section \Combining independent secret sources\ text \This theory formalizes the discussion about considering combined sources of secrets from \cite[Appendix E]{cosmedis-SandP2017}. \ theory Independent_Secrets imports Bounded_Deducibility_Security.BD_Security_TS begin locale Abstract_BD_Security_Two_Secrets = One: Abstract_BD_Security validSystemTrace V1 O1 B1 TT1 + Two: Abstract_BD_Security validSystemTrace V2 O2 B2 TT2 for validSystemTrace :: "'traces \ bool" and V1 :: "'traces \ 'values1" and O1 :: "'traces \ 'observations1" and (* declassification bound: *) B1 :: "'values1 \ 'values1 \ bool" and (* declassification trigger: *) TT1 :: "'traces \ bool" and V2 :: "'traces \ 'values2" and O2 :: "'traces \ 'observations2" and (* declassification bound: *) B2 :: "'values2 \ 'values2 \ bool" and (* declassification trigger: *) TT2 :: "'traces \ bool" + fixes O :: "'traces \ 'observations" assumes O1_O: "O1 tr = O1 tr' \ validSystemTrace tr \ validSystemTrace tr' \ O tr = O tr'" and O2_O: "O2 tr = O2 tr' \ validSystemTrace tr \ validSystemTrace tr' \ O tr = O tr'" and O1_V2: "O1 tr = O1 tr' \ validSystemTrace tr \ validSystemTrace tr' \ B1 (V1 tr) (V1 tr') \ V2 tr = V2 tr'" and O2_V1: "O2 tr = O2 tr' \ validSystemTrace tr \ validSystemTrace tr' \ B2 (V2 tr) (V2 tr') \ V1 tr = V1 tr'" and O1_TT2: "O1 tr = O1 tr' \ validSystemTrace tr \ validSystemTrace tr' \ B1 (V1 tr) (V1 tr') \ TT2 tr = TT2 tr'" begin definition "V tr = (V1 tr, V2 tr)" definition "B vl vl' = (B1 (fst vl) (fst vl') \ B2 (snd vl) (snd vl'))" definition "TT tr = (TT1 tr \ TT2 tr)" sublocale Abstract_BD_Security validSystemTrace V O B TT . theorem two_secure: assumes "One.secure" and "Two.secure" shows "secure" unfolding secure_def proof (intro allI impI, elim conjE) fix tr vl vl' assume tr: "validSystemTrace tr" and TT: "TT tr" and B: "B vl vl'" and V_tr: "V tr = vl" then obtain vl1' vl2' where vl: "vl = (V1 tr, V2 tr)" and vl': "vl' = (vl1', vl2')" by (cases vl, cases vl') (auto simp: V_def) obtain tr' where tr': "validSystemTrace tr'" and O1: "O1 tr' = O1 tr" and V1: "V1 tr' = vl1'" using assms(1) tr TT B by (auto elim: One.secureE simp: TT_def B_def V_def vl vl') then have O': "O tr' = O tr" and V2': "V2 tr = V2 tr'" and TT2': "TT2 tr = TT2 tr'" using B tr V1 by (auto intro: O1_O O1_V2 simp: O1_TT2 B_def vl vl') obtain tr'' where tr'': "validSystemTrace tr''" and O2: "O2 tr'' = O2 tr'" and V2: "V2 tr'' = vl2'" using assms(2) tr' TT2' TT B V2' by (elim Two.secureE[of tr' vl2']) (auto simp: TT_def B_def vl vl') moreover then have "O tr'' = O tr'" and "V1 tr' = V1 tr''" using B tr' V2 by (auto intro: O2_O O2_V1 simp: B_def V2' vl vl') ultimately show "\tr1. validSystemTrace tr1 \ O tr1 = O tr \ V tr1 = vl'" unfolding V_def V1 vl' O' by auto qed end locale BD_Security_TS_Two_Secrets = One: BD_Security_TS istate validTrans srcOf tgtOf \1 f1 \1 g1 T1 B1 + Two: BD_Security_TS istate validTrans srcOf tgtOf \2 f2 \2 g2 T2 B2 for istate :: 'state and validTrans :: "'trans \ bool" and srcOf :: "'trans \ 'state" and tgtOf :: "'trans \ 'state" and \1 :: "'trans \ bool" and f1 :: "'trans \ 'val1" and \1 :: "'trans \ bool" and g1 :: "'trans \ 'obs1" and T1 :: "'trans \ bool" and B1 :: "'val1 list \ 'val1 list \ bool" and \2 :: "'trans \ bool" and f2 :: "'trans \ 'val2" and \2 :: "'trans \ bool" and g2 :: "'trans \ 'obs2" and T2 :: "'trans \ bool" and B2 :: "'val2 list \ 'val2 list \ bool" + fixes \ :: "'trans \ bool" and g :: "'trans \ 'obs" assumes \_\12: "\tr trn. One.validFrom istate (tr ## trn) \ \ trn \ \1 trn \ \2 trn" and O1_\: "\tr tr' trn trn'. One.O tr = One.O tr' \ One.validFrom istate (tr ## trn) \ One.validFrom istate (tr' ## trn') \ \1 trn \ \1 trn' \ g1 trn = g1 trn' \ \ trn = \ trn'" and O1_g: "\tr tr' trn trn'. One.O tr = One.O tr' \ One.validFrom istate (tr ## trn) \ One.validFrom istate (tr' ## trn') \ \1 trn \ \1 trn' \ g1 trn = g1 trn' \ \ trn \ \ trn' \ g trn = g trn'" and O2_\: "\tr tr' trn trn'. Two.O tr = Two.O tr' \ One.validFrom istate (tr ## trn) \ One.validFrom istate (tr' ## trn') \ \2 trn \ \2 trn' \ g2 trn = g2 trn' \ \ trn = \ trn'" and O2_g: "\tr tr' trn trn'. Two.O tr = Two.O tr' \ One.validFrom istate (tr ## trn) \ One.validFrom istate (tr' ## trn') \ \2 trn \ \2 trn' \ g2 trn = g2 trn' \ \ trn \ \ trn' \ g trn = g trn'" and \2_\1: "\tr trn. One.validFrom istate (tr ## trn) \ \2 trn \ \1 trn" and \1_\2: "\tr tr' trn trn'. One.O tr = One.O tr' \ One.validFrom istate (tr ## trn) \ One.validFrom istate (tr' ## trn') \ \1 trn \ \1 trn' \ g1 trn = g1 trn' \ \2 trn = \2 trn'" and g1_f2: "\tr tr' trn trn'. One.O tr = One.O tr' \ One.validFrom istate (tr ## trn) \ One.validFrom istate (tr' ## trn') \ \1 trn \ \1 trn' \ g1 trn = g1 trn' \ \2 trn \ \2 trn' \ f2 trn = f2 trn'" and \1_\2: "\tr trn. One.validFrom istate (tr ## trn) \ \1 trn \ \2 trn" and \2_\1: "\tr tr' trn trn'. Two.O tr = Two.O tr' \ One.validFrom istate (tr ## trn) \ One.validFrom istate (tr' ## trn') \ \2 trn \ \2 trn' \ g2 trn = g2 trn' \ \1 trn = \1 trn'" and g2_f1: "\tr tr' trn trn'. Two.O tr = Two.O tr' \ One.validFrom istate (tr ## trn) \ One.validFrom istate (tr' ## trn') \ \2 trn \ \2 trn' \ g2 trn = g2 trn' \ \1 trn \ \1 trn' \ f1 trn = f1 trn'" and T2_\1: "\tr trn. One.validFrom istate (tr ## trn) \ never T2 tr \ T2 trn \ \1 trn" and \1_T2: "\tr tr' trn trn'. One.O tr = One.O tr' \ One.validFrom istate (tr ## trn) \ One.validFrom istate (tr' ## trn') \ \1 trn \ \1 trn' \ g1 trn = g1 trn' \ T2 trn = T2 trn'" begin definition "O tr = map g (filter \ tr)" lemma O_Nil_never: "O tr = [] \ never \ tr" unfolding O_def by (induction tr) auto lemma Nil_O_never: "[] = O tr \ never \ tr" unfolding O_def by (induction tr) auto lemma O_append: "O (tr @ tr') = O tr @ O tr'" unfolding O_def by auto lemma never_\12_never_\: "One.validFrom istate (tr @ tr') \ never \1 tr' \ never \2 tr' \ never \ tr'" proof (induction tr' rule: rev_induct) case (snoc trn tr') then show ?case using \_\12[of "tr @ tr'" trn] by (auto simp: One.validFrom_append) qed auto lemma never_\1_never_\2: "One.validFrom istate (tr @ tr') \ never \1 tr' \ never \2 tr'" proof (induction tr' rule: rev_induct) case (snoc trn tr') then show ?case using \2_\1[of "tr @ tr'" trn] by (auto simp: One.validFrom_append) qed auto lemma never_\2_never_\1: "One.validFrom istate (tr @ tr') \ never \2 tr' \ never \1 tr'" proof (induction tr' rule: rev_induct) case (snoc trn tr') then show ?case using \1_\2[of "tr @ tr'" trn] by (auto simp: One.validFrom_append) qed auto lemma never_\1_never_T2: "One.validFrom istate (tr @ tr') \ never T2 tr \ never \1 tr' \ never T2 tr'" proof (induction tr' rule: rev_induct) case (snoc trn tr') then show ?case using T2_\1[of "tr @ tr'" trn] by (auto simp: One.validFrom_append) qed auto sublocale Abstract_BD_Security_Two_Secrets "One.validFrom istate" One.V One.O B1 "never T1" Two.V Two.O B2 "never T2" O proof fix tr tr' assume "One.O tr = One.O tr'" "One.validFrom istate tr" "One.validFrom istate tr'" then show "O tr = O tr'" proof (induction "One.O tr" arbitrary: tr tr' rule: rev_induct) case (Nil tr tr') then have tr: "O tr = []" using never_\12_never_\[of "[]" tr] by (auto simp: O_Nil_never One.O_Nil_never) show "O tr = O tr'" using Nil never_\12_never_\[of "[]" tr'] by (auto simp: tr Nil_O_never One.Nil_O_never) next case (snoc obs obsl tr tr') obtain tr1 trn tr2 where tr: "tr = tr1 @ [trn] @ tr2" and trn: "\1 trn" "g1 trn = obs" and tr1: "One.O tr1 = obsl" and tr2: "never \1 tr2" using snoc(2) One.O_eq_RCons[of tr obsl obs] by auto obtain tr1' trn' tr2' where tr': "tr' = tr1' @ [trn'] @ tr2'" and trn': "\1 trn'" "g1 trn' = obs" and tr1': "One.O tr1' = obsl" and tr2': "never \1 tr2'" using snoc(2,3) One.O_eq_RCons[of tr' obsl obs] by auto have "O tr1 = O tr1'" using snoc(1)[of tr1 tr1'] tr1 tr1' snoc(4,5) unfolding tr tr' by (auto simp: One.validFrom_append) moreover have "O [trn] = O [trn']" using O1_\[of tr1 tr1' trn trn'] O1_g[of tr1 tr1' trn trn'] using snoc(4,5) tr1 tr1' trn trn' by (auto simp: tr tr' O_def One.validFrom_append One.validFrom_Cons) moreover have "O tr2 = []" and "O tr2' = []" using tr2 tr2' using never_\12_never_\[of "tr1 ## trn" tr2] never_\12_never_\[of "tr1' ## trn'" tr2'] using snoc(4,5) unfolding tr tr' by (auto simp: O_Nil_never) ultimately show "O tr = O tr'" unfolding tr tr' O_append by auto qed next fix tr tr' assume "Two.O tr = Two.O tr'" "One.validFrom istate tr" "One.validFrom istate tr'" then show "O tr = O tr'" proof (induction "Two.O tr" arbitrary: tr tr' rule: rev_induct) case (Nil tr tr') then have tr: "O tr = []" using never_\12_never_\[of "[]" tr] by (auto simp: O_Nil_never Two.O_Nil_never) show "O tr = O tr'" using Nil never_\12_never_\[of "[]" tr'] by (auto simp: tr Nil_O_never Two.Nil_O_never) next case (snoc obs obsl tr tr') obtain tr1 trn tr2 where tr: "tr = tr1 @ [trn] @ tr2" and trn: "\2 trn" "g2 trn = obs" and tr1: "Two.O tr1 = obsl" and tr2: "never \2 tr2" using snoc(2) Two.O_eq_RCons[of tr obsl obs] by auto obtain tr1' trn' tr2' where tr': "tr' = tr1' @ [trn'] @ tr2'" and trn': "\2 trn'" "g2 trn' = obs" and tr1': "Two.O tr1' = obsl" and tr2': "never \2 tr2'" using snoc(2,3) Two.O_eq_RCons[of tr' obsl obs] by auto have "O tr1 = O tr1'" using snoc(1)[of tr1 tr1'] tr1 tr1' snoc(4,5) unfolding tr tr' by (auto simp: One.validFrom_append) moreover have "O [trn] = O [trn']" using O2_\[of tr1 tr1' trn trn'] O2_g[of tr1 tr1' trn trn'] using snoc(4,5) tr1 tr1' trn trn' by (auto simp: tr tr' O_def One.validFrom_append One.validFrom_Cons) moreover have "O tr2 = []" and "O tr2' = []" using tr2 tr2' using never_\12_never_\[of "tr1 ## trn" tr2] never_\12_never_\[of "tr1' ## trn'" tr2'] using snoc(4,5) unfolding tr tr' by (auto simp: O_Nil_never) ultimately show "O tr = O tr'" unfolding tr tr' O_append by auto qed next fix tr tr' assume "One.O tr = One.O tr'" "One.validFrom istate tr" "One.validFrom istate tr'" then show "Two.V tr = Two.V tr'" proof (induction "One.O tr" arbitrary: tr tr' rule: rev_induct) case (Nil tr tr') then have tr: "Two.V tr = []" using never_\1_never_\2[of "[]" tr] unfolding Two.V_Nil_never One.Nil_O_never by auto show "Two.V tr = Two.V tr'" using never_\1_never_\2[of "[]" tr'] using Nil unfolding tr Two.Nil_V_never One.O_Nil_never[symmetric] by auto next case (snoc obs obsl tr tr') obtain tr1 trn tr2 where tr: "tr = tr1 @ [trn] @ tr2" and trn: "\1 trn" "g1 trn = obs" and tr1: "One.O tr1 = obsl" and tr2: "never \1 tr2" using snoc(2) One.O_eq_RCons[of tr obsl obs] by auto obtain tr1' trn' tr2' where tr': "tr' = tr1' @ [trn'] @ tr2'" and trn': "\1 trn'" "g1 trn' = obs" and tr1': "One.O tr1' = obsl" and tr2': "never \1 tr2'" using snoc(2,3) One.O_eq_RCons[of tr' obsl obs] by auto have "Two.V tr1 = Two.V tr1'" using snoc(1)[of tr1 tr1'] tr1 tr1' snoc(4,5) unfolding tr tr' by (auto simp: One.validFrom_append) moreover have "Two.V [trn] = Two.V [trn']" using \1_\2[of tr1 tr1' trn trn'] g1_f2[of tr1 tr1' trn trn'] using snoc(4,5) tr1 tr1' trn trn' unfolding tr tr' Two.V_map_filter by (auto simp: One.validFrom_append One.validFrom_Cons) moreover have "Two.V tr2 = []" and "Two.V tr2' = []" using tr2 tr2' using never_\1_never_\2[of "tr1 ## trn" tr2] never_\1_never_\2[of "tr1' ## trn'" tr2'] using snoc(4,5) unfolding tr tr' by (auto simp: Two.V_Nil_never) ultimately show "Two.V tr = Two.V tr'" unfolding tr tr' Two.V_append by auto qed next fix tr tr' assume "Two.O tr = Two.O tr'" "One.validFrom istate tr" "One.validFrom istate tr'" then show "One.V tr = One.V tr'" proof (induction "Two.O tr" arbitrary: tr tr' rule: rev_induct) case (Nil tr tr') then have tr: "One.V tr = []" using never_\2_never_\1[of "[]" tr] unfolding One.V_Nil_never Two.Nil_O_never by auto show "One.V tr = One.V tr'" using never_\2_never_\1[of "[]" tr'] using Nil unfolding tr One.Nil_V_never Two.O_Nil_never[symmetric] by auto next case (snoc obs obsl tr tr') obtain tr1 trn tr2 where tr: "tr = tr1 @ [trn] @ tr2" and trn: "\2 trn" "g2 trn = obs" and tr1: "Two.O tr1 = obsl" and tr2: "never \2 tr2" using snoc(2) Two.O_eq_RCons[of tr obsl obs] by auto obtain tr1' trn' tr2' where tr': "tr' = tr1' @ [trn'] @ tr2'" and trn': "\2 trn'" "g2 trn' = obs" and tr1': "Two.O tr1' = obsl" and tr2': "never \2 tr2'" using snoc(2,3) Two.O_eq_RCons[of tr' obsl obs] by auto have "One.V tr1 = One.V tr1'" using snoc(1)[of tr1 tr1'] tr1 tr1' snoc(4,5) unfolding tr tr' by (auto simp: One.validFrom_append) moreover have "One.V [trn] = One.V [trn']" using \2_\1[of tr1 tr1' trn trn'] g2_f1[of tr1 tr1' trn trn'] using snoc(4,5) tr1 tr1' trn trn' unfolding tr tr' Two.V_map_filter by (auto simp: One.validFrom_append One.validFrom_Cons) moreover have "One.V tr2 = []" and "One.V tr2' = []" using tr2 tr2' using never_\2_never_\1[of "tr1 ## trn" tr2] never_\2_never_\1[of "tr1' ## trn'" tr2'] using snoc(4,5) unfolding tr tr' by (auto simp: One.V_Nil_never) ultimately show "One.V tr = One.V tr'" unfolding tr tr' One.V_append by auto qed next fix tr tr' assume "One.O tr = One.O tr'" "One.validFrom istate tr" "One.validFrom istate tr'" then show "never T2 tr = never T2 tr'" proof (induction "One.O tr" arbitrary: tr tr' rule: rev_induct) case (Nil tr tr') then have tr: "never T2 tr" using never_\1_never_T2[of "[]" tr] unfolding Two.V_Nil_never One.Nil_O_never by auto then show "never T2 tr = never T2 tr'" using never_\1_never_T2[of "[]" tr'] using Nil unfolding tr Two.Nil_V_never One.O_Nil_never[symmetric] by auto next case (snoc obs obsl tr tr') obtain tr1 trn tr2 where tr: "tr = tr1 @ [trn] @ tr2" and trn: "\1 trn" "g1 trn = obs" and tr1: "One.O tr1 = obsl" and tr2: "never \1 tr2" using snoc(2) One.O_eq_RCons[of tr obsl obs] by auto obtain tr1' trn' tr2' where tr': "tr' = tr1' @ [trn'] @ tr2'" and trn': "\1 trn'" "g1 trn' = obs" and tr1': "One.O tr1' = obsl" and tr2': "never \1 tr2'" using snoc(2,3) One.O_eq_RCons[of tr' obsl obs] by auto have "never T2 tr1 = never T2 tr1'" using snoc(1)[of tr1 tr1'] tr1 tr1' snoc(4,5) unfolding tr tr' by (auto simp: One.validFrom_append) moreover have "T2 trn = T2 trn'" using \1_T2[of tr1 tr1' trn trn'] using snoc(4,5) tr1 tr1' trn trn' unfolding tr tr' Two.V_map_filter by (auto simp: One.validFrom_append One.validFrom_Cons) moreover have "never T2 (tr1 ## trn) \ never T2 tr2" and "never T2 (tr1' ## trn') \ never T2 tr2'" using never_\1_never_T2[of "tr1 ## trn" tr2] never_\1_never_T2[of "tr1' ## trn'" tr2'] using tr2 tr2' snoc(4,5) unfolding tr tr' by (auto simp: Two.V_Nil_never) ultimately show "never T2 tr = never T2 tr'" unfolding tr tr' by auto qed qed end end