(* Authors: Jose Divasón Sebastiaan Joosten René Thiemann Akihisa Yamada *) subsection \Mahler Measure\ text \This part contains a definition of the Mahler measure, it contains Landau's inequality and the Graeffe-transformation. We also assemble a heuristic to approximate the Mahler's measure.\ theory Mahler_Measure imports Sqrt_Babylonian.Sqrt_Babylonian Poly_Mod_Finite_Field_Record_Based (* stuff about polynomials *) Polynomial_Factorization.Fundamental_Theorem_Algebra_Factorized Polynomial_Factorization.Missing_Multiset begin context comm_monoid_list begin lemma induct_gen_abs: assumes "\ a r. a\set lst \ P (f (h a) r) (f (g a) r)" "\ x y z. P x y \ P y z \ P x z" "P (F (map g lst)) (F (map g lst))" shows "P (F (map h lst)) (F (map g lst)) " using assms proof(induct lst arbitrary:P) case (Cons a as P) have inl:"a\set (a#as)" by auto let ?uf = "\ v w. P (f (g a) v) (f (g a) w)" have p_suc:"?uf (F (map g as)) (F (map g as))" using Cons.prems(3) by auto { fix r aa assume "aa \ set as" hence ins:"aa \ set (a#as)" by auto have "P (f (g a) (f (h aa) r)) (f (g a) (f (g aa) r))" using Cons.prems(1)[of aa "f r (g a)",OF ins] by (auto simp: assoc commute left_commute) } note h = this from Cons.hyps(1)[of ?uf, OF h Cons.prems(2)[simplified] p_suc] have e1:"P (f (g a) (F (map h as))) (f (g a) (F (map g as)))" by simp have e2:"P (f (h a) (F (map h as))) (f (g a) (F (map h as)))" using Cons.prems(1)[OF inl] by blast from Cons(3)[OF e2 e1] show ?case by auto next qed auto end lemma prod_induct_gen: assumes "\ a r. f (h a * r :: 'a :: {comm_monoid_mult}) = f (g a * r)" shows "f (\v\lst. h v) = f (\v\lst. g v)" proof - let "?P x y" = "f x = f y" show ?thesis using comm_monoid_mult_class.prod_list.induct_gen_abs[of _ ?P,OF assms] by auto qed abbreviation complex_of_int::"int \ complex" where "complex_of_int \ of_int" definition l2norm_list :: "int list \ int" where "l2norm_list lst = \sqrt (sum_list (map (\ a. a * a) lst))\" abbreviation l2norm :: "int poly \ int" where "l2norm p \ l2norm_list (coeffs p)" abbreviation "norm2 p \ \a\coeffs p. (cmod a)\<^sup>2" (* the square of the Euclidean/l2-norm *) abbreviation l2norm_complex where "l2norm_complex p \ sqrt (norm2 p)" abbreviation height :: "int poly \ int" where "height p \ max_list (map (nat \ abs) (coeffs p))" definition complex_roots_complex where "complex_roots_complex (p::complex poly) = (SOME as. smult (coeff p (degree p)) (\a\as. [:- a, 1:]) = p \ length as = degree p)" lemma complex_roots: "smult (lead_coeff p) (\a\complex_roots_complex p. [:- a, 1:]) = p" "length (complex_roots_complex p) = degree p" using someI_ex[OF fundamental_theorem_algebra_factorized] unfolding complex_roots_complex_def by simp_all lemma complex_roots_c [simp]: "complex_roots_complex [:c:] = []" using complex_roots(2) [of "[:c:]"] by simp declare complex_roots(2)[simp] lemma complex_roots_1 [simp]: "complex_roots_complex 1 = []" using complex_roots_c [of 1] by (simp add: pCons_one) lemma linear_term_irreducible\<^sub>d[simp]: "irreducible\<^sub>d [: a, 1:]" by (rule linear_irreducible\<^sub>d, simp) definition complex_roots_int where "complex_roots_int (p::int poly) = complex_roots_complex (map_poly of_int p)" lemma complex_roots_int: "smult (lead_coeff p) (\a\complex_roots_int p. [:- a, 1:]) = map_poly of_int p" "length (complex_roots_int p) = degree p" proof - show "smult (lead_coeff p) (\a\complex_roots_int p. [:- a, 1:]) = map_poly of_int p" "length (complex_roots_int p) = degree p" using complex_roots[of "map_poly of_int p"] unfolding complex_roots_int_def by auto qed text \The measure for polynomials, after K. Mahler\ definition mahler_measure_poly where "mahler_measure_poly p = cmod (lead_coeff p) * (\a\complex_roots_complex p. (max 1 (cmod a)))" definition mahler_measure where "mahler_measure p = mahler_measure_poly (map_poly complex_of_int p)" definition mahler_measure_monic where "mahler_measure_monic p = (\a\complex_roots_complex p. (max 1 (cmod a)))" lemma mahler_measure_poly_via_monic : "mahler_measure_poly p = cmod (lead_coeff p) * mahler_measure_monic p" unfolding mahler_measure_poly_def mahler_measure_monic_def by simp lemma smult_inj[simp]: assumes "(a::'a::idom) \ 0" shows "inj (smult a)" proof- interpret map_poly_inj_zero_hom "(*) a" using assms by (unfold_locales, auto) show ?thesis unfolding smult_as_map_poly by (rule inj_f) qed definition reconstruct_poly::"'a::idom \ 'a list \ 'a poly" where "reconstruct_poly c roots = smult c (\a\roots. [:- a, 1:])" lemma reconstruct_is_original_poly: "reconstruct_poly (lead_coeff p) (complex_roots_complex p) = p" using complex_roots(1) by (simp add: reconstruct_poly_def) lemma reconstruct_with_type_conversion: "smult (lead_coeff (map_poly of_int f)) (prod_list (map (\ a. [:- a, 1:]) (complex_roots_int f))) = map_poly of_int f" unfolding complex_roots_int_def complex_roots(1) by simp lemma reconstruct_prod: shows "reconstruct_poly (a::complex) as * reconstruct_poly b bs = reconstruct_poly (a * b) (as @ bs)" unfolding reconstruct_poly_def by auto lemma linear_term_inj[simplified,simp]: "inj (\ a. [:- a, 1::'a::idom:])" unfolding inj_on_def by simp lemma reconstruct_poly_monic_defines_mset: assumes "(\a\as. [:- a, 1:]) = (\a\bs. [:- a, 1::'a::field:])" shows "mset as = mset bs" proof - let ?as = "mset (map (\ a. [:- a, 1:]) as)" let ?bs = "mset (map (\ a. [:- a, 1:]) bs)" have eq_smult:"prod_mset ?as = prod_mset ?bs" using assms by (metis prod_mset_prod_list) have irr:"\ as::'a list. set_mset (mset (map (\ a. [:- a, 1:]) as)) \ {q. irreducible q \ monic q}" by (auto intro!: linear_term_irreducible\<^sub>d[of "-_::'a", simplified]) from monic_factorization_unique_mset[OF eq_smult irr irr] show ?thesis apply (subst inj_eq[OF multiset.inj_map,symmetric]) by auto qed lemma reconstruct_poly_defines_mset_of_argument: assumes "(a::'a::field) \ 0" "reconstruct_poly a as = reconstruct_poly a bs" shows "mset as = mset bs" proof - have eq_smult:"smult a (\a\as. [:- a, 1:]) = smult a (\a\bs. [:- a, 1:])" using assms(2) by (auto simp:reconstruct_poly_def) from reconstruct_poly_monic_defines_mset[OF Fun.injD[OF smult_inj[OF assms(1)] eq_smult]] show ?thesis by simp qed lemma complex_roots_complex_prod [simp]: assumes "f \ 0" "g \ 0" shows "mset (complex_roots_complex (f * g)) = mset (complex_roots_complex f) + mset (complex_roots_complex g)" proof - let ?p = "f * g" let "?lc v" = "(lead_coeff (v:: complex poly))" have nonzero_prod:"?lc ?p \ 0" using assms by auto from reconstruct_prod[of "?lc f" "complex_roots_complex f" "?lc g" "complex_roots_complex g"] have "reconstruct_poly (?lc ?p) (complex_roots_complex ?p) = reconstruct_poly (?lc ?p) (complex_roots_complex f @ complex_roots_complex g)" unfolding lead_coeff_mult[symmetric] reconstruct_is_original_poly by auto from reconstruct_poly_defines_mset_of_argument[OF nonzero_prod this] show ?thesis by simp qed lemma mset_mult_add: assumes "mset (a::'a::field list) = mset b + mset c" shows "prod_list a = prod_list b * prod_list c" unfolding prod_mset_prod_list[symmetric] using prod_mset_Un[of "mset b" "mset c",unfolded assms[symmetric]]. lemma mset_mult_add_2: assumes "mset a = mset b + mset c" shows "prod_list (map i a::'b::field list) = prod_list (map i b) * prod_list (map i c)" proof - have r:"mset (map i a) = mset (map i b) + mset (map i c) " using assms by (metis map_append mset_append mset_map) show ?thesis using mset_mult_add[OF r] by auto qed lemma measure_mono_eq_prod: assumes "f \ 0" "g \ 0" shows "mahler_measure_monic (f * g) = mahler_measure_monic f * mahler_measure_monic g" unfolding mahler_measure_monic_def using mset_mult_add_2[OF complex_roots_complex_prod[OF assms],of "\ a. max 1 (cmod a)"] by simp lemma mahler_measure_poly_0[simp]: "mahler_measure_poly 0 = 0" unfolding mahler_measure_poly_via_monic by auto lemma measure_eq_prod: (* Remark 10.2 *) "mahler_measure_poly (f * g) = mahler_measure_poly f * mahler_measure_poly g" proof - consider "f = 0" | "g = 0" | (both) "f \ 0" "g \ 0" by auto thus ?thesis proof(cases) case both show ?thesis unfolding mahler_measure_poly_via_monic norm_mult lead_coeff_mult by (auto simp: measure_mono_eq_prod[OF both]) qed (simp_all) qed lemma prod_cmod[simp]: "cmod (\a\lst. f a) = (\a\lst. cmod (f a))" by(induct lst,auto simp:real_normed_div_algebra_class.norm_mult) lemma lead_coeff_of_prod[simp]: "lead_coeff (\a\lst. f a::'a::idom poly) = (\a\lst. lead_coeff (f a))" by(induct lst,auto simp:lead_coeff_mult) lemma ineq_about_squares:assumes "x \ (y::real)" shows "x \ c^2 + y" using assms by (simp add: add.commute add_increasing2) lemma first_coeff_le_tail:"(cmod (lead_coeff g))^2 \ (\a\coeffs g. (cmod a)^2)" proof(induct g) case (pCons a p) thus ?case proof(cases "p = 0") case False show ?thesis using pCons unfolding lead_coeff_pCons(1)[OF False] by(cases "a = 0",simp_all add:ineq_about_squares) qed simp qed simp lemma square_prod_cmod[simp]: "(cmod (a * b))^2 = cmod a ^ 2 * cmod b ^ 2" by (simp add: norm_mult power_mult_distrib) lemma sum_coeffs_smult_cmod: "(\a\coeffs (smult v p). (cmod a)^2) = (cmod v)^2 * (\a\coeffs p. (cmod a)^2)" (is "?l = ?r") proof - have "?l = (\a\coeffs p. (cmod v)^2 * (cmod a)^2)" by(cases "v=0";induct p,auto) thus ?thesis by (auto simp:sum_list_const_mult) qed abbreviation "linH a \ if (cmod a > 1) then [:- 1,cnj a:] else [:- a,1:]" lemma coeffs_cong_1[simp]: "cCons a v = cCons b v \ a = b" unfolding cCons_def by auto lemma strip_while_singleton[simp]: "strip_while ((=) 0) [v * a] = cCons (v * a) []" unfolding cCons_def strip_while_def by auto lemma coeffs_times_linterm: shows "coeffs (pCons 0 (smult a p) + smult b p) = strip_while (HOL.eq (0::'a::{comm_ring_1})) (map (\(c,d).b*d+c*a) (zip (0 # coeffs p) (coeffs p @ [0])))" proof - {fix v have "coeffs (smult b p + pCons (a* v) (smult a p)) = strip_while (HOL.eq 0) (map (\(c,d).b*d+c*a) (zip ([v] @ coeffs p) (coeffs p @ [0])))" proof(induct p arbitrary:v) case (pCons pa ps) thus ?case by auto qed auto (* just putting ;auto does not work *) } from this[of 0] show ?thesis by (simp add: add.commute) qed lemma filter_distr_rev[simp]: shows "filter f (rev lst) = rev (filter f lst)" by(induct lst;auto) lemma strip_while_filter: shows "filter ((\) 0) (strip_while ((=) 0) (lst::'a::zero list)) = filter ((\) 0) lst" proof - {fix lst::"'a list" have "filter ((\) 0) (dropWhile ((=) 0) lst) = filter ((\) 0) lst" by (induct lst;auto) hence "(filter ((\) 0) (strip_while ((=) 0) (rev lst))) = filter ((\) 0) (rev lst)" unfolding strip_while_def by(simp)} from this[of "rev lst"] show ?thesis by simp qed lemma sum_stripwhile[simp]: assumes "f 0 = 0" shows "(\a\strip_while ((=) 0) lst. f a) = (\a\lst. f a)" proof - {fix lst have "(\a\filter ((\) 0) lst. f a) = (\a\lst. f a)" by(induct lst,auto simp:assms)} note f=this have "sum_list (map f (filter ((\) 0) (strip_while ((=) 0) lst))) = sum_list (map f (filter ((\) 0) lst))" using strip_while_filter[of lst] by(simp) thus ?thesis unfolding f. qed lemma complex_split : "Complex a b = c \ (a = Re c \ b = Im c)" using complex_surj by auto lemma norm_times_const:"(\y\lst. (cmod (a * y))\<^sup>2) = (cmod a)\<^sup>2 * (\y\lst. (cmod y)\<^sup>2)" by(induct lst,auto simp:ring_distribs) fun bisumTail where (* Used for Landau's lemma *) "bisumTail f (Cons a (Cons b bs)) = f a b + bisumTail f (Cons b bs)" | "bisumTail f (Cons a Nil) = f a 0" | "bisumTail f Nil = f 1 0" (* never called, not used in proofs *) fun bisum where "bisum f (Cons a as) = f 0 a + bisumTail f (Cons a as)" | "bisum f Nil = f 0 0" lemma bisumTail_is_map_zip: "(\x\zip (v # l1) (l1 @ [0]). f x) = bisumTail (\x y .f (x,y)) (v#l1)" by(induct l1 arbitrary:v,auto) (* converting to and from bisum *) lemma bisum_is_map_zip: "(\x\zip (0 # l1) (l1 @ [0]). f x) = bisum (\x y. f (x,y)) l1" using bisumTail_is_map_zip[of f "hd l1" "tl l1"] by(cases l1,auto) lemma map_zip_is_bisum: "bisum f l1 = (\(x,y)\zip (0 # l1) (l1 @ [0]). f x y)" using bisum_is_map_zip[of "\(x,y). f x y"] by auto lemma bisum_outside : "(bisum (\ x y. f1 x - f2 x y + f3 y) lst :: 'a :: field) = sum_list (map f1 lst) + f1 0 - bisum f2 lst + sum_list (map f3 lst) + f3 0" proof(cases lst) case (Cons a lst) show ?thesis unfolding map_zip_is_bisum Cons by(induct lst arbitrary:a,auto) qed auto lemma Landau_lemma: "(\a\coeffs (\a\lst. [:- a, 1:]). (cmod a)\<^sup>2) = (\a\coeffs (\a\lst. linH a). (cmod a)\<^sup>2)" (is "norm2 ?l = norm2 ?r") proof - have a:"\ a. (cmod a)\<^sup>2 = Re (a * cnj a) " using complex_norm_square unfolding complex_split complex_of_real_def by simp have b:"\ x a y. (cmod (x - a * y))^2 = (cmod x)\<^sup>2 - Re (a * y * cnj x + x * cnj (a * y)) + (cmod (a * y))^2" unfolding left_diff_distrib right_diff_distrib a complex_cnj_diff by simp have c:"\ y a x. (cmod (cnj a * x - y))\<^sup>2 = (cmod (a * x))\<^sup>2 - Re (a * y * cnj x + x * cnj (a * y)) + (cmod y)^2" unfolding left_diff_distrib right_diff_distrib a complex_cnj_diff by (simp add: mult.assoc mult.left_commute) { fix f1 a have "norm2 ([:- a, 1 :] * f1) = bisum (\x y. cmod (x - a * y)^2) (coeffs f1)" by(simp add: bisum_is_map_zip[of _ "coeffs f1"] coeffs_times_linterm[of 1 _ "-a",simplified]) also have "\ = norm2 f1 + cmod a^2*norm2 f1 - bisum (\x y. Re (a * y * cnj x + x * cnj (a * y))) (coeffs f1)" unfolding b bisum_outside norm_times_const by simp also have "\ = bisum (\x y. cmod (cnj a * x - y)^2) (coeffs f1)" unfolding c bisum_outside norm_times_const by auto also have "\ = norm2 ([:- 1, cnj a :] * f1)" using coeffs_times_linterm[of "cnj a" _ "-1"] by(simp add: bisum_is_map_zip[of _ "coeffs f1"] mult.commute) finally have "norm2 ([:- a, 1 :] * f1) = \".} hence h:"\ a f1. norm2 ([:- a, 1 :] * f1) = norm2 (linH a * f1)" by auto show ?thesis by(rule prod_induct_gen[OF h]) qed lemma Landau_inequality: "mahler_measure_poly f \ l2norm_complex f" proof - let ?f = "reconstruct_poly (lead_coeff f) (complex_roots_complex f)" let ?roots = "(complex_roots_complex f)" let ?g = "\a\?roots. linH a" (* g is chosen such that lead_coeff_g holds, and its l2 norm is equal to f's l2 norm *) have max:"\a. cmod (if 1 < cmod a then cnj a else 1) = max 1 (cmod a)" by simp have "\a. 1 < cmod a \ a \ 0" by auto hence "\a. lead_coeff (linH a) = (if (cmod a > 1) then cnj a else 1)" by(auto simp:if_split) hence lead_coeff_g:"cmod (lead_coeff ?g) = (\a\?roots. max 1 (cmod a))" by(auto simp:max) have "norm2 f = (\a\coeffs ?f. (cmod a)^2)" unfolding reconstruct_is_original_poly.. also have "\ = cmod (lead_coeff f)^2 * (\a\coeffs (\a\?roots. [:- a, 1:]). (cmod a)\<^sup>2)" unfolding reconstruct_poly_def using sum_coeffs_smult_cmod. finally have fg_norm:"norm2 f = cmod (lead_coeff f)^2 * (\a\coeffs ?g. (cmod a)^2)" unfolding Landau_lemma by auto have "(cmod (lead_coeff ?g))^2 \ (\a\coeffs ?g. (cmod a)^2)" using first_coeff_le_tail by blast from ordered_comm_semiring_class.comm_mult_left_mono[OF this] have "(cmod (lead_coeff f) * cmod (lead_coeff ?g))^2 \ (\a\coeffs f. (cmod a)^2)" unfolding fg_norm by (simp add:power_mult_distrib) hence "cmod (lead_coeff f) * (\a\?roots. max 1 (cmod a)) \ sqrt (norm2 f)" using NthRoot.real_le_rsqrt lead_coeff_g by auto thus "mahler_measure_poly f \ sqrt (norm2 f)" using reconstruct_with_type_conversion[unfolded complex_roots_int_def] by (simp add: mahler_measure_poly_via_monic mahler_measure_monic_def complex_roots_int_def) qed lemma prod_list_ge1: assumes "Ball (set x) (\ (a::real). a \ 1)" shows "prod_list x \ 1" using assms proof(induct x) case (Cons a as) have "\a\set as. 1 \ a" "1 \ a" using Cons(2) by auto thus ?case using Cons.hyps mult_mono' by fastforce qed auto lemma mahler_measure_monic_ge_1: "mahler_measure_monic p \ 1" unfolding mahler_measure_monic_def by(rule prod_list_ge1,simp) lemma mahler_measure_monic_ge_0: "mahler_measure_monic p \ 0" using mahler_measure_monic_ge_1 le_numeral_extra(1) order_trans by blast lemma mahler_measure_ge_0: "0 \ mahler_measure h" unfolding mahler_measure_def mahler_measure_poly_via_monic by (simp add: mahler_measure_monic_ge_0) lemma mahler_measure_constant[simp]: "mahler_measure_poly [:c:] = cmod c" proof - have main: "complex_roots_complex [:c:] = []" unfolding complex_roots_complex_def by (rule some_equality, auto) show ?thesis unfolding mahler_measure_poly_def main by auto qed lemma mahler_measure_factor[simplified,simp]: "mahler_measure_poly [:- a, 1:] = max 1 (cmod a)" proof - have main: "complex_roots_complex [:- a, 1:] = [a]" unfolding complex_roots_complex_def proof (rule some_equality, auto, goal_cases) case (1 as) thus ?case by (cases as, auto) qed show ?thesis unfolding mahler_measure_poly_def main by auto qed lemma mahler_measure_poly_explicit: "mahler_measure_poly (smult c (\a\as. [:- a, 1:])) = cmod c * (\a\as. (max 1 (cmod a)))" proof (cases "c = 0") case True thus ?thesis by auto next case False note c = this show ?thesis proof (induct as) case (Cons a as) have "mahler_measure_poly (smult c (\a\a # as. [:- a, 1:])) = mahler_measure_poly (smult c (\a\as. [:- a, 1:]) * [: -a, 1 :])" by (rule arg_cong[of _ _ mahler_measure_poly], unfold list.simps prod_list.Cons mult_smult_left, simp) also have "\ = mahler_measure_poly (smult c (\a\as. [:- a, 1:])) * mahler_measure_poly ([:- a, 1:])" (is "_ = ?l * ?r") by (rule measure_eq_prod) also have "?l = cmod c * (\a\as. max 1 (cmod a))" unfolding Cons by simp also have "?r = max 1 (cmod a)" by simp finally show ?case by simp next case Nil show ?case by simp qed qed lemma mahler_measure_poly_ge_1: assumes "h \ 0" shows "(1::real) \ mahler_measure h" proof - have rc: "\real_of_int i\ = of_int \i\" for i by simp from assms have "cmod (lead_coeff (map_poly complex_of_int h)) > 0" by simp hence "cmod (lead_coeff (map_poly complex_of_int h)) \ 1" by(cases "lead_coeff h = 0", auto simp del: leading_coeff_0_iff) from mult_mono[OF this mahler_measure_monic_ge_1 norm_ge_zero] show ?thesis unfolding mahler_measure_def mahler_measure_poly_via_monic by auto qed lemma mahler_measure_dvd: assumes "f \ 0" and "h dvd f" shows "mahler_measure h \ mahler_measure f" proof - from assms obtain g where f: "f = g * h" unfolding dvd_def by auto from f assms have g0: "g \ 0" by auto hence mg: "mahler_measure g \ 1" by (rule mahler_measure_poly_ge_1) have "1 * mahler_measure h \ mahler_measure f" unfolding mahler_measure_def f measure_eq_prod of_int_poly_hom.hom_mult unfolding mahler_measure_def[symmetric] by (rule mult_right_mono[OF mg mahler_measure_ge_0]) thus ?thesis by simp qed definition graeffe_poly :: "'a \ 'a :: comm_ring_1 list \ nat \ 'a poly" where "graeffe_poly c as m = smult (c ^ (2^m)) (\a\as. [:- (a ^ (2^m)), 1:])" context fixes f :: "complex poly" and c as assumes f: "f = smult c (\a\as. [:- a, 1:])" begin lemma mahler_graeffe: "mahler_measure_poly (graeffe_poly c as m) = (mahler_measure_poly f)^(2^m)" proof - have graeffe: "graeffe_poly c as m = smult (c ^ 2 ^ m) (\a\(map (\ a. a ^ 2 ^ m) as). [:- a, 1:])" unfolding graeffe_poly_def by (rule arg_cong[of _ _ "smult (c ^ 2 ^ m)"], induct as, auto) { fix n :: nat assume n: "n > 0" have id: "max 1 (cmod a ^ n) = max 1 (cmod a) ^ n" for a proof (cases "cmod a \ 1") case True hence "cmod a ^ n \ 1" by (simp add: power_le_one) with True show ?thesis by (simp add: max_def) qed (auto simp: max_def) have "(\x\as. max 1 (cmod x ^ n)) = (\a\as. max 1 (cmod a)) ^ n" by (induct as, auto simp: field_simps n id) } thus ?thesis unfolding f mahler_measure_poly_explicit graeffe by (auto simp: o_def field_simps norm_power) qed end fun drop_half :: "'a list \ 'a list" where "drop_half (x # y # ys) = x # drop_half ys" | "drop_half xs = xs" fun alternate :: "'a list \ 'a list \ 'a list" where "alternate (x # y # ys) = (case alternate ys of (evn, od) \ (x # evn, y # od))" | "alternate xs = (xs,[])" definition poly_square_subst :: "'a :: comm_ring_1 poly \ 'a poly" where "poly_square_subst f = poly_of_list (drop_half (coeffs f))" definition poly_even_odd :: "'a :: comm_ring_1 poly \ 'a poly \ 'a poly" where "poly_even_odd f = (case alternate (coeffs f) of (evn,od) \ (poly_of_list evn, poly_of_list od))" lemma poly_square_subst_coeff: "coeff (poly_square_subst f) i = coeff f (2 * i)" proof - have id: "coeff f (2 * i) = coeff (Poly (coeffs f)) (2 * i)" by simp obtain xs where xs: "coeffs f = xs" by auto show ?thesis unfolding poly_square_subst_def poly_of_list_def coeff_Poly_eq id xs proof (induct xs arbitrary: i rule: drop_half.induct) case (1 x y ys i) thus ?case by (cases i, auto) next case ("2_2" x i) thus ?case by (cases i, auto) qed auto qed lemma poly_even_odd_coeff: assumes "poly_even_odd f = (ev,od)" shows "coeff ev i = coeff f (2 * i)" "coeff od i = coeff f (2 * i + 1)" proof - have id: "\ i. coeff f i = coeff (Poly (coeffs f)) i" by simp obtain xs where xs: "coeffs f = xs" by auto from assms[unfolded poly_even_odd_def] have ev_od: "ev = Poly (fst (alternate xs))" "od = Poly (snd (alternate xs))" by (auto simp: xs split: prod.splits) have "coeff ev i = coeff f (2 * i) \ coeff od i = coeff f (2 * i + 1)" unfolding poly_of_list_def coeff_Poly_eq id xs ev_od proof (induct xs arbitrary: i rule: alternate.induct) case (1 x y ys i) thus ?case by (cases "alternate ys"; cases i, auto) next case ("2_2" x i) thus ?case by (cases i, auto) qed auto thus "coeff ev i = coeff f (2 * i)" "coeff od i = coeff f (2 * i + 1)" by auto qed lemma poly_square_subst: "poly_square_subst (f \\<^sub>p (monom 1 2)) = f" by (rule poly_eqI, unfold poly_square_subst_coeff, subst coeff_pcompose_x_pow_n, auto) lemma poly_even_odd: assumes "poly_even_odd f = (g,h)" shows "f = g \\<^sub>p monom 1 2 + monom 1 1 * (h \\<^sub>p monom 1 2)" proof - note id = poly_even_odd_coeff[OF assms] show ?thesis proof (rule poly_eqI, unfold coeff_add coeff_monom_mult) fix n :: nat obtain m i where mi: "m = n div 2" "i = n mod 2" by auto have nmi: "n = 2 * m + i" "i < 2" "0 < (2 :: nat)" "1 < (2 :: nat)" unfolding mi by auto have "(2 :: nat) \ 0" by auto show "coeff f n = coeff (g \\<^sub>p monom 1 2) n + (if 1 \ n then 1 * coeff (h \\<^sub>p monom 1 2) (n - 1) else 0)" proof (cases "i = 1") case True hence id1: "2 * m + i - 1 = 2 * m + 0" by auto show ?thesis unfolding nmi id id1 coeff_pcompose_monom[OF nmi(2)] coeff_pcompose_monom[OF nmi(3)] unfolding True by auto next case False with nmi have i0: "i = 0" by auto show ?thesis proof (cases m) case (Suc k) hence id1: "2 * m + i - 1 = 2 * k + 1" using i0 by auto show ?thesis unfolding nmi id coeff_pcompose_monom[OF nmi(2)] coeff_pcompose_monom[OF nmi(4)] id1 unfolding Suc i0 by auto next case 0 show ?thesis unfolding nmi id coeff_pcompose_monom[OF nmi(2)] unfolding i0 0 by auto qed qed qed qed context fixes f :: "'a :: idom poly" begin lemma graeffe_0: "f = smult c (\a\as. [:- a, 1:]) \ graeffe_poly c as 0 = f" unfolding graeffe_poly_def by auto lemma graeffe_recursion: assumes "graeffe_poly c as m = f" shows "graeffe_poly c as (Suc m) = smult ((-1)^(degree f)) (poly_square_subst (f * f \\<^sub>p [:0,-1:]))" proof - let ?g = "graeffe_poly c as m" have "f * f \\<^sub>p [:0,-1:] = ?g * ?g \\<^sub>p [:0,-1:]" unfolding assms by simp also have "?g \\<^sub>p [:0,-1:] = smult ((- 1) ^ length as) (smult (c ^ 2 ^ m) (\a\as. [:a ^ 2 ^ m, 1:]))" unfolding graeffe_poly_def proof (induct as) case (Cons a as) have "?case = ((smult (c ^ 2 ^ m) ([:- (a ^ 2 ^ m), 1:] \\<^sub>p [:0, - 1:] * (\a\as. [:- (a ^ 2 ^ m), 1:]) \\<^sub>p [:0, - 1:]) = smult (-1 * (- 1) ^ length as) (smult (c ^ 2 ^ m) ([: a ^ 2 ^ m, 1:] * (\a\as. [:a ^ 2 ^ m, 1:])))))" unfolding list.simps prod_list.Cons pcompose_smult pcompose_mult by simp also have "smult (c ^ 2 ^ m) ([:- (a ^ 2 ^ m), 1:] \\<^sub>p [:0, - 1:] * (\a\as. [:- (a ^ 2 ^ m), 1:]) \\<^sub>p [:0, - 1:]) = smult (c ^ 2 ^ m) ((\a\as. [:- (a ^ 2 ^ m), 1:]) \\<^sub>p [:0, - 1:]) * [:- (a ^ 2 ^ m), 1:] \\<^sub>p [:0, - 1:]" unfolding mult_smult_left by simp also have "smult (c ^ 2 ^ m) ((\a\as. [:- (a ^ 2 ^ m), 1:]) \\<^sub>p [:0, - 1:]) = smult ((- 1) ^ length as) (smult (c ^ 2 ^ m) (\a\as. [:a ^ 2 ^ m, 1:]))" unfolding pcompose_smult[symmetric] Cons .. also have "[:- (a ^ 2 ^ m), 1:] \\<^sub>p [:0, - 1:] = smult (-1) [: a^2^m, 1:]" by simp finally have id: "?case = (smult ((- 1) ^ length as) (smult (c ^ 2 ^ m) (\a\as. [:a ^ 2 ^ m, 1:])) * smult (- 1) [:a ^ 2 ^ m, 1:] = smult (- 1 * (- 1) ^ length as) (smult (c ^ 2 ^ m) ([:a ^ 2 ^ m, 1:] * (\a\as. [:a ^ 2 ^ m, 1:]))))" by simp obtain c d where id': "(\a\as. [:a ^ 2 ^ m, 1:]) = c" "[:a ^ 2 ^ m, 1:] = d" by auto show ?case unfolding id unfolding id' by (simp add: ac_simps) qed simp finally have "f * f \\<^sub>p [:0, - 1:] = smult ((- 1) ^ length as * (c ^ 2 ^ m * c ^ 2 ^ m)) ((\a\as. [:- (a ^ 2 ^ m), 1:]) * (\a\as. [:a ^ 2 ^ m, 1:]))" unfolding graeffe_poly_def by (simp add: ac_simps) also have "c ^ 2 ^ m * c ^ 2 ^ m = c ^ 2 ^ (Suc m)" by (simp add: semiring_normalization_rules(36)) also have "(\a\as. [:- (a ^ 2 ^ m), 1:]) * (\a\as. [:a ^ 2 ^ m, 1:]) = (\a\as. [:- (a ^ 2 ^ (Suc m)), 1:]) \\<^sub>p monom 1 2" proof (induct as) case (Cons a as) have id: "(monom 1 2 :: 'a poly) = [:0,0,1:]" by (metis monom_altdef pCons_0_as_mult power2_eq_square smult_1_left) have "(\a\a # as. [:- (a ^ 2 ^ m), 1:]) * (\a\a # as. [:a ^ 2 ^ m, 1:]) = ([:- (a ^ 2 ^ m), 1:] * [: a ^ 2 ^ m, 1:]) * ((\a\ as. [:- (a ^ 2 ^ m), 1:]) * (\a\ as. [:a ^ 2 ^ m, 1:]))" (is "_ = ?a * ?b") unfolding list.simps prod_list.Cons by (simp only: ac_simps) also have "?b = (\a\as. [:- (a ^ 2 ^ Suc m), 1:]) \\<^sub>p monom 1 2" unfolding Cons by simp also have "?a = [: - (a ^ 2 ^ (Suc m)), 0 , 1:]" by (simp add: semiring_normalization_rules(36)) also have "\ = [: - (a ^ 2 ^ (Suc m)), 1:] \\<^sub>p monom 1 2" by (simp add: id) also have "[: - (a ^ 2 ^ (Suc m)), 1:] \\<^sub>p monom 1 2 * (\a\as. [:- (a ^ 2 ^ Suc m), 1:]) \\<^sub>p monom 1 2 = (\a\a # as. [:- (a ^ 2 ^ Suc m), 1:]) \\<^sub>p monom 1 2" unfolding pcompose_mult[symmetric] by simp finally show ?case . qed simp finally have "f * f \\<^sub>p [:0, - 1:] = (smult ((- 1) ^ length as) (graeffe_poly c as (Suc m)) \\<^sub>p monom 1 2)" unfolding graeffe_poly_def pcompose_smult by simp from arg_cong[OF this, of "\ f. smult ((- 1) ^ length as) (poly_square_subst f)", unfolded poly_square_subst] have "graeffe_poly c as (Suc m) = smult ((- 1) ^ length as) (poly_square_subst (f * f \\<^sub>p [:0, - 1:]))" by simp also have "\ = smult ((- 1) ^ degree f) (poly_square_subst (f * f \\<^sub>p [:0, - 1:]))" proof (cases "f = 0") case True thus ?thesis by (auto simp: poly_square_subst_def) next case False with assms have c0: "c \ 0" unfolding graeffe_poly_def by auto from arg_cong[OF assms, of degree] have "degree f = degree (smult (c ^ 2 ^ m) (\a\as. [:- (a ^ 2 ^ m), 1:]))" unfolding graeffe_poly_def by auto also have "\ = degree (\a\as. [:- (a ^ 2 ^ m), 1:])" unfolding degree_smult_eq using c0 by auto also have "\ = length as" unfolding degree_linear_factors by simp finally show ?thesis by simp qed finally show ?thesis . qed end definition graeffe_one_step :: "'a \ 'a :: idom poly \ 'a poly" where "graeffe_one_step c f = smult c (poly_square_subst (f * f \\<^sub>p [:0,-1:]))" lemma graeffe_one_step_code[code]: fixes c :: "'a :: idom" shows "graeffe_one_step c f = (case poly_even_odd f of (g,h) \ smult c (g * g - monom 1 1 * h * h))" proof - obtain g h where eo: "poly_even_odd f = (g,h)" by force from poly_even_odd[OF eo] have fgh: "f = g \\<^sub>p monom 1 2 + monom 1 1 * h \\<^sub>p monom 1 2 " by auto have m2: "monom (1 :: 'a) 2 = [:0,0,1:]" "monom (1 :: 'a) 1 = [:0,1:]" unfolding coeffs_eq_iff coeffs_monom by (auto simp add: numeral_2_eq_2) show ?thesis unfolding eo split graeffe_one_step_def proof (rule arg_cong[of _ _ "smult c"]) let ?g = "g \\<^sub>p monom 1 2" let ?h = "h \\<^sub>p monom 1 2" let ?x = "monom (1 :: 'a) 1" have 2: "2 = Suc (Suc 0)" by simp have "f * f \\<^sub>p [:0, - 1:] = (g \\<^sub>p monom 1 2 + monom 1 1 * h \\<^sub>p monom 1 2) * (g \\<^sub>p monom 1 2 + monom 1 1 * h \\<^sub>p monom 1 2) \\<^sub>p [:0, - 1:]" unfolding fgh by simp also have "(g \\<^sub>p monom 1 2 + monom 1 1 * h \\<^sub>p monom 1 2) \\<^sub>p [:0, - 1:] = g \\<^sub>p (monom 1 2 \\<^sub>p [:0, - 1:]) + monom 1 1 \\<^sub>p [:0, - 1:] * h \\<^sub>p (monom 1 2 \\<^sub>p [:0, - 1:])" unfolding pcompose_add pcompose_mult pcompose_assoc by simp also have "monom (1 :: 'a) 2 \\<^sub>p [:0, - 1:] = monom 1 2" unfolding m2 by auto also have "?x \\<^sub>p [:0, - 1:] = [:0, -1:]" unfolding m2 by auto also have "[:0, - 1:] * h \\<^sub>p monom 1 2 = (-?x) * ?h" unfolding m2 by simp also have "(?g + ?x * ?h) * (?g + (- ?x) * ?h) = (?g * ?g - (?x * ?x) * ?h * ?h)" by (auto simp: field_simps) also have "?x * ?x = ?x \\<^sub>p monom 1 2" unfolding mult_monom by (insert m2, simp add: 2) also have "(?g * ?g - \ * ?h * ?h) = (g * g - ?x * h * h) \\<^sub>p monom 1 2" unfolding pcompose_diff pcompose_mult by auto finally have "poly_square_subst (f * f \\<^sub>p [:0, - 1:]) = poly_square_subst ((g * g - ?x * h * h) \\<^sub>p monom 1 2)" by simp also have "\ = g * g - ?x * h * h" unfolding poly_square_subst by simp finally show "poly_square_subst (f * f \\<^sub>p [:0, - 1:]) = g * g - ?x * h * h" . qed qed fun graeffe_poly_impl_main :: "'a \ 'a :: idom poly \ nat \ 'a poly" where "graeffe_poly_impl_main c f 0 = f" | "graeffe_poly_impl_main c f (Suc m) = graeffe_one_step c (graeffe_poly_impl_main c f m)" lemma graeffe_poly_impl_main: assumes "f = smult c (\a\as. [:- a, 1:])" shows "graeffe_poly_impl_main ((-1)^degree f) f m = graeffe_poly c as m" proof (induct m) case 0 show ?case using graeffe_0[OF assms] by simp next case (Suc m) have [simp]: "degree (graeffe_poly c as m) = degree f" unfolding graeffe_poly_def degree_smult_eq assms degree_linear_factors by auto from arg_cong[OF Suc, of degree] show ?case unfolding graeffe_recursion[OF Suc[symmetric]] by (simp add: graeffe_one_step_def) qed definition graeffe_poly_impl :: "'a :: idom poly \ nat \ 'a poly" where "graeffe_poly_impl f = graeffe_poly_impl_main ((-1)^(degree f)) f" lemma graeffe_poly_impl: assumes "f = smult c (\a\as. [:- a, 1:])" shows "graeffe_poly_impl f m = graeffe_poly c as m" using graeffe_poly_impl_main[OF assms] unfolding graeffe_poly_impl_def . lemma drop_half_map: "drop_half (map f xs) = map f (drop_half xs)" by (induct xs rule: drop_half.induct, auto) lemma (in inj_comm_ring_hom) map_poly_poly_square_subst: "map_poly hom (poly_square_subst f) = poly_square_subst (map_poly hom f)" unfolding poly_square_subst_def coeffs_map_poly_hom drop_half_map poly_of_list_def by (rule poly_eqI, auto simp: nth_default_map_eq) context inj_idom_hom begin lemma graeffe_poly_impl_hom: "map_poly hom (graeffe_poly_impl f m) = graeffe_poly_impl (map_poly hom f) m" proof - interpret mh: map_poly_inj_idom_hom.. obtain c where c: "(((- 1) ^ degree f) :: 'a) = c" by auto have c': "(((- 1) ^ degree f) :: 'b) = hom c" unfolding c[symmetric] by (simp add:hom_distribs) show ?thesis unfolding graeffe_poly_impl_def degree_map_poly_hom c c' apply (induct m arbitrary: f; simp) by (unfold graeffe_one_step_def hom_distribs map_poly_poly_square_subst map_poly_pcompose,simp) qed end lemma graeffe_poly_impl_mahler: "mahler_measure (graeffe_poly_impl f m) = mahler_measure f ^ 2 ^ m" proof - let ?c = "complex_of_int" let ?cc = "map_poly ?c" let ?f = "?cc f" note eq = complex_roots(1)[of ?f] interpret inj_idom_hom complex_of_int by (standard, auto) show ?thesis unfolding mahler_measure_def mahler_graeffe[OF eq[symmetric], symmetric] graeffe_poly_impl[OF eq[symmetric], symmetric] by (simp add: of_int_hom.graeffe_poly_impl_hom) qed definition mahler_landau_graeffe_approximation :: "nat \ nat \ int poly \ int" where "mahler_landau_graeffe_approximation kk dd f = (let no = sum_list (map (\ a. a * a) (coeffs f)) in root_int_floor kk (dd * no))" lemma mahler_landau_graeffe_approximation_core: assumes g: "g = graeffe_poly_impl f k" shows "mahler_measure f \ root (2 ^ Suc k) (real_of_int (\a\coeffs g. a * a))" proof - have "mahler_measure f = root (2^k) (mahler_measure f ^ (2^k))" by (simp add: real_root_power_cancel mahler_measure_ge_0) also have "\ = root (2^k) (mahler_measure g)" unfolding graeffe_poly_impl_mahler g by simp also have "\ = root (2^k) (root 2 (((mahler_measure g)^2)))" by (simp add: real_root_power_cancel mahler_measure_ge_0) also have "\ = root (2^Suc k) (((mahler_measure g)^2))" by (metis power_Suc2 real_root_mult_exp) also have "\ \ root (2 ^ Suc k) (real_of_int (\a\coeffs g. a * a))" proof (rule real_root_le_mono, force) have square_mono: "0 \ (x :: real) \ x \ y \ x * x \ y * y" for x y by (simp add: mult_mono') obtain gs where gs: "coeffs g = gs" by auto have "(mahler_measure g)\<^sup>2 \ real_of_int \\a\coeffs g. a * a\" using square_mono[OF mahler_measure_ge_0 Landau_inequality[of "of_int_poly g", folded mahler_measure_def]] by (auto simp: power2_eq_square coeffs_map_poly o_def of_int_hom.hom_sum_list) also have "\\a\coeffs g. a * a\ = (\a\coeffs g. a * a)" unfolding gs by (induct gs, auto) finally show "(mahler_measure g)\<^sup>2 \ real_of_int (\a\coeffs g. a * a)" . qed finally show "mahler_measure f \ root (2 ^ Suc k) (real_of_int (\a\coeffs g. a * a))" . qed lemma Landau_inequality_mahler_measure: "mahler_measure f \ sqrt (real_of_int (\a\coeffs f. a * a))" by (rule order.trans[OF mahler_landau_graeffe_approximation_core[OF refl, of _ 0]], auto simp: graeffe_poly_impl_def sqrt_def) lemma mahler_landau_graeffe_approximation: assumes g: "g = graeffe_poly_impl f k" "dd = d^(2^(Suc k))" "kk = 2^(Suc k)" shows "\real d * mahler_measure f\ \ mahler_landau_graeffe_approximation kk dd g" proof - have id1: "real_of_int (int (d ^ 2 ^ Suc k)) = (real d) ^ 2 ^ Suc k" by simp have id2: "root (2 ^ Suc k) (real d ^ 2 ^ Suc k) = real d" by (simp add: real_root_power_cancel) show ?thesis unfolding mahler_landau_graeffe_approximation_def Let_def root_int_floor of_int_mult g(2-3) by (rule floor_mono, unfold real_root_mult id1 id2, rule mult_left_mono, rule mahler_landau_graeffe_approximation_core[OF g(1)], auto) qed context fixes bnd :: nat begin (* "dd = d^(2^(Suc k))" "kk = 2^(Suc k)" *) function mahler_approximation_main :: "nat \ int \ int poly \ int \ nat \ nat \ int" where "mahler_approximation_main dd c g mm k kk = (let mmm = mahler_landau_graeffe_approximation kk dd g; new_mm = (if k = 0 then mmm else min mm mmm) in (if k \ bnd then new_mm else \ \abort after \bnd\ iterations of Graeffe transformation\ mahler_approximation_main (dd * dd) c (graeffe_one_step c g) new_mm (Suc k) (2 * kk)))" by pat_completeness auto termination by (relation "measure (\ (dd,c,f,mm,k,kk). Suc bnd - k)", auto) declare mahler_approximation_main.simps[simp del] lemma mahler_approximation_main: assumes "k \ 0 \ \real d * mahler_measure f\ \ mm" and "c = (-1)^(degree f)" and "g = graeffe_poly_impl_main c f k" "dd = d^(2^(Suc k))" "kk = 2^(Suc k)" shows "\real d * mahler_measure f\ \ mahler_approximation_main dd c g mm k kk" using assms proof (induct c g mm k kk rule: mahler_approximation_main.induct) case (1 dd c g mm k kk) let ?df = "\real d * mahler_measure f\" note dd = 1(5) note kk = 1(6) note g = 1(4) note c = 1(3) note mm = 1(2) note IH = 1(1) note mahl = mahler_approximation_main.simps[of dd c g mm k kk] define mmm where "mmm = mahler_landau_graeffe_approximation kk dd g" define new_mm where "new_mm = (if k = 0 then mmm else min mm mmm)" let ?cond = "bnd \ k" have id: "mahler_approximation_main dd c g mm k kk = (if ?cond then new_mm else mahler_approximation_main (dd * dd) c (graeffe_one_step c g) new_mm (Suc k) (2 * kk))" unfolding mahl mmm_def[symmetric] Let_def new_mm_def[symmetric] by simp have gg: "g = (graeffe_poly_impl f k)" unfolding g graeffe_poly_impl_def c .. from mahler_landau_graeffe_approximation[OF gg dd kk, folded mmm_def] have mmm: "?df \ mmm" . with mm have new_mm: "?df \ new_mm" unfolding new_mm_def by auto show ?case proof (cases ?cond) case True show ?thesis unfolding id using True new_mm by auto next case False hence id: "mahler_approximation_main dd c g mm k kk = mahler_approximation_main (dd * dd) c (graeffe_one_step c g) new_mm (Suc k) (2 * kk)" unfolding id by auto have id': "graeffe_one_step c g = graeffe_poly_impl_main c f (Suc k)" unfolding g by simp have "dd * dd = d ^ 2 ^ Suc (Suc k)" "2 * kk = 2 ^ Suc (Suc k)" unfolding dd kk semiring_normalization_rules(26) by auto from IH[OF mmm_def new_mm_def False new_mm c id' this] show ?thesis unfolding id . qed qed definition mahler_approximation :: "nat \ int poly \ int" where "mahler_approximation d f = mahler_approximation_main (d * d) ((-1)^(degree f)) f (-1) 0 2" lemma mahler_approximation: "\real d * mahler_measure f\ \ mahler_approximation d f" unfolding mahler_approximation_def by (rule mahler_approximation_main, auto simp: semiring_normalization_rules(29)) end end