(* Authors: Jose Divasón Sebastiaan Joosten René Thiemann Akihisa Yamada *) subsection \Polynomials in a Finite Field\ text \We connect polynomials in a prime field with integer polynomials modulo some prime.\ theory Poly_Mod_Finite_Field imports Finite_Field Polynomial_Interpolation.Ring_Hom_Poly "HOL-Types_To_Sets.Types_To_Sets" More_Missing_Multiset Poly_Mod begin (* TODO: Move -- General transfer rule *) declare rel_mset_Zero[transfer_rule] lemma mset_transfer[transfer_rule]: "(list_all2 rel ===> rel_mset rel) mset mset" proof (intro rel_funI) show "list_all2 rel xs ys \ rel_mset rel (mset xs) (mset ys)" for xs ys proof (induct xs arbitrary: ys) case Nil then show ?case by auto next case IH: (Cons x xs) then show ?case by (auto dest!:msed_rel_invL simp: list_all2_Cons1 intro!:rel_mset_Plus) qed qed abbreviation to_int_poly :: "'a :: finite mod_ring poly \ int poly" where "to_int_poly \ map_poly to_int_mod_ring" interpretation to_int_poly_hom: map_poly_inj_zero_hom to_int_mod_ring .. lemma irreducible\<^sub>d_def_0: fixes f :: "'a :: {comm_semiring_1,semiring_no_zero_divisors} poly" shows "irreducible\<^sub>d f = (degree f \ 0 \ (\ g h. degree g \ 0 \ degree h \ 0 \ f \ g * h))" proof- have "degree g \ 0 \ g \ 0" for g :: "'a poly" by auto note 1 = degree_mult_eq[OF this this, simplified] then show ?thesis by (force elim!: irreducible\<^sub>dE) qed subsection \Transferring to class-based mod-ring\ locale poly_mod_type = poly_mod m for m and ty :: "'a :: nontriv itself" + assumes m: "m = CARD('a)" begin lemma m1: "m > 1" using nontriv[where 'a = 'a] by (auto simp:m) sublocale poly_mod_2 using m1 by unfold_locales definition MP_Rel :: "int poly \ 'a mod_ring poly \ bool" where "MP_Rel f f' \ (Mp f = to_int_poly f')" definition M_Rel :: "int \ 'a mod_ring \ bool" where "M_Rel x x' \ (M x = to_int_mod_ring x')" definition "MF_Rel \ rel_prod M_Rel (rel_mset MP_Rel)" lemma to_int_mod_ring_plus: "to_int_mod_ring ((x :: 'a mod_ring) + y) = M (to_int_mod_ring x + to_int_mod_ring y)" unfolding M_def using m by (transfer, auto) lemma to_int_mod_ring_times: "to_int_mod_ring ((x :: 'a mod_ring) * y) = M (to_int_mod_ring x * to_int_mod_ring y)" unfolding M_def using m by (transfer, auto) lemma degree_MP_Rel [transfer_rule]: "(MP_Rel ===> (=)) degree_m degree" unfolding MP_Rel_def rel_fun_def by (auto intro!: degree_map_poly) lemma eq_M_Rel[transfer_rule]: "(M_Rel ===> M_Rel ===> (=)) (\ x y. M x = M y) (=)" unfolding M_Rel_def rel_fun_def by auto interpretation to_int_mod_ring_hom: map_poly_inj_zero_hom to_int_mod_ring.. lemma eq_MP_Rel[transfer_rule]: "(MP_Rel ===> MP_Rel ===> (=)) (=m) (=)" unfolding MP_Rel_def rel_fun_def by auto lemma eq_Mf_Rel[transfer_rule]: "(MF_Rel ===> MF_Rel ===> (=)) (\ x y. Mf x = Mf y) (=)" proof (intro rel_funI, goal_cases) case (1 cfs Cfs dgs Dgs) obtain c fs where cfs: "cfs = (c,fs)" by force obtain C Fs where Cfs: "Cfs = (C,Fs)" by force obtain d gs where dgs: "dgs = (d,gs)" by force obtain D Gs where Dgs: "Dgs = (D,Gs)" by force note pairs = cfs Cfs dgs Dgs from 1[unfolded pairs MF_Rel_def rel_prod.simps] have *[transfer_rule]: "M_Rel c C" "M_Rel d D" "rel_mset MP_Rel fs Fs" "rel_mset MP_Rel gs Gs" by auto have eq1: "(M c = M d) = (C = D)" by transfer_prover from *(3)[unfolded rel_mset_def] obtain fs' Fs' where fs_eq: "mset fs' = fs" "mset Fs' = Fs" and rel_f: "list_all2 MP_Rel fs' Fs'" by auto from *(4)[unfolded rel_mset_def] obtain gs' Gs' where gs_eq: "mset gs' = gs" "mset Gs' = Gs" and rel_g: "list_all2 MP_Rel gs' Gs'" by auto have eq2: "(image_mset Mp fs = image_mset Mp gs) = (Fs = Gs)" using *(3-4) proof (induct fs arbitrary: Fs gs Gs) case (empty Fs gs Gs) from empty(1) have Fs: "Fs = {#}" unfolding rel_mset_def by auto with empty show ?case by (cases gs; cases Gs; auto simp: rel_mset_def) next case (add f fs Fs' gs' Gs') note [transfer_rule] = add(3) from msed_rel_invL[OF add(2)] obtain Fs F where Fs': "Fs' = Fs + {#F#}" and rel[transfer_rule]: "MP_Rel f F" "rel_mset MP_Rel fs Fs" by auto note IH = add(1)[OF rel(2)] { from add(3)[unfolded rel_mset_def] obtain gs Gs where id: "mset gs = gs'" "mset Gs = Gs'" and rel: "list_all2 MP_Rel gs Gs" by auto have "Mp f \# image_mset Mp gs' \ F \# Gs'" proof - have "?thesis = ((Mp f \ Mp ` set gs) = (F \ set Gs))" unfolding id[symmetric] by simp also have \ using rel proof (induct gs Gs rule: list_all2_induct) case (Cons g gs G Gs) note [transfer_rule] = Cons(1-2) have id: "(Mp g = Mp f) = (F = G)" by (transfer, auto) show ?case using id Cons(3) by auto qed auto finally show ?thesis by simp qed } note id = this show ?case proof (cases "Mp f \# image_mset Mp gs'") case False have "Mp f \# image_mset Mp (fs + {#f#})" by auto with False have F: "image_mset Mp (fs + {#f#}) \ image_mset Mp gs'" by metis with False[unfolded id] show ?thesis unfolding Fs' by auto next case True then obtain g where fg: "Mp f = Mp g" and g: "g \# gs'" by auto from g obtain gs where gs': "gs' = add_mset g gs" by (rule mset_add) from msed_rel_invL[OF add(3)[unfolded gs']] obtain Gs G where Gs': "Gs' = Gs + {# G #}" and gG[transfer_rule]: "MP_Rel g G" and gsGs: "rel_mset MP_Rel gs Gs" by auto have FG: "F = G" by (transfer, simp add: fg) note IH = IH[OF gsGs] show ?thesis unfolding gs' Fs' Gs' by (simp add: fg IH FG) qed qed show "(Mf cfs = Mf dgs) = (Cfs = Dgs)" unfolding pairs Mf_def split by (simp add: eq1 eq2) qed lemmas coeff_map_poly_of_int = coeff_map_poly[of of_int, OF of_int_0] lemma plus_MP_Rel[transfer_rule]: "(MP_Rel ===> MP_Rel ===> MP_Rel) (+) (+)" unfolding MP_Rel_def proof (intro rel_funI, goal_cases) case (1 x f y g) have "Mp (x + y) = Mp (Mp x + Mp y)" by simp also have "\ = Mp (map_poly to_int_mod_ring f + map_poly to_int_mod_ring g)" unfolding 1 .. also have "\ = map_poly to_int_mod_ring (f + g)" unfolding poly_eq_iff Mp_coeff by (auto simp: to_int_mod_ring_plus) finally show ?case . qed lemma times_MP_Rel[transfer_rule]: "(MP_Rel ===> MP_Rel ===> MP_Rel) ((*)) ((*))" unfolding MP_Rel_def proof (intro rel_funI, goal_cases) case (1 x f y g) have "Mp (x * y) = Mp (Mp x * Mp y)" by simp also have "\ = Mp (map_poly to_int_mod_ring f * map_poly to_int_mod_ring g)" unfolding 1 .. also have "\ = map_poly to_int_mod_ring (f * g)" proof - { fix n :: nat define A where "A = {.. n}" have "finite A" unfolding A_def by auto then have "M (\i\n. to_int_mod_ring (coeff f i) * to_int_mod_ring (coeff g (n - i))) = to_int_mod_ring (\i\n. coeff f i * coeff g (n - i))" unfolding A_def[symmetric] proof (induct A) case (insert a A) have "?case = ?case" (is "(?l = ?r) = _") by simp have "?r = to_int_mod_ring (coeff f a * coeff g (n - a) + (\i\ A. coeff f i * coeff g (n - i)))" using insert(1-2) by auto note r = this[unfolded to_int_mod_ring_plus to_int_mod_ring_times] from insert(1-2) have "?l = M (to_int_mod_ring (coeff f a) * to_int_mod_ring (coeff g (n - a)) + M (\i\A. to_int_mod_ring (coeff f i) * to_int_mod_ring (coeff g (n - i))))" by simp also have "M (\i\A. to_int_mod_ring (coeff f i) * to_int_mod_ring (coeff g (n - i))) = to_int_mod_ring (\i\A. coeff f i * coeff g (n - i))" unfolding insert .. finally show ?case unfolding r by simp qed auto } then show ?thesis by (auto intro!:poly_eqI simp: coeff_mult Mp_coeff) qed finally show ?case . qed lemma smult_MP_Rel[transfer_rule]: "(M_Rel ===> MP_Rel ===> MP_Rel) smult smult" unfolding MP_Rel_def M_Rel_def proof (intro rel_funI, goal_cases) case (1 x x' f f') thus ?case unfolding poly_eq_iff coeff Mp_coeff coeff_smult M_def proof (intro allI, goal_cases) case (1 n) have "x * coeff f n mod m = (x mod m) * (coeff f n mod m) mod m" by (simp add: mod_simps) also have "\ = to_int_mod_ring x' * (to_int_mod_ring (coeff f' n)) mod m" using 1 by auto also have " \ = to_int_mod_ring (x' * coeff f' n)" unfolding to_int_mod_ring_times M_def by simp finally show ?case by auto qed qed lemma one_M_Rel[transfer_rule]: "M_Rel 1 1" unfolding M_Rel_def M_def unfolding m by auto lemma one_MP_Rel[transfer_rule]: "MP_Rel 1 1" unfolding MP_Rel_def poly_eq_iff Mp_coeff M_def unfolding m by auto lemma zero_M_Rel[transfer_rule]: "M_Rel 0 0" unfolding M_Rel_def M_def unfolding m by auto lemma zero_MP_Rel[transfer_rule]: "MP_Rel 0 0" unfolding MP_Rel_def poly_eq_iff Mp_coeff M_def unfolding m by auto lemma listprod_MP_Rel[transfer_rule]: "(list_all2 MP_Rel ===> MP_Rel) prod_list prod_list" proof (intro rel_funI, goal_cases) case (1 xs ys) thus ?case proof (induct xs ys rule: list_all2_induct) case (Cons x xs y ys) note [transfer_rule] = this show ?case by simp transfer_prover qed (simp add: one_MP_Rel) qed lemma prod_mset_MP_Rel[transfer_rule]: "(rel_mset MP_Rel ===> MP_Rel) prod_mset prod_mset" proof (intro rel_funI, goal_cases) case (1 xs ys) have "(MP_Rel ===> MP_Rel ===> MP_Rel) ((*)) ((*))" "MP_Rel 1 1" by transfer_prover+ from 1 this show ?case proof (induct xs ys rule: rel_mset_induct) case (add R x xs y ys) note [transfer_rule] = this show ?case by simp transfer_prover qed (simp add: one_MP_Rel) qed lemma right_unique_MP_Rel[transfer_rule]: "right_unique MP_Rel" unfolding right_unique_def MP_Rel_def by auto lemma M_to_int_mod_ring: "M (to_int_mod_ring (x :: 'a mod_ring)) = to_int_mod_ring x" unfolding M_def unfolding m by (transfer, auto) lemma Mp_to_int_poly: "Mp (to_int_poly (f :: 'a mod_ring poly)) = to_int_poly f" by (auto simp: poly_eq_iff Mp_coeff M_to_int_mod_ring) lemma right_total_M_Rel[transfer_rule]: "right_total M_Rel" unfolding right_total_def M_Rel_def using M_to_int_mod_ring by blast lemma left_total_M_Rel[transfer_rule]: "left_total M_Rel" unfolding left_total_def M_Rel_def[abs_def] proof fix x show "\ x' :: 'a mod_ring. M x = to_int_mod_ring x'" unfolding M_def unfolding m by (rule exI[of _ "of_int x"], transfer, simp) qed lemma bi_total_M_Rel[transfer_rule]: "bi_total M_Rel" using right_total_M_Rel left_total_M_Rel by (metis bi_totalI) lemma right_total_MP_Rel[transfer_rule]: "right_total MP_Rel" unfolding right_total_def MP_Rel_def proof fix f :: "'a mod_ring poly" show "\x. Mp x = to_int_poly f" by (intro exI[of _ "to_int_poly f"], simp add: Mp_to_int_poly) qed lemma to_int_mod_ring_of_int_M: "to_int_mod_ring (of_int x :: 'a mod_ring) = M x" unfolding M_def unfolding m by transfer auto lemma Mp_f_representative: "Mp f = to_int_poly (map_poly of_int f :: 'a mod_ring poly)" unfolding Mp_def by (auto intro: poly_eqI simp: coeff_map_poly to_int_mod_ring_of_int_M) lemma left_total_MP_Rel[transfer_rule]: "left_total MP_Rel" unfolding left_total_def MP_Rel_def[abs_def] using Mp_f_representative by blast lemma bi_total_MP_Rel[transfer_rule]: "bi_total MP_Rel" using right_total_MP_Rel left_total_MP_Rel by (metis bi_totalI) lemma bi_total_MF_Rel[transfer_rule]: "bi_total MF_Rel" unfolding MF_Rel_def[abs_def] by (intro prod.bi_total_rel multiset.bi_total_rel bi_total_MP_Rel bi_total_M_Rel) lemma right_total_MF_Rel[transfer_rule]: "right_total MF_Rel" using bi_total_MF_Rel unfolding bi_total_alt_def by auto lemma left_total_MF_Rel[transfer_rule]: "left_total MF_Rel" using bi_total_MF_Rel unfolding bi_total_alt_def by auto lemma domain_RT_rel[transfer_domain_rule]: "Domainp MP_Rel = (\ f. True)" proof fix f :: "int poly" show "Domainp MP_Rel f = True" unfolding MP_Rel_def[abs_def] Domainp.simps by (auto simp: Mp_f_representative) qed lemma mem_MP_Rel[transfer_rule]: "(MP_Rel ===> rel_set MP_Rel ===> (=)) (\ x Y. \y \ Y. eq_m x y) (\)" proof (intro rel_funI iffI) fix x y X Y assume xy: "MP_Rel x y" and XY: "rel_set MP_Rel X Y" { assume "\x' \ X. x =m x'" then obtain x' where x'X: "x' \ X" and xx': "x =m x'" by auto with xy have x'y: "MP_Rel x' y" by (auto simp: MP_Rel_def) from rel_setD1[OF XY x'X] obtain y' where "MP_Rel x' y'" and "y' \ Y" by auto with x'y show "y \ Y" by (auto simp: MP_Rel_def) } assume "y \ Y" from rel_setD2[OF XY this] obtain x' where x'X: "x' \ X" and x'y: "MP_Rel x' y" by auto from xy x'y have "x =m x'" by (auto simp: MP_Rel_def) with x'X show "\x' \ X. x =m x'" by auto qed lemma conversep_MP_Rel_OO_MP_Rel [simp]: "MP_Rel\\ OO MP_Rel = (=)" using Mp_to_int_poly by (intro ext, auto simp: OO_def MP_Rel_def) lemma MP_Rel_OO_conversep_MP_Rel [simp]: "MP_Rel OO MP_Rel\\ = eq_m" by (intro ext, auto simp: OO_def MP_Rel_def Mp_f_representative) lemma conversep_MP_Rel_OO_eq_m [simp]: "MP_Rel\\ OO eq_m = MP_Rel\\" by (intro ext, auto simp: OO_def MP_Rel_def) lemma eq_m_OO_MP_Rel [simp]: "eq_m OO MP_Rel = MP_Rel" by (intro ext, auto simp: OO_def MP_Rel_def) lemma eq_mset_MP_Rel [transfer_rule]: "(rel_mset MP_Rel ===> rel_mset MP_Rel ===> (=)) (rel_mset eq_m) (=)" proof (intro rel_funI iffI) fix A B X Y assume AX: "rel_mset MP_Rel A X" and BY: "rel_mset MP_Rel B Y" { assume AB: "rel_mset eq_m A B" from AX have "rel_mset MP_Rel\\ X A" by (simp add: multiset.rel_flip) note rel_mset_OO[OF this AB] note rel_mset_OO[OF this BY] then show "X = Y" by (simp add: multiset.rel_eq) } assume "X = Y" with BY have "rel_mset MP_Rel\\ X B" by (simp add: multiset.rel_flip) from rel_mset_OO[OF AX this] show "rel_mset eq_m A B" by simp qed lemma dvd_MP_Rel[transfer_rule]: "(MP_Rel ===> MP_Rel ===> (=)) (dvdm) (dvd)" unfolding dvdm_def[abs_def] dvd_def[abs_def] by transfer_prover lemma irreducible_MP_Rel [transfer_rule]: "(MP_Rel ===> (=)) irreducible_m irreducible" unfolding irreducible_m_def irreducible_def by transfer_prover lemma irreducible\<^sub>d_MP_Rel [transfer_rule]: "(MP_Rel ===> (=)) irreducible\<^sub>d_m irreducible\<^sub>d" unfolding irreducible\<^sub>d_m_def[abs_def] irreducible\<^sub>d_def[abs_def] by transfer_prover lemma UNIV_M_Rel[transfer_rule]: "rel_set M_Rel {0.. (=) ===> M_Rel) coeff coeff" unfolding rel_fun_def M_Rel_def MP_Rel_def Mp_coeff[symmetric] by auto lemma M_1_1: "M 1 = 1" unfolding M_def unfolding m by simp lemma square_free_MP_Rel [transfer_rule]: "(MP_Rel ===> (=)) square_free_m square_free" unfolding square_free_m_def[abs_def] square_free_def[abs_def] by (transfer_prover_start, transfer_step+, auto) lemma mset_factors_m_MP_Rel [transfer_rule]: "(rel_mset MP_Rel ===> MP_Rel ===> (=)) mset_factors_m mset_factors" unfolding mset_factors_def mset_factors_m_def by (transfer_prover_start, transfer_step+, auto dest:eq_m_irreducible_m) lemma coprime_MP_Rel [transfer_rule]: "(MP_Rel ===> MP_Rel ===> (=)) coprime_m coprime" unfolding coprime_m_def[abs_def] coprime_def' [abs_def] by (transfer_prover_start, transfer_step+, auto) lemma prime_elem_MP_Rel [transfer_rule]: "(MP_Rel ===> (=)) prime_elem_m prime_elem" unfolding prime_elem_m_def prime_elem_def by transfer_prover end context poly_mod_2 begin lemma non_empty: "{0.. {}" using m1 by auto lemma type_to_set: assumes type_def: "\(Rep :: 'b \ int) Abs. type_definition Rep Abs {0 ..< m :: int}" shows "class.nontriv (TYPE('b))" (is ?a) and "m = int CARD('b)" (is ?b) proof - from type_def obtain rep :: "'b \ int" and abs :: "int \ 'b" where t: "type_definition rep abs {0 ..< m}" by auto have "card (UNIV :: 'b set) = card {0 ..< m}" using t by (rule type_definition.card) also have "\ = m" using m1 by auto finally show ?b .. then show ?a unfolding class.nontriv_def using m1 by auto qed end locale poly_mod_prime_type = poly_mod_type m ty for m :: int and ty :: "'a :: prime_card itself" begin lemma factorization_MP_Rel [transfer_rule]: "(MP_Rel ===> MF_Rel ===> (=)) factorization_m (factorization Irr_Mon)" unfolding rel_fun_def proof (intro allI impI, goal_cases) case (1 f F cfs Cfs) note [transfer_rule] = 1(1) obtain c fs where cfs: "cfs = (c,fs)" by force obtain C Fs where Cfs: "Cfs = (C,Fs)" by force from 1(2)[unfolded rel_prod.simps cfs Cfs MF_Rel_def] have tr[transfer_rule]: "M_Rel c C" "rel_mset MP_Rel fs Fs" by auto have eq: "(f =m smult c (prod_mset fs) = (F = smult C (prod_mset Fs)))" by transfer_prover have "set_mset Fs \ Irr_Mon = (\ x \# Fs. irreducible\<^sub>d x \ monic x)" unfolding Irr_Mon_def by auto also have "\ = (\f\#fs. irreducible\<^sub>d_m f \ monic (Mp f))" proof (rule sym, transfer_prover_start, transfer_step+) { fix f assume "f \# fs" have "monic (Mp f) \ M (coeff f (degree_m f)) = M 1" unfolding Mp_coeff[symmetric] by simp } thus "(\f\#fs. irreducible\<^sub>d_m f \ monic (Mp f)) = (\x\#fs. irreducible\<^sub>d_m x \ M (coeff x (degree_m x)) = M 1)" by auto qed finally show "factorization_m f cfs = factorization Irr_Mon F Cfs" unfolding cfs Cfs factorization_m_def factorization_def split eq by simp qed lemma unique_factorization_MP_Rel [transfer_rule]: "(MP_Rel ===> MF_Rel ===> (=)) unique_factorization_m (unique_factorization Irr_Mon)" unfolding rel_fun_def proof (intro allI impI, goal_cases) case (1 f F cfs Cfs) note [transfer_rule] = 1(1,2) let ?F = "factorization Irr_Mon F" let ?f = "factorization_m f" let ?R = "Collect ?F" let ?L = "Mf ` Collect ?f" note X_to_x = right_total_MF_Rel[unfolded right_total_def, rule_format] { fix X assume "X \ ?R" hence F: "?F X" by simp from X_to_x[of X] obtain x where rel[transfer_rule]: "MF_Rel x X" by blast from F[untransferred] have "Mf x \ ?L" by blast with rel have "\ x. Mf x \ ?L \ MF_Rel x X" by blast } note R_to_L = this show "unique_factorization_m f cfs = unique_factorization Irr_Mon F Cfs" unfolding unique_factorization_m_def unique_factorization_def proof - have fF: "?F Cfs = ?f cfs" by transfer simp have "(?L = {Mf cfs}) = (?L \ {Mf cfs} \ Mf cfs \ ?L)" by blast also have "?L \ {Mf cfs} = (\ dfs. ?f dfs \ Mf dfs = Mf cfs)" by blast also have "\ = (\ y. ?F y \ y = Cfs)" (is "?left = ?right") proof (rule; intro allI impI) fix Dfs assume *: ?left and F: "?F Dfs" from X_to_x[of Dfs] obtain dfs where [transfer_rule]: "MF_Rel dfs Dfs" by auto from F[untransferred] have f: "?f dfs" . from *[rule_format, OF f] have eq: "Mf dfs = Mf cfs" by simp have "(Mf dfs = Mf cfs) = (Dfs = Cfs)" by (transfer_prover_start, transfer_step+, simp) thus "Dfs = Cfs" using eq by simp next fix dfs assume *: ?right and f: "?f dfs" from left_total_MF_Rel obtain Dfs where rel[transfer_rule]: "MF_Rel dfs Dfs" unfolding left_total_def by blast have "?F Dfs" by (transfer, rule f) from *[rule_format, OF this] have eq: "Dfs = Cfs" . have "(Mf dfs = Mf cfs) = (Dfs = Cfs)" by (transfer_prover_start, transfer_step+, simp) thus "Mf dfs = Mf cfs" using eq by simp qed also have "Mf cfs \ ?L = (\ dfs. ?f dfs \ Mf cfs = Mf dfs)" by auto also have "\ = ?F Cfs" unfolding fF proof assume "\ dfs. ?f dfs \ Mf cfs = Mf dfs" then obtain dfs where f: "?f dfs" and id: "Mf dfs = Mf cfs" by auto from f have "?f (Mf dfs)" by simp from this[unfolded id] show "?f cfs" by simp qed blast finally show "(?L = {Mf cfs}) = (?R = {Cfs})" by auto qed qed end context begin private lemma 1: "poly_mod_type TYPE('a :: nontriv) m = (m = int CARD('a))" and 2: "class.nontriv TYPE('a) = (CARD('a) \ 2)" unfolding poly_mod_type_def class.prime_card_def class.nontriv_def poly_mod_prime_type_def by auto private lemma 3: "poly_mod_prime_type TYPE('b) m = (m = int CARD('b))" and 4: "class.prime_card TYPE('b :: prime_card) = prime CARD('b :: prime_card)" unfolding poly_mod_type_def class.prime_card_def class.nontriv_def poly_mod_prime_type_def by auto lemmas poly_mod_type_simps = 1 2 3 4 end lemma remove_duplicate_premise: "(PROP P \ PROP P \ PROP Q) \ (PROP P \ PROP Q)" (is "?l \ ?r") proof (intro Pure.equal_intr_rule) assume p: "PROP P" and ppq: "PROP ?l" from ppq[OF p p] show "PROP Q". next assume p: "PROP P" and pq: "PROP ?r" from pq[OF p] show "PROP Q". qed context poly_mod_prime begin lemma type_to_set: assumes type_def: "\(Rep :: 'b \ int) Abs. type_definition Rep Abs {0 ..< p :: int}" shows "class.prime_card (TYPE('b))" (is ?a) and "p = int CARD('b)" (is ?b) proof - from prime have p2: "p \ 2" by (rule prime_ge_2_int) from type_def obtain rep :: "'b \ int" and abs :: "int \ 'b" where t: "type_definition rep abs {0 ..< p}" by auto have "card (UNIV :: 'b set) = card {0 ..< p}" using t by (rule type_definition.card) also have "\ = p" using p2 by auto finally show ?b .. then show ?a unfolding class.prime_card_def using prime p2 by auto qed end (* it will be nice to be able to automate this *) lemmas (in poly_mod_type) prime_elem_m_dvdm_multD = prime_elem_dvd_multD [where 'a = "'a mod_ring poly",untransferred] lemmas (in poly_mod_2) prime_elem_m_dvdm_multD = poly_mod_type.prime_elem_m_dvdm_multD [unfolded poly_mod_type_simps, internalize_sort "'a :: nontriv", OF type_to_set, unfolded remove_duplicate_premise, cancel_type_definition, OF non_empty] lemmas(in poly_mod_prime_type) degree_m_mult_eq = degree_mult_eq [where 'a = "'a mod_ring", untransferred] lemmas(in poly_mod_prime) degree_m_mult_eq = poly_mod_prime_type.degree_m_mult_eq [unfolded poly_mod_type_simps, internalize_sort "'a :: prime_card", OF type_to_set, unfolded remove_duplicate_premise, cancel_type_definition, OF non_empty] lemma(in poly_mod_prime) irreducible\<^sub>d_lifting: assumes n: "n \ 0" and deg: "poly_mod.degree_m (p^n) f = degree_m f" and irr: "irreducible\<^sub>d_m f" shows "poly_mod.irreducible\<^sub>d_m (p^n) f" proof - interpret q: poly_mod_2 "p^n" unfolding poly_mod_2_def using n m1 by auto show "q.irreducible\<^sub>d_m f" proof (rule q.irreducible\<^sub>d_mI) from deg irr show "q.degree_m f > 0" by (auto elim: irreducible\<^sub>d_mE) then have pdeg_f: "degree_m f \ 0" by (simp add: deg) note pMp_Mp = Mp_Mp_pow_is_Mp[OF n m1] fix g h assume deg_g: "degree g < q.degree_m f" and deg_h: "degree h < q.degree_m f" and eq: "q.eq_m f (g * h)" from eq have p_f: "f =m (g * h)" using pMp_Mp by metis have "\g =m 0" and "\h =m 0" apply (metis degree_0 mult_zero_left Mp_0 p_f pdeg_f poly_mod.mult_Mp(1)) by (metis degree_0 mult_eq_0_iff Mp_0 mult_Mp(2) p_f pdeg_f) note [simp] = degree_m_mult_eq[OF this] from degree_m_le[of g] deg_g have 2: "degree_m g < degree_m f" by (fold deg, auto) from degree_m_le[of h] deg_h have 3: "degree_m h < degree_m f" by (fold deg, auto) from irreducible\<^sub>d_mD(2)[OF irr 2 3] p_f show False by auto qed qed (* Lifting UFD properties *) lemmas (in poly_mod_prime_type) mset_factors_exist = mset_factors_exist[where 'a = "'a mod_ring poly",untransferred] lemmas (in poly_mod_prime) mset_factors_exist = poly_mod_prime_type.mset_factors_exist [unfolded poly_mod_type_simps, internalize_sort "'a :: prime_card", OF type_to_set, unfolded remove_duplicate_premise, cancel_type_definition, OF non_empty] lemmas (in poly_mod_prime_type) mset_factors_unique = mset_factors_unique[where 'a = "'a mod_ring poly",untransferred] lemmas (in poly_mod_prime) mset_factors_unique = poly_mod_prime_type.mset_factors_unique [unfolded poly_mod_type_simps, internalize_sort "'a :: prime_card", OF type_to_set, unfolded remove_duplicate_premise, cancel_type_definition, OF non_empty] lemmas (in poly_mod_prime_type) prime_elem_iff_irreducible = prime_elem_iff_irreducible[where 'a = "'a mod_ring poly",untransferred] lemmas (in poly_mod_prime) prime_elem_iff_irreducible[simp] = poly_mod_prime_type.prime_elem_iff_irreducible [unfolded poly_mod_type_simps, internalize_sort "'a :: prime_card", OF type_to_set, unfolded remove_duplicate_premise, cancel_type_definition, OF non_empty] lemmas (in poly_mod_prime_type) irreducible_connect = irreducible_connect_field[where 'a = "'a mod_ring", untransferred] lemmas (in poly_mod_prime) irreducible_connect[simp] = poly_mod_prime_type.irreducible_connect [unfolded poly_mod_type_simps, internalize_sort "'a :: prime_card", OF type_to_set, unfolded remove_duplicate_premise, cancel_type_definition, OF non_empty] lemmas (in poly_mod_prime_type) irreducible_degree = irreducible_degree_field[where 'a = "'a mod_ring", untransferred] lemmas (in poly_mod_prime) irreducible_degree = poly_mod_prime_type.irreducible_degree [unfolded poly_mod_type_simps, internalize_sort "'a :: prime_card", OF type_to_set, unfolded remove_duplicate_premise, cancel_type_definition, OF non_empty] end