import for_mathlib.exact_seq3 import for_mathlib.bicartesian2 . open category_theory category_theory.limits universe u local notation `𝓐` := Ab.{u} -- Consider the following diagram variables { Kv₁ Kv₂ : 𝓐} variables {Kh₁ A₁₁ A₁₂ Qh₁ : 𝓐} variables {Kh₂ A₂₁ A₂₂ Qh₂ : 𝓐} variables { Qv₁ Qv₂ : 𝓐} -- with morphisms variables (fKv : Kv₁ ⟶ Kv₂) variables {ιv₁ : Kv₁ ⟶ A₁₁} {ιv₂ : Kv₂ ⟶ A₁₂} variables {ιh₁ : Kh₁ ⟶ A₁₁} {f₁ : A₁₁ ⟶ A₁₂} {πh₁ : A₁₂ ⟶ Qh₁} variables (gKh : Kh₁ ⟶ Kh₂) {g₁ : A₁₁ ⟶ A₂₁} {g₂ : A₁₂ ⟶ A₂₂} (gQh : Qh₁ ⟶ Qh₂) variables {ιh₂ : Kh₂ ⟶ A₂₁} {f₂ : A₂₁ ⟶ A₂₂} {πh₂ : A₂₂ ⟶ Qh₂} variables {πv₁ : A₂₁ ⟶ Qv₁} {πv₂ : A₂₂ ⟶ Qv₂} variables (fQv : Qv₁ ⟶ Qv₂) -- with exact rows and columns variables (H₁ : exact_seq 𝓐 [ιh₁, f₁, πh₁]) variables (H₂ : exact_seq 𝓐 [ιh₂, f₂, πh₂]) variables (V₁ : exact_seq 𝓐 [ιv₁, g₁, πv₁]) variables (V₂ : exact_seq 𝓐 [ιv₂, g₂, πv₂]) -- and such that all the extremal maps are appropriately monos or epis variables [mono ιv₁] [mono ιv₂] [mono ιh₁] [mono ιh₂] variables [epi πv₁] [epi πv₂] [epi πh₁] [epi πh₂] -- of course the diagram should commute variables (sqᵤ : commsq fKv ιv₁ ιv₂ f₁) variables (sqₗ : commsq ιh₁ gKh g₁ ιh₂) (sqm : commsq f₁ g₁ g₂ f₂) variables (sqᵣ : commsq πh₁ g₂ gQh πh₂) variables (sqₛ : commsq f₂ πv₁ πv₂ fQv) open_locale zero_object open category_theory.abelian def is_limit_of_is_limit_comp {X Y Z : 𝓐} {f : X ⟶ Y} {g : Y ⟶ Z} {c : kernel_fork (f ≫ g)} (hc : is_limit c) (h : c.ι ≫ f = 0) : is_limit (kernel_fork.of_ι c.ι h) := kernel_fork.is_limit.of_ι _ _ (λ T l hl, hc.lift (kernel_fork.of_ι l (by rw [reassoc_of hl, zero_comp]))) (λ T l hl, hc.fac _ _) (λ T l hl m hm, fork.is_limit.hom_ext hc (by { erw [hm, hc.fac], refl })) def is_colimit_of_is_colimit_comp {X Y Z : 𝓐} {f : X ⟶ Y} {g : Y ⟶ Z} {c : cokernel_cofork (f ≫ g)} (hc : is_colimit c) (h : g ≫ c.π = 0) : is_colimit (cokernel_cofork.of_π c.π h) := cokernel_cofork.is_colimit.of_π _ _ (λ T l hl, hc.desc (cokernel_cofork.of_π l (by rw [category.assoc, hl, comp_zero]))) (λ T l hl, hc.fac _ _) (λ T l hl m hm, cofork.is_colimit.hom_ext hc (by { erw [hm, hc.fac], refl })) section include sqₗ sqm lemma is_iso_of_is_limit (H₁ : exact ιh₁ f₁) (H₂ : exact ιh₂ f₂) (h : is_limit (pullback_cone.mk f₁ g₁ sqm.w)) : is_iso gKh := begin haveI : mono gKh, { refine preadditive.mono_of_cancel_zero _ (λ P g hg, _), apply zero_of_comp_mono ιh₁, apply pullback_cone.is_limit.hom_ext h, { rw [pullback_cone.mk_fst, category.assoc, zero_comp, H₁.w, comp_zero] }, { rw [pullback_cone.mk_snd, category.assoc, sqₗ.w, ← category.assoc, hg, zero_comp, zero_comp] } }, obtain ⟨l, hl₁, hl₂ : l ≫ g₁ = _⟩ := pullback_cone.is_limit.lift' h 0 ιh₂ (by simp [H₂.w]), let ker := is_limit_of_exact_of_mono _ _ H₁, obtain ⟨inv, hinv : inv ≫ ιh₁ = l⟩ := kernel_fork.is_limit.lift' ker l hl₁, have hinv' : inv ≫ gKh = 𝟙 _, { rw [← cancel_mono ιh₂, category.assoc, ← sqₗ.w, reassoc_of hinv, hl₂, category.id_comp] }, refine ⟨⟨inv, _, hinv'⟩⟩, rw [← cancel_mono gKh, category.assoc, hinv', category.comp_id, category.id_comp] end end section include sqm sqᵣ lemma is_iso_of_is_colimit (H₁ : exact f₁ πh₁) (H₂ : exact f₂ πh₂) (h : is_colimit (pushout_cocone.mk _ _ sqm.w)) : is_iso gQh := begin haveI : epi gQh, { refine preadditive.epi_of_cancel_zero _ (λ P g hg, _), apply zero_of_epi_comp πh₂, apply pushout_cocone.is_colimit.hom_ext h, { rw [pushout_cocone.mk_inl, ← category.assoc, ← sqᵣ.w, category.assoc, hg, comp_zero, comp_zero] }, { rw [pushout_cocone.mk_inr, ← category.assoc, H₂.w, comp_zero, zero_comp] } }, obtain ⟨l, hl₁ : g₂ ≫ l = _, hl₂⟩ := pushout_cocone.is_colimit.desc' h πh₁ 0 (by simp [H₁.w]), let coker := is_colimit_of_exact_of_epi _ _ H₂, obtain ⟨inv, hinv : πh₂ ≫ inv = l⟩ := cokernel_cofork.is_colimit.desc' coker l hl₂, have hinv' : gQh ≫ inv = 𝟙 _, { rw [← cancel_epi πh₁, ← category.assoc, sqᵣ.w, category.assoc, hinv, hl₁, category.comp_id] }, refine ⟨⟨inv, hinv', _⟩⟩, rw [← cancel_epi gQh, reassoc_of hinv', category.comp_id] end end include H₁ H₂ sqₗ sqm sqᵣ lemma commsq.bicartesian_iff_isos : sqm.bicartesian ↔ (is_iso gKh ∧ is_iso gQh) := begin split, { intro h, split, { exact is_iso_of_is_limit gKh sqₗ sqm ((exact_iff_exact_seq _ _).2 (H₁.extract 0 2)) ((exact_iff_exact_seq _ _).2 (H₂.extract 0 2)) h.is_limit }, { exact is_iso_of_is_colimit gQh sqm sqᵣ ((exact_iff_exact_seq _ _).2 (H₁.extract 1 2)) ((exact_iff_exact_seq _ _).2 (H₂.extract 1 2)) h.is_colimit } }, { rintros ⟨gKh_iso, gQh_iso⟩, resetI, apply commsq.bicartesian.of_is_limit_of_is_colimt, { apply is_limit.of_point_iso (limit.is_limit _), { apply_instance }, { let r := pullback.lift _ _ sqm.w, let x : Kh₁ ⟶ kernel (pullback.fst : pullback g₂ f₂ ⟶ A₁₂), { refine kernel.lift _ (ιh₁ ≫ r) _, simp only [(H₁.extract 0 2).w, category.assoc, pullback.lift_fst] }, haveI : is_iso x, { let psq := commsq.of_eq (@pullback.condition _ _ _ _ _ g₂ f₂ _), let hker := abelian.is_limit_of_exact_of_mono _ _ ((exact_iff_exact_seq _ _).2 (H₂.extract 0 2)), obtain ⟨u : _ ⟶ Kh₂, hu⟩ := kernel_fork.is_limit.lift' hker (kernel.ι (pullback.fst : pullback g₂ f₂ ⟶ A₁₂) ≫ pullback.snd) _, { rw fork.ι_of_ι at hu, let lsq := commsq.of_eq hu.symm, haveI : is_iso u := is_iso_of_is_limit u lsq psq _ _ _, { have hxu : x ≫ u = gKh, { simp only [← cancel_mono ιh₂, category.assoc, hu, x, kernel.lift_ι_assoc, r, pullback.lift_snd, sqₗ.w] }, have hx : x = gKh ≫ inv u, { rw [← is_iso.comp_inv_eq, is_iso.inv_inv, hxu] }, rw hx, apply_instance }, { exact exact_kernel_ι }, { exact ((exact_iff_exact_seq _ _).2 (H₂.extract 0 2)) }, { exact pullback_is_pullback _ _ } }, { rw [category.assoc, ← pullback.condition, kernel.condition_assoc, zero_comp] } }, refine @abelian.is_iso_of_is_iso_of_is_iso_of_is_iso_of_is_iso _ _ _ 0 _ _ _ 0 _ _ _ 0 ιh₁ f₁ 0 (kernel.ι (pullback.fst : pullback g₂ f₂ ⟶ A₁₂)) pullback.fst 0 x r (𝟙 _) _ _ _ _ _ πh₁ πh₁ (𝟙 _) _ _ _ _ _ _ _ _ _ _ _, { simp only [eq_iff_true_of_subsingleton] }, { simp only [kernel.lift_ι] }, { simp only [pullback.lift_fst, category.comp_id] }, { simp only [category.id_comp, category.comp_id] }, { exact exact_zero_mono ιh₁ }, { exact (exact_iff_exact_seq _ _).2 (H₁.extract 0 2) }, { exact (exact_iff_exact_seq _ _).2 (H₁.extract 1 2) }, { exact exact_zero_mono (kernel.ι pullback.fst) }, { exact exact_kernel_ι }, { have : (pullback.fst : pullback g₂ f₂ ⟶ A₁₂) ≫ πh₁ = 0, { apply zero_of_comp_mono gQh, rw [category.assoc, sqᵣ.w, pullback.condition_assoc, (H₂.extract 1 2).w, comp_zero] }, apply abelian.exact_of_is_cokernel _ _ this, have hex := (exact_iff_exact_seq _ _).2 (H₁.extract 1 2), rw ← pullback.lift_fst _ _ sqm.w at hex, exact is_colimit_of_is_colimit_comp (abelian.is_colimit_of_exact_of_epi _ _ hex) _ } } }, { apply is_colimit.of_point_iso (colimit.is_colimit _), { apply_instance }, { let r := pushout.desc _ _ sqm.w, let x : cokernel (pushout.inr : A₂₁ ⟶ pushout f₁ g₁) ⟶ Qh₂, { refine cokernel.desc _ (r ≫ πh₂) _, simp only [(H₂.extract 1 2).w, ← category.assoc, pushout.inr_desc] }, haveI : is_iso x, { let psq := commsq.of_eq (@pushout.condition _ _ _ _ _ f₁ g₁ _), let hcoker := abelian.is_colimit_of_exact_of_epi _ _ ((exact_iff_exact_seq _ _).2 (H₁.extract 1 2)), obtain ⟨u : Qh₁ ⟶ _, hu⟩ := cokernel_cofork.is_colimit.desc' hcoker (pushout.inl ≫ (cokernel.π (pushout.inr : A₂₁ ⟶ pushout f₁ g₁))) _, { rw cofork.π_of_π at hu, let lsq := commsq.of_eq hu, haveI : is_iso u := is_iso_of_is_colimit u psq lsq _ _ _, { have hxu : u ≫ x = gQh, { simp only [← cancel_epi πh₁, hu, x, cokernel.π_desc, reassoc_of hu, r, pushout.inl_desc_assoc, sqᵣ.w] }, have hx : x = inv u ≫ gQh, { rw [← is_iso.inv_comp_eq, is_iso.inv_inv, hxu] }, rw hx, apply_instance }, { exact ((exact_iff_exact_seq _ _).2 (H₁.extract 1 2)) }, { exact exact_cokernel pushout.inr }, { exact pushout_is_pushout _ _ } }, { rw [← category.assoc, pushout.condition, category.assoc, cokernel.condition, comp_zero] } }, refine @abelian.is_iso_of_is_iso_of_is_iso_of_is_iso_of_is_iso _ _ _ _ _ _ _ _ _ _ _ ιh₂ (pushout.inr : A₂₁ ⟶ pushout f₁ g₁) (cokernel.π (pushout.inr : A₂₁ ⟶ pushout f₁ g₁)) ιh₂ f₂ πh₂ (𝟙 _) (𝟙 _) r x _ _ _ 0 0 0 0 0 _ _ _ _ _ _ _ _ _ _ _, { simp only [category.id_comp, category.comp_id] }, { simp only [category.id_comp, pushout.inr_desc] }, { simp only [cokernel.π_desc] }, { simp only [eq_iff_true_of_subsingleton] }, { have : ιh₂ ≫ (pushout.inr : A₂₁ ⟶ pushout f₁ g₁) = 0, { apply zero_of_epi_comp gKh, rw [← sqₗ.w_assoc, ← pushout.condition, reassoc_of (H₁.extract 0 2).w, zero_comp] }, apply abelian.exact_of_is_kernel _ _ this, have hex := (exact_iff_exact_seq _ _).2 (H₂.extract 0 2), rw ← pushout.inr_desc _ _ sqm.w at hex, exact is_limit_of_is_limit_comp (abelian.is_limit_of_exact_of_mono _ _ hex) _ }, { exact exact_cokernel pushout.inr }, { exact exact_epi_zero (cokernel.π pushout.inr) }, { exact ((exact_iff_exact_seq _ _).2 (H₂.extract 0 2)) }, { exact ((exact_iff_exact_seq _ _).2 (H₂.extract 1 2)) }, { exact exact_epi_zero πh₂ } } } } end