/- Copyright (c) 2014 Mario Carneiro. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Mario Carneiro -/ import data.nat.cast_field import data.fintype.basic /-! # Characteristic zero (additional theorems) A ring `R` is called of characteristic zero if every natural number `n` is non-zero when considered as an element of `R`. Since this definition doesn't mention the multiplicative structure of `R` except for the existence of `1` in this file characteristic zero is defined for additive monoids with `1`. ## Main statements * Characteristic zero implies that the additive monoid is infinite. -/ namespace nat variables {R : Type*} [add_monoid_with_one R] [char_zero R] /-- `nat.cast` as an embedding into monoids of characteristic `0`. -/ @[simps] def cast_embedding : ℕ ↪ R := ⟨coe, cast_injective⟩ @[simp] lemma cast_pow_eq_one {R : Type*} [semiring R] [char_zero R] (q : ℕ) (n : ℕ) (hn : n ≠ 0) : (q : R) ^ n = 1 ↔ q = 1 := by { rw [←cast_pow, cast_eq_one], exact pow_eq_one_iff hn } @[simp, norm_cast] theorem cast_div_char_zero {k : Type*} [field k] [char_zero k] {m n : ℕ} (n_dvd : n ∣ m) : ((m / n : ℕ) : k) = m / n := begin rcases eq_or_ne n 0 with rfl | hn, { simp }, { exact cast_div n_dvd (cast_ne_zero.2 hn), }, end end nat section variables (M : Type*) [add_monoid_with_one M] [char_zero M] @[priority 100] -- see Note [lower instance priority] instance char_zero.infinite : infinite M := infinite.of_injective coe nat.cast_injective variable {M} @[field_simps] lemma two_ne_zero' : (2:M) ≠ 0 := have ((2:ℕ):M) ≠ 0, from nat.cast_ne_zero.2 dec_trivial, by rwa [nat.cast_two] at this end section variables {R : Type*} [non_assoc_semiring R] [no_zero_divisors R] [char_zero R] @[simp] lemma add_self_eq_zero {a : R} : a + a = 0 ↔ a = 0 := by simp only [(two_mul a).symm, mul_eq_zero, two_ne_zero', false_or] @[simp] lemma bit0_eq_zero {a : R} : bit0 a = 0 ↔ a = 0 := add_self_eq_zero @[simp] lemma zero_eq_bit0 {a : R} : 0 = bit0 a ↔ a = 0 := by { rw [eq_comm], exact bit0_eq_zero } end section variables {R : Type*} [non_assoc_ring R] [no_zero_divisors R] [char_zero R] lemma neg_eq_self_iff {a : R} : -a = a ↔ a = 0 := neg_eq_iff_add_eq_zero.trans add_self_eq_zero lemma eq_neg_self_iff {a : R} : a = -a ↔ a = 0 := eq_neg_iff_add_eq_zero.trans add_self_eq_zero lemma nat_mul_inj {n : ℕ} {a b : R} (h : (n : R) * a = (n : R) * b) : n = 0 ∨ a = b := begin rw [←sub_eq_zero, ←mul_sub, mul_eq_zero, sub_eq_zero] at h, exact_mod_cast h, end lemma nat_mul_inj' {n : ℕ} {a b : R} (h : (n : R) * a = (n : R) * b) (w : n ≠ 0) : a = b := by simpa [w] using nat_mul_inj h lemma bit0_injective : function.injective (bit0 : R → R) := λ a b h, begin dsimp [bit0] at h, simp only [(two_mul a).symm, (two_mul b).symm] at h, refine nat_mul_inj' _ two_ne_zero, exact_mod_cast h, end lemma bit1_injective : function.injective (bit1 : R → R) := λ a b h, begin simp only [bit1, add_left_inj] at h, exact bit0_injective h, end @[simp] lemma bit0_eq_bit0 {a b : R} : bit0 a = bit0 b ↔ a = b := bit0_injective.eq_iff @[simp] lemma bit1_eq_bit1 {a b : R} : bit1 a = bit1 b ↔ a = b := bit1_injective.eq_iff @[simp] lemma bit1_eq_one {a : R} : bit1 a = 1 ↔ a = 0 := by rw [show (1 : R) = bit1 0, by simp, bit1_eq_bit1] @[simp] lemma one_eq_bit1 {a : R} : 1 = bit1 a ↔ a = 0 := by { rw [eq_comm], exact bit1_eq_one } end section variables {R : Type*} [division_ring R] [char_zero R] @[simp] lemma half_add_self (a : R) : (a + a) / 2 = a := by rw [← mul_two, mul_div_cancel a two_ne_zero'] @[simp] lemma add_halves' (a : R) : a / 2 + a / 2 = a := by rw [← add_div, half_add_self] lemma sub_half (a : R) : a - a / 2 = a / 2 := by rw [sub_eq_iff_eq_add, add_halves'] lemma half_sub (a : R) : a / 2 - a = - (a / 2) := by rw [← neg_sub, sub_half] end namespace with_top instance {R : Type*} [add_monoid_with_one R] [char_zero R] : char_zero (with_top R) := { cast_injective := λ m n h, by rwa [← coe_nat, ← coe_nat n, coe_eq_coe, nat.cast_inj] at h } end with_top section ring_hom variables {R S : Type*} [non_assoc_semiring R] [non_assoc_semiring S] lemma ring_hom.char_zero (ϕ : R →+* S) [hS : char_zero S] : char_zero R := ⟨λ a b h, char_zero.cast_injective (by rw [←map_nat_cast ϕ, ←map_nat_cast ϕ, h])⟩ lemma ring_hom.char_zero_iff {ϕ : R →+* S} (hϕ : function.injective ϕ) : char_zero R ↔ char_zero S := ⟨λ hR, ⟨by introsI a b h; rwa [← @nat.cast_inj R, ← hϕ.eq_iff, map_nat_cast ϕ, map_nat_cast ϕ]⟩, λ hS, by exactI ϕ.char_zero⟩ lemma ring_hom.injective_nat (f : ℕ →+* R) [char_zero R] : function.injective f := subsingleton.elim (nat.cast_ring_hom _) f ▸ nat.cast_injective end ring_hom