import Lbar.functor import combinatorial_lemma.finite import algebra.module.linear_map import pseudo_normed_group.bounded_limits import for_mathlib.Profinite.disjoint_union import category_theory.limits.shapes.products import topology.category.Compactum noncomputable theory open_locale nnreal big_operators universe u section variables (r : ℝ≥0) [fact (0 < r)] (Λ : Type u) [polyhedral_lattice Λ] open category_theory open category_theory.limits lemma polyhedral_exhaustive (M : Type*) [pseudo_normed_group M] (e : ∀ x : M, ∃ c, x ∈ pseudo_normed_group.filtration M c) (x : Λ →+ M) : ∃ c : ℝ≥0, x ∈ pseudo_normed_group.filtration (Λ →+ M) c := begin obtain ⟨ι,hι,l,hl,h⟩ := polyhedral_lattice.polyhedral Λ, resetI, let cs : ι → ℝ≥0 := λ i, (e (x (l i))).some, let c := finset.univ.sup (λ i, cs i / ∥l i∥₊), -- This should be easy, using the fact that (l i) ≠ 0. have hc : ∀ i, cs i ≤ c * ∥l i∥₊, { intro i, rw ← mul_inv_le_iff₀, { exact finset.le_sup (finset.mem_univ i), }, { rw [ne.def, nnnorm_eq_zero], exact h i }, }, use c, rw generates_norm.add_monoid_hom_mem_filtration_iff hl x, intros i, apply pseudo_normed_group.filtration_mono (hc i), apply (e (x (l i))).some_spec, end @[simps] def polyhedral_postcompose {M N : ProFiltPseuNormGrpWithTinv₁ r} (f : M ⟶ N) : comphaus_filtered_pseudo_normed_group_with_Tinv_hom r (Λ →+ M) (Λ →+ N) := { to_fun := λ x, f.to_add_monoid_hom.comp x, map_zero' := by simp only [add_monoid_hom.comp_zero], map_add' := by { intros, ext, dsimp, erw [f.to_add_monoid_hom.map_add], refl, }, strict' := begin obtain ⟨ι,hι,l,hl,h⟩ := polyhedral_lattice.polyhedral Λ, resetI, intros c x hx, erw generates_norm.add_monoid_hom_mem_filtration_iff hl at hx ⊢, intros i, apply f.strict, exact hx i, end, continuous' := λ c, begin rw polyhedral_lattice.add_monoid_hom.continuous_iff, intro l, simp only, have aux1 := polyhedral_lattice.add_monoid_hom.incl_continuous Λ r M c, have aux2 := f.level_continuous (c * ∥l∥₊), exact (aux2.comp (continuous_apply l)).comp aux1, end, map_Tinv' := λ x, by { ext l, dsimp, erw f.map_Tinv, refl, } } /-- the functor `M ↦ Hom(Λ, M), where both are considered as objects in `ProFiltPseuNormGrpWithTinv₁.{u} r` -/ @[simps] def hom_functor : ProFiltPseuNormGrpWithTinv₁.{u} r ⥤ ProFiltPseuNormGrpWithTinv₁.{u} r := { obj := λ M, { M := Λ →+ M, str := infer_instance, exhaustive' := by { apply polyhedral_exhaustive, apply M.exhaustive r } }, map := λ M N f, polyhedral_postcompose _ _ f, map_id' := λ M, begin ext, dsimp [polyhedral_postcompose], simp, end, map_comp' := λ M N L f g, begin ext, dsimp [polyhedral_postcompose], simp, end } . @[simps] def polyhedral_postcompose' {M N : PseuNormGrp₁} (f : M ⟶ N) : strict_pseudo_normed_group_hom (Λ →+ M) (Λ →+ N) := { to_fun := λ x, f.to_add_monoid_hom.comp x, map_zero' := by simp only [add_monoid_hom.comp_zero], map_add' := by { intros, ext, dsimp, erw [f.to_add_monoid_hom.map_add], refl, }, strict' := begin obtain ⟨ι,hι,l,hl,h⟩ := polyhedral_lattice.polyhedral Λ, resetI, intros c x hx, erw generates_norm.add_monoid_hom_mem_filtration_iff hl at hx ⊢, intros i, apply f.strict, exact hx i, end } @[simps] def hom_functor' : PseuNormGrp₁.{u} ⥤ PseuNormGrp₁.{u} := { obj := λ M, { carrier := Λ →+ M , exhaustive' := by { apply polyhedral_exhaustive, apply M.exhaustive } }, map := λ M N f, polyhedral_postcompose' _ f, map_id' := λ X, by { ext, refl }, map_comp' := λ X Y Z f g, by { ext, refl } } open category_theory.limits PseuNormGrp₁ variables {J : Type u} [small_category J] (K : J ⥤ PseuNormGrp₁.{u}) def Ab.limit_cone' {J : Type u} [small_category J] (K : J ⥤ Ab.{u}) : limit_cone K := ⟨Ab.explicit_limit_cone.{u u} _, Ab.explicit_limit_cone_is_limit.{u u} _⟩ attribute [simps] to_Ab Ab.limit_cone' abbreviation hom_functor'_cone_iso_hom_to_fun_aux_to_fun_aux_val_aux (Λ : Type u) {J : Type u} [polyhedral_lattice Λ] [small_category J] (K : J ⥤ PseuNormGrp₁) (f : ↥(bounded_cone_point (Ab.limit_cone' ((K ⋙ hom_functor' Λ) ⋙ to_Ab)))) (q : Λ) : ↥((Ab.limit_cone' (K ⋙ to_Ab)).cone.X) := { val := λ j, (f.1.1 j).1 q, property := begin intros a b g, have := f.1.2 g, dsimp at this ⊢, rw ← this, refl, end } abbreviation hom_functor'_cone_iso_hom_to_fun_aux_to_fun_aux (Λ : Type u) {J : Type u} [polyhedral_lattice Λ] [small_category J] (K : J ⥤ PseuNormGrp₁) (f : ↥(bounded_cone_point (Ab.limit_cone' ((K ⋙ hom_functor' Λ) ⋙ to_Ab)))) : Λ → ↥(bounded_cone_point (Ab.limit_cone' (K ⋙ to_Ab))) := λ q, { val := hom_functor'_cone_iso_hom_to_fun_aux_to_fun_aux_val_aux Λ _ f q, property := begin obtain ⟨c,hc⟩ := f.2, use c * ∥q∥₊, intros j, apply hc, simp, end } abbreviation hom_functor'_cone_iso_hom_to_fun_aux (Λ : Type u) {J : Type u} [polyhedral_lattice Λ] [small_category J] (K : J ⥤ PseuNormGrp₁) : ↥(bounded_cone_point (Ab.limit_cone' ((K ⋙ hom_functor' Λ) ⋙ to_Ab))) → ↥((hom_functor' Λ).obj (bounded_cone_point (Ab.limit_cone' (K ⋙ to_Ab)))) := λ f, { to_fun := hom_functor'_cone_iso_hom_to_fun_aux_to_fun_aux _ _ f, map_zero' := by { ext, simpa }, map_add' := λ x y, by { ext, simpa } } def hom_functor'_cone_iso_hom : bounded_cone_point (Ab.limit_cone' ((K ⋙ hom_functor' Λ) ⋙ _)) ⟶ (hom_functor' Λ).obj (bounded_cone_point (Ab.limit_cone' (K ⋙ _))) := { to_fun := hom_functor'_cone_iso_hom_to_fun_aux _ _, map_zero' := by { ext, simpa }, map_add' := λ x y, by { ext, simpa }, strict' := begin intros c x hx, obtain ⟨⟨d,hc⟩,rfl⟩ := hx, intros e q hq, dsimp [bounded_elements.filt_incl], delta hom_functor'_cone_iso_hom_to_fun_aux_to_fun_aux, delta hom_functor'_cone_iso_hom_to_fun_aux_to_fun_aux_val_aux, refine ⟨⟨_,_⟩,rfl⟩, intros j, apply hc _ hq, end } abbreviation hom_functor'_cone_iso_inv_to_fun_aux_val_aux_val_aux (Λ : Type u) {J : Type u} [polyhedral_lattice Λ] [small_category J] (K : J ⥤ PseuNormGrp₁) (f : ↥((hom_functor' Λ).obj (bounded_cone_point (Ab.limit_cone' (K ⋙ to_Ab))))) : Π (j : J), (((K ⋙ hom_functor' Λ) ⋙ to_Ab) ⋙ forget Ab).obj j := λ j, { to_fun := λ q, (f.1 q).1.1 j, map_zero' := by simpa, map_add' := λ x y, by simpa } abbreviation hom_functor'_cone_iso_inv_to_fun_aux_val_aux (Λ : Type u) {J : Type u} [polyhedral_lattice Λ] [small_category J] (K : J ⥤ PseuNormGrp₁) (f : ↥((hom_functor' Λ).obj (bounded_cone_point (Ab.limit_cone' (K ⋙ to_Ab))))) : ↥((Ab.limit_cone' ((K ⋙ hom_functor' Λ) ⋙ to_Ab)).cone.X) := { val := hom_functor'_cone_iso_inv_to_fun_aux_val_aux_val_aux _ _ f, property := begin intros i j g, ext q, change Λ →+ _ at f, exact (f q).1.2 g, end } abbreviation hom_functor'_cone_iso_inv_to_fun_aux (Λ : Type u) {J : Type u} [polyhedral_lattice Λ] [small_category J] (K : J ⥤ PseuNormGrp₁) : ↥((hom_functor' Λ).obj (bounded_cone_point (Ab.limit_cone' (K ⋙ to_Ab)))) → ↥(bounded_cone_point (Ab.limit_cone' ((K ⋙ hom_functor' Λ) ⋙ to_Ab))) := λ f, { val := hom_functor'_cone_iso_inv_to_fun_aux_val_aux _ _ f, property := begin obtain ⟨c,hc⟩ := ((hom_functor' Λ).obj (bounded_cone_point (Ab.limit_cone' (K ⋙ to_Ab)))).exhaustive f, use c, intros j d q hq, dsimp [Ab.explicit_limit_cone], specialize hc hq, obtain ⟨t,ht⟩ := hc, rw ← ht, apply t.2, end } def hom_functor'_cone_iso_inv : (hom_functor' Λ).obj (bounded_cone_point (Ab.limit_cone' (K ⋙ _))) ⟶ bounded_cone_point (Ab.limit_cone' ((K ⋙ hom_functor' Λ) ⋙ _)) := { to_fun := hom_functor'_cone_iso_inv_to_fun_aux _ _, map_zero' := by { ext, simpa }, map_add' := λ x y, by { ext, simpa }, strict' := begin intros c x hx, dsimp, refine ⟨⟨_,_⟩,rfl⟩, intros j d q hq, dsimp [Ab.explicit_limit_cone], specialize hx hq, obtain ⟨t,ht⟩ := hx, rw ← ht, apply t.2, end } def hom_functor'_cone_iso_aux : bounded_cone_point (Ab.limit_cone' ((K ⋙ hom_functor' Λ) ⋙ _)) ≅ (hom_functor' Λ).obj (bounded_cone_point (Ab.limit_cone' (K ⋙ _))) := { hom := hom_functor'_cone_iso_hom _ _, inv := hom_functor'_cone_iso_inv _ _, hom_inv_id' := by { ext, refl }, inv_hom_id' := by { ext, refl } } def hom_functor_cone_iso : bounded_cone (Ab.limit_cone' ((K ⋙ hom_functor' Λ) ⋙ _)) ≅ (hom_functor' Λ).map_cone (bounded_cone (Ab.limit_cone' (K ⋙ _))) := cones.ext (hom_functor'_cone_iso_aux _ _) $ λ j, by { ext, refl } instance : preserves_limits (hom_functor' Λ) := begin constructor, introsI J hJ, constructor, intros K, apply preserves_limit_of_preserves_limit_cone (PseuNormGrp₁.bounded_cone_is_limit ⟨_, Ab.explicit_limit_cone_is_limit.{u u} _⟩), refine is_limit.of_iso_limit (PseuNormGrp₁.bounded_cone_is_limit ⟨_,Ab.explicit_limit_cone_is_limit.{u u} _⟩) _, apply hom_functor_cone_iso, end instance (c) : preserves_limits (hom_functor'.{u} Λ ⋙ PseuNormGrp₁.level.obj c) := @limits.comp_preserves_limits _ _ _ _ _ _ _ _ _ $ show preserves_limits _, from PseuNormGrp₁.preserves_limits_level_obj.{u u} _ def ProFiltPseuNormGrpWithTinv₁.to_PNG₁ : ProFiltPseuNormGrpWithTinv₁ r ⥤ PseuNormGrp₁ := { obj := λ M, { carrier := M, exhaustive' := M.exhaustive r }, map := λ X Y f, { strict' := λ c x h, f.strict h .. f.to_add_monoid_hom } } def drop_Profinite_drop_Tinv : PFPNGT₁_to_PFPNG₁ₑₗ r ⋙ ProFiltPseuNormGrp₁.to_PNG₁ ≅ ProFiltPseuNormGrpWithTinv₁.to_PNG₁ r := nat_iso.of_components (λ X, iso.refl _) $ by tidy instance : preserves_limits (ProFiltPseuNormGrpWithTinv₁.to_PNG₁ r) := preserves_limits_of_nat_iso (drop_Profinite_drop_Tinv r) def hom_functor'_forget_iso (c) : ProFiltPseuNormGrpWithTinv₁.to_PNG₁ r ⋙ hom_functor' Λ ⋙ PseuNormGrp₁.level.obj c ≅ hom_functor _ Λ ⋙ PFPNGT₁_to_PFPNG₁ₑₗ r ⋙ ProFiltPseuNormGrp₁.level.obj c ⋙ forget _ := nat_iso.of_components (λ X, eq_to_iso rfl) $ by tidy instance hom_functor_level_preserves_limits (c) : preserves_limits ( hom_functor r Λ ⋙ PFPNGT₁_to_PFPNG₁ₑₗ r ⋙ ProFiltPseuNormGrp₁.level.obj c ) := begin apply preserves_limits_of_reflects_of_preserves _ (forget Profinite), apply preserves_limits_of_nat_iso (hom_functor'_forget_iso _ _ _), change preserves_limits (ProFiltPseuNormGrpWithTinv₁.to_PNG₁ r ⋙ (hom_functor' Λ ⋙ PseuNormGrp₁.level.obj c)), apply limits.comp_preserves_limits, end end