(* ========================================================================= *) (* Quick sort algorithm. *) (* *) (* Author: Marco Maggesi *) (* University of Florence, Italy *) (* http://www.math.unifi.it/~maggesi/ *) (* *) (* (c) Copyright, Marco Maggesi, 2005-2007 *) (* ========================================================================= *) needs "Permutation/permuted.ml";; (* ------------------------------------------------------------------------- *) (* Ordered lists. *) (* ------------------------------------------------------------------------- *) let ORDERED_RULES, ORDERED_INDUCT, ORDERED_CASES = new_inductive_definition `(!le. ORDERED le []) /\ (!le h t. ORDERED le t /\ ALL (le h) t ==> ORDERED le (CONS h t))`;; let ORDERED_CONS = prove (`!le (h:A) t. ORDERED le (h :: t) <=> (ORDERED le t /\ ALL (le h) t)`, SUBGOAL_THEN `!le (h:A) t. ORDERED le (h :: t) ==> (ORDERED le t /\ ALL (le h) t)` (fun th -> MESON_TAC [th; ORDERED_RULES]) THEN REPEAT GEN_TAC THEN DISCH_THEN (MP_TAC o ONCE_REWRITE_RULE [ORDERED_CASES]) THEN REWRITE_TAC [NOT_CONS_NIL; CONS_11] THEN MESON_TAC []);; let ORDERED_APPEND = prove (`!l1 l2:A list. ORDERED le (APPEND l1 l2) <=> ORDERED le l1 /\ ORDERED le l2 /\ ALL (\x. ALL (le x) l2) l1`, SUBGOAL_THEN `(!l1 l2:A list. ORDERED le (APPEND l1 l2) ==> ORDERED le l1 /\ ORDERED le l2 /\ ALL (\x. ALL (le x) l2) l1) /\ (!l1 l2. ORDERED le l1 /\ ORDERED le l2 /\ ALL (\x. ALL (le x) l2) l1 ==> ORDERED le (APPEND l1 l2))` (fun th -> MESON_TAC [th]) THEN CONJ_TAC THEN LIST_INDUCT_TAC THEN REWRITE_TAC [APPEND; ALL; ORDERED_RULES; ORDERED_CONS] THEN ASM_SIMP_TAC [ORDERED_CONS; ALL_APPEND] THEN ASM_MESON_TAC [ALL_APPEND]);; let ORDERED_PAIRWISE = prove (`ORDERED = PAIRWISE`, REWRITE_TAC[FUN_EQ_THM] THEN GEN_TAC THEN MATCH_MP_TAC list_INDUCT THEN REWRITE_TAC[PAIRWISE; ORDERED_RULES] THEN SIMP_TAC[ORDERED_CONS] THEN MESON_TAC[]);; (* ------------------------------------------------------------------------- *) (* Quick Sort. *) (* ------------------------------------------------------------------------- *) let QSORT = let PROVE_RECURSIVE_FUNCTION_EXISTS_TAC : tactic = fun g -> let th = pure_prove_recursive_function_exists (snd g) in MATCH_MP_TAC (DISCH_ALL th) g in new_specification ["QSORT"] (prove (`?f. (!le. f le [] = [] : A list) /\ (!le h t. f le (CONS h t) = APPEND (f le (FILTER (\x. ~le h x) t)) (CONS h (f le (FILTER (\x. le h x) t))))`, REWRITE_TAC [GSYM SKOLEM_THM; AND_FORALL_THM] THEN GEN_TAC THEN PROVE_RECURSIVE_FUNCTION_EXISTS_TAC THEN EXISTS_TAC `MEASURE (LENGTH:A list -> num)` THEN REWRITE_TAC [WF_MEASURE; MEASURE; LENGTH; FILTER] THEN REWRITE_TAC [LT_SUC_LE; LENGTH_FILTER_LE]));; let COUNT_QSORT = prove (`!le x l. COUNT x (QSORT le l) = COUNT x l`, GEN_TAC THEN GEN_TAC THEN MATCH_MP_TAC list_WF THEN LIST_INDUCT_TAC THEN REWRITE_TAC [QSORT; COUNT; LENGTH; LT_SUC_LE; COUNT_APPEND] THEN DISCH_TAC THEN ASM_SIMP_TAC [COUNT; LENGTH_FILTER_LE] THEN REWRITE_TAC [COUNT_FILTER] THEN REPEAT (ASM_REWRITE_TAC [ADD; ADD_SUC; ADD_0] THEN COND_CASES_TAC) THEN ASM_MESON_TAC[ADD_SUC]);; let QSORT_PERMUTED = prove (`!le (l:A list). QSORT le l PERMUTED l`, REWRITE_TAC [PERMUTED_COUNT; COUNT_QSORT]);; let ALL_QSORT = prove (`!P le l. ALL P (QSORT le l) <=> ALL P l`, MESON_TAC [QSORT_PERMUTED; PERMUTED_ALL]);; let LENGTH_QSORT = prove (`!le l. LENGTH (QSORT le l) = LENGTH l`, MESON_TAC [QSORT_PERMUTED; PERMUTED_LENGTH]);; let MEM_QSORT = prove (`!le l x. MEM x (QSORT le l) <=> MEM x l`, MESON_TAC [QSORT_PERMUTED; PERMUTED_MEM]);; let ORDERED_QSORT = prove (`!le (l:A list). (!x y. le x y \/ le y x) /\ (!x y z. le x y \/ le y z ==> le x z) ==> ORDERED le (QSORT le l)`, REWRITE_TAC [GSYM RIGHT_IMP_FORALL_THM] THEN GEN_TAC THEN STRIP_TAC THEN MATCH_MP_TAC list_WF THEN LIST_CASES_TAC THEN REWRITE_TAC [QSORT; LENGTH; ORDERED_RULES; LT_SUC_LE] THEN DISCH_TAC THEN REWRITE_TAC [ORDERED_APPEND; ORDERED_CONS; ALL; ALL_QSORT; ALL_T] THEN ASM_SIMP_TAC [LENGTH_FILTER_LE] THEN REWRITE_TAC [GSYM ALL_MEM] THEN ASM_MESON_TAC[]);; (* Example: REWRITE_CONV [QSORT; ARITH_LE; ARITH_LT; FILTER; APPEND] `QSORT (<=) [12;3;5;1;23;2;1]`;; *)