import for_mathlib.ab5 namespace category_theory universes v u variables {A : Type u} [category.{v} A] [abelian A] [limits.has_colimits A] [AB5 A] def mono_colim_map_of_mono {J : Type v} [small_category J] [is_filtered J] {F G : J ⥤ A} (η : F ⟶ G) [∀ i, mono (η.app i)] : mono (limits.colim_map η) := begin haveI : limits.preserves_finite_limits (limits.colim : (J ⥤ A) ⥤ A) := functor.preserves_finite_limits_of_exact _ (AB5.cond A J), rw abelian.mono_iff_kernel_ι_eq_zero, let e : limits.kernel (limits.colim_map η) ≅ limits.colimit (limits.kernel η) := (limits.preserves_kernel.iso (limits.colim : (J ⥤ A) ⥤ A) η).symm, have he : limits.kernel.ι (limits.colim_map η) = e.hom ≫ limits.colim_map (limits.kernel.ι η), { dsimp [e], rw iso.eq_inv_comp, simp, dsimp [limits.kernel_comparison], erw limits.kernel.lift_ι, refl, }, rw he, simp only [preadditive.is_iso.comp_left_eq_zero], ext j, simp only [limits.ι_colim_map, limits.comp_zero], let q : (limits.kernel η).obj j ≅ limits.kernel (η.app j) := limits.preserves_kernel.iso ((evaluation _ A).obj j) η, have : (limits.kernel.ι η).app j = q.hom ≫ limits.kernel.ι _, { simp, dsimp [limits.kernel_comparison], simp, }, rw this, have : mono (η.app j) := infer_instance, rw abelian.mono_iff_kernel_ι_eq_zero at this, simp [this], end end category_theory