theory Renegar_Decision imports "Renegar_Proofs" "BKR_Decision" begin (* Note that there is significant overlap between Renegar and BKR in general, so there is some similarity between this file and BKR_Decision.thy. However, there are also notable differences as Renegar and BKR use different auxiliary polynomials in their decision procedures. In general, the _R's on definition and lemma names in this file are to emphasize that we are working with Renegar style. *) section "Algorithm" (* The set of all rational sign vectors for qs wrt the set S When S = UNIV, then this quantifies over all reals *) definition consistent_sign_vectors_R::"real poly list \ real set \ rat list set" where "consistent_sign_vectors_R qs S = (consistent_sign_vec qs) ` S" primrec prod_list_var:: "real poly list \ real poly" where "prod_list_var [] = 1" | "prod_list_var (h#T) = (if h = 0 then (prod_list_var T) else (h* prod_list_var T))" primrec check_all_const_deg:: "real poly list \ bool" where "check_all_const_deg [] = True" | "check_all_const_deg (h#T) = (if degree h = 0 then (check_all_const_deg T) else False)" definition poly_f :: "real poly list \ real poly" where "poly_f ps = (if (check_all_const_deg ps = True) then [:0, 1:] else (pderiv (prod_list_var ps)) * (prod_list_var ps)* ([:-(crb (prod_list_var ps)),1:]) * ([:(crb (prod_list_var ps)),1:]))" definition find_consistent_signs_R :: "real poly list \ rat list list" where "find_consistent_signs_R ps = find_consistent_signs_at_roots_R (poly_f ps) ps" definition decide_universal_R :: "real poly fml \ bool" where [code]: "decide_universal_R fml = ( let (fml_struct,polys) = convert fml; conds = find_consistent_signs_R polys in list_all (lookup_sem fml_struct) conds )" definition decide_existential_R :: "real poly fml \ bool" where [code]: "decide_existential_R fml = ( let (fml_struct,polys) = convert fml; conds = find_consistent_signs_R polys in find (lookup_sem fml_struct) conds \ None )" subsection "Proofs" definition roots_of_poly_f:: "real poly list \ real set" where "roots_of_poly_f qs = {x. poly (poly_f qs) x = 0}" lemma prod_list_var_nonzero: shows "prod_list_var qs \ 0" proof (induct qs) case Nil then show ?case by auto next case (Cons a qs) then show ?case by auto qed lemma q_dvd_prod_list_var_prop: assumes "q \ set qs" assumes "q \ 0" shows "q dvd prod_list_var qs" using assms proof (induct qs) case Nil then show ?case by auto next case (Cons a qs) then have eo: "q = a \q \ set qs" by auto have c1: "q = a \ q dvd prod_list_var (a#qs)" proof - assume "q = a" then have "prod_list_var (a#qs) = q*(prod_list_var qs)" using Cons.prems unfolding prod_list_var_def by auto then show ?thesis using prod_list_var_nonzero[of qs] by auto qed have c2: "q \ set qs \ q dvd prod_list_var qs" using Cons.prems Cons.hyps unfolding prod_list_var_def by auto show ?case using eo c1 c2 by auto qed lemma check_all_const_deg_prop: shows "check_all_const_deg l = True \ (\p \ set(l). degree p = 0)" proof (induct l) case Nil then show ?case by auto next case (Cons a l) then show ?case by auto qed (* lemma prod_zero shows that the product of the polynomial list is 0 at x iff there is a polynomial in the list that is 0 at x *) lemma poly_f_nonzero: fixes qs :: "real poly list" shows "(poly_f qs) \ 0" proof - have eo: "(\p \ set qs. degree p = 0) \ (\p \ set qs. degree p > 0)" by auto have c1: "(\p \ set qs. degree p = 0) \ (poly_f qs) \ 0" unfolding poly_f_def using check_all_const_deg_prop by auto have c2: "(\p \ set qs. degree p > 0) \ (poly_f qs) \ 0" proof clarsimp fix q assume q_in: "q \ set qs" assume deg_q: "0 < degree q" assume contrad: "poly_f qs = 0" have nonconst: "check_all_const_deg qs = False" using deg_q check_all_const_deg_prop q_in by auto have h1: "prod_list_var qs \ 0" using prod_list_var_nonzero by auto then have "degree (prod_list_var qs) > 0" using q_in deg_q h1 proof (induct qs) case Nil then show ?case by auto next case (Cons a qs) have q_nonz: "q \ 0" using Cons.prems by auto have q_ins: "q \ set (a # qs) " using Cons.prems by auto then have "q = a \ q \ set qs" by auto then have eo: " q = a \ List.member qs q" using in_set_member[of q qs] by auto have degq: "degree q > 0" using Cons.prems by auto have h2: "(prod_list (a # qs)) = a* (prod_list qs)" by auto have isa: "q = a \ 0 < degree (prod_list_var (a # qs))" using h2 degree_mult_eq_0[where p = "q", where q = "prod_list_var qs"] Cons.prems by auto have inl: "List.member qs q \ 0 < degree (prod_list_var (a # qs))" proof - have nonzprod: "prod_list_var (a # qs) \ 0" using prod_list_var_nonzero by auto have "q dvd prod_list_var (a # qs)" using q_dvd_prod_list_var_prop[where q = "q", where qs = "(a#qs)"] q_nonz q_ins by auto then show ?thesis using divides_degree[where p = "q", where q = "prod_list_var (a # qs)"] nonzprod degq by auto qed then show ?case using eo isa by auto qed then have h2: "pderiv (prod_list_var qs) \ 0" using pderiv_eq_0_iff[where p = "prod_list_var qs"] by auto then have "pderiv (prod_list_var qs) * prod_list_var qs \ 0" using prod_list_var_nonzero h2 by auto then show "False" using contrad nonconst unfolding poly_f_def deg_q by (smt (z3) mult_eq_0_iff pCons_eq_0_iff) qed show ?thesis using eo c1 c2 by auto qed lemma poly_f_roots_prop_1: fixes qs:: "real poly list" assumes non_const: "check_all_const_deg qs = False" shows "\x1. \x2. ((x1 < x2 \ (\q1 \ set (qs). q1 \ 0 \ (poly q1 x1) = 0) \ (\q2\ set(qs). q2 \ 0 \ (poly q2 x2) = 0)) \ (\q. x1 < q \ q < x2 \ poly (poly_f qs) q = 0))" proof clarsimp fix x1:: "real" fix x2:: "real" fix q1:: "real poly" fix q2:: "real poly" assume "x1 < x2" assume q1_in: "q1 \ set qs" assume q1_0: "poly q1 x1 = 0" assume q1_nonz: "q1 \ 0" assume q2_in: "q2 \ set qs" assume q2_0: "poly q2 x2 = 0" assume q2_nonz: "q2 \ 0" have prod_z_x1: "poly (prod_list_var qs) x1 = 0" using q1_in q1_0 using q1_nonz q_dvd_prod_list_var_prop[of q1 qs] by auto have prod_z_x2: "poly (prod_list_var qs) x2 = 0" using q2_in q2_0 using q2_nonz q_dvd_prod_list_var_prop[of q2 qs] by auto have "\w>x1. w < x2 \ poly (pderiv (prod_list_var qs)) w = 0" using Rolle_pderiv[where q = "prod_list_var qs"] prod_z_x1 prod_z_x2 using \x1 < x2\ by blast then obtain w where w_def: "w > x1 \w < x2 \ poly (pderiv (prod_list_var qs)) w = 0" by auto then have "poly (poly_f qs) w = 0" unfolding poly_f_def using non_const by simp then show "\q>x1. q < x2 \ poly (poly_f qs) q = 0" using w_def by blast qed lemma main_step_aux1_R: fixes qs:: "real poly list" assumes non_const: "check_all_const_deg qs = True" shows "set (find_consistent_signs_R qs) = consistent_sign_vectors_R qs UNIV" proof - have poly_f_is: "poly_f qs = [:0, 1:]" unfolding poly_f_def using assms by auto have same: "set (find_consistent_signs_at_roots_R [:0, 1:] qs) = set (characterize_consistent_signs_at_roots [:0, 1:] qs)" using find_consistent_signs_at_roots_R[of "[:0, 1:]" qs] by auto have rech: "(sorted_list_of_set {x. poly ([:0, 1:]::real poly) x = 0}) = [0]" by auto have alldeg0: "(\p \ set qs. degree p = 0)" using non_const check_all_const_deg_prop by auto then have allconst: "\p \ set qs. (\(k::real). p = [:k:])" apply (auto) by (meson degree_eq_zeroE) then have allconstvar: "\p \ set qs. \(x::real). \(y::real). poly p x = poly p y" by fastforce have e1: "set (remdups (map (signs_at qs) [0])) \ consistent_sign_vectors_R qs UNIV" unfolding signs_at_def squash_def consistent_sign_vectors_R_def consistent_sign_vec_def apply (simp) by (smt (verit, best) class_ring.ring_simprules(2) comp_def image_iff length_map map_nth_eq_conv) have e2: "consistent_sign_vectors_R qs UNIV \ set (remdups (map (signs_at qs) [0])) " unfolding signs_at_def squash_def consistent_sign_vectors_R_def consistent_sign_vec_def apply (simp) using allconstvar by (smt (verit, best) comp_apply image_iff insert_iff map_eq_conv subsetI) have "set (remdups (map (signs_at qs) [0])) = consistent_sign_vectors_R qs UNIV" using e1 e2 by auto then have "set (characterize_consistent_signs_at_roots [:0, 1:] qs) = consistent_sign_vectors_R qs UNIV" unfolding characterize_consistent_signs_at_roots_def characterize_root_list_p_def using rech by auto then show ?thesis using same poly_f_is unfolding find_consistent_signs_R_def by auto qed lemma sorted_list_lemma_var: fixes l:: "real list" fixes x:: "real" assumes "length l > 1" assumes strict_sort: "sorted_wrt (<) l" assumes x_not_in: "\ (List.member l x)" assumes lt_a: "x > (l ! 0)" assumes b_lt: "x < (l ! (length l - 1))" shows "(\n. n < length l - 1 \ x > l ! n \ x < l !(n+1))" using assms proof (induct l) case Nil then show ?case by auto next case (Cons a l) have len_gteq: "length l \ 1" using Cons.prems(1) by (metis One_nat_def Suc_eq_plus1 list.size(4) not_le not_less_eq) have len_one: "length l = 1 \ (\n. n < length (a#l) - 1 \ x > (a#l) ! n \ x < (a#l) !(n+1))" proof - assume len_is: "length l = 1" then have "x > (a#l) ! 0 \ x < (a#l) !1 " using Cons.prems(4) Cons.prems(5) by auto then show "(\n. n < length (a#l) - 1 \ x > (a#l) ! n \ x < (a#l) !(n+1))" using len_is by auto qed have len_gt: "length l > 1 \ (\n. n < length (a#l) - 1 \ x > (a#l) ! n \ x < (a#l) !(n+1))" proof - assume len_gt_one: "length l > 1" have eo: "x \ l ! 0" using Cons.prems(3) apply (auto) by (metis One_nat_def Suc_lessD in_set_member len_gt_one member_rec(1) nth_mem) have c1: "x < l ! 0 \ (\n. n < length (a#l) - 1 \ x > (a#l) ! n \ x < (a#l) !(n+1)) " proof - assume xlt: "x < l !0" then have "x < (a#l) ! 1 " by simp then show ?thesis using Cons.prems(4) len_gt_one apply (auto) using Cons.prems(4) Suc_lessD by blast qed have c2: "x > l ! 0 \ (\n. n < length (a#l) - 1 \ x > (a#l) ! n \ x < (a#l) !(n+1)) " proof - assume asm: "x > l ! 0" have xlt_1: " x < l ! (length l - 1)" using Cons.prems(5) by (metis Cons.prems(1) One_nat_def add_diff_cancel_right' list.size(4) nth_Cons_pos zero_less_diff) have ssl: "sorted_wrt (<) l " using Cons.prems(2) using sorted_wrt.simps(2) by auto have " \ List.member l x" using Cons.prems(3) by (meson member_rec(1)) then have " \n x < l ! (n + 1)" using asm xlt_1 len_gt_one ssl Cons.hyps by auto then show ?thesis by (metis One_nat_def Suc_eq_plus1 diff_Suc_1 less_diff_conv list.size(4) nth_Cons_Suc) qed show "(\n. n < length (a#l) - 1 \ x > (a#l) ! n \ x < (a#l) !(n+1))" using eo c1 c2 by (meson linorder_neqE_linordered_idom) qed then show ?case using len_gteq len_one len_gt apply (auto) by (metis One_nat_def less_numeral_extra(1) linorder_neqE_nat not_less nth_Cons_0) qed (* We want to show that our auxiliary polynomial has roots in all relevant intervals: so it captures all of the zeros, and also it captures all of the points in between! *) lemma all_sample_points_prop: assumes is_not_const: "check_all_const_deg qs = False" assumes s_is: "S = (characterize_root_list_p (pderiv (prod_list_var qs) * (prod_list_var qs) * ([:-(crb (prod_list_var qs)),1:]) * ([:(crb (prod_list_var qs)),1:])))"(* properties about S*) shows "consistent_sign_vectors_R qs UNIV = consistent_sign_vectors_R qs (set S)" proof - let ?zer_list = "sorted_list_of_set {(x::real). (\q \ set(qs). (q \ 0 \ poly q x = 0))} :: real list" have strict_sorted_h: "sorted_wrt (<) ?zer_list" using sorted_sorted_list_of_set strict_sorted_iff by auto have poly_f_is: "poly_f qs = (pderiv (prod_list_var qs) * prod_list_var qs)* ([:-(crb (prod_list_var qs)),1:]) * ([:(crb (prod_list_var qs)),1:])" unfolding poly_f_def using is_not_const by auto then have set_S_char: "set S = ({x. poly (poly_f qs) x = 0}::real set)" using poly_roots_finite[of "poly_f qs"] set_sorted_list_of_set poly_f_nonzero[of qs] using s_is unfolding characterize_root_list_p_def by auto have difficult_direction: "consistent_sign_vectors_R qs UNIV \ consistent_sign_vectors_R qs (set S)" proof clarsimp fix x assume "x \ consistent_sign_vectors_R qs UNIV " then have "\y. x = (consistent_sign_vec qs y)" unfolding consistent_sign_vectors_R_def by auto then obtain y where y_prop: "x = consistent_sign_vec qs y" by auto then have "\ k \ (set S). consistent_sign_vec qs k = consistent_sign_vec qs y" proof - have c1: "(\q \ (set qs). q \ 0 \ poly q y = 0) \ (\ k \ (set S). consistent_sign_vec qs k = consistent_sign_vec qs y)" proof - assume "(\q \ (set qs). q \ 0 \ poly q y = 0)" then obtain q where "q \ (set qs) \ q \ 0 \ poly q y = 0" by auto then have "poly (prod_list_var qs) y = 0" using q_dvd_prod_list_var_prop[of q qs] by auto then have "poly (pderiv (prod_list_var qs) * (prod_list_var qs)*([:-(crb (prod_list_var qs)),1:]) * ([:(crb (prod_list_var qs)),1:])) y = 0" by auto then have "y \ (set S)" using s_is unfolding characterize_root_list_p_def proof - have "y \ {r. poly (pderiv (prod_list_var qs) * (prod_list_var qs)*([:-(crb (prod_list_var qs)),1:]) * ([:(crb (prod_list_var qs)),1:])) r = 0}" using \poly (pderiv (prod_list_var qs) * (prod_list_var qs)*([:-(crb (prod_list_var qs)),1:]) * ([:(crb (prod_list_var qs)),1:])) y = 0\ by force then show ?thesis by (metis characterize_root_list_p_def is_not_const poly_f_def poly_f_nonzero poly_roots_finite s_is set_sorted_list_of_set) qed then show "\ k \ (set S). consistent_sign_vec qs k = consistent_sign_vec qs y" by auto qed have len_gtz_prop: "length ?zer_list > 0 \ ((\w. w < length ?zer_list \ y = ?zer_list ! w) \ (y < ?zer_list ! 0) \ (y > ?zer_list ! (length ?zer_list - 1)) \ (\k < (length ?zer_list - 1). y > ?zer_list ! k \ y < ?zer_list ! (k+1)))" proof - let ?c = "(\w. w < length ?zer_list \ y = ?zer_list ! w) \ (y < ?zer_list ! 0) \ (y > ?zer_list ! (length ?zer_list - 1)) \ (\k < (length ?zer_list - 1). y > ?zer_list ! k \ y < ?zer_list ! (k+1))" have lis1: "length ?zer_list = 1 \ ?c" by auto have h1: "\(\w. w < length ?zer_list \ y = ?zer_list ! w) \ \ (List.member ?zer_list y)" by (metis (no_types, lifting) in_set_conv_nth in_set_member) have h2: "(length ?zer_list > 0 \ \(\w. w < length ?zer_list \ y = ?zer_list ! w) \ \ (y < ?zer_list ! 0)) \ y > ?zer_list ! 0" by auto have h3: "(length ?zer_list > 1 \ \(\w. w < length ?zer_list \ y = ?zer_list ! w) \ \ (y > ?zer_list ! (length ?zer_list - 1))) \ y < ?zer_list ! (length ?zer_list - 1)" apply (auto) by (smt (z3) diff_Suc_less gr_implies_not0 not_gr_zero) have "length ?zer_list > 1 \ \(\w. w < length ?zer_list \ y = ?zer_list ! w) \ \ (y < ?zer_list ! 0) \ \ (y > ?zer_list ! (length ?zer_list - 1)) \ (\k < (length ?zer_list - 1). y > ?zer_list ! k \ y < ?zer_list ! (k+1))" using h1 h2 h3 strict_sorted_h sorted_list_lemma_var[of ?zer_list y] using One_nat_def Suc_lessD by presburger then have lgt1: "length ?zer_list > 1 \ ?c" by auto then show ?thesis using lis1 lgt1 by (smt (z3) diff_is_0_eq' not_less) qed have neg_crb_in: "(- crb (prod_list_var qs)) \ set S" using set_S_char poly_f_is by auto have pos_crb_in: "(crb (prod_list_var qs)) \ set S" using set_S_char poly_f_is by auto have set_S_nonempty: "set S \ {}" using neg_crb_in by auto have finset: "finite {x. \q\set qs. q \ 0 \ poly q x = 0}" proof - have "\q \ set qs. q\ 0 \ finite {x. poly q x = 0} " using poly_roots_finite by auto then show ?thesis by auto qed have c2: "\(\q \ (set qs). q \ 0 \ poly q y = 0) \ \ k \ (set S). consistent_sign_vec qs k = consistent_sign_vec qs y" proof - assume "\(\q \ (set qs). q \ 0 \ poly q y = 0)" have c_c1: "length ?zer_list = 0 \ \ k \ (set S). consistent_sign_vec qs k = consistent_sign_vec qs y" proof - assume "length ?zer_list = 0" then have "\q \ set (qs). \ (x:: real). \(y::real). squash (poly q x) = squash (poly q y)" proof clarsimp fix q x y assume czer: "card {x. \q\set qs. q \ 0 \ poly q x = 0} = 0" assume qin: "q \ set qs" have fin_means_empty: "{x. \q\set qs. q \ 0 \ poly q x = 0} = {}" using finset czer by auto have qzer: "q = 0 \ squash (poly q x) = squash (poly q y)" by auto have qnonz: "q \ 0 \ squash (poly q x) = squash (poly q y)" proof - assume qnonz: "q \ 0" then have noroots: "{x. poly q x = 0} = {}" using qin finset using Collect_empty_eq fin_means_empty by auto have nonzsq1: "squash (poly q x) \ 0" using fin_means_empty qnonz czer qin unfolding squash_def by auto then have eo: "(poly q x) > 0 \ (poly q x) < 0" unfolding squash_def apply (auto) by presburger have eo1: "poly q x > 0 \ poly q y > 0" using noroots poly_IVT_pos[of y x q] poly_IVT_neg[of x y q] apply (auto) by (metis linorder_neqE_linordered_idom) have eo2: "poly q x < 0 \ poly q y < 0" using noroots poly_IVT_pos[of x y q] poly_IVT_neg[of y x q] apply (auto) by (metis linorder_neqE_linordered_idom) then show "squash (poly q x) = squash (poly q y)" using eo eo1 eo2 unfolding squash_def by auto qed show "squash (poly q x) = squash (poly q y)" using qzer qnonz by blast qed then have "\q \ set (qs). squash (poly q y) = squash (poly q (- crb (prod_list_var qs)))" by auto then show "\ k \ (set S). consistent_sign_vec qs k = consistent_sign_vec qs y" using neg_crb_in unfolding consistent_sign_vec_def squash_def apply (auto) by (metis (no_types, opaque_lifting) antisym_conv3 class_field.neg_1_not_0 equal_neg_zero less_irrefl of_int_minus) qed have c_c2: "length ?zer_list > 0 \ \ k \ (set S). consistent_sign_vec qs k = consistent_sign_vec qs y" proof - assume lengt: "length ?zer_list > 0" let ?t = " \ k \ (set S). consistent_sign_vec qs k = consistent_sign_vec qs y" have sg1: "(\w. w < length ?zer_list \ y = ?zer_list ! w) \ ?t" proof - assume "(\w. w < length ?zer_list \ y = ?zer_list ! w)" then obtain w where w_prop: "w < length ?zer_list \ y = ?zer_list ! w" by auto then have " y \ {x. \q\set qs. q \ 0 \ poly q x = 0}" using finset set_sorted_list_of_set[of "{x. \q\set qs. q \ 0 \ poly q x = 0}"] by (smt (verit, best) nth_mem) then have "y \ {x. poly (poly_f qs) x = 0}" using poly_f_is using \\ (\q\set qs. q \ 0 \ poly q y = 0)\ by blast then show ?thesis using set_S_char by blast qed have sg2: "(y < ?zer_list ! 0) \ ?t" proof - assume ylt: "y < ?zer_list ! 0" have ynonzat_some_qs: "\q \ (set qs). q \ 0 \ poly q y \ 0" proof clarsimp fix q assume q_in: "q \ set qs" assume qnonz: "q \ 0" assume "poly q y = 0" then have "y \ {x. \q\set qs. q \ 0 \ poly q x = 0}" using q_in qnonz by auto then have "List.member ?zer_list y" by (smt (verit, best) finset in_set_member mem_Collect_eq set_sorted_list_of_set) then have "y \ ?zer_list ! 0" using strict_sorted_h using \\ (\q\set qs. q \ 0 \ poly q y = 0)\ \poly q y = 0\ q_in qnonz by blast then show "False" using ylt by auto qed let ?ncrb = "(- crb (prod_list_var qs))" have "\x \ {x. \q\set qs. q \ 0 \ poly q x = 0}. poly (prod_list_var qs) x = 0" using q_dvd_prod_list_var_prop by fastforce then have "poly (prod_list_var qs) (sorted_list_of_set {x. \q\set qs. q \ 0 \ poly q x = 0} ! 0) = 0" using finset set_sorted_list_of_set by (metis (no_types, lifting) lengt nth_mem) then have ncrblt: "?ncrb < ?zer_list ! 0" using prod_list_var_nonzero crb_lem_neg[of "prod_list_var qs" "?zer_list ! 0"] by auto have qzerh: "\q \ (set qs). q = 0 \ squash (poly q ?ncrb) = squash (poly q y)" by auto have "\q \ (set qs). q \ 0 \ squash (poly q ?ncrb) = squash (poly q y)" proof clarsimp fix q assume q_in: "q \ set qs" assume qnonz: "q \ 0" have nonzylt:"\(\x \ y. poly q x = 0)" proof clarsimp fix x assume xlt: "x \ y" assume "poly q x = 0" then have "x \ {x. \q\set qs. q \ 0 \ poly q x = 0}" using q_in qnonz by auto then have "List.member ?zer_list x" by (smt (verit, best) finset in_set_member mem_Collect_eq set_sorted_list_of_set) then have "x \ ?zer_list ! 0" using strict_sorted_h by (metis (no_types, lifting) gr_implies_not0 in_set_conv_nth in_set_member not_less sorted_iff_nth_mono sorted_list_of_set(2)) then show "False" using xlt ylt by auto qed have nonzncrb:"\(\x \ (real_of_int ?ncrb). poly q x = 0)" proof clarsimp fix x assume xlt: "x \ - real_of_int (crb (prod_list_var qs))" assume "poly q x = 0" then have "x \ {x. \q\set qs. q \ 0 \ poly q x = 0}" using q_in qnonz by auto then have "List.member ?zer_list x" by (smt (verit, best) finset in_set_member mem_Collect_eq set_sorted_list_of_set) then have "x \ ?zer_list ! 0" using strict_sorted_h by (metis (no_types, lifting) gr_implies_not0 in_set_conv_nth in_set_member not_less sorted_iff_nth_mono sorted_list_of_set(2)) then show "False" using xlt ncrblt by auto qed have c1: " (poly q ?ncrb) > 0 \ (poly q y) > 0" proof - assume qncrbgt: "(poly q ?ncrb) > 0" then have eq: "?ncrb = y \ poly q y > 0 " by auto have gt: " ?ncrb > y \ poly q y > 0" using qncrbgt qnonz poly_IVT_pos[of y ?ncrb q] poly_IVT_neg[of ?ncrb y q] nonzncrb nonzylt apply (auto) by (meson less_eq_real_def linorder_neqE_linordered_idom) have lt: "?ncrb < y \ poly q y > 0" using qncrbgt using qnonz poly_IVT_pos[of y ?ncrb q] poly_IVT_neg[of ?ncrb y q] nonzncrb nonzylt apply (auto) by (meson less_eq_real_def linorder_neqE_linordered_idom) then show ?thesis using eq gt lt apply (auto) by (meson linorder_neqE_linordered_idom) qed have c2: "(poly q ?ncrb) < 0 \ (poly q y) < 0" using poly_IVT_pos[of ?ncrb y q] poly_IVT_neg[of y ?ncrb q] nonzncrb nonzylt apply (auto) by (metis less_eq_real_def linorder_neqE_linordered_idom) have eo: "(poly q ?ncrb) > 0 \ (poly q ?ncrb) < 0" using nonzncrb by auto then show "squash (poly q (- real_of_int (crb (prod_list_var qs)))) = squash (poly q y)" using c1 c2 by (smt (verit, ccfv_SIG) of_int_minus squash_def) qed then have "\q \ (set qs). squash (poly q ?ncrb) = squash (poly q y)" using qzerh by auto then have "consistent_sign_vec qs ?ncrb = consistent_sign_vec qs y" unfolding consistent_sign_vec_def squash_def by (smt (z3) map_eq_conv) then show ?thesis using neg_crb_in by auto qed have sg3: " (y > ?zer_list ! (length ?zer_list - 1)) \ ?t" proof - assume ygt: "y > ?zer_list ! (length ?zer_list - 1)" have ynonzat_some_qs: "\q \ (set qs). q \ 0 \ poly q y \ 0" proof clarsimp fix q assume q_in: "q \ set qs" assume qnonz: "q \ 0" assume "poly q y = 0" then have "y \ {x. \q\set qs. q \ 0 \ poly q x = 0}" using q_in qnonz by auto then have "List.member ?zer_list y" by (smt (verit, best) finset in_set_member mem_Collect_eq set_sorted_list_of_set) then have "y \ ?zer_list ! (length ?zer_list - 1)" using strict_sorted_h using \\ (\q\set qs. q \ 0 \ poly q y = 0)\ \poly q y = 0\ q_in qnonz by blast then show "False" using ygt by auto qed let ?crb = "crb (prod_list_var qs)" have "\x \ {x. \q\set qs. q \ 0 \ poly q x = 0}. poly (prod_list_var qs) x = 0" using q_dvd_prod_list_var_prop by fastforce then have "poly (prod_list_var qs) (sorted_list_of_set {x. \q\set qs. q \ 0 \ poly q x = 0} ! 0) = 0" using finset set_sorted_list_of_set by (metis (no_types, lifting) lengt nth_mem) then have crbgt: "?crb > ?zer_list ! (length ?zer_list - 1)" using prod_list_var_nonzero crb_lem_pos[of "prod_list_var qs" "?zer_list ! (length ?zer_list - 1)"] by (metis (no_types, lifting) \\x\{x. \q\set qs. q \ 0 \ poly q x = 0}. poly (prod_list_var qs) x = 0\ diff_less finset lengt less_numeral_extra(1) nth_mem set_sorted_list_of_set) have qzerh: "\q \ (set qs). q = 0 \ squash (poly q ?crb) = squash (poly q y)" by auto have "\q \ (set qs). q \ 0 \ squash (poly q ?crb) = squash (poly q y)" proof clarsimp fix q assume q_in: "q \ set qs" assume qnonz: "q \ 0" have nonzylt:"\(\x \ y. poly q x = 0)" proof clarsimp fix x assume xgt: "x \ y" assume "poly q x = 0" then have "x \ {x. \q\set qs. q \ 0 \ poly q x = 0}" using q_in qnonz by auto then have "List.member ?zer_list x" by (smt (verit, best) finset in_set_member mem_Collect_eq set_sorted_list_of_set) then have "x \ ?zer_list ! (length ?zer_list - 1)" using strict_sorted_h by (metis (no_types, lifting) One_nat_def Suc_leI Suc_pred diff_Suc_less in_set_conv_nth in_set_member lengt not_less sorted_iff_nth_mono sorted_list_of_set(2)) then show "False" using xgt ygt by auto qed have nonzcrb:"\(\x \ (real_of_int ?crb). poly q x = 0)" proof clarsimp fix x assume xgt: "x \ real_of_int (crb (prod_list_var qs))" assume "poly q x = 0" then have "x \ {x. \q\set qs. q \ 0 \ poly q x = 0}" using q_in qnonz by auto then have "List.member ?zer_list x" by (smt (verit, best) finset in_set_member mem_Collect_eq set_sorted_list_of_set) then have "x \ ?zer_list ! (length ?zer_list - 1)" using strict_sorted_h by (meson \\x\{x. \q\set qs. q \ 0 \ poly q x = 0}. poly (prod_list_var qs) x = 0\ \x \ {x. \q\set qs. q \ 0 \ poly q x = 0}\ crb_lem_pos not_less prod_list_var_nonzero xgt) then show "False" using xgt crbgt by auto qed have c1: " (poly q ?crb) > 0 \ (poly q y) > 0" proof - assume qcrbgt: "(poly q ?crb) > 0" then have eq: "?crb = y \ poly q y > 0 " by auto have gt: " ?crb > y \ poly q y > 0" using qcrbgt qnonz poly_IVT_pos[of y ?crb q] poly_IVT_neg[of ?crb y q] nonzcrb nonzylt apply (auto) by (meson less_eq_real_def linorder_neqE_linordered_idom) have lt: "?crb < y \ poly q y > 0" using qcrbgt using qnonz poly_IVT_pos[of y ?crb q] poly_IVT_neg[of ?crb y q] nonzcrb nonzylt apply (auto) by (meson less_eq_real_def linorder_neqE_linordered_idom) then show ?thesis using eq gt lt apply (auto) by (meson linorder_neqE_linordered_idom) qed have c2: "(poly q ?crb) < 0 \ (poly q y) < 0" using poly_IVT_pos[of ?crb y q] poly_IVT_neg[of y ?crb q] nonzcrb nonzylt apply (auto) by (metis less_eq_real_def linorder_neqE_linordered_idom) have eo: "(poly q ?crb) > 0 \ (poly q ?crb) < 0" using nonzcrb by auto then show "squash (poly q (real_of_int (crb (prod_list_var qs)))) = squash (poly q y)" using c1 c2 by (smt (verit, ccfv_SIG) of_int_minus squash_def) qed then have "\q \ (set qs). squash (poly q ?crb) = squash (poly q y)" using qzerh by auto then have "consistent_sign_vec qs ?crb = consistent_sign_vec qs y" unfolding consistent_sign_vec_def squash_def by (smt (z3) map_eq_conv) then show ?thesis using pos_crb_in by auto qed have sg4: " (\k < (length ?zer_list - 1). y > ?zer_list ! k \ y < ?zer_list ! (k+1)) \ ?t" proof - assume " (\k < (length ?zer_list - 1). y > ?zer_list ! k \ y < ?zer_list ! (k+1))" then obtain k where k_prop: "k < (length ?zer_list - 1) \ y > ?zer_list ! k \ y < ?zer_list ! (k+1)" by auto have ltk: "(?zer_list ! k) < (?zer_list ! (k+1)) " using strict_sorted_h using k_prop by linarith have q1e: "(\q1\set qs. q1 \ 0 \ poly q1 (?zer_list ! k) = 0)" by (smt (z3) One_nat_def Suc_lessD add.right_neutral add_Suc_right finset k_prop less_diff_conv mem_Collect_eq nth_mem set_sorted_list_of_set) have q2e: "(\q2\set qs. q2 \ 0 \ poly q2 (?zer_list ! (k + 1)) = 0)" by (smt (verit, del_insts) finset k_prop less_diff_conv mem_Collect_eq nth_mem set_sorted_list_of_set) then have "(\q>(?zer_list ! k). q < (?zer_list ! (k + 1)) \ poly (poly_f qs) q = 0)" using poly_f_roots_prop_1[of qs] q1e q2e ltk is_not_const by auto then have "\s \ set S. s > ?zer_list ! k \ s < ?zer_list ! (k+1)" using poly_f_is by (smt (z3) k_prop mem_Collect_eq set_S_char) then obtain s where s_prop: "s \ set S \ s > ?zer_list ! k \ s < ?zer_list ! (k+1)" by auto have qnon: "\q \ set qs. q\ 0 \ squash (poly q s) = squash (poly q y)" proof clarsimp fix q assume q_in: "q \ set qs" assume qnonz: "q \ 0" have sgt: "s > y \ squash (poly q s) = squash (poly q y)" proof - assume "s > y" then have "\x. List.member ?zer_list x \ y \ x \ x \ s" using sorted_list_lemma[of y s k ?zer_list] k_prop strict_sorted_h s_prop y_prop using less_diff_conv by blast then have nox: "\x. poly q x = 0 \ y \ x \ x \ s" using q_in qnonz by (metis (mono_tags, lifting) finset in_set_member mem_Collect_eq set_sorted_list_of_set) then have c1: "poly q s \ 0" using s_prop q_in qnonz by (metis (mono_tags, lifting) \y < s\ less_eq_real_def ) have c2: "poly q s > 0 \ poly q y > 0" using poly_IVT_pos poly_IVT_neg nox by (meson \y < s\ less_eq_real_def linorder_neqE_linordered_idom) have c3: "poly q s < 0 \ poly q y < 0" using poly_IVT_pos poly_IVT_neg nox by (meson \y < s\ less_eq_real_def linorder_neqE_linordered_idom) show ?thesis using c1 c2 c3 unfolding squash_def by auto qed have slt: "s < y \ squash (poly q s) = squash (poly q y)" proof - assume slt: "s < y" then have "\x. List.member ?zer_list x \ s \ x \ x \ y" using sorted_list_lemma[of s y k ?zer_list] k_prop strict_sorted_h s_prop y_prop using less_diff_conv by blast then have nox: "\x. poly q x = 0 \ s \ x \ x \ y" using q_in qnonz by (metis (mono_tags, lifting) finset in_set_member mem_Collect_eq set_sorted_list_of_set) then have c1: "poly q s \ 0" using s_prop q_in qnonz by (metis (mono_tags, lifting) \s < y\ less_eq_real_def ) have c2: "poly q s > 0 \ poly q y > 0" using poly_IVT_pos poly_IVT_neg nox by (meson \s < y\ less_eq_real_def linorder_neqE_linordered_idom) have c3: "poly q s < 0 \ poly q y < 0" using poly_IVT_pos poly_IVT_neg nox by (meson \s < y\ less_eq_real_def linorder_neqE_linordered_idom) show ?thesis using c1 c2 c3 unfolding squash_def by auto qed have "s = y \ squash (poly q s) = squash (poly q y)" by auto then show "squash (poly q s) = squash (poly q y)" using sgt slt by (meson linorder_neqE_linordered_idom) qed have "\q \ set qs. q= 0 \ squash (poly q s) = squash (poly q y)" by auto then have "\q \ set qs. squash (poly q s) = squash (poly q y)" using qnon by fastforce then show ?thesis using s_prop unfolding squash_def consistent_sign_vec_def apply (auto) by (metis (no_types, opaque_lifting) class_field.neg_1_not_0 equal_neg_zero less_irrefl linorder_neqE_linordered_idom) qed show ?thesis using lengt sg1 sg2 sg3 sg4 len_gtz_prop is_not_const by fastforce qed show "\ k \ (set S). consistent_sign_vec qs k = consistent_sign_vec qs y" using c_c1 c_c2 by auto qed show ?thesis using c1 c2 by auto qed then show "x \ consistent_sign_vectors_R qs (set S)" using y_prop unfolding consistent_sign_vectors_R_def by (metis imageI) qed have easy_direction: "consistent_sign_vectors_R qs (set S) \ consistent_sign_vectors_R qs UNIV " using consistent_sign_vectors_R_def by auto then show ?thesis using difficult_direction easy_direction by auto qed lemma main_step_aux2_R: fixes qs:: "real poly list" assumes is_not_const: "check_all_const_deg qs = False" shows "set (find_consistent_signs_R qs) = consistent_sign_vectors_R qs UNIV" proof - have poly_f_is: "poly_f qs = (pderiv (prod_list_var qs)) * (prod_list_var qs)* ([:-(crb (prod_list_var qs)),1:]) * ([:(crb (prod_list_var qs)),1:])" using is_not_const unfolding poly_f_def by auto let ?p = "(pderiv (prod_list_var qs)) * (prod_list_var qs)* ([:-(crb (prod_list_var qs)),1:]) * ([:(crb (prod_list_var qs)),1:])" let ?S = "characterize_root_list_p (pderiv (prod_list_var qs) * (prod_list_var qs) * ([:-(crb (prod_list_var qs)),1:]) * ([:(crb (prod_list_var qs)),1:]))" have "set (remdups (map (signs_at qs) ?S)) = consistent_sign_vectors_R qs (set ?S)" unfolding signs_at_def squash_def consistent_sign_vectors_R_def consistent_sign_vec_def by (smt (verit, best) comp_apply map_eq_conv set_map set_remdups) then have "set (characterize_consistent_signs_at_roots ?p qs) = consistent_sign_vectors_R qs UNIV" unfolding characterize_consistent_signs_at_roots_def using assms all_sample_points_prop[of qs] by auto then show ?thesis unfolding find_consistent_signs_R_def using find_consistent_signs_at_roots_R poly_f_is poly_f_nonzero[of qs] by auto qed lemma main_step_R: fixes qs:: "real poly list" shows "set (find_consistent_signs_R qs) = consistent_sign_vectors_R qs UNIV" using main_step_aux1_R main_step_aux2_R by auto (* The universal and existential decision procedure for real polys are easy if we know the consistent sign vectors *) lemma consistent_sign_vec_semantics_R: assumes "\i. i \ set_fml fml \ i < length ls" shows "lookup_sem fml (map (\p. poly p x) ls) = lookup_sem fml (consistent_sign_vec ls x)" using assms apply (induction) by (auto simp add: consistent_sign_vec_def) lemma universal_lookup_sem_R: assumes "\i. i \ set_fml fml \ i < length qs" assumes "set signs = consistent_sign_vectors_R qs UNIV" shows "(\x::real. lookup_sem fml (map (\p. poly p x) qs)) \ list_all (lookup_sem fml) signs" using assms(2) unfolding consistent_sign_vectors_R_def list_all_iff by (simp add: assms(1) consistent_sign_vec_semantics_R) lemma existential_lookup_sem_R: assumes "\i. i \ set_fml fml \ i < length qs" assumes "set signs = consistent_sign_vectors_R qs UNIV" shows "(\x::real. lookup_sem fml (map (\p. poly p x) qs)) \ find (lookup_sem fml) signs \ None" using assms(2) unfolding consistent_sign_vectors_R_def find_None_iff by (simp add: assms(1) consistent_sign_vec_semantics_R) lemma decide_univ_lem_helper_R: fixes fml:: "real poly fml" assumes "(fml_struct,polys) = convert fml" shows "(\x::real. lookup_sem fml_struct (map (\p. poly p x) polys)) \ (decide_universal_R fml)" using assms universal_lookup_sem_R main_step_R unfolding decide_universal_R_def apply (auto) apply (metis assms convert_closed fst_conv snd_conv) by (metis (full_types) assms convert_closed fst_conv snd_conv) lemma decide_exis_lem_helper_R: fixes fml:: "real poly fml" assumes "(fml_struct,polys) = convert fml" shows "(\x::real. lookup_sem fml_struct (map (\p. poly p x) polys)) \ (decide_existential_R fml)" using assms existential_lookup_sem_R main_step_R unfolding decide_existential_R_def apply (auto) apply (metis assms convert_closed fst_conv snd_conv) by (metis (full_types) assms convert_closed fst_conv snd_conv) lemma convert_semantics_lem_R: assumes "\p. p \ set (poly_list fml) \ ls ! (index_of ps p) = poly p x" shows "real_sem fml x = lookup_sem (map_fml (index_of ps) fml) ls" using assms apply (induct fml) by auto lemma convert_semantics_R: shows "real_sem fml x = lookup_sem (fst (convert fml)) (map (\p. poly p x) (snd (convert fml)))" unfolding convert_def Let_def apply simp apply (intro convert_semantics_lem_R) by (simp add: index_of_lookup(1) index_of_lookup(2)) (* Main result *) theorem decision_procedure_R: shows "(\x::real. real_sem fml x) \ (decide_universal_R fml)" "\x::real. real_sem fml x \ (decide_existential_R fml)" using convert_semantics_lem_R decide_univ_lem_helper_R apply (auto) apply (simp add: convert_semantics_R) apply (metis convert_def convert_semantics_R fst_conv snd_conv) using convert_semantics_lem_R by (metis convert_def convert_semantics_R decide_exis_lem_helper_R fst_conv snd_conv) end