import for_mathlib.is_locally_constant import locally_constant.analysis /-! # Extending a locally constant map to larger profinite sets In this file, we prove that, given a topological embedding `e : X → Y` from a non-empty compact topological space to a profinite set (ie. compact Hausdorff totally disconnected space), every locally constant map `f` from `X` to any type `Z` "extends" to a locally constant map from `Y` to `Z`, ie. there exists `g : Y → Z` locally constant such that `f = g ∘ e`. e X ↪-→ Y | / f | / h ↓ ↙ Z Notes: * this wouldn't work if `X` and `Z` were empty and `Y` weren't. The minimal assumption would be assuming `Z` isn't empty, I'll refactor this soon. * Everything is stated assuming only `X` is compact but the existence of `f` ensures `X` is profinite, we're just saving type-class search (and nothing in the construction or proofs directly use `X` is profinite). The main definition is `embedding.extend {e : X → Y} (he : embedding e) (f : X → Z) : Y → Z` It assumes `X` is compact (and non-empty) and assumes `Y` is profinite but doesn't assume `f` is locally constant, it is simply defined as a constant map if `f` isn't. The announced properties of this extension are `embedding.extend_extends` and `embedding.is_locally_constant_extend`. -/ variables {X : Type*} [topological_space X] noncomputable theory open set variables [compact_space X] {Y : Type*} [topological_space Y] [t2_space Y] [compact_space Y] [totally_disconnected_space Y] lemma embedding.preimage_clopen {f : X → Y} (hf : embedding f) {U : set X} (hU : is_clopen U) : ∃ V : set Y, is_clopen V ∧ U = f ⁻¹' V := begin cases hU with hU hU', have hfU : is_compact (f '' U), from hU'.is_compact.image hf.continuous, obtain ⟨W, W_op, hfW⟩ : ∃ W : set Y, is_open W ∧ f ⁻¹' W = U, { rw hf.to_inducing.induced at hU, exact is_open_induced_iff.mp hU }, obtain ⟨ι, Z : ι → set Y, hWZ : W = ⋃ i, Z i, hZ : ∀ i, is_clopen $ Z i⟩ := is_topological_basis_clopen.open_eq_Union W_op, have : f '' U ⊆ ⋃ i, Z i, { rw [image_subset_iff, ← hWZ, hfW] }, obtain ⟨I, hI⟩ : ∃ I : finset ι, f '' U ⊆ ⋃ i ∈ I, Z i, from hfU.elim_finite_subcover _ (λ i, (hZ i).1) this, refine ⟨⋃ i ∈ I, Z i, _, _⟩, { apply is_clopen_bUnion, apply finset.finite_to_set, tauto }, { apply subset.antisymm, exact image_subset_iff.mp hI, have : (⋃ i ∈ I, Z i) ⊆ ⋃ i, Z i, from Union₂_subset_Union _ _, rw [← hfW, hWZ], mono }, end lemma embedding.ex_discrete_quotient [nonempty X] {f : X → Y} (hf : embedding f) (S : discrete_quotient X) : ∃ (S' : discrete_quotient Y) (g : S ≃ S'), S'.proj ∘ f = g ∘ S.proj := begin classical, inhabit X, haveI : fintype S := discrete_quotient.fintype S, have : ∀ s : S, ∃ V : set Y, is_clopen V ∧ S.proj ⁻¹' {s} = f ⁻¹' V, from λ s, hf.preimage_clopen (S.fiber_clopen {s}), choose V hV using this, rw forall_and_distrib at hV, cases hV with V_cl hV, let s₀ := S.proj default, let W : S → set Y := λ s, (V s) \ (⋃ s' (h : s' ≠ s), V s'), have W_dis : ∀ {s s'}, s ≠ s' → disjoint (W s) (W s'), { rintros s s' hss x ⟨⟨hxs_in, hxs_out⟩, ⟨hxs'_in, hxs'_out⟩⟩, apply hxs'_out, rw mem_Union₂, exact ⟨s, hss, hxs_in⟩ }, have hfW : ∀ x, f x ∈ W (S.proj x), { intro x, split, { change x ∈ f ⁻¹' (V $ S.proj x), rw ← hV (S.proj x), exact mem_singleton _ }, { intro h, rcases mem_Union₂.mp h with ⟨s', hss', hfx : x ∈ f ⁻¹' (V s')⟩, rw ← hV s' at hfx, exact hss' hfx.symm } }, have W_nonempty : ∀ s, (W s).nonempty, { intro s, obtain ⟨x, hx : S.proj x = s⟩ := S.proj_surjective s, use f x, rw ← hx, apply hfW, }, let R : S → set Y := λ s, if s = s₀ then W s₀ ∪ (⋃ s, W s)ᶜ else W s, have W_cl : ∀ s, is_clopen (W s), { intro s, apply (V_cl s).diff, apply is_clopen_Union, intro s', by_cases h : s' = s, simp [h, is_clopen_empty], simp [h, V_cl s'] }, have R_cl : ∀ s, is_clopen (R s), { intro s, dsimp [R], split_ifs, { apply (W_cl s₀).union, apply is_clopen.compl, exact is_clopen_Union W_cl }, { exact W_cl _ }, }, let R_part : indexed_partition R, { apply indexed_partition.mk', { rintros s s' hss x ⟨hxs, hxs'⟩, dsimp [R] at hxs hxs', split_ifs at hxs hxs' with hs hs', { exact (hss (hs.symm ▸ hs' : s = s')).elim }, { cases hxs' with hx hx, { exact W_dis hs' ⟨hxs, hx⟩ }, { apply hx, rw mem_Union, exact ⟨s, hxs⟩ } }, { cases hxs with hx hx, { exact W_dis hs ⟨hxs', hx⟩ }, { apply hx, rw mem_Union, exact ⟨s', hxs'⟩ } }, { exact W_dis hss ⟨hxs, hxs'⟩ } }, { intro s, dsimp [R], split_ifs, { use (W_nonempty s₀).some, left, exact (W_nonempty s₀).some_mem }, { apply W_nonempty } }, { intro y, by_cases hy : ∃ s, y ∈ W s, { cases hy with s hys, use s, dsimp [R], split_ifs, { left, rwa h at hys }, { exact hys } }, { use s₀, simp only [R, if_pos rfl], right, rwa [mem_compl_iff, mem_Union] } } }, let S' := R_part.discrete_quotient R_cl, let g := R_part.discrete_quotient_equiv R_cl, have hR : ∀ x, f x ∈ R (S.proj x), { intros x, by_cases hx : S.proj x = s₀, { simp only [hx, R, if_pos rfl], left, rw ← hx, apply hfW }, { simp only [R, if_neg hx], apply hfW }, }, use [S', g], ext x, change f x ∈ S'.proj ⁻¹' {g (S.proj x)}, rw R_part.discrete_quotient_fiber R_cl, simpa using hR x, end def embedding.discrete_quotient_map [nonempty X] {f : X → Y} (hf : embedding f) (S : discrete_quotient X) : discrete_quotient Y := (hf.ex_discrete_quotient S).some def embedding.discrete_quotient_equiv [nonempty X] {f : X → Y} (hf : embedding f) (S : discrete_quotient X) : S ≃ hf.discrete_quotient_map S := (hf.ex_discrete_quotient S).some_spec.some lemma embedding.discrete_quotient_spec [nonempty X] {f : X → Y} (hf : embedding f) (S : discrete_quotient X) : (hf.discrete_quotient_map S).proj ∘ f = (hf.discrete_quotient_equiv S) ∘ S.proj := (hf.ex_discrete_quotient S).some_spec.some_spec variables {Z : Type*} [inhabited Z] open_locale classical def embedding.extend {e : X → Y} (he : embedding e) (f : X → Z) : Y → Z := if h : is_locally_constant f ∧ nonempty X then by { haveI := h.2, let ff : locally_constant X Z := ⟨f,h.1⟩, let T := he.discrete_quotient_map ff.discrete_quotient, let ee : ff.discrete_quotient ≃ T := he.discrete_quotient_equiv ff.discrete_quotient, exact ff.lift ∘ ee.symm ∘ T.proj } else λ y, default /- lemma embedding.extend_eq {e : X → Y} (he : embedding e) {f : X → Z} (hf : is_locally_constant f) : he.extend f = (hf.discrete_quotient_map) ∘ (he.discrete_quotient_equiv hf.discrete_quotient).symm ∘ (he.discrete_quotient_map hf.discrete_quotient).proj := dif_pos hf -/ lemma embedding.extend_extends {e : X → Y} (he : embedding e) {f : X → Z} (hf : is_locally_constant f) : ∀ x, he.extend f (e x) = f x := begin intro x, haveI : nonempty X := ⟨x⟩, let ff : locally_constant X Z := ⟨f,hf⟩, let S := ff.discrete_quotient, let S' := he.discrete_quotient_map S, let barf : S → Z := ff.lift, let g : S ≃ S' := he.discrete_quotient_equiv S, unfold embedding.extend, have h : is_locally_constant f ∧ nonempty X := ⟨hf, ⟨x⟩⟩, rw [dif_pos h], change (barf ∘ g.symm ∘ (S'.proj ∘ e)) x = f x, suffices : (barf ∘ S.proj) x = f x, by simpa [he.discrete_quotient_spec], simpa, end lemma embedding.is_locally_constant_extend {e : X → Y} (he : embedding e) {f : X → Z} : is_locally_constant (he.extend f) := begin unfold embedding.extend, split_ifs, { apply is_locally_constant.comp, apply is_locally_constant.comp, exact discrete_quotient.proj_is_locally_constant _ }, { apply is_locally_constant.const }, end lemma embedding.range_extend {e : X → Y} (he : embedding e) [nonempty X] {Z : Type*} [inhabited Z] {f : X → Z} (hf : is_locally_constant f) : range (he.extend f) = range f := begin ext z, split, { rintro ⟨y, rfl⟩, let ff : locally_constant _ _ := ⟨f,hf⟩, let T := he.discrete_quotient_map ff.discrete_quotient, let ee : ff.discrete_quotient ≃ T := he.discrete_quotient_equiv ff.discrete_quotient, dsimp only [embedding.extend], rw dif_pos, swap, { exact ⟨hf, ‹_›⟩ }, change ff.lift (ee.symm (T.proj y)) ∈ _, rcases ff.discrete_quotient.proj_surjective (ee.symm (T.proj y)) with ⟨w,hz⟩, use w, rw ← hz, refl }, { rintro ⟨x, rfl⟩, exact ⟨e x, he.extend_extends hf _⟩ } end def embedding.locally_constant_extend {e : X → Y} (he : embedding e) (f : locally_constant X Z) : locally_constant Y Z := ⟨he.extend f, he.is_locally_constant_extend⟩ @[simp] lemma embedding.locally_constant_extend_extends {e : X → Y} (he : embedding e) (f : locally_constant X Z) (x : X) : he.locally_constant_extend f (e x) = f x := he.extend_extends f.2 x lemma embedding.comap_locally_constant_extend {e : X → Y} (he : embedding e) (f : locally_constant X Z) : (he.locally_constant_extend f).comap e = f := begin ext x, rw locally_constant.coe_comap _ _ he.continuous, exact he.locally_constant_extend_extends f x end lemma embedding.range_locally_constant_extend {e : X → Y} (he : embedding e) [nonempty X] {Z : Type*} [inhabited Z] (f : locally_constant X Z) : range (he.locally_constant_extend f) = range f := he.range_extend f.2 -- version avec comap_hom pour Z normed group ?