import category_theory.limits.concrete_category universes v u open category_theory namespace category_theory.limits local attribute [instance] concrete_category.has_coe_to_fun concrete_category.has_coe_to_sort variables {C : Type u} [category.{v} C] [concrete_category.{v} C] section equalizer lemma concrete.equalizer_ext {X Y : C} (f g : X ⟶ Y) [has_equalizer f g] [preserves_limit (parallel_pair f g) (forget C)] (x y : equalizer f g) (h : equalizer.ι f g x = equalizer.ι f g y) : x = y := begin apply concrete.limit_ext, rintros (a|a), { apply h }, { rw [← limit.w (parallel_pair f g) walking_parallel_pair_hom.right, comp_apply, comp_apply, h] } end def concrete.equalizer_equiv_aux {X Y : C} (f g : X ⟶ Y) : (parallel_pair f g ⋙ forget C).sections ≃ { x : X // f x = g x } := { to_fun := λ x, ⟨x.1 walking_parallel_pair.zero, begin have h1 := x.2 walking_parallel_pair_hom.left, have h2 := x.2 walking_parallel_pair_hom.right, dsimp at h1 h2, erw [h1, h2], end⟩, inv_fun := λ x, { val := λ j, match j with | walking_parallel_pair.zero := x.1 | walking_parallel_pair.one := f x.1 end, property := begin dsimp [functor.sections], rintros (a|a) (b|b) (f|f), { simp, }, { refl }, { exact x.2.symm }, { simp }, end }, left_inv := begin rintros ⟨x,hx⟩, ext (a|a), { refl }, { change _ = x _, rw ← hx walking_parallel_pair_hom.left, refl } end, right_inv := by { rintros ⟨_,_⟩, ext, refl } } noncomputable def concrete.equalizer_equiv {X Y : C} (f g : X ⟶ Y) [has_equalizer f g] [preserves_limit (parallel_pair f g) (forget C)] : ↥(equalizer f g) ≃ { x // f x = g x } := let h1 := limit.is_limit (parallel_pair f g), h2 := is_limit_of_preserves (forget C) h1, E := h2.cone_point_unique_up_to_iso (types.limit_cone_is_limit.{_ v} _) in E.to_equiv.trans $ concrete.equalizer_equiv_aux _ _ @[simp] lemma concrete.equalizer_equiv_apply {X Y : C} (f g : X ⟶ Y) [has_equalizer f g] [preserves_limit (parallel_pair f g) (forget C)] (x : equalizer f g): (concrete.equalizer_equiv f g x : X) = equalizer.ι f g x := rfl end equalizer end category_theory.limits