/- Copyright (c) 2021 Ashvni Narayanan. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Ashvni Narayanan -/ import number_theory.padics.padic_integers import topology.continuous_function.compact import topology.continuous_function.locally_constant /-! # p-adic measure theory This file defines p-adic distributions and measure on the space of locally constant functions from a profinite space to a normed ring. We then use the measure to construct the p-adic integral. In fact, we prove that this integral is linearly and continuously extended on `C(X, A`. ## Main definitions and theorems * `exists_finset_clopen` * `measures` * `integral` ## Implementation notes TODO (optional) ## References Introduction to Cyclotomic Fields, Washington (Chapter 12) ## Tags p-adic L-function, p-adic integral, measure, totally disconnected, locally constant, compact, Hausdorff ############### Note (jmc): this file was copied with permission of Ashvni Narayan from https://github.com/leanprover-community/mathlib/blob/f2fd1fb4507431cf2f2a873db4b97d360633fb69/src/number_theory/L_functions.lean#L453 and subsequently mildly modified. ############### -/ variables (X : Type*) [topological_space X] variables (A : Type*) [normed_add_comm_group A] variable {X} variables [compact_space X] namespace set lemma diff_inter_eq_empty {α : Type*} (a : set α) {b c : set α} (h : c ⊆ b) : a \ b ∩ c = ∅ := begin ext x, simp only [and_imp, mem_empty_eq, mem_inter_eq, not_and, mem_diff, iff_false], intro _, exact mt (@h x), end lemma diff_inter_mem_sUnion {α : Type*} {s : set (set α)} (a y : set α) (h : y ∈ s) : (a \ ⋃₀ s) ∩ y = ∅ := diff_inter_eq_empty a $ subset_sUnion_of_mem h end set namespace is_clopen lemma is_closed_sUnion {H : Type*} [topological_space H] {s : finset(set H)} (hs : ∀ x ∈ s, is_closed x) : is_closed ⋃₀ (s : set(set H)) := by { simpa only [← is_open_compl_iff, set.compl_sUnion, set.sInter_image] using is_open_bInter (finset.finite_to_set s) (λ i hi, _), apply is_open_compl_iff.2 (hs i hi), } lemma is_clopen_sUnion {H : Type*} [topological_space H] (s : finset(set H)) (hs : ∀ x ∈ s, is_clopen x) : is_clopen ⋃₀ (s : set(set H)) := ⟨is_open_sUnion (λ t ht, (hs t ht).1), is_closed_sUnion (λ t ht, (hs t ht).2) ⟩ /-- The finite union of clopen sets is clopen. -/ lemma clopen_finite_Union {H : Type*} [topological_space H] (s : finset(set H)) (hs : ∀ x ∈ s, is_clopen x) : is_clopen ⋃₀ (s : set(set H)) := by { rw set.sUnion_eq_bUnion, apply is_clopen_bUnion s.finite_to_set hs, } /-- Given a finite set of clopens, one can find a finite disjoint set of clopens contained in it. -/ lemma clopen_Union_disjoint {H : Type*} [topological_space H] (s : finset(set H)) (hs : ∀ x ∈ s, is_clopen x) : ∃ (t : finset (set H)), (∀ (x ∈ (t : set (set H))), is_clopen x) ∧ ⋃₀ (s : set(set H)) = ⋃₀ (t : set(set H)) ∧ (∀ (x : set H) (hx : x ∈ t), ∃ z ∈ s, x ⊆ z) ∧ ∀ (x y : set H) (hx : x ∈ t) (hy : y ∈ t) (h : x ≠ y), x ∩ y = ∅ := begin classical, apply finset.induction_on' s, { use ∅, simp only [finset.not_mem_empty, set.mem_empty_eq, forall_const, finset.coe_empty, eq_self_iff_true, and_self, is_empty.forall_iff] }, { rintros a S h's hS aS ⟨t, clo, union, sub, disj⟩, set b := a \ ⋃₀ S with hb, refine ⟨insert b t, _, _, ⟨λ x hx, _, λ x y hx hy ne, _⟩⟩, { rintros x hx, simp only [finset.coe_insert, set.mem_insert_iff, finset.mem_coe] at hx, cases hx, { rw hx, apply is_clopen.diff (hs a h's) (clopen_finite_Union _ (λ y hy, (hs y (hS hy)))), }, { apply clo x hx, }, }, { simp only [finset.coe_insert, set.sUnion_insert], rw [←union, set.diff_union_self], }, { simp only [finset.mem_insert] at hx, cases hx, { use a, rw hx, simp only [true_and, true_or, eq_self_iff_true, finset.mem_insert], apply set.diff_subset, }, { rcases sub x hx with ⟨z, hz, xz⟩, refine ⟨z, _, xz⟩, rw finset.mem_insert, right, assumption, }, }, { rw finset.mem_insert at hx, rw finset.mem_insert at hy, have : ∀ y ∈ t, b ∩ y = ∅, { rintros y hy, rw [hb, union], apply set.diff_inter_mem_sUnion, assumption, }, cases hx, { cases hy, { exfalso, apply ne, rw [hx, hy], }, { rw hx, apply this y hy, }, }, { cases hy, { rw set.inter_comm, rw hy, apply this x hx, }, { apply disj x y hx hy ne, }, }, }, }, end end is_clopen namespace locally_constant.density variables (ε : ℝ) /-- Takes an element of `A` to an `ε/4`-ball centered around it. -/ abbreviation h {A : Type*} [normed_add_comm_group A] : A → set A := λ (x : A), metric.ball x (ε / 4) /-- The set of (ε/4)-balls. -/ abbreviation S {A : Type*} [normed_add_comm_group A] : set (set A) := set.range (h ε) variables {A} (f : C(X, A)) /-- Preimage of (ε/4)-balls. -/ abbreviation B : set(set X) := { j : set X | ∃ (U ∈ ((S ε) : set(set A))), j = f ⁻¹' U } lemma opens {j : set X} (hj : j ∈ (B ε f)) : is_open j := begin rcases hj with ⟨hj_w, ⟨hj_h_w_w, rfl⟩, rfl⟩, exact continuous.is_open_preimage f.2 _ (metric.is_open_ball), end variable [fact (0 < ε)] /-- `X` is covered by a union of preimage of finitely many elements of `S` under `f` -/ lemma exists_finset_univ_sub : ∃ (t : finset (set A)), set.univ ⊆ ⨆ (i : set A) (H : i ∈ t) (H : i ∈ ((S ε) : set(set A))), f ⁻¹' i := begin have g : (⋃₀ S ε) = (set.univ : set A), { rw set.sUnion_eq_univ_iff, rintros, refine ⟨metric.ball a (ε/4), _, _⟩, { simp only [set.mem_range, exists_apply_eq_apply], }, { simp only [metric.mem_ball, dist_self], refine div_pos (fact.out _) zero_lt_four, }, }, have g' : set.preimage f (⋃₀ S ε) = set.univ, { rw g, exact set.preimage_univ, }, rw [set.preimage_sUnion, set.subset.antisymm_iff] at g', refine is_compact.elim_finite_subcover compact_univ _ (λ i, is_open_Union (λ hi, continuous.is_open_preimage (continuous_map.continuous f) i _)) g'.2, cases hi with y hy, rw [←hy], refine @metric.is_open_ball A _ y (ε/4), end /-- Choosing a finset as given in `exists_finset_univ_sub` -/ noncomputable abbreviation t : finset (set A) := classical.some (exists_finset_univ_sub ε f) lemma exists_finset_univ_sub_prop : set.univ ⊆ ⨆ (i : set A) (H : i ∈ t ε f) (H : i ∈ ((S ε) : set(set A))), f ⁻¹' i := classical.some_spec (exists_finset_univ_sub ε f) /-- If there is a finite set of sets from `S` whose preimage forms a cover for `X`, then the union of the preimages of all the sets from `S` also forms a cover. -/ lemma sUnion_sub_of_finset_sub : set.univ ⊆ set.sUnion (B ε f) := begin rintros x hx, obtain ⟨-, ⟨j, rfl⟩, -, ⟨hj, rfl⟩, -, ⟨⟨a, jS⟩, rfl⟩, fj⟩ := (exists_finset_univ_sub_prop ε f) hx, exact ⟨f⁻¹' j, ⟨j, ⟨_, jS⟩, rfl⟩, fj⟩, end variables [t2_space X] [totally_disconnected_space X] /-- If there is a finite set of sets from `S` whose preimage forms a cover for `X`, then there is a cover of `X` by clopen sets, with the image of each set being contained in an element of `S`. -/ def set_clopen : set (set X) := {j : set X | ∃ (U : set X) (hU : U ∈ (B ε f)), j ∈ classical.some (topological_space.is_topological_basis.open_eq_sUnion (@loc_compact_Haus_tot_disc_of_zero_dim X _ _ _ _) (opens ε f hU))} lemma mem_set_clopen {x : set X} : x ∈ (set_clopen ε f) ↔ ∃ (U : set X) (hU : U ∈ (B ε f)), x ∈ classical.some (topological_space.is_topological_basis.open_eq_sUnion (@loc_compact_Haus_tot_disc_of_zero_dim X _ _ _ _) (opens ε f hU)) := iff.rfl /-- Elements of `set_clopen` are clopen. -/ lemma set_clopen_sub_clopen_set : (set_clopen ε f) ⊆ {s : set X | is_clopen s} := begin intros j hj, obtain ⟨W, hW, hj⟩ := (mem_set_clopen ε f).1 hj, obtain ⟨H, -⟩ := classical.some_spec (topological_space.is_topological_basis.open_eq_sUnion (@loc_compact_Haus_tot_disc_of_zero_dim X _ _ _ _) (opens ε f hW)), exact H hj, end /-- `set_clopen` covers X. -/ lemma univ_sub_sUnion_set_clopen : set.univ ⊆ ⋃₀ (set_clopen ε f) := begin rintros x hx, rw set.mem_sUnion, have f' := @loc_compact_Haus_tot_disc_of_zero_dim X _ _ _ _, have sUnion_sub_of_finset_sub := sUnion_sub_of_finset_sub ε f, -- writing `f⁻¹' U` as a union of basis elements (clopen sets) conv at sUnion_sub_of_finset_sub { congr, skip, rw set.sUnion_eq_Union, congr, funext, apply_congr classical.some_spec (classical.some_spec (topological_space.is_topological_basis.open_eq_sUnion f' (opens ε f i.prop))), }, rw set.Union at sUnion_sub_of_finset_sub, have g3 := sUnion_sub_of_finset_sub hx, simp only [exists_prop, set.mem_Union, set.mem_range, set_coe.exists, exists_exists_eq_and, set.supr_eq_Union, set.mem_set_of_eq, subtype.coe_mk] at g3, rcases g3 with ⟨U, hU, a, ha, xa⟩, refine ⟨a, _, xa⟩, rw mem_set_clopen, simp only [exists_prop, set.mem_range, exists_exists_eq_and, set.mem_set_of_eq], refine ⟨U, hU, ha⟩, end /-- The image of each element of `set_clopen` is contained in an element of `S`. -/ lemma exists_B_of_mem_clopen {x : set X} (hx : x ∈ set_clopen ε f) : ∃ (U : set X) (H : U ∈ B ε f), x ⊆ U := begin rcases hx with ⟨U, hU, xU⟩, refine ⟨U, hU, _⟩, obtain ⟨H, H1⟩ := classical.some_spec (topological_space.is_topological_basis.open_eq_sUnion (@loc_compact_Haus_tot_disc_of_zero_dim X _ _ _ _) (opens ε f hU)), rw H1, intros u hu, simp only [exists_prop, set.mem_set_of_eq], refine ⟨x, _, hu⟩, convert xU, ext, simp only [exists_prop, iff_self], end /-- Every element of `set_clopen` is open. -/ lemma mem_set_clopen_is_open (i : (set_clopen ε f)) : is_open (i : set X) := topological_space.is_topological_basis.is_open (@loc_compact_Haus_tot_disc_of_zero_dim X _ _ _ _) ((set_clopen_sub_clopen_set ε f) i.2) /-- A restatement of `univ_sub_sUnion_set_clopen`. -/ lemma cover : (set.univ : set X) ⊆ ⋃ (i : (set_clopen ε f)), ↑i := by { convert univ_sub_sUnion_set_clopen ε f, rw set.sUnion_eq_Union, } /-- Obtain a finite subcover of `set_clopen` using the compactness of `X`. -/ noncomputable abbreviation s' := classical.some (is_compact.elim_finite_subcover (@compact_univ X _ _) _ (mem_set_clopen_is_open ε f) (cover ε f)) /-- Coercing a subset of `set_clopen` in `s'` to `set X`. -/ abbreviation s1 := λ (x : s' ε f), (x.1 : set X) /-- The range of `s1` is finite. -/ lemma fin : (set.range (s1 ε f)).finite := by { apply set.finite_range _, exact finite.of_fintype ↥(s' ε f), } /-- Any element in the range of `s1` is clopen. -/ lemma is_clopen_x {x : set X} (hx : x ∈ (fin ε f).to_finset) : is_clopen x := begin simp only [set.mem_range, set_coe.exists, set.finite.mem_to_finset, finset.mem_coe] at hx, rcases hx with ⟨⟨⟨v, hv⟩, hw⟩, hU⟩, convert (set_clopen_sub_clopen_set ε f) hv, rw ←hU, delta s1, simp, end /-- If there is a finite set of sets from `S` whose preimage forms a cover for `X`, then there is a finset of `sets X` containing clopen sets, with the image of each set being contained in an element of `S`. We use `s'` to get a finite disjoint clopen cover of `X`; note : it is not a partition -/ noncomputable def finset_clopen : finset (set X) := classical.some (is_clopen.clopen_Union_disjoint (set.finite.to_finset (fin ε f)) (λ x hx, (is_clopen_x ε f hx))) /-- Elements of `finset_clopen` are clopen. -/ lemma finset_clopen_is_clopen {x : set X} (hx : x ∈ finset_clopen ε f) : is_clopen x := (classical.some_spec (is_clopen.clopen_Union_disjoint (set.finite.to_finset (fin ε f)) (λ x hx, (is_clopen_x ε f hx)))).1 x hx /-- The image of every element of `finset_clopen` is contained in some element of `S`. -/ lemma exists_sub_S {x : set X} (hx : x ∈ finset_clopen ε f) : ∃ U ∈ ((S ε) : set(set A)), (set.image f x : set A) ⊆ U := begin rcases (classical.some_spec (is_clopen.clopen_Union_disjoint (set.finite.to_finset (fin ε f)) (λ x hx, (is_clopen_x ε f hx)))).2.2.1 x hx with ⟨z, hz, wz⟩, simp only [set.mem_range, set_coe.exists, set.finite.mem_to_finset, finset.mem_coe] at hz, -- `z'` is a lift of `x` in `V` rcases hz with ⟨⟨⟨z', h1⟩, h2⟩, h3⟩, rcases exists_B_of_mem_clopen ε f h1 with ⟨U, BU, xU⟩, simp only [exists_prop, exists_exists_eq_and, set.mem_set_of_eq] at BU, cases BU with U' h4, refine ⟨U', h4.1, _⟩, transitivity (set.image f z), { apply set.image_subset _ wz, }, { simp only [set.image_subset_iff], rw [←h4.2, ←h3], delta s1, simp only [xU, subtype.coe_mk], }, end /-- Showing that `finset_clopen` is a disjoint cover of `X`. -/ lemma finset_clopen_prop (a : X) : ∃! (b ∈ finset_clopen ε f), a ∈ b := begin -- proving that every element `a : X` is contained in a unique element `j` of `s` obtain ⟨j, hj, aj⟩ : ∃ j ∈ finset_clopen ε f, a ∈ j, { -- `s'` covers `X` have ha := classical.some_spec (is_compact.elim_finite_subcover (@compact_univ X _ _) _ (mem_set_clopen_is_open ε f) (cover ε f)) (set.mem_univ a), have hs := (classical.some_spec (is_clopen.clopen_Union_disjoint (set.finite.to_finset (fin ε f)) (λ x hx, (is_clopen_x ε f hx)))).2.1, delta s1 at hs, suffices : a ∈ ⋃₀ (finset_clopen ε f : set(set X)), { simp only [set.mem_sUnion, finset.mem_coe, exists_prop] at this, cases this with j hj, refine ⟨j, hj.1, hj.2⟩, }, { rw finset_clopen, rw ←hs, simp only [set.mem_Union, set.finite.coe_to_finset, subtype.val_eq_coe, set.sUnion_range], simp only [exists_prop, set.mem_Union, set_coe.exists, exists_and_distrib_right, subtype.coe_mk] at ha, -- have the element `U` of `V`, now translate it to `s` rcases ha with ⟨U, ⟨hU, s'U⟩, aU⟩, delta s', refine ⟨⟨⟨U, hU⟩, s'U⟩, aU⟩, }, }, refine ⟨j, _, λ y hy, _⟩, { -- existence simp only [exists_prop, set.image_subset_iff, set.mem_range, exists_exists_eq_and, exists_unique_iff_exists], refine ⟨hj, aj⟩, }, { -- uniqueness, coming from the disjointness of the clopen cover, `disj` simp only [exists_prop, exists_unique_iff_exists] at hy, cases hy with h1 h2, have disj := (classical.some_spec (is_clopen.clopen_Union_disjoint (set.finite.to_finset (fin ε f)) (λ x hx, (is_clopen_x ε f hx)))).2.2.2 j y hj h1, by_cases h : j = y, { rw h.symm, }, { exfalso, specialize disj h, rw ←set.mem_empty_eq, rw ←disj, apply set.mem_inter aj _, simp only [and_true, implies_true_iff, eq_iff_true_of_subsingleton] at h2, exact h2, }, }, end /-- Takes a nonempty `s` in `finset_clopen` and returns an element of it. -/ noncomputable abbreviation c' := λ (s : set X) (H : s ∈ (finset_clopen ε f) ∧ nonempty s), classical.choice (H.2) /-- Any `x` in `X` must belong to a unique `s` in `finset_clopen`. `c2` takes `x` to the image of any element of `s` under `f`, which is the same `f x`. -/ noncomputable abbreviation c2 (f : C(X, A)) : X → A := λ x, f (c' ε f (classical.some (exists_of_exists_unique (finset_clopen_prop ε f x)) ) begin have := (exists_prop.1 (exists_of_exists_unique (classical.some_spec (exists_of_exists_unique (finset_clopen_prop ε f x))))), split, refine finset.mem_coe.1 (this).1, apply set.nonempty.to_subtype, refine ⟨x, this.2⟩, end). /-- Any element of `finset_clopen` is open. -/ lemma mem_finset_clopen_is_open {U : set X} (hU : U ∈ finset_clopen ε f) : is_open U := by { rw finset_clopen at hU, apply (finset_clopen_is_clopen ε f hU).1, } /-- An equivalent version of `disj`. -/ lemma mem_finset_clopen_unique' {U V : set X} {y : X} (hU : U ∈ finset_clopen ε f) (hUy : y ∈ U) (hVy : y ∈ V) (hV : V ∈ finset_clopen ε f) : V = U := begin by_contra, have := (classical.some_spec (is_clopen.clopen_Union_disjoint (set.finite.to_finset (fin ε f)) (λ x hx, (is_clopen_x ε f hx)))).2.2.2 _ _ hV hU h, revert this, --change (V ∩ U) ≠ ∅, refine set.nonempty.ne_empty ⟨y, set.mem_inter hVy hUy⟩, end /-- Given `x` in `X`, there is a unique element `U` of `finset_clopen` such that `x ∈ U`. For any `y ∈ U`, `y` is contained in any other element `V` of `finset_clopen` containing `x`. -/ lemma mem_finset_clopen_unique {U V : set X} {x y : X} (U_prop : (U ∈ finset_clopen ε f ∧ x ∈ U) ∧ ∀ (y : set X), y ∈ finset_clopen ε f → x ∈ y → y = U) (hy : y ∈ U) (hV : V ∈ finset_clopen ε f) : x ∈ V ↔ y ∈ V := begin obtain ⟨W, hW⟩ := finset_clopen_prop ε f y, simp only [and_imp, exists_prop, exists_unique_iff_exists] at hW, split; intro h, { rw U_prop.2 V hV h, assumption, }, { rw hW.2 V hV h, rw ←(hW.2 U U_prop.1.1 hy), apply U_prop.1.2, }, end /-- `c2` is locally constant -/ lemma loc_const : is_locally_constant (c2 ε f) := begin rw is_locally_constant.iff_exists_open, rintros x, obtain ⟨U, hU⟩ := finset_clopen_prop ε f x, simp only [and_imp, exists_prop, exists_unique_iff_exists] at hU, refine ⟨U, mem_finset_clopen_is_open ε f hU.1.1, hU.1.2, λ x' hx', _⟩, delta c2, congr', swap 4, ext y, revert y, rw ←set.ext_iff, congr, -- is there a better way to do this? any_goals { ext y, simp only [exists_prop, and.congr_right_iff, exists_unique_iff_exists], intro hy, symmetry, apply mem_finset_clopen_unique ε f hU hx' hy, }, end /-- Given an `f ∈ C(X, A)` and an `ε > 0`, one can find a locally constant function `b` which is in an ε-ball with center `f`, `b` is precisely `c2`. -/ theorem loc_const_dense' : ∃ (b : C(X, A)) (H : b ∈ set.range (@locally_constant.to_continuous_map X A _ _)), dist f b < ε := ⟨@locally_constant.to_continuous_map X A _ _ ⟨c2 ε f, loc_const ε f⟩, ⟨⟨c2 ε f, loc_const ε f⟩, rfl⟩, gt_of_gt_of_ge (half_lt_self (fact.out _)) begin -- showing that the distance between `f` and `c2` is less than or equal to `ε/2` rw [dist_eq_norm, continuous_map.norm_eq_supr_norm], -- empty type is special case cases is_empty_or_nonempty X with hempty hnonempty, { change _ ≥ dite _ _ _, split_ifs with h, { rcases h with ⟨⟨_, x, _⟩, _⟩, exact (@is_empty.false _ hempty x).elim }, exact le_of_lt (half_pos (fact.out _)) }, -- writing the distance in terms of the sup norm refine cSup_le _ (λ m hm, _), { rw set.range_nonempty_iff_nonempty, assumption, }, -- this is where `nonempty X` is needed { cases hm with y hy, simp only [continuous_map.coe_sub, locally_constant.coe_mk, locally_constant.to_continuous_map_linear_map_apply, pi.sub_apply, locally_constant.coe_continuous_map] at hy, rw ←hy, -- reduced to proving ∥f(y) - c2(y)∥ ≤ ε/2 obtain ⟨w, wT, hw⟩ := finset_clopen_prop ε f y, -- `w` is the unique element of `finset_clopen` to which `y` belongs simp only [exists_prop, exists_unique_iff_exists] at wT, simp only [and_imp, exists_prop, exists_unique_iff_exists] at hw, have : c2 ε f y = f (c' ε f w ⟨wT.1, ⟨⟨y, wT.2⟩⟩⟩), -- showing that `w` is the same as the `classical.some _` used in `c2` { delta c2, congr', any_goals { have := classical.some_spec (exists_of_exists_unique (finset_clopen_prop ε f y)), simp only [exists_prop, exists_unique_iff_exists] at *, apply hw _ (this.1) (this.2), }, }, dsimp, rw this, obtain ⟨U, hU, wU⟩ := exists_sub_S ε f wT.1, -- `U` is a set of `A` which is an element of `S` and contains `f(w)` cases hU with z hz, -- `U` is the `ε/4`-ball centered at `z` have mem_U : f (c' ε f w ⟨wT.1, ⟨⟨y, wT.2⟩⟩⟩) ∈ U := wU ⟨(c' ε f w ⟨wT.1, ⟨⟨y, wT.2⟩⟩⟩), subtype.coe_prop _, rfl⟩, have tS : f y ∈ U := wU ⟨y, wT.2, rfl⟩, rw [hz.symm, mem_ball_iff_norm] at *, conv_lhs { rw sub_eq_sub_add_sub _ _ z, }, -- unfolding everything in terms of `z`, and then using `mem_U` and `tS` have : ε/2 = ε/4 + ε/4, { rw div_add_div_same, linarith, }, rw this, apply norm_add_le_of_le (le_of_lt _) (le_of_lt tS), rw ←norm_neg _, simp only [mem_U, neg_sub], }, end ⟩ variable (X) /-- The locally constant functions from `X` to `A` (viewed as a subset of C(X, A)) are dense in C(X, A). -/ theorem loc_const_dense : dense (set.range (@locally_constant.to_continuous_map X A _ _)) := λ f, begin rw metric.mem_closure_iff, rintros ε hε, haveI : fact (0 < ε) := fact.mk hε, -- we have all the ingredients from `loc_const_dense'`, only need `exists_finset_univ_sub_prop` apply loc_const_dense' ε f, end end locally_constant.density