needs "Examples/holby.ml";; let horizon = ref 1;; let timeout = ref 1;; let default_prover = ref ("HOL_BY", CONV_TAC o HOL_BY);; let renumber_labels = ref true;; let extra_labels = ref 0;; let start_label = ref 1;; let growth_mode = ref true;; let proof_indent = ref " ";; let proof_width = ref 72;; let grow_haves = ref true;; let grow_duplicates = ref 0;; let indent_continued = ref false;; let sketch_mode = ref false;; let silent_server = ref 1;; let explain_errors = ref 1;; let miz3_pid = ref "/tmp/miz3_pid";; let miz3_filename = ref "/tmp/miz3_filename";; let ERRORS = ["1: inference error"; "2: inference time-out"; "3: skeleton error"; "4: unknown label"; "5: error ocaml (or justification)"; "6: underspecified types hol"; "7: unbound free variables hol"; "8: syntax or type error hol"; "9: syntax error mizar"];; let mizar_step_words = ["assume"; "cases"; "case"; "consider"; "end"; "let"; "now"; "proof"; "qed"; "set"; "suppose"; "take"; "thus"];; let mizar_step_words = mizar_step_words @ ["exec"];; let mizar_words = mizar_step_words @ ["be"; "being"; "by"; "from"; "such"; "that"];; let mizar_skip_bracketed = [","; ";"; "["];; reserve_words (subtract mizar_words (reserved_words()));; type by_item = | Label of string | Thm of string * thm | Tactic of string * (thm list -> tactic) | Grow of string * (thm list -> tactic) | Hole;; type step = int * (string * lexcode * string) list list * substep and substep = | Have of term * string list * just | Now of string list * just | Let of term list | Assume of term * string list | Thus of term * string list * just | Qed of just | Bracket_proof | Bracket_end | Take of term | Consider of term list * term * string list * just | Set of term * string list | Cases of just * just list | Bracket_case | Suppose of term * string list | Exec of string * tactic | Error of string * just | Error_point | Empty_step and just = | By of by_item list * by_item list * bool | Proof of step option * step list * step option | Proof_expected of bool | No_steps;; unset_jrh_lexer;; let system_ok = Unix.WEXITED 0;; let wronly = Unix.O_WRONLY;; let usr2_handler = ref (fun () -> print_string "usr2_handler\n");; Sys.signal Sys.sigusr2 (Sys.Signal_handle (fun _ -> !usr2_handler ()));; set_jrh_lexer;; let rawtoken = let collect (h,t) = end_itlist (^) (h::t) in let stringof p = atleast 1 p >> end_itlist (^) in let simple_ident = stringof(some isalnum) ||| stringof(some issymb) in let undertail = stringof (a "_") ++ possibly simple_ident >> collect in let ident = (undertail ||| simple_ident) ++ many undertail >> collect in let septok = stringof(some issep) in let stringchar = some (fun i -> i <> "\\" && i <> "\"") ||| (a "\\" ++ some (fun _ -> true) >> fun (_,x) -> "\\"^x) in let string = a "\"" ++ many stringchar ++ ((a "\"" >> K 0) ||| finished) >> (fun ((_,s),_) -> "\""^implode s^"\"") in (string ||| some isbra ||| septok ||| ident ||| a "`");; let rec whitespace e i = let non_newline i = if i <> [] && hd i <> "\n" then hd i,tl i else raise Noparse in let rest_of_line = many non_newline ++ (a "\n" ||| (finished >> K "")) >> fun x,y -> itlist (^) x y in let comment_string = match !comment_token with | Resword t -> t | Ident t -> t in match i with | [] -> if e then "",i else raise Noparse | (" " as c)::rst | ("\t" as c)::rst | ("\r" as c)::rst -> let s,rst1 = whitespace true rst in c^s,rst1 | ("\n" as c)::rst -> c,rst | _ -> let t,rst = rawtoken i in if t = comment_string then (rest_of_line >> fun x -> t^x) rst else if String.length t >= 2 && String.sub t 0 2 = "::" then (rest_of_line >> fun x -> if e then t^x else "") rst else if e then "",i else raise Noparse;; let lex1 = let reserve1 n = if is_reserved_word n then Resword n else Ident n in let rec tokens i = try (many (whitespace false) ++ rawtoken ++ whitespace true ++ tokens >> fun (((x,y),z),w) -> (implode x,reserve1 y,z)::w) i with Noparse -> [],i in fun l -> let (toks,rst) = tokens l in let rst',rst'' = many (whitespace false) rst in if rst'' <> [] then failwith "lex1" else if toks = [] then toks else let (x,y,z) = last toks in butlast toks@[x,y,z^implode rst'];; let lex2 = lex1 o explode;; let middle (_,x,_) = x;; let a' t toks = match toks with | ((_,Resword t',_) as tok)::rst when t = t' -> tok,rst | ((_,Ident t',_) as tok)::rst when t = t' -> tok,rst | _ -> raise Noparse;; let a_semi = a' ";";; let ident' toks = match toks with | (_,Ident s,_)::rst -> s,rst | (_,Resword "(",_)::(_,Ident s,_)::(_,Resword ")",_)::rst -> s,rst | _ -> raise Noparse;; let unident' s = if parses_as_binder s || can get_infix_status s || is_prefix s then ["",Resword "(",""; "",Ident s,""; "",Resword ")",""] else ["",Ident s,""];; let rec cut_to b n c l toks = match toks with | [] -> if b then [],[] else raise Noparse | tok::rst -> (match tok with | _,Resword s,_ | _,Ident s,_ -> let x = not (n > 0 && mem s mizar_skip_bracketed) in if mem s c && x then [tok],rst else if b && mem s l && x then [],toks else let stp1,rst1 = (match s with | "(" | "[" -> cut_to true (n + 1) c l rst | ")" | "]" -> cut_to true (if n > 0 then n - 1 else 0) c l rst | _ -> cut_to true n c l rst) in (tok::stp1),rst1);; let cut_step toks = match toks with | (_,Resword "proof",_ as tok)::rst -> [tok],rst | (_,Resword "now",_)::rst -> (a' "now" ++ (many (a' "[" ++ cut_to false 0 ["]"] mizar_step_words >> fun x,y -> x::y)) >> fun x,y -> x::(itlist (@) y [])) toks | _ -> cut_to false 0 [";"] mizar_step_words toks;; let rec cut_steps toks = let steps,rst = many cut_step toks in if rst = [] then steps else steps@[rst];; let strings_of_toks toks = let rec string_of_toks1 toks = match toks with | [] -> "","" | [x,Ident y,z] | [x,Resword y,z] -> x^y,z | (x,Ident y,z)::rst | (x,Resword y,z)::rst -> let u,v = string_of_toks1 rst in x^y^z^u,v in match toks with | [] -> "","","" | [x,Ident y,z] | [x,Resword y,z] -> x,y,z | (x,Ident y,z)::rst | (x,Resword y,z)::rst -> let u,v = string_of_toks1 rst in x,y^z^u,v;; let string_of_toks = middle o strings_of_toks;; let split_string = map string_of_toks o cut_steps o lex2;; let tok_of_toks toks = let x,y,z = strings_of_toks toks in x,Ident y,z;; let exec_phrase b s = let lexbuf = Lexing.from_string s in let ok = Toploop.execute_phrase b Format.std_formatter (!Toploop.parse_toplevel_phrase lexbuf) in Format.pp_print_flush Format.std_formatter (); (ok, let i = lexbuf.Lexing.lex_curr_pos in String.sub lexbuf.Lexing.lex_buffer i (lexbuf.Lexing.lex_buffer_len - i));; let exec_thm_out = ref TRUTH;; let exec_thm s = try let ok,rst = exec_phrase false ("exec_thm_out := (("^s^") : thm);;") in if not ok || rst <> "" then raise Noparse; !exec_thm_out with _ -> raise Noparse;; let exec_thmlist_tactic_out = ref REWRITE_TAC;; let exec_thmlist_tactic s = try let ok,rst = exec_phrase false ("exec_thmlist_tactic_out := (("^s^") : thm list -> tactic);;") in if not ok || rst <> "" then raise Noparse; !exec_thmlist_tactic_out with _ -> raise Noparse;; let exec_thmtactic_out = ref MATCH_MP_TAC;; let exec_thmtactic s = try let ok,rst = exec_phrase false ("exec_thmtactic_out := (("^s^") : thm -> tactic);;") in if not ok || rst <> "" then raise Noparse; !exec_thmtactic_out with _ -> raise Noparse;; let exec_tactic_out = ref ALL_TAC;; let exec_tactic s = try let ok,rst = exec_phrase false ("exec_tactic_out := (("^s^") : tactic);;") in if not ok || rst <> "" then raise Noparse; !exec_tactic_out with _ -> raise Noparse;; let exec_conv_out = ref NUM_REDUCE_CONV;; let exec_conv s = try let ok,rst = exec_phrase false ("exec_conv_out := (("^s^") : conv);;") in if not ok || rst <> "" then raise Noparse; !exec_conv_out with _ -> raise Noparse;; let (MP_ALL : tactic -> thm list -> tactic) = fun tac ths -> MAP_EVERY MP_TAC ths THEN tac;; let use_thms tac = fun ths -> tac ORELSE MP_ALL tac ths;; let by_item_cache = ref undefined;; let rec by_item_of_toks toks = match toks with | [_,Ident "#",_] -> Hole | (_,Ident "#",_)::toks' -> (match by_item_of_toks toks' with | Tactic(s,tac) -> Grow(s,tac) | _ -> failwith "by_item_of_toks") | [_,Ident "*",_] -> Label "*" | _ -> let s = string_of_toks toks in try apply (!by_item_cache) s with _ -> let i = try Thm (s, exec_thm s) with _ -> try Tactic (s, exec_thmlist_tactic s) with _ -> try Tactic (s, (exec_thmtactic s) o hd) with _ -> try Tactic (s, use_thms (exec_tactic s)) with _ -> try Tactic (s, use_thms (CONV_TAC (exec_conv s))) with _ -> match toks with | [_,Ident s,_] -> Label s | _ -> failwith "by_item_of_toks" in by_item_cache := (s |-> i) !by_item_cache; i;; let parse_by = let parse_by_item toks = match toks with | (_,Ident "#",_ as tok1)::(_,Ident s,_ as tok2)::toks when s <> "," -> [tok1;tok2],toks | (_,Ident _,_ as tok)::toks -> [tok],toks | _ -> raise Noparse in let parse_by_part = ((a' "by" ++ many (parse_by_item ++ a' "," >> fst) >> snd) ++ parse_by_item) >> (fun (x,y) -> x@[y]) ||| (nothing >> K []) and parse_from_part = ((a' "from" ++ many (parse_by_item ++ a' "," >> fst) >> snd) ++ parse_by_item) >> (fun (x,y) -> (x@[y]),true) ||| (nothing >> K ([],false)) in let rec will_grow l = match l with | [] -> false | Tactic _::_ -> false | Grow _::_ -> true | _::l' -> will_grow l' in ((parse_by_part ++ parse_from_part) ++ a_semi ++ finished >> fun (((x,(y,z)),_),_) -> let x' = map by_item_of_toks x in let y' = map by_item_of_toks y in By(x',y',z || will_grow (x'@y'))) ||| (finished >> K (Proof_expected true));; let rec parse_labels toks = match toks with | [] -> [] | (_,Resword "[",_)::(_,Ident s,_)::(_,Resword "]",_)::rst -> s::(parse_labels rst) | _ -> raise Noparse;; let rec type_of_pretype1 ty = match ty with Stv n -> failwith "type_of_pretype1" | Utv(v) -> mk_vartype(v) | Ptycon(con,args) -> mk_type(con,map type_of_pretype1 args);; let term_of_preterm1 = let rec term_of_preterm1 ptm = match ptm with Varp(s,pty) -> mk_var(s,type_of_pretype1 pty) | Constp(s,pty) -> mk_mconst(s,type_of_pretype1 pty) | Combp(l,r) -> mk_comb(term_of_preterm1 l,term_of_preterm1 r) | Absp(v,bod) -> mk_gabs(term_of_preterm1 v,term_of_preterm1 bod) | Typing(ptm,pty) -> term_of_preterm1 ptm in fun ptm -> term_of_preterm1 ptm;; let term_of_hol b = let error = mk_var("error",`:error`) in let term_of_hol1 env toks = let env' = ("thesis",Ptycon("bool",[])):: (map ((fun (s,ty) -> s,pretype_of_type ty) o dest_var) env) in try let ptm,l = (parse_preterm o map middle) toks in if l <> [] then (8,error) else try let tm = (term_of_preterm1 o retypecheck env') ptm in if not (subset (filter (fun v -> not (mem (fst (dest_var v)) ["..."; "thesis"])) (frees tm)) env) then (7,error) else if b && type_of tm <> bool_ty then (8,error) else (0,tm) with _ -> let tiw = !type_invention_warning in type_invention_warning := false; let tm = try (term_of_preterm o retypecheck env') ptm with e -> type_invention_warning := tiw; raise e in type_invention_warning := tiw; if not (subset (frees tm) env) then (7,error) else (6,error) with _ -> (8,error) in fun env toks -> match toks with | (x,Ident ".=",y)::rest -> term_of_hol1 env ((x,Ident "..."," ")::("",Ident "=",y)::rest) | _ -> term_of_hol1 env toks;; let type_of_hol = let error = `:error` in fun toks -> try (0,(parse_type o middle o strings_of_toks) toks) with _ -> (8,error);; let split_step toks = let cut_semi toks = match toks with | (_,Resword ";",_ as tok)::rst -> rev rst,[tok] | _ -> rev toks,[] in let rec cut_by_part rev_front toks = match toks with | [] | (_,Resword "by",_)::_ | (_,Resword "from",_)::_ -> rev_front,toks | tok::rst -> cut_by_part (tok::rev_front) rst in let rec group_by_items toks = match toks with | [] -> [] | (_,Resword "by",_ as tok)::rst | (_,Resword "from",_ as tok)::rst | (_,Ident ",",_ as tok)::rst | (_,Resword ";",_ as tok)::rst -> tok::group_by_items rst | (_,Ident "#",_ as tok)::toks' -> let toks1,toks2 = if toks' = [] then [],[] else cut_to false 0 [] ([","; ";"]@mizar_words) toks' in tok::(if toks1 = [] then [] else [tok_of_toks toks1])@ group_by_items toks2 | tok::rst -> let toks1,toks2 = cut_to false 0 [] ([","; ";"]@mizar_words) toks in if toks1 = [] then tok::group_by_items rst else (tok_of_toks toks1)::group_by_items toks2 in let rec cut_labs toks labs = match toks with | (_,Resword "]",_ as tok1)::(_,Ident _,_ as tok2):: (_,Resword "[",_ as tok3)::rst -> cut_labs rst (tok3::tok2::tok1::labs) | _ -> toks,labs in let rec cut_front toks tail = match toks with | [] -> [],tail | (_,Resword s,_)::rst when mem s mizar_words -> rev toks,tail | tok::rst -> cut_front rst (tok::tail) in let toks1,semi_part = cut_semi (rev toks) in let toks2,by_part = cut_by_part [] toks1 in let toks3,labs_part = cut_labs toks2 [] in let front_part,hol_part = cut_front toks3 [] in if front_part <> [] && middle (hd front_part) = Resword "exec" then let ml_tok = tok_of_toks ((tl front_part)@hol_part@labs_part@by_part) in [[hd front_part]; [ml_tok]; []; []; semi_part] else [front_part; hol_part; labs_part; group_by_items by_part; semi_part];; let parse_step env toks = let src = split_step toks in try match src with | [front_part; hol_part; labs_part; by_part; semi_part] -> let labs = parse_labels labs_part in let just,_ = parse_by (by_part@semi_part) in (match front_part with | [] -> (match toks with | [_,Resword ";",_] -> -1,src,Empty_step | _ -> let n,t = term_of_hol true env hol_part in if n <> 0 then n,src,Error(string_of_toks toks,just) else -1,src,Have(t,labs,just)) | (_,Resword key,_)::_ -> (match key,(tl front_part),(string_of_toks semi_part) with | "now",[],"" -> if hol_part <> [] || by_part <> [] then raise Noparse else -1,src,Now(labs,Proof_expected false) | "let",rst,";" -> if labs_part <> [] || by_part <> [] then raise Noparse else let x = (fst o fst o fst o many ident' ++ a' "be" ++ finished) rst in let n,t = type_of_hol hol_part in if n <> 0 then n,src,Error(string_of_toks toks,No_steps) else -1,src,Let(map (fun s -> mk_var(s,t)) x) | "assume",[],";" -> if by_part <> [] then raise Noparse else let n,t = term_of_hol true env hol_part in if n <> 0 then n,src,Error(string_of_toks toks,No_steps) else -1,src,Assume(t,labs) | "thus",[],_ -> let n,t = term_of_hol true env hol_part in if n <> 0 then n,src,Error(string_of_toks toks,just) else -1,src,Thus(t,labs,just) | "qed",[],_ -> if hol_part <> [] || labs_part <> [] then raise Noparse else -1,src,Qed just | "proof",[],"" -> if hol_part <> [] || labs_part <> [] || by_part <> [] then raise Noparse else -1,src,Bracket_proof | "end",[],";" -> if hol_part <> [] || labs_part <> [] || by_part <> [] then raise Noparse else -1,src,Bracket_end | "take",[],";" -> if labs_part <> [] || by_part <> [] then raise Noparse else let n,t = term_of_hol false env hol_part in if n <> 0 then n,src,Error(string_of_toks toks,No_steps) else -1,src,Take t | "consider",rst,_ -> let cut_suchthat toks = match toks with | (_,Resword "that",_)::(_,Resword "such",_)::rst -> rst | _ -> raise Not_found in let rec cut_being toks tail = match toks with | [] -> raise Not_found | (_,Resword "being",_)::rst -> (rev rst),(rev tail) | tok::rst -> cut_being rst (tok::tail) in (try let rst1,rst2 = cut_being (cut_suchthat (rev rst)) [] in let n,t = type_of_hol rst2 in if n <> 0 then n,src,Error(string_of_toks toks,just) else let x = (fst o fst o many ident' ++ finished) rst1 in let vars = map (fun s -> mk_var(s,t)) x in let n,tm' = term_of_hol true (vars@env) hol_part in if n <> 0 then n,src,Error(string_of_toks toks,just) else -1,src,Consider(vars,tm',labs,just) with Not_found -> let x = (fst o fst o fst o fst o many ident' ++ a' "such" ++ a' "that" ++ finished) rst in let xy = (("",Ident "?","")::((flat (map unident' x))@ (("",Resword ".","")::hol_part))) in let n,tm = term_of_hol true env xy in if n <> 0 then n,src,Error(string_of_toks toks,just) else let vars,tm' = nsplit dest_exists x tm in -1,src,Consider(vars,tm',labs,just)) | "set",[],";" -> if by_part <> [] then raise Noparse else let (w,_),rst = (ident' ++ a' "=") hol_part in let n,t = term_of_hol false env rst in if n <> 0 then n,src,Error(string_of_toks toks,No_steps) else -1,src,Set(mk_eq(mk_var(w,type_of t),t),labs) | "cases",[],_ -> if hol_part <> [] || labs_part <> [] then raise Noparse else -1,src,Cases(just,[]) | "case",[],";" -> if hol_part <> [] || labs_part <> [] || by_part <> [] then raise Noparse else -1,src,Bracket_case | "suppose",[],";" -> if by_part <> [] then raise Noparse else let n,t = term_of_hol true env hol_part in if n <> 0 then n,src,Error(string_of_toks toks,Proof_expected false) else -1,src,Suppose(t,labs) | "exec",[],";" -> let s = string_of_toks hol_part in -1,src,Exec(s,exec_tactic s) | _ -> raise Noparse) | _ -> raise Noparse) | _ -> raise Noparse with | Failure "by_item_of_toks" -> 5,src,Error(string_of_toks toks,No_steps) | _ -> 9,src,Error(string_of_toks toks,No_steps);; let rec steps_of_toks1 q e env toks = let prefix x (y,w,z) = (x@y),w,z in if toks = [] then if e then [9,[],Error_point],None,[] else [],None,[] else let stoks,rst = cut_step toks in let (status,src,substep as step) = parse_step env stoks in match substep with | Have (tm, labs, Proof_expected _) -> let just,rst1 = just_of_toks env rst in let step,rst2 = (match just with | Proof(_, _, _) -> (status,src,Have (tm, labs, just)),rst1 | _ -> (9,src,Error(string_of_toks stoks, No_steps)),rst) in prefix [step] (steps_of_toks1 q e env rst2) | Thus (tm, labs, Proof_expected _) -> let just,rst1 = just_of_toks env rst in let step,rst2 = (match just with | Proof(_, _, _) -> (status,src,Thus (tm, labs, just)),rst1 | _ -> (9,src,Error(string_of_toks stoks, No_steps)),rst) in prefix [step] (steps_of_toks1 q e env rst2) | Let vars -> prefix [step] (steps_of_toks1 q e ((rev vars)@env) rst) | Now (labs, Proof_expected _) -> let just,rst1 = now_of_toks env rst in prefix [status,src,Now (labs, just)] (steps_of_toks1 q e env rst1) | Consider (vars, _, _, By _) -> prefix [step] (steps_of_toks1 q e ((rev vars)@env) rst) | Consider (vars, tm, labs, Proof_expected _) -> let just,rst1 = just_of_toks env rst in let step,rst2 = (match just with | Proof(_, _, _) -> (status,src,Consider(vars, tm, labs, just)),rst1 | _ -> (9,src,Error(string_of_toks stoks, No_steps)),rst) in prefix [step] (steps_of_toks1 q e ((rev vars)@env) rst2) | Set (tm, _) -> prefix [step] (steps_of_toks1 q e ((fst (dest_eq tm))::env) rst) | Cases ((By _ as just), []) -> (try let justs,rst1 = many (case_of_toks env q) rst in let final,step1,rst2 = steps_of_toks1 false e env rst1 in let cases = status,src,Cases(just, justs) in if final <> [] then prefix [cases; 9,[],Error_point] (steps_of_toks1 q e env rst1) else [cases],step1,rst2 with Noparse -> prefix [9,src,Error(string_of_toks stoks, No_steps)] (steps_of_toks1 q e env rst)) | Qed just -> if q then [step],None,rst else prefix [(if e then 3 else 9),src,Error(string_of_toks stoks, No_steps)] (steps_of_toks1 q e env rst) | Bracket_end -> if e then [],Some step,rst else prefix [9,src,Error(string_of_toks stoks, No_steps)] (steps_of_toks1 q e env rst) | Bracket_proof | Cases (_, _) | Bracket_case | Suppose (_, _) -> prefix [9,src,Error(string_of_toks stoks, No_steps)] (steps_of_toks1 q e env rst) | Error (s, Proof_expected true) -> let just,rst1 = just_of_toks env rst in (match just with | Proof(_, _, _) -> prefix [status,src,Error(s, just)] (steps_of_toks1 q e env rst1) | _ -> prefix [status,src,Error(string_of_toks stoks, No_steps)] (steps_of_toks1 q e env rst)) | Error (s, Proof_expected false) -> let steps,step1,rst1 = steps_of_toks1 true true env rst in prefix [status,src,Error(s, Proof(None,steps,step1))] (steps_of_toks1 q e env rst) | Error (_, By _) -> prefix [status,src,Error(string_of_toks stoks, No_steps)] (steps_of_toks1 q e env rst) | _ -> prefix [step] (steps_of_toks1 q e env rst) and just_of_toks env toks = try let stoks,rst = cut_step toks in let (_,_,substep as step) = parse_step env stoks in if substep = Bracket_proof then let steps,step1,rst1 = steps_of_toks1 true true env rst in (Proof(Some step,steps,step1)),rst1 else (No_steps),toks with Noparse -> (No_steps),toks and now_of_toks env toks = let steps,step1,rst = steps_of_toks1 false true env toks in (Proof(None,steps,step1)),rst and case_of_toks env q toks = let stoks,rst = cut_step toks in let (_,_,substep as step) = parse_step env stoks in match substep with | Bracket_case -> let steps,step1,rst1 = steps_of_toks1 q true env rst in (Proof(Some step,steps,step1)),rst1 | Suppose (_, _) -> let steps,step1,rst1 = steps_of_toks1 q true env rst in (Proof(None,step::steps,step1)),rst1 | _ -> raise Noparse;; let steps_of_toks toks = let proof,_,rst = steps_of_toks1 false false [] toks in if rst = [] then proof else proof@[9,[rst],Error (string_of_toks rst, No_steps)];; let fix_semi toks = if toks = [] then toks else match last toks with | _,Resword ";",_ -> toks | _ -> toks@["\n",Resword ";",""];; let parse_proof = steps_of_toks o fix_semi o lex2;; exception Timeout;; Sys.set_signal Sys.sigalrm (Sys.Signal_handle (fun _ -> raise Timeout));; let TIMED_TAC n tac g = let _ = Unix.alarm n in try let gs = tac g in let _ = Unix.alarm 0 in gs with x -> let _ = Unix.alarm 0 in raise x;; let FAKE_TAC : bool -> thm list -> tactic = fun fake thl (asl,w as g) -> if fake then let tm' = itlist (curry mk_imp) (map concl thl) w in let vl = frees tm' in let tm = itlist (curry mk_forall) vl tm' in let th = itlist (C MP) (rev thl) (itlist SPEC (rev vl) (ASSUME tm)) in null_meta,[],(fun i _ -> INSTANTIATE_ALL i th) else NO_TAC g;; let MIZAR_NEXT : (goal -> step * goalstate) -> (goal -> step * goalstate) = let t = `T` in fun tac (asl,_ as g) -> let e,((mvs,insts),gls,just as gs) = tac g in match gls with | [] -> e,((mvs,insts),[asl,t],(fun _ _ -> just null_inst [])) | [gl] -> e,gs | _ -> failwith "MIZAR_NEXT";; let MIZAR_NEXT' : tactic -> tactic = let t = `T` in fun tac (asl,_ as g) -> let ((mvs,insts),gls,just as gs) = tac g in match gls with | [] -> ((mvs,insts),[asl,t],(fun _ _ -> just null_inst [])) | [gl] -> gs | _ -> failwith "MIZAR_NEXT'";; let fix_dots prevs tm = try let lhs,_ = dest_eq (hd prevs) in vsubst [lhs, mk_var("...",type_of lhs)] tm with _ -> tm;; let fix_dots' asl tm = try let th = snd (hd asl) in let lhs,_ = dest_eq (concl th) in let dots = mk_var("...",type_of lhs) in let rec fix_dots1 tm = (match tm with | Var _ when tm = dots -> th | Comb(t1,t2) -> MK_COMB(fix_dots1 t1,fix_dots1 t2) | Abs(x,t) -> ABS x (fix_dots1 t) | _ -> REFL tm) in if vfree_in dots tm then fix_dots1 tm else REFL tm with _ -> REFL tm;; let rec terms_of_step prevs (_,_,substep) = match substep with | Have (tm, _, _) -> [fix_dots prevs tm] | Now (_, just) -> [term_of_now just] | Assume (tm, _) -> [fix_dots prevs tm] | Thus (tm, _, _) -> [fix_dots prevs tm] | Consider (_, tm, _, _) -> [fix_dots prevs tm] | Set (tm, _) -> [fix_dots prevs tm] | Suppose (tm, _) -> [fix_dots prevs tm] | _ -> [] and term_of_now = let t = `T` in let rec term_of_steps prevs steps = match steps with | [] -> t | (_,_,substep as step)::rst -> let tm' = term_of_steps ((terms_of_step prevs step)@prevs) rst in (match substep with | Let vars -> list_mk_forall(vars,tm') | Assume (tm, _) -> mk_imp(fix_dots prevs tm,tm') | Thus (tm, _, _) -> mk_conj(fix_dots prevs tm,tm') | Take tm -> let var = genvar (type_of tm) in mk_exists(var,subst [var,tm] tm') | Consider (vars, _, _, _) -> if intersect (frees tm') vars <> [] then failwith "term_of_now" else tm' | Cases (_, _) -> failwith "term_of_now" | _ -> tm') in fun just -> match just with | Proof(_, steps, _) -> (rand o concl o PURE_REWRITE_CONV[AND_CLAUSES]) (term_of_steps [] steps) | _ -> failwith "term_of_now";; let terms_of_cases = let f = `F` in let rec terms_of_cases cases = match cases with | [] -> [],f | case::rst -> let l',tm' = terms_of_cases rst in (match case with | (_,_,Suppose (tm, _))::_ -> (()::l'),mk_disj(tm,tm') | _ -> failwith "terms_of_cases") in terms_of_cases o (map (fun just -> match just with | Proof(_, case, _) -> case | _ -> failwith "terms_of_cases"));; let print_to_string1 printer = let sbuff = ref "" in let output s m n = sbuff := (!sbuff)^(String.sub s m n) and flush() = () in let fmt = make_formatter output flush in ignore(pp_set_max_boxes fmt 100); fun prefix' n i -> let prefix = prefix'^(implode (replicate " " n)) in let m = String.length prefix in pp_set_margin fmt ((!proof_width) - m); ignore(printer fmt i); ignore(pp_print_flush fmt ()); let s = !sbuff in sbuff := ""; implode (map (fun x -> if x = "\n" then "\n"^prefix else x) (explode s));; let string_of_term1 = print_to_string1 pp_print_term;; let string_of_type1 = print_to_string1 pp_print_type;; let string_of_substep prefix substep = let string_of_vars tl = implode (map (fun v -> " "^fst (dest_var v)) tl) in let string_of_labs l = implode (map (fun s -> " ["^s^"]") l) in let rec string_of_by_items x l = match l with | [] -> "" | i::l' -> x^(match i with | Label s | Thm(s,_) | Tactic(s,_) | Grow(s,_) -> s | Hole -> "#")^string_of_by_items "," l' in let string_of_just just = match just with | By(l,l',_) -> (if l = [] then "" else " by"^string_of_by_items " " l)^ (if l' = [] then "" else " from"^string_of_by_items " " l')^";" | _ -> "" in prefix^ (match substep with | Have(tm,l,just) -> string_of_term1 prefix (if !indent_continued then String.length !proof_indent else 0) tm^ string_of_labs l^string_of_just just | Now(l,just) -> "now"^string_of_labs l | Let(tl) -> let s = "let"^string_of_vars tl^" be " in s^string_of_type1 prefix (String.length s) (type_of (hd tl))^";" | Assume(tm,l) -> let s = "assume " in s^string_of_term1 prefix (String.length s) tm^string_of_labs l^";" | Thus(tm,l,just) -> let s = "thus " in s^string_of_term1 prefix (String.length s) tm^string_of_labs l^ string_of_just just | Qed(just) -> "qed"^string_of_just just | Bracket_proof -> "proof" | Bracket_end -> "end;" | Take(tm) -> let s = "take " in s^string_of_term1 prefix (String.length s) tm^";" | Consider(tl,tm,l,just) -> let s = "consider"^string_of_vars tl^" such that " in s^string_of_term1 prefix (String.length s) tm^ string_of_labs l^string_of_just just | Set(tm,l) -> let s = "set " in s^string_of_term1 prefix (String.length s) tm^string_of_labs l^";" | Cases(just,_) -> "cases"^string_of_just just | Bracket_case -> "case;" | Suppose(tm,l) -> let s = "suppose " in s^string_of_term1 prefix (String.length s) tm^string_of_labs l^";" | Exec(s,_) -> "exec "^s^";" | Error(s,_) -> s | Empty_step -> "" | Error_point -> "")^ "\n";; let step_of_substep prefix substep = (-1,split_step (lex2 (string_of_substep prefix substep)),substep :step);; let step_of_obligation prefix lab tl ass tm = let hole = By([Hole],[],false) in let prefix' = prefix^ !proof_indent in let rec lets l = match l with | [] -> [] | t::_ -> let l',l'' = partition ((=) (type_of t) o type_of) l in step_of_substep prefix' (Let l')::lets l'' in step_of_substep prefix (if tl = [] && ass = [] then Have(tm,[lab],hole) else let ll = lets tl in let intros = ll@(map (fun a -> step_of_substep prefix' (Assume(a,[]))) ass) in if !grow_haves then Have(list_mk_forall(flat (map (function (_,_,Let l) -> l | _ -> []) ll), itlist (curry mk_imp) ass tm), [lab], Proof (Some (step_of_substep prefix Bracket_proof), intros@ [step_of_substep prefix (Qed(hole))], None)) else Now([lab], Proof (None, intros@ [step_of_substep prefix' (Thus(tm,[],hole))], Some (step_of_substep prefix Bracket_end))));; let steps_of_goals (asl,w :goal) (_,gl,_ :goalstate) prefix n = let ass = map (concl o snd) asl in let fv = union (flat (map frees ass)) (frees w) in let rec extra_ass l l' = if subset l ass then l' else extra_ass (tl l) ((hd l)::l') in let rec steps_of_goals1 n gl = match gl with | [] -> [],[],n | (asl',w')::gl' -> let ass' = map (concl o snd) asl' in let steps',labs',n' = steps_of_goals1 (n + 1) gl' in let lab = string_of_int n in ((step_of_obligation prefix lab (subtract (union (flat (map frees ass')) (frees w')) fv) (extra_ass ass' []) w')::steps'),lab::labs',n' in steps_of_goals1 n gl;; let next_growth_label = ref 0;; let connect_step (step:step) labs = let comma = "",Ident ",","" in let from_key = " ",Resword "from"," " in let rec ungrow_by src l = match l with | [] -> src,[] | Grow(name,tac)::l' -> (match src with | tok1::(_,Ident "#",_)::tok2::src' -> let src'',l'' = ungrow_by src' l' in (tok1::tok2::src''),(Tactic(name,tac)::l') | _ -> failwith "ungrow_by") | x::l' -> let toks,src' = chop_list 2 src in let src'',l'' = ungrow_by src' l' in (toks@src''),(x::l'') in let rec extra_from sep labs = match labs with | [] -> [] | lab::labs' -> sep::("",Ident lab,"")::extra_from comma labs' in let connect_just src4 just = match just with | By(l,l',b) -> let src4',l'' = ungrow_by src4 l in let src4'',l''' = ungrow_by src4' l' in (src4''@if labs = [] then [] else extra_from (if l' = [] then from_key else comma) labs), By(l'',(l'''@map (fun s -> Label s) labs),b) | _ -> src4,just in match step with | (e,[src1; src2; src3; src4; src5],substep) -> (match substep with | Have(x,y,just) -> let src4',just' = connect_just src4 just in (e,[src1; src2; src3; src4'; src5],Have(x,y,just')) | Thus(x,y,just) -> let src4',just' = connect_just src4 just in (e,[src1; src2; src3; src4'; src5],Thus(x,y,just')) | Qed just -> let src4',just' = connect_just src4 just in (e,[src1; src2; src3; src4'; src5],Qed just') | Consider(x,y,z,just) -> let src4',just' = connect_just src4 just in (e,[src1; src2; src3; src4'; src5],Consider(x,y,z,just')) | Cases(just,x) -> let src4',just' = connect_just src4 just in (e,[src1; src2; src3; src4'; src5],Cases(just',x)) | _ -> failwith "connect_step" :step) | _ -> failwith "connect_step";; let add_width n s = let rec add_width1 n s = match s with | [] -> n | "\t"::s' -> add_width1 ((n/8 + 1)*8) s' | "\n"::s' -> add_width1 0 s' | _::s' -> add_width1 (n + 1) s' in add_width1 n (explode s);; let rewrap_step (e,src,substep as step:step) = let rec rewrap_from x1 src4a src4b = match src4b with | [] -> rev src4a | (x,y,z)::(x',(Resword "from" as y'),z')::rst -> (rev src4a)@(x,y,"\n")::(x1,y',z')::rst | tok::rst -> rewrap_from x1 (tok::src4a) rst in match src with | [src1; src2; src3; src4; src5] -> if src4 = [] then step else let src123 = src1@src2@src3 in let x,y,z = strings_of_toks src123 in let x',y',_ = strings_of_toks src4 in if add_width 0 (x^y^z^x'^y') > !proof_width then let a,b,_ = last src123 in let src123' = (butlast src123)@[a,b,"\n"] in let src1',src23' = chop_list (length src1) src123' in let src2',src3' = chop_list (length src2) src23' in let _,b',c' = hd src4 in let x1 = x^ !proof_indent in let src4' = (x1,b',c')::tl src4 in let src4'' = if add_width 0 (x1^y') > !proof_width then rewrap_from x1 [] src4' else src4' in (e,[src1'; src2'; src3'; src4''; src5],substep) else (step:step) | _ -> failwith "rewrap_step";; let rec pp_step prefix step = let (e,_,substep) = step in let (_,src,substep') = rewrap_step (step_of_substep prefix substep) in let substep'' = (match substep' with | Have(x,y,just) -> Have(x,y,pp_just prefix just) | Now(x,just) -> Now(x,pp_just prefix just) | Thus(x,y,just) -> Thus(x,y,pp_just prefix just) | Qed(just) -> Qed(pp_just prefix just) | Consider(x,y,z,just) -> Consider(x,y,z,pp_just prefix just) | Cases(just,justl) -> Cases(pp_just prefix just,map (pp_just prefix) justl) | Error(x,just) -> Error(x,pp_just prefix just) | _ -> substep') in (e,src,substep'') and pp_just prefix just = let pp_step' step' = match step' with | Some step -> Some (pp_step prefix step) | None -> None in let prefix' = (!proof_indent)^prefix in let pp_step'' step = match step with | (_,_,Qed _) -> pp_step prefix step | (_,_,Suppose _) -> pp_step prefix step | _ -> pp_step prefix' step in match just with | Proof(step',stepl,step'') -> Proof(pp_step' step',map (pp_step'') stepl,pp_step' step'') | _ -> just;; let outdent n step = let (_,src,_) = step in match flat src with | (x,_,_)::_ -> let x' = explode x in if length x' < n then step else let _,x'' = chop_list n x' in pp_step (implode x'') step | _ -> step;; let replacement_steps (asl,w) f step = let n = String.length !proof_indent in let indent_of (_,src,substep) = let x,_,_ = hd (flat src) in match substep with | Qed _ -> x^ !proof_indent | _ -> x in let shift src2 src3 just = match just with | Proof _ -> if src3 <> [] then let (x,y,z) = last src3 in src2,((butlast src3)@[x,y,"\n"]) else if src2 <> [] then let (x,y,z) = last src2 in ((butlast src2)@[x,y,"\n"]),src3 else src2,src3 | _ -> src2,src3 in let steps,labs,n = f (indent_of step) (!next_growth_label) in next_growth_label := n; if !grow_duplicates > 1 then steps@[rewrap_step (connect_step step labs)] else match steps,step with | [e,[src1'; src2'; src3'; src4'; src5'],Have(tm',_,just')], (_,[src1; src2; src3; src4; src5],Have(tm,labs,_)) when tm' = tm -> let src2'',src3'' = shift src2 src3 just' in [e,[src1; src2''; src3''; src4'; src5'],Have(tm,labs,just')] | [e,[src1'; src2'; src3'; src4'; src5'],Have(tm',_,just')], (_,[src1; src2; src3; src4; src5],Thus(tm,labs,_)) when tm' = tm -> let src2'',src3'' = shift src2 src3 just' in [e,[src1; src2''; src3''; src4'; src5'],Thus(tm,labs,just')] | [e,_,Have(tm',_,Proof(_,y,_))], (_,_,Qed(_)) when tm' = w -> map (outdent n) y | [e,[src1'; src2'; src3'; src4'; src5'],Have(tm',_,(By _ as just'))], (_,[src1; src2; src3; src4; src5],Qed(_)) when tm' = w -> [e,[src1; src2; src3; src4'; src5'],Qed(just')] | _ -> if !grow_duplicates > 0 then steps@[rewrap_step (connect_step step labs)] else let al = map (fun x,y -> concl y,x) asl in let rec filter_growth steps labs steps' labs' = match steps with | [] -> (rev steps'),(rev labs') | ((_,_,Have(tm,_,_)) as step')::rst -> (try let lab' = assoc tm al in if lab' <> "" then filter_growth rst (tl labs) steps' (lab'::labs') else filter_growth rst (tl labs) (step'::steps') ((hd labs)::labs') with _ -> filter_growth rst (tl labs) (step'::steps') ((hd labs)::labs')) | step'::rst -> filter_growth rst (tl labs) (step'::steps') ((hd labs)::labs') in let steps',labs' = filter_growth steps labs [] [] in steps'@[rewrap_step (connect_step step labs')];; exception Grown of (string -> int -> step list * string list * int);; let (FILTER_ASSUMS : (int * (string * thm) -> bool) -> tactic) = let rec filter' f n l = match l with | [] -> [] | h::t -> let t' = filter' f (n + 1) t in if f (n,h) then h::t' else t' in fun f (asl,w) -> null_meta,[filter' f 0 asl,w],(fun i ths -> hd ths);; let (MAP_ASSUMS : (string * thm -> string * thm) -> tactic) = let FIRST_ASSUM' ttac' (asl,w as g) = tryfind (fun lth -> ttac' lth g) asl in fun f -> let rec recurse g = (FIRST_ASSUM' (fun (l,th as lth) -> UNDISCH_THEN (concl th) (fun th -> recurse THEN uncurry LABEL_TAC (f lth))) ORELSE ALL_TAC) g in recurse ORELSE FAIL_TAC "MAP_ASSUMS";; let (thenl': tactic -> (goal -> 'a * goalstate) list -> goal -> 'a list * goalstate) = let propagate_empty i _ = [] in let propagate_thm th i _ = INSTANTIATE_ALL i th in let compose_justs n just1 just2 i ths = let ths1,ths2 = chop_list n ths in (just1 i ths1)::(just2 i ths2) in let rec seqapply l1 l2 = match (l1,l2) with | ([],[]) -> [],(null_meta,[],propagate_empty) | (tac::tacs),(goal::goals) -> let a,((mvs1,insts1),gls1,just1) = tac goal in let goals' = map (inst_goal insts1) goals in let aa',((mvs2,insts2),gls2,just2) = seqapply tacs goals' in (a::aa'),((union mvs1 mvs2,compose_insts insts1 insts2), gls1@gls2,compose_justs (length gls1) just1 just2) | _,_ -> failwith "seqapply: Length mismatch" in let justsequence just1 just2 insts2 i ths = just1 (compose_insts insts2 i) (just2 i ths) in let tacsequence ((mvs1,insts1),gls1,just1) tacl = let aa,((mvs2,insts2),gls2,just2) = seqapply tacl gls1 in let jst = justsequence just1 just2 insts2 in let just = if gls2 = [] then propagate_thm (jst null_inst []) else jst in aa,((union mvs1 mvs2,compose_insts insts1 insts2),gls2,just) in fun tac1 tac2l g -> let _,gls,_ as gstate = tac1 g in if gls = [] then tacsequence gstate [] else tacsequence gstate tac2l;; let just_cache = ref undefined;; let tactic_of_by fake l l' b = (fun (asl,_ as g) -> let hor = if b then 0 else !horizon in let rec find_tactic l = match l with | [] -> !default_prover,false | (Tactic (name, tac))::l' -> (name,tac),false | (Grow (name, tac))::l' -> (name,tac),true | _::l' -> find_tactic l' in let sets = BETA_THM::map snd (filter (fun x,_ -> x = "=") asl) in let asl' = filter (fun x,_ -> x <> "=") asl in let rec find_thms l b = match l with | [] -> if b then [] else map (PURE_REWRITE_RULE sets o snd) (try fst (chop_list hor asl') with _ -> asl') | (Thm (_, th))::l' -> th::(find_thms l' b) | (Label "*")::l' -> (map (PURE_REWRITE_RULE sets o snd) asl')@(find_thms l' b) | (Label s)::l' -> (PURE_REWRITE_RULE sets (if s = "-" then snd (hd asl') else assoc s asl'))::(find_thms l' b) | _::l' -> find_thms l' b in let rec find_labs l = match l with | [] -> [] | (Label s)::l' -> s::(find_labs l') | _::l' -> find_labs l' in try let thms = find_thms l b in let thms' = find_thms l' true in let thms'' = thms@thms' in let (name,tac),grow = find_tactic (l@l') in if fake && (mem Hole l || mem Hole l') || not (!growth_mode) && grow then -2,FAKE_TAC fake thms'' g else let labs = find_labs l in let full_asl = hor < 0 || mem "*" labs in (try 0,((FILTER_ASSUMS (fun _,(x,_) -> x <> "=") THEN FILTER_ASSUMS (fun n,(x,_) -> mem x labs || n < hor || (n = 0 && mem "-" labs) || full_asl) THEN MAP_ASSUMS (fun l,th -> l,PURE_REWRITE_RULE sets th) THEN MIZAR_NEXT' (PURE_REWRITE_TAC sets) THEN (fun (asl',w' as g') -> let key = name,(map concl thms,map concl thms'),w' in try if grow then failwith "apply"; let e,th = apply (!just_cache) key in if e = 0 then (ACCEPT_TAC th THEN NO_TAC) g' else if e = 2 then raise Timeout else failwith "cached by" with | Failure "apply" -> try let (_,_,just as gs) = ((fun g'' -> let gs' = TIMED_TAC (!timeout) (tac thms) g'' in if grow then raise (Grown (steps_of_goals g gs')) else gs') THEN REPEAT (fun (asl'',_ as g'') -> if subset asl'' asl' then NO_TAC g'' else FIRST_ASSUM (UNDISCH_TAC o concl) g'') THEN TRY (FIRST (map ACCEPT_TAC thms'')) THEN REWRITE_TAC thms'' THEN NO_TAC) g' in let th = just null_inst [] in just_cache := (key |-> (0,th)) !just_cache; gs with | Grown _ as x -> raise x | x -> if name <> "GOAL_TAC" then just_cache := (key |-> ((if x = Timeout then 2 else 1),TRUTH)) !just_cache; raise x )) g) with | Grown _ as x -> raise x | x -> (if x = Timeout then 2 else 1),(FAKE_TAC fake thms'' g)) with Failure "find" | Failure "hd" -> 4,(FAKE_TAC fake [] g) : goal -> int * goalstate);; let LABELS_TAC ls th = if ls = [] then ASSUME_TAC th else EVERY (map (fun l -> LABEL_TAC l th) ls);; let PURE_EXACTLY_ONCE_REWRITE_TAC = let ONCE_COMB_QCONV conv tm = let l,r = dest_comb tm in try let th1 = conv l in AP_THM th1 r with Failure _ -> AP_TERM l (conv r) in let ONCE_SUB_QCONV conv tm = if is_abs tm then ABS_CONV conv tm else ONCE_COMB_QCONV conv tm in let rec EXACTLY_ONCE_DEPTH_QCONV conv tm = (conv ORELSEC (ONCE_SUB_QCONV (EXACTLY_ONCE_DEPTH_QCONV conv))) tm in let PURE_EXACTLY_ONCE_REWRITE_CONV thl = GENERAL_REWRITE_CONV false EXACTLY_ONCE_DEPTH_QCONV empty_net thl in fun thl -> CONV_TAC(PURE_EXACTLY_ONCE_REWRITE_CONV thl);; let EQTF_INTRO = let lemma = TAUT `(~t <=> T) <=> (t <=> F)` in fun th -> PURE_ONCE_REWRITE_RULE[lemma] (EQT_INTRO th);; let REWRITE_THESIS_TAC = let PROP_REWRITE_TAC = PURE_REWRITE_TAC[AND_CLAUSES; IMP_CLAUSES; NOT_CLAUSES; OR_CLAUSES; prop_2; TAUT `!t. (t <=> t) <=> T`] in fun th -> PURE_EXACTLY_ONCE_REWRITE_TAC[EQTF_INTRO th] THEN PROP_REWRITE_TAC;; let thesis_var = `thesis:bool`;; let rec tactic_of_step fake step (asl,w as g) = let justify tac just g = let (mvs,inst),gls,jst = tac g in (match gls with | [g1; g2] -> let (e,just'),((mvs',inst'),gls',jst') = tactic_of_just fake just g1 in let mvs'' = union mvs' mvs in let inst'' = compose_insts inst' inst in let gls'' = gls'@[g2] in let jst'' i ths = jst (compose_insts inst'' i) [jst' i (butlast ths); last ths] in (e,just'),((mvs'',inst''),gls'',jst'') | _ -> failwith "justify") in let SUBGOAL_THEN' tm tac = let th = fix_dots' asl tm in let lhs,_ = dest_eq (concl th) in SUBGOAL_THEN lhs tac THENL [MIZAR_NEXT' (CONV_TAC (K th)); ALL_TAC] in let fix_thesis tm = vsubst [w,thesis_var] tm in let e,src,substep = step in match substep with | Let tl -> (try (0,src,substep),(MAP_EVERY X_GEN_TAC tl g) with x -> if fake then (3,src,substep),(ALL_TAC g) else raise x) | Assume (tm, l) | Suppose (tm, l) -> (try (0,src,substep),(DISJ_CASES_THEN2 (fun th -> MIZAR_NEXT' (REWRITE_THESIS_TAC th) THEN LABELS_TAC l th) (fun th -> let th' = PURE_REWRITE_RULE[NOT_CLAUSES; IMP_CLAUSES] th in REWRITE_TAC[th'] THEN CONTR_TAC th' THEN NO_TAC) (SPEC (fix_thesis tm) EXCLUDED_MIDDLE) g) with x -> if fake then (3,src,substep),(ALL_TAC g) else raise x) | Have (tm, l, just) -> (try let (e,just'),gs = justify (SUBGOAL_THEN' (fix_thesis tm) (LABELS_TAC l)) just g in (e,src,Have(tm, l, just')),gs with x -> raise x) | Now (l, just) -> (try let (e,just'),gs = justify (SUBGOAL_THEN (term_of_now just) (LABELS_TAC l)) just g in (e,src,Now(l, just')),gs with x -> raise x) | Thus (tm, l, just) -> (try let (e,just'),gs = justify (SUBGOAL_THEN' (fix_thesis tm) (LABELS_TAC l) THENL [ALL_TAC; MIZAR_NEXT' (FIRST_ASSUM (fun th -> EVERY (map (fun th' -> REWRITE_THESIS_TAC th') (CONJUNCTS th))))]) just g in (e,src,Thus(tm, l, just')),gs with x -> if fake then (3,src,substep),(ALL_TAC g) else raise x) | Qed just -> (try let (e,just'),gs = tactic_of_just fake just g in (e,src,substep),gs with x -> raise x) | Take tm -> (try (0,src,substep),(EXISTS_TAC tm g) with x -> if fake then (3,src,substep),(ALL_TAC g) else raise x) | Consider (tl, tm, l, just) -> let tm' = itlist (curry mk_exists) tl (fix_thesis tm) in (try let (e,just'),gs = justify (SUBGOAL_THEN tm' ((EVERY_TCL (map X_CHOOSE_THEN tl)) (LABELS_TAC l))) just g in (e,src,Consider(tl, tm, l, just')),gs with x -> if fake then (3,src,substep),(ALL_TAC g) else raise x) | Set (tm, l) -> (try let v,_ = dest_eq tm in let tm' = mk_exists(v,tm) in let l' = if l = [] then ["="] else l in (0,src,substep), ((SUBGOAL_THEN tm' (X_CHOOSE_THEN v (LABELS_TAC l')) THENL [REWRITE_TAC[EXISTS_REFL] ORELSE FAKE_TAC fake []; ALL_TAC]) g) with x -> raise x) | Cases (just, cases) -> (try let l,tm = terms_of_cases cases in let steps,gs = (thenl' (SUBGOAL_THEN tm (EVERY_TCL (map (K (DISJ_CASES_THEN2 (fun th -> ASSUME_TAC th THEN FIRST_ASSUM (UNDISCH_TAC o concl)))) l) CONTR_TAC)) ((tactic_of_just fake just):: (map (fun just -> tactic_of_just fake just) cases)) g) in (match steps with | (e,just')::ecases' -> (e,src,Cases(just',map snd ecases')),gs | _ -> failwith "tactic_of_step") with x -> raise x) | Bracket_proof | Bracket_end | Bracket_case -> (3,src,substep),(ALL_TAC g) | Exec(_,tac) -> (try (0,src,substep),(TIMED_TAC (!timeout) tac THENL [ALL_TAC]) g with | Timeout as x -> if fake then (2,src,substep),(ALL_TAC g) else raise x | x -> if fake then (3,src,substep),(ALL_TAC g) else raise x) | Error (_,_) | Error_point -> if fake then (e,src,substep),(ALL_TAC g) else failwith "tactic_of_step" | Empty_step -> (0,src,substep),(ALL_TAC g) and tactic_of_just fake just g = let bracket_step step e = match step with | None -> if e = 0 then None else Some (e, [], Error_point) | Some (_, src, substep) -> Some (e, src, substep) in let rec tactic_of_just1 l (_,w as g) = match l with | [] -> if is_const w && fst (dest_const w) = "T" then [],0,ACCEPT_TAC TRUTH g else [],3,FAKE_TAC fake (map snd (fst g)) g | step::l' -> (try let step',((mvs,inst),gls,just) = MIZAR_NEXT (tactic_of_step fake step) g in (match gls with | [g'] -> let l'',e,((mvs',inst'),gls',just') = tactic_of_just1 l' g' in let mvs'' = union mvs' mvs in let inst'' = compose_insts inst' inst in let gls'' = gls' in let just'' i ths = just (compose_insts inst'' i) [just' i ths] in step'::l'',e,((mvs'',inst''),gls'',just'') | _ -> failwith "tactic_of_just") with Grown f -> tactic_of_just1 (replacement_steps g f step@l') g) in match just with | By(l,l',b) -> let e,gs = tactic_of_by fake l l' b g in (e,just),gs | Proof(step1, l, step2) -> let l',e,gs = tactic_of_just1 l g in (0,Proof(bracket_step step1 0, l', bracket_step step2 e)),gs | _ -> failwith "tactic_of_just";; let parse_qproof s = steps_of_toks (fix_semi (tl (lex2 s)));; let rec src_of_step (e,src,substep) = [e,strings_of_toks (flat src)]@ match substep with | Have(_, _, just) -> src_of_just just | Now(_, just) -> src_of_just just | Thus(_, _, just) -> src_of_just just | Qed just -> src_of_just just | Consider(_, _, _, just) -> src_of_just just | Cases(just, cases) -> (src_of_just just)@(itlist (@) (map src_of_just cases) []) | Error(_, just) -> src_of_just just | _ -> [] and src_of_just just = let unpack step1 = match step1 with | Some step -> src_of_step step | _ -> [] in match just with | Proof(step1, steps, step2) -> (unpack step1)@(itlist (@) (map src_of_step steps) [])@(unpack step2) | _ -> [];; let src_of_steps steps = itlist (@) (map src_of_step steps) [];; let count_errors src = let rec count_errors1 src (n1,n2,n3) = match src with | [] -> n1,n2,n3 | (e,_)::src' -> count_errors1 src' (if e > 2 then (n1 + 1,n2,n3) else if e > 0 then (n1,n2 + 1,n3) else if e = -2 then (n1,n2,n3 + 1) else (n1,n2,n3)) in count_errors1 src (0,0,0);; let error_line l ee = let rec error_line1 s1 s2 n l ee = match l with | [] -> (s1^"\n"),s2,ee | (m,e)::l' -> let d = m - n - 1 in let d' = if d > 0 then d else 0 in let s' = "#"^string_of_int e in error_line1 (s1^(implode (replicate " " d'))^s') (if !explain_errors > 0 then if mem e ee then s2 else s2^":: "^(el (e - 1) ERRORS)^"\n" else s2) (add_width (n + d') s') l' (union ee [e]) in let s1,s2,ee' = error_line1 "::" "" 2 l (if !explain_errors > 1 then [] else ee) in (s1^s2),ee';; let insert_errors n s l ee = let rec insert_errors1 n s l ee = match s with | [] -> [],n,l,ee | ("\n" as c)::s' -> let s1,ee' = if l = [] then "",ee else error_line l ee in let s2,n1,l1,ee' = insert_errors1 0 s' [] ee' in (c::s1::s2),n1,l1,ee' | c::s' -> let s1,n1,l1,ee' = insert_errors1 (add_width n c) s' l ee in (c::s1),n1,l1,ee' in let s1,n1,l1,ee' = insert_errors1 n (explode s) l ee in (implode s1),n1,l1,ee';; let string_of_src m steps = let add_error l n e = if e > (if !sketch_mode then 2 else 0) then l@[n,e] else l in let rec string_of_src1 s n l s3' steps ee = match steps with | [] -> let s',n',l',ee' = insert_errors n s3' l ee in if l' = [] then s^s' else let s'',_,_,_ = insert_errors n' "\n" l' ee' in s^s'^s'' | (e,(s1,"",s3))::steps' -> string_of_src1 s n (add_error l n e) (s3'^s1^s3) steps' ee | (e,(s1,s2,s3))::steps' -> let s',n',l',ee' = insert_errors n (s3'^s1) l ee in let n'' = add_width n' s2 in string_of_src1 (s^s'^s2) n'' (add_error l' n'' e) s3 steps' ee' in string_of_src1 "" m [] "" steps [];; let print_boxed f s = let print_boxed_char c = if c = "\n" then Format.pp_print_cut f () else Format.pp_print_string f c in Format.pp_open_vbox f 0; do_list print_boxed_char (explode s); Format.pp_close_box f ();; let print_step f x = print_boxed f (string_of_src 0 (src_of_step x));; let print_qsteps f x = print_boxed f ("`;\n"^(string_of_src 0 (src_of_steps x))^"`");; #install_printer print_step;; #install_printer print_qsteps;; let GOAL_TAC g = current_goalstack := (mk_goalstate g)::!current_goalstack; ALL_TAC g;; let GOAL_FROM x = fun y -> x y THEN GOAL_TAC;; let ee s = let toks = lex2 s in let l,t = top_goal() in let env = itlist union (map frees l) (frees t) in let proof,step1,rst = steps_of_toks1 true false env toks in if rst <> [] || step1 <> None then failwith "ee" else (e o EVERY o map (fun step -> snd o tactic_of_step false step)) proof;; let check_proof steps = let step = match steps with | [_,_,Have (_, _, _) as step] -> step | [_,_,Now (_, _) as step] -> step | _ -> -1,[],Now([], Proof(None,steps, Some(-1,[],Bracket_end))) in let step',gs = tactic_of_step true step ([],thesis_var) in let steps' = match step' with | _,[],Now(_, Proof(_,steps',_)) -> steps' | step' -> [step'] in let _,gl,j = gs in if length gl <> 1 then failwith "thm" else let (asl,w) = hd gl in if length asl <> 1 || w <> thesis_var then failwith "thm" else let a = (concl o snd o hd) asl in let src' = src_of_steps steps' in steps',count_errors src',j ([],[a,thesis_var],[]) [ASSUME a];; exception Mizar_error of step list * (int * int * int);; let thm steps = let steps',(n1,n2,n3 as n),th = check_proof steps in if n1 + n2 + n3 = 0 then th else raise (Mizar_error(steps',n));; let thm_of_string = thm o parse_proof;; let rec labels_of_steps labels context steps = match steps with | [] -> labels | (_,_,substep)::rst -> (match substep with | Assume(_,labs) | Suppose(_,labs) | Set(_,(_::_ as labs)) -> let label = (labs,ref 0) in labels_of_steps (label::labels) (label::context) rst | Have(_,labs,just) | Thus(_,labs,just) | Consider(_,_,labs,just) | Now(labs,just) -> let label = (labs,ref 0) in let labels1 = labels_of_just (label::labels) context just in labels_of_steps labels1 (label::context) rst | Qed(just) -> let labels1 = labels_of_just labels context just in labels_of_steps labels1 context rst | Cases(just,justl) -> itlist (fun just' labels' -> labels_of_just labels' context just') (rev justl) (labels_of_just labels context just) | Error(_,_) -> raise Noparse | _ -> labels_of_steps labels context rst) and labels_of_just labels context just = let rec collect_strings l = match l with | [] -> [] | Label(s)::l' -> s::collect_strings l' | _::l' -> collect_strings l' in match just with | Proof(_,steps,_) -> labels_of_steps labels context steps | By(x,y,_) -> do_list (fun s -> do_list (fun _,n -> n := !n + 1) (filter (mem s o fst) context)) (subtract (collect_strings (x@y)) ["-"; "*"]); labels | _ -> labels;; let isnumber = forall isnum o explode;; let max_label labels = itlist max (map int_of_string (filter isnumber (flat (map fst labels)))) (-1);; let rec number_labels n labels = match labels with | [] -> [] | (oldlabs,count)::rst -> let newlabs,n' = (if !extra_labels > 1 || !count > 0 || (!extra_labels > 0 && exists isnumber oldlabs) then [string_of_int n],(n + 1) else [],n) in (oldlabs,newlabs)::(number_labels n' rst);; let rec renumber_steps labels context steps = let make_lab x1 y1 x2 y2 x3 y3 s = ([x1,Resword "[",y1; x2,Ident s,y2; x3,Resword "]",y3],[s]) in let rec renumber_labs b w src labs label = match labs with | [] -> if b then (make_lab "" "" "" "" "" w (hd (snd label)))," " else ([],[]),w | lab::rst when isnumber lab -> (match src with | (x1,Resword "[",y1)::(x2,Ident s',y2)::(x3,Resword "]",y3)::rstsrc -> let (src',labs'),w' = renumber_labs false y3 rstsrc rst label in let newsrc,newlabs = if b then make_lab x1 y1 x2 y2 x3 w' (hd (snd label)) else [],[] in ((newsrc@src'),(newlabs@labs')),if b then w else y3 | _ -> failwith "renumber_labs") | lab::rst -> (match src with | tok1::tok2::(x3,y3,z3)::rstsrc -> let (src',labs'),w' = renumber_labs b z3 rstsrc rst label in ((tok1::tok2::(x3,y3,w')::src'),(lab::labs')),w | _ -> failwith "renumber_labs") in let renumber_labs1 b src1 src labs label = let (x,y,w) = last src1 in let (src',labs'),w' = renumber_labs b w src labs label in let src1' = if w' <> w then (butlast src1)@[x,y,w'] else src1 in src1',src',labs' in match steps with | [] -> labels,[] | (e,src,substep)::rst -> (match src with | [src1; src2; src3; src4; src5] -> (match substep with | Assume(x,labs) -> let label = hd labels in let src2',src3',labs' = renumber_labs1 (snd label <> []) src2 src3 labs label in let labels',rst' = renumber_steps (tl labels) (label::context) rst in labels', (e,[src1; src2'; src3'; src4; src5],Assume(x,labs'))::rst' | Suppose(x,labs) -> let label = hd labels in let src2',src3',labs' = renumber_labs1 (snd label <> []) src2 src3 labs label in let labels',rst' = renumber_steps (tl labels) (label::context) rst in labels', (e,[src1; src2'; src3'; src4; src5],Suppose(x,labs'))::rst' | Set(x,(_::_ as labs)) -> let label = hd labels in let src2',src3',labs' = renumber_labs1 (snd label <> []) src2 src3 labs label in let labels',rst' = renumber_steps (tl labels) (label::context) rst in labels', (e,[src1; src2'; src3'; src4; src5],Set(x,labs'))::rst' | Have(x,labs,just) -> let label = hd labels in let src2',src3',labs' = renumber_labs1 (snd label <> []) src2 src3 labs label in let labels',src4',just' = renumber_just (tl labels) context src4 just in let labels'',rst' = renumber_steps labels' (label::context) rst in labels'', ((e,[src1; src2'; src3'; src4'; src5],Have(x,labs',just')):: rst') | Thus(x,labs,just) -> let label = hd labels in let src2',src3',labs' = renumber_labs1 (snd label <> []) src2 src3 labs label in let labels',src4',just' = renumber_just (tl labels) context src4 just in let labels'',rst' = renumber_steps labels' (label::context) rst in labels'', ((e,[src1; src2'; src3'; src4'; src5],Thus(x,labs',just')):: rst') | Qed(just) -> let labels',src4',just' = renumber_just labels context src4 just in let labels'',rst' = renumber_steps labels' context rst in labels'', ((e,[src1; src2; src3; src4'; src5],Qed(just')):: rst') | Consider(x,y,labs,just) -> let label = hd labels in let src2',src3',labs' = renumber_labs1 (snd label <> []) src2 src3 labs label in let labels',src4',just' = renumber_just (tl labels) context src4 just in let labels'',rst' = renumber_steps labels' (label::context) rst in labels'', ((e,[src1; src2'; src3'; src4'; src5], Consider(x,y,labs',just')):: rst') | Now(labs,just) -> let label = hd labels in let src1',src3',labs' = renumber_labs1 (snd label <> []) src1 src3 labs label in let labels',src4',just' = renumber_just (tl labels) context src4 just in let labels'',rst' = renumber_steps labels' (label::context) rst in labels'', ((e,[src1'; src2; src3'; src4'; src5],Now(labs',just')):: rst') | Cases(just,justl) -> let labels',src4',just' = renumber_just labels context src4 just in let labels'',justl'' = itlist (fun just' (labels',justl') -> let labels'',_,just'' = renumber_just labels' context [] just' in labels'',(just''::justl')) (rev justl) (labels',[]) in let labels''',rst' = renumber_steps labels'' context rst in labels''', ((e,[src1; src2; src3; src4'; src5],Cases(just',rev justl'')):: rst') | Error(_,_) -> raise Noparse | _ -> let labels',rst' = renumber_steps labels context rst in labels',((e,src,substep)::rst')) | _ -> failwith "renumber_steps") and renumber_just labels context src just = let rec renumber_by src l = match l with | [] -> [],src,[] | (Label s as x)::l' when isnumber s -> (match src with | tok::(x1,Ident _,x2 as tok')::src23 -> let labs = flat (map snd (filter (mem s o fst) context)) in let src2,src3,l'' = renumber_by src23 l' in if labs = [] then (tok::tok'::src2),src3,(x::l'') else let items = map (fun s -> Label s) labs in let labs' = tl labs in let src1 = flat (map (fun s -> ["",Ident ",",""; "",Ident s,x2]) labs') in (tok::(x1,Ident (hd labs), if labs' = [] then x2 else "")::src1@src2),src3,(items@l'') | _ -> failwith "renumber_by") | x::l' -> let src1,src23 = (match src with | tok::(_,Ident "#",_ as tok1)::(_,Ident s,_ as tok2)::src23 when s <> "," -> [tok;tok1;tok2],src23 | tok::(_,Ident _,_ as tok')::src23 -> [tok;tok'],src23 | _ -> failwith "renumber_by") in let src2,src3,l'' = renumber_by src23 l' in (src1@src2),src3,(x::l'') in match just with | Proof(x,steps,z) -> let labels',steps' = renumber_steps labels context steps in labels',src,Proof(x,steps',z) | By(x,y,z) -> let src1',src2,x' = renumber_by src x in let src2',_,y' = renumber_by src2 y in labels,(src1'@src2'),By(x',y',z) | _ -> labels,src,just;; let renumber_steps1 steps = let labels = rev (labels_of_steps [] [] steps) in let labels' = number_labels (!start_label) labels in snd (renumber_steps labels' [] steps);; let VERBOSE_TAC : bool -> tactic -> tactic = fun v tac g -> let call f x = let v' = !verbose in verbose := v; let y = (try f x with e -> verbose := v'; raise e) in verbose := v'; y in let (mvs,insts),gls,just = call tac g in (mvs,insts),gls,(call just);; let last_thm_internal = ref None;; let last_thm_internal' = ref None;; let last_thm () = match !last_thm_internal with | Some th -> last_thm_internal := None; th | None -> failwith "last_thm";; let check_file_verbose name lemma = let l = String.length name in if l >= 3 && String.sub name (l - 3) 3 = ".ml" then (let _ = exec_phrase false ("loadt \""^name^"\";;") in (0,0,0),TRUTH) else (last_thm_internal := None; let file = Pervasives.open_in name in let n = in_channel_length file in let s = String.create n in really_input file s 0 n; close_in file; let t,x,y = try let steps = parse_proof s in (if !growth_mode then try next_growth_label := 1 + max_label (labels_of_steps [] [] steps) with _ -> ()); let steps',((n1,n2,n3) as x),y = if !silent_server > 0 then let oldstdout = Unix.dup Unix.stdout in let cleanup () = Unix.dup2 oldstdout Unix.stdout in let newstdout = Unix.openfile "/dev/null" [wronly] 0 in Unix.dup2 newstdout Unix.stdout; try let x = check_proof steps in cleanup(); x with e -> cleanup(); raise e else check_proof steps in let steps'' = if !renumber_labels then try renumber_steps1 steps' with Noparse -> steps' else steps' in let y' = if n1 + n2 + n3 = 0 then y else ASSUME (concl y) in last_thm_internal := Some y; last_thm_internal' := Some y'; (match lemma with | Some s -> let _ = exec_phrase (!silent_server < 2 && n1 + n2 + n3 = 0) ("let "^s^" = "^ "match !last_thm_internal' with Some y -> y | None -> TRUTH;;") in by_item_cache := undefined; | None -> ()); string_of_src 0 (src_of_steps steps''),x,y with _ -> ("::#"^"10\n:: 10: MIZ3 EXCEPTION\n"^s),(1,0,0),TRUTH in let file = open_out name in output_string file t; close_out file; x,y);; let check_file name = let (n1,n2,n3),th = check_file_verbose name None in if n1 + n2 + n3 = 0 then th else failwith (string_of_int n1^"+"^string_of_int n2^"+"^string_of_int n3^ " errors");; usr2_handler := fun () -> let cleanup () = let _ = Unix.system ("rm -f "^(!miz3_filename)) in () in try let namefile = Pervasives.open_in !miz3_filename in let name = input_line namefile in let lemma = try Some (input_line namefile) with End_of_file -> None in close_in namefile; let _ = check_file_verbose name lemma in cleanup() with _ -> cleanup();; let exit_proc = ref (fun () -> ());; let server_up () = if Unix.fork() = 0 then (exit_proc := (fun () -> ()); (try let pidfile = open_out !miz3_pid in output_string pidfile ((string_of_int (Unix.getppid()))^"\n"); close_out pidfile with _ -> print_string "server_up failed\n"); exit 0) else let _ = Unix.wait() in ();; let server_down () = if Unix.fork() = 0 then (exit_proc := (fun () -> ()); (try let pidfile = Pervasives.open_in !miz3_pid in let pid_string = input_line pidfile in close_in pidfile; if pid_string <> string_of_int (Unix.getppid()) then failwith "server_down" else let _ = Unix.system ("rm -f "^(!miz3_pid)) in () with _ -> print_string "server_down failed\n"); exit 0) else let _ = Unix.wait() in ();; server_up();; exit_proc := server_down;; at_exit (fun _ -> !exit_proc ());; let reset_miz3 h = horizon := h; timeout := 1; default_prover := ("HOL_BY", CONV_TAC o HOL_BY); sketch_mode := false; just_cache := undefined; by_item_cache := undefined; current_goalstack := []; server_up();;