/- Copyright (c) 2020 Joseph Myers. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Joseph Myers, Yury Kudryashov -/ import data.set.pointwise /-! # Torsors of additive group actions This file defines torsors of additive group actions. ## Notations The group elements are referred to as acting on points. This file defines the notation `+ᵥ` for adding a group element to a point and `-ᵥ` for subtracting two points to produce a group element. ## Implementation notes Affine spaces are the motivating example of torsors of additive group actions. It may be appropriate to refactor in terms of the general definition of group actions, via `to_additive`, when there is a use for multiplicative torsors (currently mathlib only develops the theory of group actions for multiplicative group actions). ## Notations * `v +ᵥ p` is a notation for `has_vadd.vadd`, the left action of an additive monoid; * `p₁ -ᵥ p₂` is a notation for `has_vsub.vsub`, difference between two points in an additive torsor as an element of the corresponding additive group; ## References * https://en.wikipedia.org/wiki/Principal_homogeneous_space * https://en.wikipedia.org/wiki/Affine_space -/ /-- An `add_torsor G P` gives a structure to the nonempty type `P`, acted on by an `add_group G` with a transitive and free action given by the `+ᵥ` operation and a corresponding subtraction given by the `-ᵥ` operation. In the case of a vector space, it is an affine space. -/ class add_torsor (G : out_param Type*) (P : Type*) [out_param $ add_group G] extends add_action G P, has_vsub G P := [nonempty : nonempty P] (vsub_vadd' : ∀ (p1 p2 : P), (p1 -ᵥ p2 : G) +ᵥ p2 = p1) (vadd_vsub' : ∀ (g : G) (p : P), g +ᵥ p -ᵥ p = g) attribute [instance, priority 100, nolint dangerous_instance] add_torsor.nonempty attribute [nolint dangerous_instance] add_torsor.to_has_vsub /-- An `add_group G` is a torsor for itself. -/ @[nolint instance_priority] instance add_group_is_add_torsor (G : Type*) [add_group G] : add_torsor G G := { vsub := has_sub.sub, vsub_vadd' := sub_add_cancel, vadd_vsub' := add_sub_cancel } /-- Simplify subtraction for a torsor for an `add_group G` over itself. -/ @[simp] lemma vsub_eq_sub {G : Type*} [add_group G] (g1 g2 : G) : g1 -ᵥ g2 = g1 - g2 := rfl section general variables {G : Type*} {P : Type*} [add_group G] [T : add_torsor G P] include T /-- Adding the result of subtracting from another point produces that point. -/ @[simp] lemma vsub_vadd (p1 p2 : P) : p1 -ᵥ p2 +ᵥ p2 = p1 := add_torsor.vsub_vadd' p1 p2 /-- Adding a group element then subtracting the original point produces that group element. -/ @[simp] lemma vadd_vsub (g : G) (p : P) : g +ᵥ p -ᵥ p = g := add_torsor.vadd_vsub' g p /-- If the same point added to two group elements produces equal results, those group elements are equal. -/ lemma vadd_right_cancel {g1 g2 : G} (p : P) (h : g1 +ᵥ p = g2 +ᵥ p) : g1 = g2 := by rw [←vadd_vsub g1, h, vadd_vsub] @[simp] lemma vadd_right_cancel_iff {g1 g2 : G} (p : P) : g1 +ᵥ p = g2 +ᵥ p ↔ g1 = g2 := ⟨vadd_right_cancel p, λ h, h ▸ rfl⟩ /-- Adding a group element to the point `p` is an injective function. -/ lemma vadd_right_injective (p : P) : function.injective ((+ᵥ p) : G → P) := λ g1 g2, vadd_right_cancel p /-- Adding a group element to a point, then subtracting another point, produces the same result as subtracting the points then adding the group element. -/ lemma vadd_vsub_assoc (g : G) (p1 p2 : P) : g +ᵥ p1 -ᵥ p2 = g + (p1 -ᵥ p2) := begin apply vadd_right_cancel p2, rw [vsub_vadd, add_vadd, vsub_vadd] end /-- Subtracting a point from itself produces 0. -/ @[simp] lemma vsub_self (p : P) : p -ᵥ p = (0 : G) := by rw [←zero_add (p -ᵥ p), ←vadd_vsub_assoc, vadd_vsub] /-- If subtracting two points produces 0, they are equal. -/ lemma eq_of_vsub_eq_zero {p1 p2 : P} (h : p1 -ᵥ p2 = (0 : G)) : p1 = p2 := by rw [←vsub_vadd p1 p2, h, zero_vadd] /-- Subtracting two points produces 0 if and only if they are equal. -/ @[simp] lemma vsub_eq_zero_iff_eq {p1 p2 : P} : p1 -ᵥ p2 = (0 : G) ↔ p1 = p2 := iff.intro eq_of_vsub_eq_zero (λ h, h ▸ vsub_self _) lemma vsub_ne_zero {p q : P} : p -ᵥ q ≠ (0 : G) ↔ p ≠ q := not_congr vsub_eq_zero_iff_eq /-- Cancellation adding the results of two subtractions. -/ @[simp] lemma vsub_add_vsub_cancel (p1 p2 p3 : P) : p1 -ᵥ p2 + (p2 -ᵥ p3) = (p1 -ᵥ p3) := begin apply vadd_right_cancel p3, rw [add_vadd, vsub_vadd, vsub_vadd, vsub_vadd] end /-- Subtracting two points in the reverse order produces the negation of subtracting them. -/ @[simp] lemma neg_vsub_eq_vsub_rev (p1 p2 : P) : -(p1 -ᵥ p2) = (p2 -ᵥ p1) := begin refine neg_eq_of_add_eq_zero_right (vadd_right_cancel p1 _), rw [vsub_add_vsub_cancel, vsub_self], end lemma vadd_vsub_eq_sub_vsub (g : G) (p q : P) : g +ᵥ p -ᵥ q = g - (q -ᵥ p) := by rw [vadd_vsub_assoc, sub_eq_add_neg, neg_vsub_eq_vsub_rev] /-- Subtracting the result of adding a group element produces the same result as subtracting the points and subtracting that group element. -/ lemma vsub_vadd_eq_vsub_sub (p1 p2 : P) (g : G) : p1 -ᵥ (g +ᵥ p2) = (p1 -ᵥ p2) - g := by rw [←add_right_inj (p2 -ᵥ p1 : G), vsub_add_vsub_cancel, ←neg_vsub_eq_vsub_rev, vadd_vsub, ←add_sub_assoc, ←neg_vsub_eq_vsub_rev, neg_add_self, zero_sub] /-- Cancellation subtracting the results of two subtractions. -/ @[simp] lemma vsub_sub_vsub_cancel_right (p1 p2 p3 : P) : (p1 -ᵥ p3) - (p2 -ᵥ p3) = (p1 -ᵥ p2) := by rw [←vsub_vadd_eq_vsub_sub, vsub_vadd] /-- Convert between an equality with adding a group element to a point and an equality of a subtraction of two points with a group element. -/ lemma eq_vadd_iff_vsub_eq (p1 : P) (g : G) (p2 : P) : p1 = g +ᵥ p2 ↔ p1 -ᵥ p2 = g := ⟨λ h, h.symm ▸ vadd_vsub _ _, λ h, h ▸ (vsub_vadd _ _).symm⟩ lemma vadd_eq_vadd_iff_neg_add_eq_vsub {v₁ v₂ : G} {p₁ p₂ : P} : v₁ +ᵥ p₁ = v₂ +ᵥ p₂ ↔ - v₁ + v₂ = p₁ -ᵥ p₂ := by rw [eq_vadd_iff_vsub_eq, vadd_vsub_assoc, ← add_right_inj (-v₁), neg_add_cancel_left, eq_comm] namespace set open_locale pointwise @[simp] lemma singleton_vsub_self (p : P) : ({p} : set P) -ᵥ {p} = {(0:G)} := by rw [set.singleton_vsub_singleton, vsub_self] end set @[simp] lemma vadd_vsub_vadd_cancel_right (v₁ v₂ : G) (p : P) : (v₁ +ᵥ p) -ᵥ (v₂ +ᵥ p) = v₁ - v₂ := by rw [vsub_vadd_eq_vsub_sub, vadd_vsub_assoc, vsub_self, add_zero] /-- If the same point subtracted from two points produces equal results, those points are equal. -/ lemma vsub_left_cancel {p1 p2 p : P} (h : p1 -ᵥ p = p2 -ᵥ p) : p1 = p2 := by rwa [←sub_eq_zero, vsub_sub_vsub_cancel_right, vsub_eq_zero_iff_eq] at h /-- The same point subtracted from two points produces equal results if and only if those points are equal. -/ @[simp] lemma vsub_left_cancel_iff {p1 p2 p : P} : (p1 -ᵥ p) = p2 -ᵥ p ↔ p1 = p2 := ⟨vsub_left_cancel, λ h, h ▸ rfl⟩ /-- Subtracting the point `p` is an injective function. -/ lemma vsub_left_injective (p : P) : function.injective ((-ᵥ p) : P → G) := λ p2 p3, vsub_left_cancel /-- If subtracting two points from the same point produces equal results, those points are equal. -/ lemma vsub_right_cancel {p1 p2 p : P} (h : p -ᵥ p1 = p -ᵥ p2) : p1 = p2 := begin refine vadd_left_cancel (p -ᵥ p2) _, rw [vsub_vadd, ← h, vsub_vadd] end /-- Subtracting two points from the same point produces equal results if and only if those points are equal. -/ @[simp] lemma vsub_right_cancel_iff {p1 p2 p : P} : p -ᵥ p1 = p -ᵥ p2 ↔ p1 = p2 := ⟨vsub_right_cancel, λ h, h ▸ rfl⟩ /-- Subtracting a point from the point `p` is an injective function. -/ lemma vsub_right_injective (p : P) : function.injective ((-ᵥ) p : P → G) := λ p2 p3, vsub_right_cancel end general section comm variables {G : Type*} {P : Type*} [add_comm_group G] [add_torsor G P] include G /-- Cancellation subtracting the results of two subtractions. -/ @[simp] lemma vsub_sub_vsub_cancel_left (p1 p2 p3 : P) : (p3 -ᵥ p2) - (p3 -ᵥ p1) = (p1 -ᵥ p2) := by rw [sub_eq_add_neg, neg_vsub_eq_vsub_rev, add_comm, vsub_add_vsub_cancel] @[simp] lemma vadd_vsub_vadd_cancel_left (v : G) (p1 p2 : P) : (v +ᵥ p1) -ᵥ (v +ᵥ p2) = p1 -ᵥ p2 := by rw [vsub_vadd_eq_vsub_sub, vadd_vsub_assoc, add_sub_cancel'] lemma vsub_vadd_comm (p1 p2 p3 : P) : (p1 -ᵥ p2 : G) +ᵥ p3 = p3 -ᵥ p2 +ᵥ p1 := begin rw [←@vsub_eq_zero_iff_eq G, vadd_vsub_assoc, vsub_vadd_eq_vsub_sub], simp end lemma vadd_eq_vadd_iff_sub_eq_vsub {v₁ v₂ : G} {p₁ p₂ : P} : v₁ +ᵥ p₁ = v₂ +ᵥ p₂ ↔ v₂ - v₁ = p₁ -ᵥ p₂ := by rw [vadd_eq_vadd_iff_neg_add_eq_vsub, neg_add_eq_sub] lemma vsub_sub_vsub_comm (p₁ p₂ p₃ p₄ : P) : (p₁ -ᵥ p₂) - (p₃ -ᵥ p₄) = (p₁ -ᵥ p₃) - (p₂ -ᵥ p₄) := by rw [← vsub_vadd_eq_vsub_sub, vsub_vadd_comm, vsub_vadd_eq_vsub_sub] end comm namespace prod variables {G : Type*} {P : Type*} {G' : Type*} {P' : Type*} [add_group G] [add_group G'] [add_torsor G P] [add_torsor G' P'] instance : add_torsor (G × G') (P × P') := { vadd := λ v p, (v.1 +ᵥ p.1, v.2 +ᵥ p.2), zero_vadd := λ p, by simp, add_vadd := by simp [add_vadd], vsub := λ p₁ p₂, (p₁.1 -ᵥ p₂.1, p₁.2 -ᵥ p₂.2), nonempty := prod.nonempty, vsub_vadd' := λ p₁ p₂, show (p₁.1 -ᵥ p₂.1 +ᵥ p₂.1, _) = p₁, by simp, vadd_vsub' := λ v p, show (v.1 +ᵥ p.1 -ᵥ p.1, v.2 +ᵥ p.2 -ᵥ p.2) =v, by simp } @[simp] lemma fst_vadd (v : G × G') (p : P × P') : (v +ᵥ p).1 = v.1 +ᵥ p.1 := rfl @[simp] lemma snd_vadd (v : G × G') (p : P × P') : (v +ᵥ p).2 = v.2 +ᵥ p.2 := rfl @[simp] lemma mk_vadd_mk (v : G) (v' : G') (p : P) (p' : P') : (v, v') +ᵥ (p, p') = (v +ᵥ p, v' +ᵥ p') := rfl @[simp] lemma fst_vsub (p₁ p₂ : P × P') : (p₁ -ᵥ p₂ : G × G').1 = p₁.1 -ᵥ p₂.1 := rfl @[simp] lemma snd_vsub (p₁ p₂ : P × P') : (p₁ -ᵥ p₂ : G × G').2 = p₁.2 -ᵥ p₂.2 := rfl @[simp] lemma mk_vsub_mk (p₁ p₂ : P) (p₁' p₂' : P') : ((p₁, p₁') -ᵥ (p₂, p₂') : G × G') = (p₁ -ᵥ p₂, p₁' -ᵥ p₂') := rfl end prod namespace pi universes u v w variables {I : Type u} {fg : I → Type v} [∀ i, add_group (fg i)] {fp : I → Type w} open add_action add_torsor /-- A product of `add_torsor`s is an `add_torsor`. -/ instance [T : ∀ i, add_torsor (fg i) (fp i)] : add_torsor (Π i, fg i) (Π i, fp i) := { vadd := λ g p, λ i, g i +ᵥ p i, zero_vadd := λ p, funext $ λ i, zero_vadd (fg i) (p i), add_vadd := λ g₁ g₂ p, funext $ λ i, add_vadd (g₁ i) (g₂ i) (p i), vsub := λ p₁ p₂, λ i, p₁ i -ᵥ p₂ i, nonempty := ⟨λ i, classical.choice (T i).nonempty⟩, vsub_vadd' := λ p₁ p₂, funext $ λ i, vsub_vadd (p₁ i) (p₂ i), vadd_vsub' := λ g p, funext $ λ i, vadd_vsub (g i) (p i) } end pi namespace equiv variables {G : Type*} {P : Type*} [add_group G] [add_torsor G P] include G /-- `v ↦ v +ᵥ p` as an equivalence. -/ def vadd_const (p : P) : G ≃ P := { to_fun := λ v, v +ᵥ p, inv_fun := λ p', p' -ᵥ p, left_inv := λ v, vadd_vsub _ _, right_inv := λ p', vsub_vadd _ _ } @[simp] lemma coe_vadd_const (p : P) : ⇑(vadd_const p) = λ v, v+ᵥ p := rfl @[simp] lemma coe_vadd_const_symm (p : P) : ⇑(vadd_const p).symm = λ p', p' -ᵥ p := rfl /-- `p' ↦ p -ᵥ p'` as an equivalence. -/ def const_vsub (p : P) : P ≃ G := { to_fun := (-ᵥ) p, inv_fun := λ v, -v +ᵥ p, left_inv := λ p', by simp, right_inv := λ v, by simp [vsub_vadd_eq_vsub_sub] } @[simp] lemma coe_const_vsub (p : P) : ⇑(const_vsub p) = (-ᵥ) p := rfl @[simp] lemma coe_const_vsub_symm (p : P) : ⇑(const_vsub p).symm = λ v, -v +ᵥ p := rfl variables (P) /-- The permutation given by `p ↦ v +ᵥ p`. -/ def const_vadd (v : G) : equiv.perm P := { to_fun := (+ᵥ) v, inv_fun := (+ᵥ) (-v), left_inv := λ p, by simp [vadd_vadd], right_inv := λ p, by simp [vadd_vadd] } @[simp] lemma coe_const_vadd (v : G) : ⇑(const_vadd P v) = (+ᵥ) v := rfl variable (G) @[simp] lemma const_vadd_zero : const_vadd P (0:G) = 1 := ext $ zero_vadd G variable {G} @[simp] lemma const_vadd_add (v₁ v₂ : G) : const_vadd P (v₁ + v₂) = const_vadd P v₁ * const_vadd P v₂ := ext $ add_vadd v₁ v₂ /-- `equiv.const_vadd` as a homomorphism from `multiplicative G` to `equiv.perm P` -/ def const_vadd_hom : multiplicative G →* equiv.perm P := { to_fun := λ v, const_vadd P v.to_add, map_one' := const_vadd_zero G P, map_mul' := const_vadd_add P } variable {P} open function /-- Point reflection in `x` as a permutation. -/ def point_reflection (x : P) : perm P := (const_vsub x).trans (vadd_const x) lemma point_reflection_apply (x y : P) : point_reflection x y = x -ᵥ y +ᵥ x := rfl @[simp] lemma point_reflection_symm (x : P) : (point_reflection x).symm = point_reflection x := ext $ by simp [point_reflection] @[simp] lemma point_reflection_self (x : P) : point_reflection x x = x := vsub_vadd _ _ lemma point_reflection_involutive (x : P) : involutive (point_reflection x : P → P) := λ y, (equiv.apply_eq_iff_eq_symm_apply _).2 $ by rw point_reflection_symm /-- `x` is the only fixed point of `point_reflection x`. This lemma requires `x + x = y + y ↔ x = y`. There is no typeclass to use here, so we add it as an explicit argument. -/ lemma point_reflection_fixed_iff_of_injective_bit0 {x y : P} (h : injective (bit0 : G → G)) : point_reflection x y = y ↔ y = x := by rw [point_reflection_apply, eq_comm, eq_vadd_iff_vsub_eq, ← neg_vsub_eq_vsub_rev, neg_eq_iff_add_eq_zero, ← bit0, ← bit0_zero, h.eq_iff, vsub_eq_zero_iff_eq, eq_comm] omit G lemma injective_point_reflection_left_of_injective_bit0 {G P : Type*} [add_comm_group G] [add_torsor G P] (h : injective (bit0 : G → G)) (y : P) : injective (λ x : P, point_reflection x y) := λ x₁ x₂ (hy : point_reflection x₁ y = point_reflection x₂ y), by rwa [point_reflection_apply, point_reflection_apply, vadd_eq_vadd_iff_sub_eq_vsub, vsub_sub_vsub_cancel_right, ← neg_vsub_eq_vsub_rev, neg_eq_iff_add_eq_zero, ← bit0, ← bit0_zero, h.eq_iff, vsub_eq_zero_iff_eq] at hy end equiv lemma add_torsor.subsingleton_iff (G P : Type*) [add_group G] [add_torsor G P] : subsingleton G ↔ subsingleton P := begin inhabit P, exact (equiv.vadd_const default).subsingleton_congr, end