=) (=) (=) (=) (=) (=) (=) (=) (=) (=) (=) tytok" and rel_F_neg_distr_cond_eq: "\tytok. rel_F_neg_distr_cond (=) (=) (=) (=) (=) (=) (=) (=) (=) (=) (=) (=) tytok" text \Restrictions to live variables.\ definition "rell_F L1 L2 L3 = rel_F L1 L2 L3 (=) (=) (=) (=) (=) (=)" definition "mapl_F l1 l2 l3 = map_F l1 l2 l3 id id id id id id" typedecl ('co1, 'co2, 'co3, 'contra1, 'contra2, 'contra3, 'f) Fbd consts set1_F :: "('l1, 'l2, 'l3, 'co1, 'co2, 'co3, 'contra1, 'contra2, 'contra3, 'f) F \ 'l1 set" set2_F :: "('l1, 'l2, 'l3, 'co1, 'co2, 'co3, 'contra1, 'contra2, 'contra3, 'f) F \ 'l2 set" set3_F :: "('l1, 'l2, 'l3, 'co1, 'co2, 'co3, 'contra1, 'contra2, 'contra3, 'f) F \ 'l3 set" bd_F :: "('co1, 'co2, 'co3, 'contra1, 'contra2, 'contra3, 'f) Fbd rel" axiomatization where set1_F_map: "\l1 l2 l3. set1_F \ mapl_F l1 l2 l3 = image l1 \ set1_F" and set2_F_map: "\l1 l2 l3. set2_F \ mapl_F l1 l2 l3 = image l2 \ set2_F" and set3_F_map: "\l1 l2 l3. set3_F \ mapl_F l1 l2 l3 = image l3 \ set3_F" and bd_F_card_order: "card_order bd_F" and bd_F_cinfinite: "cinfinite bd_F" and set1_F_bound: "\x :: (_, _, _, 'co1, 'co2, 'co3, 'contra1, 'contra2, 'contra3, 'f) F. card_of (set1_F x) \o (bd_F :: ('co1, 'co2, 'co3, 'contra1, 'contra2, 'contra3, 'f) Fbd rel)" and set2_F_bound: "\x :: (_, _, _, 'co1, 'co2, 'co3, 'contra1, 'contra2, 'contra3, 'f) F. card_of (set2_F x) \o (bd_F :: ('co1, 'co2, 'co3, 'contra1, 'contra2, 'contra3, 'f) Fbd rel)" and set3_F_bound: "\x :: (_, _, _, 'co1, 'co2, 'co3, 'contra1, 'contra2, 'contra3, 'f) F. card_of (set3_F x) \o (bd_F :: ('co1, 'co2, 'co3, 'contra1, 'contra2, 'contra3, 'f) Fbd rel)" and mapl_F_cong: "\l1 l1' l2 l2' l3 l3' x. \ \z. z \ set1_F x \ l1 z = l1' z; \z. z \ set2_F x \ l2 z = l2' z; \z. z \ set3_F x \ l3 z = l3' z \ \ mapl_F l1 l2 l3 x = mapl_F l1' l2' l3' x" and rell_F_mono_strong: "\L1 L1' L2 L2' L3 L3' x y. \ rell_F L1 L2 L3 x y; \a b. a \ set1_F x \ b \ set1_F y \ L1 a b \ L1' a b; \a b. a \ set2_F x \ b \ set2_F y \ L2 a b \ L2' a b; \a b. a \ set3_F x \ b \ set3_F y \ L3 a b \ L3' a b \ \ rell_F L1' L2' L3' x y" subsubsection \Derived rules\ lemmas rel_F_mono' = rel_F_mono[THEN predicate2D, rotated -1] lemma rel_F_eq_refl: "rel_F (=) (=) (=) (=) (=) (=) (=) (=) (=) x x" by (simp add: rel_F_eq) lemma map_F_id: "map_F id id id id id id id id id x = x" by (simp add: map_F_id0) lemmas map_F_rel_cong = map_F_parametric[unfolded rel_fun_def, rule_format, rotated -1] lemma rell_F_mono: "\ L1 \ L1'; L2 \ L2'; L3 \ L3' \ \ rell_F L1 L2 L3 \ rell_F L1' L2' L3'" unfolding rell_F_def by (rule rel_F_mono) (auto) lemma mapl_F_id0: "mapl_F id id id = id" unfolding mapl_F_def using map_F_id0 . lemma mapl_F_id: "mapl_F id id id x = x" by (simp add: mapl_F_id0) lemma mapl_F_comp: "mapl_F l1 l2 l3 \ mapl_F l1' l2' l3' = mapl_F (l1 \ l1') (l2 \ l2') (l3 \ l3')" unfolding mapl_F_def apply (rule trans) apply (rule map_F_comp) apply (simp) done lemma map_F_mapl_F: "map_F l1 l2 l3 co1 co2 co3 contra1 contra2 contra3 x = map_F id id id co1 co2 co3 contra1 contra2 contra3 (mapl_F l1 l2 l3 x)" unfolding mapl_F_def map_F_comp[THEN fun_cong, simplified] by simp lemma mapl_F_map_F: "mapl_F l1 l2 l3 (map_F id id id co1 co2 co3 contra1 contra2 contra3 x) = map_F l1 l2 l3 co1 co2 co3 contra1 contra2 contra3 x" unfolding mapl_F_def map_F_comp[THEN fun_cong, simplified] by simp text \Parametric mappers are unique:\ lemma rel_F_Grp_weak: "rel_F (Grp UNIV l1) (Grp UNIV l2) (Grp UNIV l3) (Grp UNIV co1) (Grp UNIV co2) (Grp UNIV co3) (Grp UNIV contra1)\\ (Grp UNIV contra2)\\ (Grp UNIV contra3)\\ = Grp UNIV (map_F l1 l2 l3 co1 co2 co3 contra1 contra2 contra3)" apply (rule antisym) apply (rule predicate2I) apply (rule GrpI) apply (rewrite in "_ = \" map_F_id[symmetric]) apply (subst rel_F_eq[symmetric]) apply (erule map_F_rel_cong; simp add: Grp_def) apply (rule UNIV_I) apply (rule predicate2I) apply (erule GrpE) apply (drule sym) apply (hypsubst) apply (rewrite in "rel_F _ _ _ _ _ _ _ _ _ \" map_F_id[symmetric]) apply (rule map_F_rel_cong) apply (rule rel_F_eq_refl) apply (simp_all add: Grp_def) done lemmas rel_F_pos_distr = rel_F_pos_distr_cond_def[THEN iffD1, rule_format] and rel_F_neg_distr = rel_F_neg_distr_cond_def[THEN iffD1, rule_format] lemma rell_F_compp: "rell_F (L1 OO L1') (L2 OO L2') (L3 OO L3') = rell_F L1 L2 L3 OO rell_F L1' L2' L3'" unfolding rell_F_def apply (rule antisym) apply (rule order_trans[rotated]) apply (rule rel_F_neg_distr) apply (rule rel_F_neg_distr_cond_eq) apply (simp add: eq_OO) apply (rule order_trans) apply (rule rel_F_pos_distr) apply (rule rel_F_pos_distr_cond_eq) apply (simp add: eq_OO) done subsubsection \F is a BNF\ lemma rell_F_eq_onp: "rell_F (eq_onp P1) (eq_onp P2) (eq_onp P3) = eq_onp (\x. (\z\set1_F x. P1 z) \ (\z\set2_F x. P2 z) \ (\z\set3_F x. P3 z))" (is "?rel_eq_onp = ?eq_onp_pred") proof (intro ext iffI) fix x y assume rel: "?rel_eq_onp x y" from rel have "rell_F (=) (=) (=) x y" unfolding rell_F_def by (auto elim: rel_F_mono' simp add: eq_onp_def) then have "y = x" unfolding rell_F_def rel_F_eq .. let ?true = "\_. True" and ?label = "\P x. P x" from rel have "rell_F (=) (=) (=) (mapl_F ?true ?true ?true x) (mapl_F (?label P1) (?label P2) (?label P3) x)" unfolding rell_F_def mapl_F_def \y = x\ by (auto simp add: eq_onp_def elim: map_F_rel_cong) then have *: "mapl_F ?true ?true ?true x = mapl_F (?label P1) (?label P2) (?label P3) x" unfolding rell_F_def rel_F_eq . note \y = x\ moreover { from * have "set1_F (mapl_F ?true ?true ?true x) = set1_F (mapl_F (?label P1) (?label P2) (?label P3) x)" by simp then have "?true ` set1_F x = ?label P1 ` set1_F x" unfolding set1_F_map[THEN fun_cong, simplified] . then have "\z\set1_F x. P1 z" by auto } moreover { from * have "set2_F (mapl_F ?true ?true ?true x) = set2_F (mapl_F (?label P1) (?label P2) (?label P3) x)" by simp then have "?true ` set2_F x = ?label P2 ` set2_F x" unfolding set2_F_map[THEN fun_cong, simplified] . then have "\z\set2_F x. P2 z" by auto } moreover { from * have "set3_F (mapl_F ?true ?true ?true x) = set3_F (mapl_F (?label P1) (?label P2) (?label P3) x)" by simp then have "?true ` set3_F x = ?label P3 ` set3_F x" unfolding set3_F_map[THEN fun_cong, simplified] . then have "\z\set3_F x. P3 z" by auto } ultimately show "?eq_onp_pred x y" by (simp add: eq_onp_def) next fix x y assume eq_onp: "?eq_onp_pred x y" then have "rell_F (=) (=) (=) x y" by (auto simp add: rell_F_def rel_F_eq eq_onp_def) then show "?rel_eq_onp x y" using eq_onp by (auto elim!: rell_F_mono_strong simp add: eq_onp_def) qed lemma rell_F_Grp: "rell_F (Grp A1 f1) (Grp A2 f2) (Grp A3 f3) = Grp {x. set1_F x \ A1 \ set2_F x \ A2 \ set3_F x \ A3} (mapl_F f1 f2 f3)" proof - have "rell_F (Grp A1 f1) (Grp A2 f2) (Grp A3 f3) = rell_F (eq_onp (\x. x \ A1) OO Grp UNIV f1) (eq_onp (\x. x \ A2) OO Grp UNIV f2) (eq_onp (\x. x \ A3) OO Grp UNIV f3)" by (simp add: eq_onp_compp_Grp) also have "... = rell_F (eq_onp (\x. x \ A1)) (eq_onp (\x. x \ A2)) (eq_onp (\x. x \ A3)) OO rell_F (Grp UNIV f1) (Grp UNIV f2) (Grp UNIV f3)" using rell_F_compp . also have "... = eq_onp (\x. set1_F x \ A1 \ set2_F x \ A2 \ set3_F x \ A3) OO rell_F (Grp UNIV f1) (Grp UNIV f2) (Grp UNIV f3)" by (simp add: rell_F_eq_onp subset_eq) also have "... = eq_onp (\x. set1_F x \ A1 \ set2_F x \ A2 \ set3_F x \ A3) OO Grp UNIV (mapl_F f1 f2 f3)" unfolding rell_F_def mapl_F_def rel_F_Grp_weak[of _ _ _ id id id id id id, folded eq_alt, simplified] .. also have "... = Grp {x. set1_F x \ A1 \ set2_F x \ A2 \ set3_F x \ A3} (mapl_F f1 f2 f3)" by (simp add: eq_onp_compp_Grp) finally show ?thesis . qed lemma rell_F_compp_Grp: "rell_F L1 L2 L3 = (Grp {x. set1_F x \ {(x, y). L1 x y} \ set2_F x \ {(x, y). L2 x y} \ set3_F x \ {(x, y). L3 x y}} (mapl_F fst fst fst))\\ OO Grp {x. set1_F x \ {(x, y). L1 x y} \ set2_F x \ {(x, y). L2 x y} \ set3_F x \ {(x, y). L3 x y}} (mapl_F snd snd snd)" apply (unfold rell_F_Grp[symmetric]) apply (unfold rell_F_def) apply (simp add: rel_F_conversep[symmetric]) apply (fold rell_F_def) apply (simp add: rell_F_compp[symmetric] Grp_fst_snd) done lemma F_in_rell: "rell_F L1 L2 L3 = (\x y. \z. (set1_F z \ {(x, y). L1 x y} \ set2_F z \ {(x, y). L2 x y} \ set3_F z \ {(x, y). L3 x y}) \ mapl_F fst fst fst z = x \ mapl_F snd snd snd z = y)" using rell_F_compp_Grp by (simp add: OO_Grp_alt) bnf "('l1, 'l2, 'l3, 'co1, 'co2, 'co3, 'contra1, 'contra2, 'contra3, 'f) F" map: mapl_F sets: set1_F set2_F set3_F bd: "bd_F :: ('co1, 'co2, 'co3, 'contra1, 'contra2, 'contra3, 'f) Fbd rel" rel: rell_F by (fact mapl_F_id0 mapl_F_comp[symmetric] mapl_F_cong set1_F_map set2_F_map set3_F_map bd_F_card_order bd_F_cinfinite set1_F_bound set2_F_bound set3_F_bound rell_F_compp[symmetric, THEN eq_refl] F_in_rell)+ subsubsection \Composition witness\ consts rel_F_witness :: "('l1 \ 'l1'' \ bool) \ ('l2 \ 'l2'' \ bool) \ ('l3 \ 'l3'' \ bool) \ ('co1 \ 'co1' \ bool) \ ('co1' \ 'co1'' \ bool) \ ('co2 \ 'co2' \ bool) \ ('co2' \ 'co2'' \ bool) \ ('co3 \ 'co3' \ bool) \ ('co3' \ 'co3'' \ bool) \ ('contra1 \ 'contra1' \ bool) \ ('contra1' \ 'contra1'' \ bool) \ ('contra2 \ 'contra2' \ bool) \ ('contra2' \ 'contra2'' \ bool) \ ('contra3 \ 'contra3' \ bool) \ ('contra3' \ 'contra3'' \ bool) \ ('l1, 'l2, 'l3, 'co1, 'co2, 'co3, 'contra1, 'contra2, 'contra3, 'f) F \ ('l1'', 'l2'', 'l3'', 'co1'', 'co2'', 'co3'', 'contra1'', 'contra2'', 'contra3'', 'f) F \ ('l1 \ 'l1'', 'l2 \ 'l2'', 'l3 \ 'l3'', 'co1', 'co2', 'co3', 'contra1', 'contra2', 'contra3', 'f) F" specification (rel_F_witness) rel_F_witness1: "\L1 L2 L3 Co1 Co1' Co2 Co2' Co3 Co3' Contra1 Contra1' Contra2 Contra2' Contra3 Contra3' (tytok :: ('l1 \ ('l1 \ 'l1'') \ 'l1'' \ 'l2 \ ('l2 \ 'l2'') \ 'l2'' \ 'l3 \ ('l3 \ 'l3'') \ 'l3'' \ 'f) itself) (x :: ('l1, 'l2, 'l3, _, _, _, _, _, _, 'f) F) (y :: ('l1'', 'l2'', 'l3'', _, _, _, _, _, _, 'f) F). \ rel_F_neg_distr_cond Co1 Co1' Co2 Co2' Co3 Co3' Contra1 Contra1' Contra2 Contra2' Contra3 Contra3' tytok; rel_F L1 L2 L3 (Co1 OO Co1') (Co2 OO Co2') (Co3 OO Co3') (Contra1 OO Contra1') (Contra2 OO Contra2') (Contra3 OO Contra3') x y \ \ rel_F (\x (x', y). x' = x \ L1 x y) (\x (x', y). x' = x \ L2 x y) (\x (x', y). x' = x \ L3 x y) Co1 Co2 Co3 Contra1 Contra2 Contra3 x (rel_F_witness L1 L2 L3 Co1 Co1' Co2 Co2' Co3 Co3' Contra1 Contra1' Contra2 Contra2' Contra3 Contra3' (x, y))" rel_F_witness2:"\L1 L2 L3 Co1 Co1' Co2 Co2' Co3 Co3' Contra1 Contra1' Contra2 Contra2' Contra3 Contra3' (tytok :: ('l1 \ ('l1 \ 'l1'') \ 'l1'' \ 'l2 \ ('l2 \ 'l2'') \ 'l2'' \ 'l3 \ ('l3 \ 'l3'') \ 'l3'' \ 'f) itself) (x :: ('l1, 'l2, 'l3, _, _, _, _, _, _, 'f) F) (y :: ('l1'', 'l2'', 'l3'', _, _, _, _, _, _, 'f) F). \ rel_F_neg_distr_cond Co1 Co1' Co2 Co2' Co3 Co3' Contra1 Contra1' Contra2 Contra2' Contra3 Contra3' tytok; rel_F L1 L2 L3 (Co1 OO Co1') (Co2 OO Co2') (Co3 OO Co3') (Contra1 OO Contra1') (Contra2 OO Contra2') (Contra3 OO Contra3') x y \ \ rel_F (\(x, y') y. y' = y \ L1 x y) (\(x, y') y. y' = y \ L2 x y) (\(x, y') y. y' = y \ L3 x y) Co1' Co2' Co3' Contra1' Contra2' Contra3' (rel_F_witness L1 L2 L3 Co1 Co1' Co2 Co2' Co3 Co3' Contra1 Contra1' Contra2 Contra2' Contra3 Contra3' (x, y)) y" apply(rule exI[where x="\L1 L2 L3 Co1 Co1' Co2 Co2' Co3 Co3' Contra1 Contra1' Contra2 Contra2' Contra3 Contra3' (x, y). SOME z. rel_F (\x (x', y). x' = x \ L1 x y) (\x (x', y). x' = x \ L2 x y) (\x (x', y). x' = x \ L3 x y) Co1 Co2 Co3 Contra1 Contra2 Contra3 x z \ rel_F (\(x, y') y. y' = y \ L1 x y) (\(x, y') y. y' = y \ L2 x y) (\(x, y') y. y' = y \ L3 x y) Co1' Co2' Co3' Contra1' Contra2' Contra3' z y"]) apply(fold all_conj_distrib) apply(rule allI)+ apply(fold imp_conjR) apply(rule impI)+ apply clarify apply(rule someI_ex) subgoal for L1 L2 L3 Co1 Co1' Co2 Co2' Co3 Co3' Contra1 Contra1' Contra2 Contra2' Contra3 Contra3' x y apply(drule rel_F_neg_distr[where ?L1.0 = "\x (x', y). x' = x \ L1 x y" and ?L1'.0 = "\(x, y) y'. y = y' \ L1 x y'" and ?L2.0 = "\x (x', y). x' = x \ L2 x y" and ?L2'.0 = "\(x, y) y'. y = y' \ L2 x y'" and ?L3.0 = "\x (x', y). x' = x \ L3 x y" and ?L3'.0 = "\(x, y) y'. y = y' \ L3 x y'"]) apply(drule predicate2D) apply(erule rel_F_mono[THEN predicate2D, rotated -1]; fastforce) apply(erule relcomppE) apply(rule exI conjI)+ apply assumption+ done done subsection \Second abstract \BNFCC{}\ subsubsection \Axioms and basic definitions\ typedecl ('l1, 'l2, 'co1, 'co2, 'contra1, 'contra2, 'f) G text \@{type G} has each two live, co, and contravariant parameters, and one fixed parameter.\ consts rel_G :: "('l1 \ 'l1' \ bool) \ ('l2 \ 'l2' \ bool) \ ('co1 \ 'co1' \ bool) \ ('co2 \ 'co2' \ bool) \ ('contra1 \ 'contra1' \ bool) \ ('contra2 \ 'contra2' \ bool) \ ('l1, 'l2, 'co1, 'co2, 'contra1, 'contra2, 'f) G \ ('l1', 'l2', 'co1', 'co2', 'contra1', 'contra2', 'f) G \ bool" map_G :: "('l1 \ 'l1') \ ('l2 \ 'l2') \ ('co1 \ 'co1') \ ('co2 \ 'co2') \ ('contra1' \ 'contra1) \ ('contra2' \ 'contra2) \ ('l1, 'l2, 'co1, 'co2, 'contra1, 'contra2, 'f) G \ ('l1', 'l2', 'co1', 'co2', 'contra1', 'contra2', 'f) G" axiomatization where rel_G_mono [mono]: "\L1 L1' L2 L2' Co1 Co1' Co2 Co2' Contra1 Contra1' Contra2 Contra2'. \ L1 \ L1'; L2 \ L2'; Co1 \ Co1'; Co2 \ Co2'; Contra1' \ Contra1; Contra2' \ Contra2 \ \ rel_G L1 L2 Co1 Co2 Contra1 Contra2 \ rel_G L1' L2' Co1' Co2' Contra1' Contra2'" and rel_G_eq: "rel_G (=) (=) (=) (=) (=) (=) = (=)" and rel_G_conversep: "\L1 L2 Co1 Co2 Contra1 Contra2. rel_G L1\\ L2\\ Co1\\ Co2\\ Contra1\\ Contra2\\ = (rel_G L1 L2 Co1 Co2 Contra1 Contra2)\\" and map_G_id0: "map_G id id id id id id = id" and map_G_comp: "\l1 l1' l2 l2' co1 co1' co2 co2' contra1 contra1' contra2 contra2'. map_G l1 l2 co1 co2 contra1 contra2 \ map_G l1' l2' co1' co2' contra1' contra2' = map_G (l1 \ l1') (l2 \ l2') (co1 \ co1') (co2 \ co2') (contra1' \ contra1) (contra2' \ contra2)" and map_G_parametric: "\L1 L1' L2 L2' Co1 Co1' Co2 Co2' Contra1 Contra1' Contra2 Contra2'. rel_fun (rel_fun L1 L1') (rel_fun (rel_fun L2 L2') (rel_fun (rel_fun Co1 Co1') (rel_fun (rel_fun Co2 Co2') (rel_fun (rel_fun Contra1' Contra1) (rel_fun (rel_fun Contra2' Contra2) (rel_fun (rel_G L1 L2 Co1 Co2 Contra1 Contra2) (rel_G L1' L2' Co1' Co2' Contra1' Contra2'))))))) map_G map_G" definition rel_G_pos_distr_cond :: "('co1 \ 'co1' \ bool) \ ('co1' \ 'co1'' \ bool) \ ('co2 \ 'co2' \ bool) \ ('co2' \ 'co2'' \ bool) \ ('contra1 \ 'contra1' \ bool) \ ('contra1' \ 'contra1'' \ bool) \ ('contra2 \ 'contra2' \ bool) \ ('contra2' \ 'contra2'' \ bool) \ ('l1 \ 'l1' \ 'l1'' \ 'l2 \ 'l2' \ 'l2'' \ 'f) itself \ bool" where "rel_G_pos_distr_cond Co1 Co1' Co2 Co2' Contra1 Contra1' Contra2 Contra2' _ \ (\(L1 :: 'l1 \ 'l1' \ bool) (L1' :: 'l1' \ 'l1'' \ bool) (L2 :: 'l2 \ 'l2' \ bool) (L2' :: 'l2' \ 'l2'' \ bool). (rel_G L1 L2 Co1 Co2 Contra1 Contra2 :: (_, _, _, _, _, _, 'f) G \ _) OO rel_G L1' L2' Co1' Co2' Contra1' Contra2' \ rel_G (L1 OO L1') (L2 OO L2') (Co1 OO Co1') (Co2 OO Co2') (Contra1 OO Contra1') (Contra2 OO Contra2'))" definition rel_G_neg_distr_cond :: "('co1 \ 'co1' \ bool) \ ('co1' \ 'co1'' \ bool) \ ('co2 \ 'co2' \ bool) \ ('co2' \ 'co2'' \ bool) \ ('contra1 \ 'contra1' \ bool) \ ('contra1' \ 'contra1'' \ bool) \ ('contra2 \ 'contra2' \ bool) \ ('contra2' \ 'contra2'' \ bool) \ ('l1 \ 'l1' \ 'l1'' \ 'l2 \ 'l2' \ 'l2'' \ 'f) itself \ bool" where "rel_G_neg_distr_cond Co1 Co1' Co2 Co2' Contra1 Contra1' Contra2 Contra2' _ \ (\(L1 :: 'l1 \ 'l1' \ bool) (L1' :: 'l1' \ 'l1'' \ bool) (L2 :: 'l2 \ 'l2' \ bool) (L2' :: 'l2' \ 'l2'' \ bool). rel_G (L1 OO L1') (L2 OO L2') (Co1 OO Co1') (Co2 OO Co2') (Contra1 OO Contra1') (Contra2 OO Contra2') \ (rel_G L1 L2 Co1 Co2 Contra1 Contra2 :: (_, _, _, _, _, _, 'f) G \ _) OO rel_G L1' L2' Co1' Co2' Contra1' Contra2')" axiomatization where rel_G_pos_distr_cond_eq: "\tytok. rel_G_pos_distr_cond (=) (=) (=) (=) (=) (=) (=) (=) tytok" and rel_G_neg_distr_cond_eq: "\tytok. rel_G_neg_distr_cond (=) (=) (=) (=) (=) (=) (=) (=) tytok" text \Restrictions to live variables.\ definition "rell_G L1 L2 = rel_G L1 L2 (=) (=) (=) (=)" definition "mapl_G l1 l2 = map_G l1 l2 id id id id" typedecl ('co1, 'co2, 'contra1, 'contra2, 'f) Gbd consts set1_G :: "('l1, 'l2, 'co1, 'co2, 'contra1, 'contra2, 'f) G \ 'l1 set" set2_G :: "('l1, 'l2, 'co1, 'co2, 'contra1, 'contra2, 'f) G \ 'l2 set" bd_G :: "('co1, 'co2, 'contra1, 'contra2, 'f) Gbd rel" wit_G :: "'l2 \ ('l1, 'l2, 'co1, 'co2, 'contra1, 'contra2, 'f) G" \ \non-emptiness witness for least fixpoint\ axiomatization where set1_G_map: "\l1 l2. set1_G \ mapl_G l1 l2 = image l1 \ set1_G" and set2_G_map: "\l1 l2. set2_G \ mapl_G l1 l2 = image l2 \ set2_G" and bd_G_card_order: "card_order bd_G" and bd_G_cinfinite: "cinfinite bd_G" and set1_G_bound: "\x :: (_, _, 'co1, 'co2, 'contra1, 'contra2, 'f) G. card_of (set1_G x) \o (bd_G :: ('co1, 'co2, 'contra1, 'contra2, 'f) Gbd rel)" and set2_G_bound: "\x :: (_, _, 'co1, 'co2, 'contra1, 'contra2, 'f) G. card_of (set2_G x) \o (bd_G :: ('co1, 'co2, 'contra1, 'contra2, 'f) Gbd rel)" and mapl_G_cong: "\l1 l1' l2 l2' l3 l3' x. \ \z. z \ set1_G x \ l1 z = l1' z; \z. z \ set2_G x \ l2 z = l2' z \ \ mapl_G l1 l2 x = mapl_G l1' l2' x" and rell_G_mono_strong: "\L1 L1' L2 L2' x y. \ rell_G L1 L2 x y; \a b. a \ set1_G x \ b \ set1_G y \ L1 a b \ L1' a b; \a b. a \ set2_G x \ b \ set2_G y \ L2 a b \ L2' a b \ \ rell_G L1' L2' x y" and wit_G_set1: "\l2 x. x \ set1_G (wit_G l2) \ False" and wit_G_set2: "\l2 x. x \ set2_G (wit_G l2) \ x = l2" subsubsection \Derived rules\ lemmas rel_G_mono' = rel_G_mono[THEN predicate2D, rotated -1] lemma rel_G_eq_refl: "rel_G (=) (=) (=) (=) (=) (=) x x" by (simp add: rel_G_eq) lemma map_G_id: "map_G id id id id id id x = x" by (simp add: map_G_id0) lemmas map_G_rel_cong = map_G_parametric[unfolded rel_fun_def, rule_format, rotated -1] lemma rell_G_mono: "\ L1 \ L1'; L2 \ L2' \ \ rell_G L1 L2 \ rell_G L1' L2'" unfolding rell_G_def by (rule rel_G_mono) (auto) lemma mapl_G_id0: "mapl_G id id = id" unfolding mapl_G_def using map_G_id0 . lemma mapl_G_id: "mapl_G id id x = x" by (simp add: mapl_G_id0) lemma mapl_G_comp: "mapl_G l1 l2 \ mapl_G l1' l2' = mapl_G (l1 \ l1') (l2 \ l2')" unfolding mapl_G_def apply (rule trans) apply (rule map_G_comp) apply (simp) done lemma map_G_mapl_G: "map_G l1 l2 co1 co2 contra1 contra2 x = map_G id id co1 co2 contra1 contra2 (mapl_G l1 l2 x)" unfolding mapl_G_def map_G_comp[THEN fun_cong, simplified] by simp lemma mapl_G_map_G: "mapl_G l1 l2 (map_G id id co1 co2 contra1 contra2 x) = map_G l1 l2 co1 co2 contra1 contra2 x" unfolding mapl_G_def map_G_comp[THEN fun_cong, simplified] by simp text \Parametric mappers are unique:\ lemma rel_G_Grp_weak: "rel_G (Grp UNIV l1) (Grp UNIV l2) (Grp UNIV co1) (Grp UNIV co2) (Grp UNIV contra1)\\ (Grp UNIV contra2)\\ = Grp UNIV (map_G l1 l2 co1 co2 contra1 contra2)" apply (rule antisym) apply (rule predicate2I) apply (rule GrpI) apply (rewrite in "_ = \" map_G_id[symmetric]) apply (subst rel_G_eq[symmetric]) apply (erule map_G_rel_cong; simp add: Grp_def) apply (rule UNIV_I) apply (rule predicate2I) apply (erule GrpE) apply (drule sym) apply (hypsubst) apply (rewrite in "rel_G _ _ _ _ _ _ \" map_G_id[symmetric]) apply (rule map_G_rel_cong) apply (rule rel_G_eq_refl) apply (simp_all add: Grp_def) done lemmas rel_G_pos_distr = rel_G_pos_distr_cond_def[THEN iffD1, rule_format] and rel_G_neg_distr = rel_G_neg_distr_cond_def[THEN iffD1, rule_format] lemma rell_G_compp: "rell_G (L1 OO L1') (L2 OO L2') = rell_G L1 L2 OO rell_G L1' L2'" unfolding rell_G_def apply (rule antisym) apply (rule order_trans[rotated]) apply (rule rel_G_neg_distr) apply (rule rel_G_neg_distr_cond_eq) apply (simp add: eq_OO) apply (rule order_trans) apply (rule rel_G_pos_distr) apply (rule rel_G_pos_distr_cond_eq) apply (simp add: eq_OO) done subsubsection \G is a BNF\ lemma rell_G_eq_onp: "rell_G (eq_onp P1) (eq_onp P2) = eq_onp (\x. (\z\set1_G x. P1 z) \ (\z\set2_G x. P2 z))" (is "?rel_eq_onp = ?eq_onp_pred") proof (intro ext iffI) fix x y assume rel: "?rel_eq_onp x y" from rel have "rell_G (=) (=) x y" unfolding rell_G_def by (auto elim: rel_G_mono' simp add: eq_onp_def) then have "y = x" unfolding rell_G_def rel_G_eq .. let ?true = "\_. True" and ?label = "\P x. P x" from rel have "rell_G (=) (=) (mapl_G ?true ?true x) (mapl_G (?label P1) (?label P2) x)" unfolding rell_G_def mapl_G_def \y = x\ by (auto simp add: eq_onp_def elim: map_G_rel_cong) then have *: "mapl_G ?true ?true x = mapl_G (?label P1) (?label P2) x" unfolding rell_G_def rel_G_eq . note \y = x\ moreover { from * have "set1_G (mapl_G ?true ?true x) = set1_G (mapl_G (?label P1) (?label P2) x)" by simp then have "?true ` set1_G x = ?label P1 ` set1_G x" unfolding set1_G_map[THEN fun_cong, simplified] . then have "\z\set1_G x. P1 z" by auto } moreover { from * have "set2_G (mapl_G ?true ?true x) = set2_G (mapl_G (?label P1) (?label P2) x)" by simp then have "?true ` set2_G x = ?label P2 ` set2_G x" unfolding set2_G_map[THEN fun_cong, simplified] . then have "\z\set2_G x. P2 z" by auto } ultimately show "?eq_onp_pred x y" by (simp add: eq_onp_def) next fix x y assume eq_onp: "?eq_onp_pred x y" then have "rell_G (=) (=) x y" by (auto simp add: rell_G_def rel_G_eq eq_onp_def) then show "?rel_eq_onp x y" using eq_onp by (auto elim!: rell_G_mono_strong simp add: eq_onp_def) qed lemma rell_G_Grp: "rell_G (Grp A1 f1) (Grp A2 f2) = Grp {x. set1_G x \ A1 \ set2_G x \ A2} (mapl_G f1 f2)" proof - have "rell_G (Grp A1 f1) (Grp A2 f2) = rell_G (eq_onp (\x. x \ A1) OO Grp UNIV f1) (eq_onp (\x. x \ A2) OO Grp UNIV f2)" by (simp add: eq_onp_compp_Grp) also have "... = rell_G (eq_onp (\x. x \ A1)) (eq_onp (\x. x \ A2)) OO rell_G (Grp UNIV f1) (Grp UNIV f2)" using rell_G_compp . also have "... = eq_onp (\x. set1_G x \ A1 \ set2_G x \ A2) OO rell_G (Grp UNIV f1) (Grp UNIV f2)" by (simp add: rell_G_eq_onp subset_eq) also have "... = eq_onp (\x. set1_G x \ A1 \ set2_G x \ A2) OO Grp UNIV (mapl_G f1 f2)" unfolding rell_G_def mapl_G_def rel_G_Grp_weak[of _ _ id id id id, folded eq_alt, simplified] .. also have "... = Grp {x. set1_G x \ A1 \ set2_G x \ A2} (mapl_G f1 f2)" by (simp add: eq_onp_compp_Grp) finally show ?thesis . qed lemma rell_G_compp_Grp: "rell_G L1 L2 = (Grp {x. set1_G x \ {(x, y). L1 x y} \ set2_G x \ {(x, y). L2 x y}} (mapl_G fst fst))\\ OO Grp {x. set1_G x \ {(x, y). L1 x y} \ set2_G x \ {(x, y). L2 x y}} (mapl_G snd snd)" apply (unfold rell_G_Grp[symmetric]) apply (unfold rell_G_def) apply (simp add: rel_G_conversep[symmetric]) apply (fold rell_G_def) apply (simp add: rell_G_compp[symmetric] Grp_fst_snd) done lemma G_in_rell: "rell_G L1 L2 = (\x y. \z. (set1_G z \ {(x, y). L1 x y} \ set2_G z \ {(x, y). L2 x y}) \ mapl_G fst fst z = x \ mapl_G snd snd z = y)" using rell_G_compp_Grp by (simp add: OO_Grp_alt) bnf "('l1, 'l2, 'co1, 'co2, 'contra1, 'contra2, 'f) G" map: mapl_G sets: set1_G set2_G bd: "bd_G :: ('co1, 'co2, 'contra1, 'contra2, 'f) Gbd rel" wits: wit_G rel: rell_G by (fact mapl_G_id0 mapl_G_comp[symmetric] mapl_G_cong set1_G_map set2_G_map bd_G_card_order bd_G_cinfinite set1_G_bound set2_G_bound rell_G_compp[symmetric, THEN eq_refl] G_in_rell wit_G_set1 wit_G_set2)+ subsubsection \Composition witness\ consts rel_G_witness :: "('l1 \ 'l1'' \ bool) \ ('l2 \ 'l2'' \ bool) \ ('co1 \ 'co1' \ bool) \ ('co1' \ 'co1'' \ bool) \ ('co2 \ 'co2' \ bool) \ ('co2' \ 'co2'' \ bool) \ ('contra1 \ 'contra1' \ bool) \ ('contra1' \ 'contra1'' \ bool) \ ('contra2 \ 'contra2' \ bool) \ ('contra2' \ 'contra2'' \ bool) \ ('l1, 'l2, 'co1, 'co2, 'contra1, 'contra2, 'f) G \ ('l1'', 'l2'', 'co1'', 'co2'', 'contra1'', 'contra2'', 'f) G \ ('l1 \ 'l1'', 'l2 \ 'l2'', 'co1', 'co2', 'contra1', 'contra2', 'f) G" specification (rel_G_witness) rel_G_witness1: "\L1 L2 Co1 Co1' Co2 Co2' Contra1 Contra1' Contra2 Contra2' (tytok :: ('l1 \ ('l1 \ 'l1'') \ 'l1'' \ 'l2 \ ('l2 \ 'l2'') \ 'l2'' \ 'f) itself) (x :: ('l1, 'l2, _, _, _, _, 'f) G) (y :: ('l1'', 'l2'', _, _, _, _, 'f) G). \ rel_G_neg_distr_cond Co1 Co1' Co2 Co2' Contra1 Contra1' Contra2 Contra2' tytok; rel_G L1 L2 (Co1 OO Co1') (Co2 OO Co2') (Contra1 OO Contra1') (Contra2 OO Contra2') x y \ \ rel_G (\x (x', y). x' = x \ L1 x y) (\x (x', y). x' = x \ L2 x y) Co1 Co2 Contra1 Contra2 x (rel_G_witness L1 L2 Co1 Co1' Co2 Co2' Contra1 Contra1' Contra2 Contra2' (x, y))" rel_G_witness2:"\L1 L2 Co1 Co1' Co2 Co2' Contra1 Contra1' Contra2 Contra2' (tytok :: ('l1 \ ('l1 \ 'l1'') \ 'l1'' \ 'l2 \ ('l2 \ 'l2'') \ 'l2'' \ 'f) itself) (x :: ('l1, 'l2, _, _, _, _, 'f) G) (y :: ('l1'', 'l2'', _, _, _, _, 'f) G). \ rel_G_neg_distr_cond Co1 Co1' Co2 Co2' Contra1 Contra1' Contra2 Contra2' tytok; rel_G L1 L2 (Co1 OO Co1') (Co2 OO Co2') (Contra1 OO Contra1') (Contra2 OO Contra2') x y \ \ rel_G (\(x, y') y. y' = y \ L1 x y) (\(x, y') y. y' = y \ L2 x y) Co1' Co2' Contra1' Contra2' (rel_G_witness L1 L2 Co1 Co1' Co2 Co2' Contra1 Contra1' Contra2 Contra2' (x, y)) y" apply(rule exI[where x="\L1 L2 Co1 Co1' Co2 Co2' Contra1 Contra1' Contra2 Contra2' (x, y). SOME z. rel_G (\x (x', y). x' = x \ L1 x y) (\x (x', y). x' = x \ L2 x y) Co1 Co2 Contra1 Contra2 x z \ rel_G (\(x, y') y. y' = y \ L1 x y) (\(x, y') y. y' = y \ L2 x y) Co1' Co2' Contra1' Contra2' z y"]) apply(fold all_conj_distrib) apply(rule allI)+ apply(fold imp_conjR) apply(rule impI)+ apply clarify apply(rule someI_ex) subgoal for L1 L2 Co1 Co1' Co2 Co2' Contra1 Contra1' Contra2 Contra2' x y apply(drule rel_G_neg_distr[where ?L1.0 = "\x (x', y). x' = x \ L1 x y" and ?L1'.0 = "\(x, y) y'. y = y' \ L1 x y'" and ?L2.0 = "\x (x', y). x' = x \ L2 x y" and ?L2'.0 = "\(x, y) y'. y = y' \ L2 x y'"]) apply(drule predicate2D) apply(erule rel_G_mono[THEN predicate2D, rotated -1]; fastforce) apply(erule relcomppE) apply(rule exI conjI)+ apply assumption+ done done end