import algebraic_topology.cech_nerve universes v u open category_theory opposite -- dedup with `cech_iso_zero` in `src/prop819.lean` noncomputable def arrow.cech_nerve_obj_0 {C : Type u} [category.{v} C] (F : arrow C) [limits.has_limits.{v} C] : F.cech_nerve.obj (op (simplex_category.mk 0)) ≅ F.left := { hom := limits.wide_pullback.π _ 0, inv := limits.wide_pullback.lift F.hom (λ _, 𝟙 _) (by simp only [category.id_comp, forall_const]), hom_inv_id' := begin apply limits.wide_pullback.hom_ext, { intro i, simp only [limits.wide_pullback.lift_π, category.id_comp, category.comp_id, category.assoc], congr, dsimp, simp only [eq_iff_true_of_subsingleton] }, { simp only [category.id_comp, category.assoc, limits.wide_pullback.lift_base, limits.wide_pullback.π_arrow] } end, inv_hom_id' := limits.wide_pullback.lift_π _ _ _ _ 0 }