import algebra.homology.exact import category_theory.abelian.opposite import category_theory.abelian.exact import category_theory.limits.constructions.epi_mono import category_theory.abelian.pseudoelements noncomputable theory open category_theory open category_theory.limits universes w v u namespace list variables {α : Type*} (a : α) (L : list α) (m n : ℕ) /-- Returns the sublist of `L` starting at index `m` of length `n` (or shorter, if `L` is too short). -/ def extract := (L.drop m).take n @[simp] lemma extract_nil : [].extract m n = ([] : list α) := by { cases n, refl, cases m, refl, refl } @[simp] lemma extract_zero_right : L.extract m 0 = [] := rfl @[simp] lemma extract_cons_succ_left : (a :: L).extract m.succ n = L.extract m n := rfl end list example : [0,1,2,3,4,5,6,7,8,9].extract 4 3 = [4,5,6] := rfl namespace category_theory variables (𝒞 : Type u) [category.{v} 𝒞] variables [has_zero_morphisms 𝒞] [has_images 𝒞] [has_kernels 𝒞] variables {𝒜 : Type u} [category.{v} 𝒜] [abelian 𝒜] namespace exact -- move this variables {A B C : 𝒜} (f : A ⟶ B) (g : B ⟶ C) def kernel_op_iso : (kernel f.op).unop ≅ cokernel f := { hom := (kernel.lift _ (cokernel.π f).op begin simp [← op_comp, limits.cokernel.condition], end).unop ≫ eq_to_hom (opposite.unop_op (cokernel f)), inv := cokernel.desc _ (eq_to_hom (opposite.unop_op B).symm ≫ (kernel.ι f.op).unop) begin dsimp, rw [category.id_comp, ← f.unop_op, ← unop_comp, f.unop_op, kernel.condition], refl, end, hom_inv_id' := begin dsimp, simp, rw [← unop_id, ← (cokernel.desc f (kernel.ι f.op).unop _).unop_op, ← unop_comp], congr' 1, apply limits.equalizer.hom_ext, dsimp, simp [← op_comp], end, inv_hom_id' := begin apply limits.coequalizer.hom_ext, dsimp, simp [← unop_comp], end } def cokernel_op_iso : (cokernel f.op).unop ≅ kernel f := { hom := kernel.lift _ ((cokernel.π f.op).unop ≫ eq_to_hom (opposite.unop_op _)) begin simp only [eq_to_hom_refl, category.comp_id], rw [← f.unop_op, ← unop_comp, f.op.op_unop, cokernel.condition], refl, end, inv := eq_to_hom (opposite.unop_op _).symm ≫ (cokernel.desc _ (kernel.ι f).op (by simp [← op_comp])).unop, hom_inv_id' := begin simp only [category.id_comp, eq_to_hom_refl, category.comp_id, ← unop_id, ← unop_comp], rw [← (kernel.lift f (cokernel.π f.op).unop _).unop_op, ← unop_comp], congr' 1, apply limits.coequalizer.hom_ext, dsimp, simp [← op_comp], end, inv_hom_id' := begin apply limits.equalizer.hom_ext, dsimp, simp [← unop_comp] end } . @[simp] lemma kernel.ι_op : (kernel.ι f.op).unop = eq_to_hom (opposite.unop_op _) ≫ cokernel.π f ≫ (kernel_op_iso f).inv := begin dsimp [kernel_op_iso], simp, end @[simp] lemma cokernel.π_op : (cokernel.π f.op).unop = (cokernel_op_iso f).hom ≫ kernel.ι f ≫ eq_to_hom (opposite.unop_op _).symm := begin dsimp [cokernel_op_iso], simp, end variables {f g} lemma op (h : exact f g) : exact g.op f.op := begin rw abelian.exact_iff, refine ⟨_, _⟩, { simp only [← op_comp, h.w, op_zero], }, apply_fun quiver.hom.unop, swap, { exact quiver.hom.unop_inj }, simp only [h, unop_comp, cokernel.π_op, eq_to_hom_refl, kernel.ι_op, category.id_comp, category.assoc, kernel_comp_cokernel_assoc, zero_comp, comp_zero, unop_zero], end variables (f g) def kernel_unop_iso {C B : 𝒜ᵒᵖ} (f : C ⟶ B) : opposite.op (kernel f.unop) ≅ cokernel f := { hom := (kernel.lift _ (cokernel.π f).unop (by simp [← unop_comp])).op ≫ eq_to_hom (opposite.op_unop (cokernel f)), inv := cokernel.desc _ (eq_to_hom (opposite.op_unop _).symm ≫ (kernel.ι f.unop).op) begin dsimp, rw [← f.op_unop, category.id_comp, ← op_comp, f.op_unop, kernel.condition], refl, end, hom_inv_id' := begin dsimp, simp, rw [← (cokernel.desc f (kernel.ι f.unop).op _).op_unop, ← op_comp, ← op_id], congr' 1, apply limits.equalizer.hom_ext, dsimp, simp [← unop_comp], end, inv_hom_id' := begin apply limits.coequalizer.hom_ext, dsimp, simp [← op_comp], end } def cokernel_unop_iso {C B : 𝒜ᵒᵖ} (f : C ⟶ B) : opposite.op (cokernel f.unop) ≅ kernel f := { hom := kernel.lift _ ((cokernel.π f.unop).op ≫ eq_to_hom (opposite.op_unop _)) begin dsimp, rw [← f.op_unop, category.comp_id, ← op_comp, f.op_unop, cokernel.condition], refl, end, inv := eq_to_hom (opposite.op_unop _).symm ≫ (cokernel.desc _ (kernel.ι f).unop (by simp [← unop_comp])).op, hom_inv_id' := begin dsimp, rw category.id_comp, rw [← (kernel.lift f ((cokernel.π f.unop).op ≫ 𝟙 C) _).op_unop, ← op_comp, ← op_id], congr' 1, apply limits.coequalizer.hom_ext, dsimp, simp [← unop_comp], end, inv_hom_id' := begin apply limits.equalizer.hom_ext, dsimp, simp [← op_comp] end } @[simp] lemma cokernel.π_unop {C B : 𝒜ᵒᵖ} (f : C ⟶ B) : (cokernel.π f.unop).op = (cokernel_unop_iso f).hom ≫ kernel.ι f ≫ eq_to_hom (opposite.op_unop _).symm := begin dsimp [cokernel_unop_iso], simp, end @[simp] lemma kernel.ι_unop {C B : 𝒜ᵒᵖ} (f : C ⟶ B) : (kernel.ι f.unop).op = eq_to_hom (opposite.op_unop _) ≫ cokernel.π f ≫ (kernel_unop_iso f).inv := begin dsimp [kernel_unop_iso], simp, end lemma unop {C B A : 𝒜ᵒᵖ} {g : C ⟶ B} {f : B ⟶ A} (h : exact g f) : exact f.unop g.unop := begin rw abelian.exact_iff, refine ⟨by simp only [← unop_comp, h.w, unop_zero], _⟩, apply_fun quiver.hom.op, swap, { exact quiver.hom.op_inj }, simp [h], end end exact /-- A sequence `[f, g, ...]` of morphisms is exact if the pair `(f,g)` is exact, and the sequence `[g, ...]` is exact. Recall that the pair `(f,g)` is exact if `f ≫ g = 0` and the natural map from the image of `f` to the kernel of `g` is an epimorphism (equivalently, in abelian categories: isomorphism). -/ inductive exact_seq : list (arrow 𝒞) → Prop | nil : exact_seq [] | single : ∀ f, exact_seq [f] | cons : ∀ {A B C : 𝒞} (f : A ⟶ B) (g : B ⟶ C) (hfg : exact f g) (L) (hgL : exact_seq (g :: L)), exact_seq (f :: g :: L) variable {𝒞} lemma exact_iff_exact_seq {A B C : 𝒞} (f : A ⟶ B) (g : B ⟶ C) : exact f g ↔ exact_seq 𝒞 [f, g] := begin split, { intro h, exact exact_seq.cons f g h _ (exact_seq.single _), }, { rintro (_ | _ | ⟨A, B, C, f, g, hfg, _, _ | _ | _⟩), exact hfg, } end namespace exact_seq lemma extract : ∀ {L : list (arrow 𝒞)} (h : exact_seq 𝒞 L) (m n : ℕ), exact_seq 𝒞 (L.extract m n) | L (nil) m n := by { rw list.extract_nil, exact nil } | L (single f) m 0 := nil | L (single f) 0 (n+1) := by { cases n; exact single f } | L (single f) (m+1) (n+1) := by { cases m; exact nil } | _ (cons f g hfg L hL) (m+1) n := extract hL m n | _ (cons f g hfg L hL) 0 0 := nil | _ (cons f g hfg L hL) 0 1 := single f | _ (cons f g hfg L hL) 0 (n+2) := cons f g hfg (L.take n) (extract hL 0 (n+1)) inductive arrow_congr : Π (L L' : list (arrow 𝒞)), Prop | nil : arrow_congr [] [] | cons : ∀ {A B : 𝒞} {f f' : A ⟶ B} {L L' : list (arrow 𝒞)} (h : f = f') (H : arrow_congr L L'), arrow_congr (f :: L) (f' :: L') lemma congr : ∀ {L L' : list (arrow 𝒞)}, exact_seq 𝒞 L → arrow_congr L L' → exact_seq 𝒞 L' | _ _ h arrow_congr.nil := exact_seq.nil | _ _ h (arrow_congr.cons h₁ arrow_congr.nil) := exact_seq.single _ | _ _ h (arrow_congr.cons h₁ ((arrow_congr.cons h₂ H))) := begin substs h₁ h₂, rcases h with _ | _ | ⟨A, B, C, f, g, hfg, _, hL⟩, refine exact_seq.cons _ _ hfg _ (congr hL (arrow_congr.cons rfl H)), end lemma append : ∀ {L₁ L₂ L₃ : list (arrow 𝒞)} (h₁₂ : exact_seq 𝒞 (L₁ ++ L₂)) (h₂₃ : exact_seq 𝒞 (L₂ ++ L₃)) (h₂ : L₂ ≠ []), exact_seq 𝒞 (L₁ ++ L₂ ++ L₃) | L₁ [] L₃ h₁₂ h₂₃ h := (h rfl).elim | [] L₂ L₃ h₁₂ h₂₃ h := by rwa list.nil_append | (_::[]) (_::L₂) L₃ (cons f g hfg L hL) h₂₃ h := cons f g hfg _ h₂₃ | (_::_::L₁) L₂ L₃ (cons f g hfg L hL) h₂₃ h := suffices exact_seq 𝒞 ([f] ++ ([g] ++ L₁ ++ L₂) ++ L₃), { simpa only [list.append_assoc] }, cons _ _ hfg _ $ suffices exact_seq 𝒞 ((g :: L₁) ++ L₂ ++ L₃), { simpa only [list.append_assoc] }, append (by simpa only using hL) h₂₃ h end exact_seq namespace arrow open _root_.opposite variables {C : Type*} [category C] @[simps] def op (f : arrow C) : arrow Cᵒᵖ := { left := op f.right, right := op f.left, hom := f.hom.op } @[simps] def unop (f : arrow Cᵒᵖ) : arrow C := { left := unop f.right, right := unop f.left, hom := f.hom.unop } @[simp] lemma op_unop (f : arrow C) : f.op.unop = f := by { cases f, dsimp [op, unop], refl } @[simp] lemma unop_op (f : arrow Cᵒᵖ) : f.unop.op = f := by { cases f, dsimp [op, unop], refl } @[simp] lemma op_comp_unop : (op ∘ unop : arrow Cᵒᵖ → arrow Cᵒᵖ) = id := by { ext, exact unop_op _ } @[simp] lemma unop_comp_op : (unop ∘ op : arrow C → arrow C ) = id := by { ext, exact op_unop _ } end arrow namespace exact_seq lemma op : ∀ {L : list (arrow 𝒜)}, exact_seq 𝒜 L → exact_seq 𝒜ᵒᵖ (L.reverse.map arrow.op) | _ nil := nil | _ (single f) := single f.op | _ (cons f g hfg L hL) := begin have := op hL, simp only [list.reverse_cons, list.map_append] at this ⊢, refine this.append _ (list.cons_ne_nil _ _), exact cons _ _ hfg.op _ (single _), end lemma unop : ∀ {L : list (arrow 𝒜ᵒᵖ)}, exact_seq 𝒜ᵒᵖ L → exact_seq 𝒜 (L.reverse.map arrow.unop) | _ nil := nil | _ (single f) := single f.unop | _ (cons f g hfg L hL) := begin have := unop hL, simp only [list.reverse_cons, list.map_append] at this ⊢, refine this.append _ (list.cons_ne_nil _ _), exact cons _ _ hfg.unop _ (single _), end lemma of_op {L : list (arrow 𝒜)} (h : exact_seq 𝒜ᵒᵖ (L.reverse.map arrow.op)) : exact_seq 𝒜 L := by simpa only [list.map_reverse, list.reverse_reverse, list.map_map, arrow.unop_comp_op, list.map_id] using h.unop lemma of_unop {L : list (arrow 𝒜ᵒᵖ)} (h : exact_seq 𝒜 (L.reverse.map arrow.unop)) : exact_seq 𝒜ᵒᵖ L := by simpa only [list.map_reverse, list.reverse_reverse, list.map_map, arrow.op_comp_unop, list.map_id] using h.op end exact_seq end category_theory