/- Copyright (c) 2018 Mario Carneiro. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Mario Carneiro -/ import data.list.join import logic.equiv.list import logic.function.iterate /-! # The primitive recursive functions The primitive recursive functions are the least collection of functions `nat → nat` which are closed under projections (using the mkpair pairing function), composition, zero, successor, and primitive recursion (i.e. nat.rec where the motive is C n := nat). We can extend this definition to a large class of basic types by using canonical encodings of types as natural numbers (Gödel numbering), which we implement through the type class `encodable`. (More precisely, we need that the composition of encode with decode yields a primitive recursive function, so we have the `primcodable` type class for this.) ## References * [Mario Carneiro, *Formalizing computability theory via partial recursive functions*][carneiro2019] -/ open denumerable encodable function namespace nat def elim {C : Sort*} : C → (ℕ → C → C) → ℕ → C := @nat.rec (λ _, C) @[simp] theorem elim_zero {C} (a f) : @nat.elim C a f 0 = a := rfl @[simp] theorem elim_succ {C} (a f n) : @nat.elim C a f (succ n) = f n (nat.elim a f n) := rfl def cases {C : Sort*} (a : C) (f : ℕ → C) : ℕ → C := nat.elim a (λ n _, f n) @[simp] theorem cases_zero {C} (a f) : @nat.cases C a f 0 = a := rfl @[simp] theorem cases_succ {C} (a f n) : @nat.cases C a f (succ n) = f n := rfl @[simp, reducible] def unpaired {α} (f : ℕ → ℕ → α) (n : ℕ) : α := f n.unpair.1 n.unpair.2 /-- The primitive recursive functions `ℕ → ℕ`. -/ inductive primrec : (ℕ → ℕ) → Prop | zero : primrec (λ n, 0) | succ : primrec succ | left : primrec (λ n, n.unpair.1) | right : primrec (λ n, n.unpair.2) | pair {f g} : primrec f → primrec g → primrec (λ n, mkpair (f n) (g n)) | comp {f g} : primrec f → primrec g → primrec (λ n, f (g n)) | prec {f g} : primrec f → primrec g → primrec (unpaired (λ z n, n.elim (f z) (λ y IH, g $ mkpair z $ mkpair y IH))) namespace primrec theorem of_eq {f g : ℕ → ℕ} (hf : primrec f) (H : ∀ n, f n = g n) : primrec g := (funext H : f = g) ▸ hf theorem const : ∀ (n : ℕ), primrec (λ _, n) | 0 := zero | (n+1) := succ.comp (const n) protected theorem id : primrec id := (left.pair right).of_eq $ λ n, by simp theorem prec1 {f} (m : ℕ) (hf : primrec f) : primrec (λ n, n.elim m (λ y IH, f $ mkpair y IH)) := ((prec (const m) (hf.comp right)).comp (zero.pair primrec.id)).of_eq $ λ n, by simp; dsimp; rw [unpair_mkpair] theorem cases1 {f} (m : ℕ) (hf : primrec f) : primrec (nat.cases m f) := (prec1 m (hf.comp left)).of_eq $ by simp [cases] theorem cases {f g} (hf : primrec f) (hg : primrec g) : primrec (unpaired (λ z n, n.cases (f z) (λ y, g $ mkpair z y))) := (prec hf (hg.comp (pair left (left.comp right)))).of_eq $ by simp [cases] protected theorem swap : primrec (unpaired (swap mkpair)) := (pair right left).of_eq $ λ n, by simp theorem swap' {f} (hf : primrec (unpaired f)) : primrec (unpaired (swap f)) := (hf.comp primrec.swap).of_eq $ λ n, by simp theorem pred : primrec pred := (cases1 0 primrec.id).of_eq $ λ n, by cases n; simp * theorem add : primrec (unpaired (+)) := (prec primrec.id ((succ.comp right).comp right)).of_eq $ λ p, by simp; induction p.unpair.2; simp [*, -add_comm, add_succ] theorem sub : primrec (unpaired has_sub.sub) := (prec primrec.id ((pred.comp right).comp right)).of_eq $ λ p, by simp; induction p.unpair.2; simp [*, -add_comm, sub_succ] theorem mul : primrec (unpaired (*)) := (prec zero (add.comp (pair left (right.comp right)))).of_eq $ λ p, by simp; induction p.unpair.2; simp [*, mul_succ, add_comm] theorem pow : primrec (unpaired (^)) := (prec (const 1) (mul.comp (pair (right.comp right) left))).of_eq $ λ p, by simp; induction p.unpair.2; simp [*, pow_succ'] end primrec end nat /-- A `primcodable` type is an `encodable` type for which the encode/decode functions are primitive recursive. -/ class primcodable (α : Type*) extends encodable α := (prim [] : nat.primrec (λ n, encodable.encode (decode n))) namespace primcodable open nat.primrec @[priority 10] instance of_denumerable (α) [denumerable α] : primcodable α := ⟨succ.of_eq $ by simp⟩ def of_equiv (α) {β} [primcodable α] (e : β ≃ α) : primcodable β := { prim := (primcodable.prim α).of_eq $ λ n, show encode (decode α n) = (option.cases_on (option.map e.symm (decode α n)) 0 (λ a, nat.succ (encode (e a))) : ℕ), by cases decode α n; dsimp; simp, ..encodable.of_equiv α e } instance empty : primcodable empty := ⟨zero⟩ instance unit : primcodable punit := ⟨(cases1 1 zero).of_eq $ λ n, by cases n; simp⟩ instance option {α : Type*} [h : primcodable α] : primcodable (option α) := ⟨(cases1 1 ((cases1 0 (succ.comp succ)).comp (primcodable.prim α))).of_eq $ λ n, by cases n; simp; cases decode α n; refl⟩ instance bool : primcodable bool := ⟨(cases1 1 (cases1 2 zero)).of_eq $ λ n, begin cases n, {refl}, cases n, {refl}, rw decode_ge_two, {refl}, exact dec_trivial end⟩ end primcodable /-- `primrec f` means `f` is primitive recursive (after encoding its input and output as natural numbers). -/ def primrec {α β} [primcodable α] [primcodable β] (f : α → β) : Prop := nat.primrec (λ n, encode ((decode α n).map f)) namespace primrec variables {α : Type*} {β : Type*} {σ : Type*} variables [primcodable α] [primcodable β] [primcodable σ] open nat.primrec protected theorem encode : primrec (@encode α _) := (primcodable.prim α).of_eq $ λ n, by cases decode α n; refl protected theorem decode : primrec (decode α) := succ.comp (primcodable.prim α) theorem dom_denumerable {α β} [denumerable α] [primcodable β] {f : α → β} : primrec f ↔ nat.primrec (λ n, encode (f (of_nat α n))) := ⟨λ h, (pred.comp h).of_eq $ λ n, by simp; refl, λ h, (succ.comp h).of_eq $ λ n, by simp; refl⟩ theorem nat_iff {f : ℕ → ℕ} : primrec f ↔ nat.primrec f := dom_denumerable theorem encdec : primrec (λ n, encode (decode α n)) := nat_iff.2 (primcodable.prim α) theorem option_some : primrec (@some α) := ((cases1 0 (succ.comp succ)).comp (primcodable.prim α)).of_eq $ λ n, by cases decode α n; simp theorem of_eq {f g : α → σ} (hf : primrec f) (H : ∀ n, f n = g n) : primrec g := (funext H : f = g) ▸ hf theorem const (x : σ) : primrec (λ a : α, x) := ((cases1 0 (const (encode x).succ)).comp (primcodable.prim α)).of_eq $ λ n, by cases decode α n; refl protected theorem id : primrec (@id α) := (primcodable.prim α).of_eq $ by simp theorem comp {f : β → σ} {g : α → β} (hf : primrec f) (hg : primrec g) : primrec (λ a, f (g a)) := ((cases1 0 (hf.comp $ pred.comp hg)).comp (primcodable.prim α)).of_eq $ λ n, begin cases decode α n, {refl}, simp [encodek] end theorem succ : primrec nat.succ := nat_iff.2 nat.primrec.succ theorem pred : primrec nat.pred := nat_iff.2 nat.primrec.pred theorem encode_iff {f : α → σ} : primrec (λ a, encode (f a)) ↔ primrec f := ⟨λ h, nat.primrec.of_eq h $ λ n, by cases decode α n; refl, primrec.encode.comp⟩ theorem of_nat_iff {α β} [denumerable α] [primcodable β] {f : α → β} : primrec f ↔ primrec (λ n, f (of_nat α n)) := dom_denumerable.trans $ nat_iff.symm.trans encode_iff protected theorem of_nat (α) [denumerable α] : primrec (of_nat α) := of_nat_iff.1 primrec.id theorem option_some_iff {f : α → σ} : primrec (λ a, some (f a)) ↔ primrec f := ⟨λ h, encode_iff.1 $ pred.comp $ encode_iff.2 h, option_some.comp⟩ theorem of_equiv {β} {e : β ≃ α} : by haveI := primcodable.of_equiv α e; exact primrec e := by letI : primcodable β := primcodable.of_equiv α e; exact encode_iff.1 primrec.encode theorem of_equiv_symm {β} {e : β ≃ α} : by haveI := primcodable.of_equiv α e; exact primrec e.symm := by letI := primcodable.of_equiv α e; exact encode_iff.1 (show primrec (λ a, encode (e (e.symm a))), by simp [primrec.encode]) theorem of_equiv_iff {β} (e : β ≃ α) {f : σ → β} : by haveI := primcodable.of_equiv α e; exact primrec (λ a, e (f a)) ↔ primrec f := by letI := primcodable.of_equiv α e; exact ⟨λ h, (of_equiv_symm.comp h).of_eq (λ a, by simp), of_equiv.comp⟩ theorem of_equiv_symm_iff {β} (e : β ≃ α) {f : σ → α} : by haveI := primcodable.of_equiv α e; exact primrec (λ a, e.symm (f a)) ↔ primrec f := by letI := primcodable.of_equiv α e; exact ⟨λ h, (of_equiv.comp h).of_eq (λ a, by simp), of_equiv_symm.comp⟩ end primrec namespace primcodable open nat.primrec instance prod {α β} [primcodable α] [primcodable β] : primcodable (α × β) := ⟨((cases zero ((cases zero succ).comp (pair right ((primcodable.prim β).comp left)))).comp (pair right ((primcodable.prim α).comp left))).of_eq $ λ n, begin simp [nat.unpaired], cases decode α n.unpair.1, { simp }, cases decode β n.unpair.2; simp end⟩ end primcodable namespace primrec variables {α : Type*} {σ : Type*} [primcodable α] [primcodable σ] open nat.primrec theorem fst {α β} [primcodable α] [primcodable β] : primrec (@prod.fst α β) := ((cases zero ((cases zero (nat.primrec.succ.comp left)).comp (pair right ((primcodable.prim β).comp left)))).comp (pair right ((primcodable.prim α).comp left))).of_eq $ λ n, begin simp, cases decode α n.unpair.1; simp, cases decode β n.unpair.2; simp end theorem snd {α β} [primcodable α] [primcodable β] : primrec (@prod.snd α β) := ((cases zero ((cases zero (nat.primrec.succ.comp right)).comp (pair right ((primcodable.prim β).comp left)))).comp (pair right ((primcodable.prim α).comp left))).of_eq $ λ n, begin simp, cases decode α n.unpair.1; simp, cases decode β n.unpair.2; simp end theorem pair {α β γ} [primcodable α] [primcodable β] [primcodable γ] {f : α → β} {g : α → γ} (hf : primrec f) (hg : primrec g) : primrec (λ a, (f a, g a)) := ((cases1 0 (nat.primrec.succ.comp $ pair (nat.primrec.pred.comp hf) (nat.primrec.pred.comp hg))).comp (primcodable.prim α)).of_eq $ λ n, by cases decode α n; simp [encodek]; refl theorem unpair : primrec nat.unpair := (pair (nat_iff.2 nat.primrec.left) (nat_iff.2 nat.primrec.right)).of_eq $ λ n, by simp theorem list_nth₁ : ∀ (l : list α), primrec l.nth | [] := dom_denumerable.2 zero | (a::l) := dom_denumerable.2 $ (cases1 (encode a).succ $ dom_denumerable.1 $ list_nth₁ l).of_eq $ λ n, by cases n; simp end primrec /-- `primrec₂ f` means `f` is a binary primitive recursive function. This is technically unnecessary since we can always curry all the arguments together, but there are enough natural two-arg functions that it is convenient to express this directly. -/ def primrec₂ {α β σ} [primcodable α] [primcodable β] [primcodable σ] (f : α → β → σ) := primrec (λ p : α × β, f p.1 p.2) /-- `primrec_pred p` means `p : α → Prop` is a (decidable) primitive recursive predicate, which is to say that `to_bool ∘ p : α → bool` is primitive recursive. -/ def primrec_pred {α} [primcodable α] (p : α → Prop) [decidable_pred p] := primrec (λ a, to_bool (p a)) /-- `primrec_rel p` means `p : α → β → Prop` is a (decidable) primitive recursive relation, which is to say that `to_bool ∘ p : α → β → bool` is primitive recursive. -/ def primrec_rel {α β} [primcodable α] [primcodable β] (s : α → β → Prop) [∀ a b, decidable (s a b)] := primrec₂ (λ a b, to_bool (s a b)) namespace primrec₂ variables {α : Type*} {β : Type*} {σ : Type*} variables [primcodable α] [primcodable β] [primcodable σ] theorem of_eq {f g : α → β → σ} (hg : primrec₂ f) (H : ∀ a b, f a b = g a b) : primrec₂ g := (by funext a b; apply H : f = g) ▸ hg theorem const (x : σ) : primrec₂ (λ (a : α) (b : β), x) := primrec.const _ protected theorem pair : primrec₂ (@prod.mk α β) := primrec.pair primrec.fst primrec.snd theorem left : primrec₂ (λ (a : α) (b : β), a) := primrec.fst theorem right : primrec₂ (λ (a : α) (b : β), b) := primrec.snd theorem mkpair : primrec₂ nat.mkpair := by simp [primrec₂, primrec]; constructor theorem unpaired {f : ℕ → ℕ → α} : primrec (nat.unpaired f) ↔ primrec₂ f := ⟨λ h, by simpa using h.comp mkpair, λ h, h.comp primrec.unpair⟩ theorem unpaired' {f : ℕ → ℕ → ℕ} : nat.primrec (nat.unpaired f) ↔ primrec₂ f := primrec.nat_iff.symm.trans unpaired theorem encode_iff {f : α → β → σ} : primrec₂ (λ a b, encode (f a b)) ↔ primrec₂ f := primrec.encode_iff theorem option_some_iff {f : α → β → σ} : primrec₂ (λ a b, some (f a b)) ↔ primrec₂ f := primrec.option_some_iff theorem of_nat_iff {α β σ} [denumerable α] [denumerable β] [primcodable σ] {f : α → β → σ} : primrec₂ f ↔ primrec₂ (λ m n : ℕ, f (of_nat α m) (of_nat β n)) := (primrec.of_nat_iff.trans $ by simp).trans unpaired theorem uncurry {f : α → β → σ} : primrec (function.uncurry f) ↔ primrec₂ f := by rw [show function.uncurry f = λ (p : α × β), f p.1 p.2, from funext $ λ ⟨a, b⟩, rfl]; refl theorem curry {f : α × β → σ} : primrec₂ (function.curry f) ↔ primrec f := by rw [← uncurry, function.uncurry_curry] end primrec₂ section comp variables {α : Type*} {β : Type*} {γ : Type*} {δ : Type*} {σ : Type*} variables [primcodable α] [primcodable β] [primcodable γ] [primcodable δ] [primcodable σ] theorem primrec.comp₂ {f : γ → σ} {g : α → β → γ} (hf : primrec f) (hg : primrec₂ g) : primrec₂ (λ a b, f (g a b)) := hf.comp hg theorem primrec₂.comp {f : β → γ → σ} {g : α → β} {h : α → γ} (hf : primrec₂ f) (hg : primrec g) (hh : primrec h) : primrec (λ a, f (g a) (h a)) := hf.comp (hg.pair hh) theorem primrec₂.comp₂ {f : γ → δ → σ} {g : α → β → γ} {h : α → β → δ} (hf : primrec₂ f) (hg : primrec₂ g) (hh : primrec₂ h) : primrec₂ (λ a b, f (g a b) (h a b)) := hf.comp hg hh theorem primrec_pred.comp {p : β → Prop} [decidable_pred p] {f : α → β} : primrec_pred p → primrec f → primrec_pred (λ a, p (f a)) := primrec.comp theorem primrec_rel.comp {R : β → γ → Prop} [∀ a b, decidable (R a b)] {f : α → β} {g : α → γ} : primrec_rel R → primrec f → primrec g → primrec_pred (λ a, R (f a) (g a)) := primrec₂.comp theorem primrec_rel.comp₂ {R : γ → δ → Prop} [∀ a b, decidable (R a b)] {f : α → β → γ} {g : α → β → δ} : primrec_rel R → primrec₂ f → primrec₂ g → primrec_rel (λ a b, R (f a b) (g a b)) := primrec_rel.comp end comp theorem primrec_pred.of_eq {α} [primcodable α] {p q : α → Prop} [decidable_pred p] [decidable_pred q] (hp : primrec_pred p) (H : ∀ a, p a ↔ q a) : primrec_pred q := primrec.of_eq hp (λ a, to_bool_congr (H a)) theorem primrec_rel.of_eq {α β} [primcodable α] [primcodable β] {r s : α → β → Prop} [∀ a b, decidable (r a b)] [∀ a b, decidable (s a b)] (hr : primrec_rel r) (H : ∀ a b, r a b ↔ s a b) : primrec_rel s := primrec₂.of_eq hr (λ a b, to_bool_congr (H a b)) namespace primrec₂ variables {α : Type*} {β : Type*} {σ : Type*} variables [primcodable α] [primcodable β] [primcodable σ] open nat.primrec theorem swap {f : α → β → σ} (h : primrec₂ f) : primrec₂ (swap f) := h.comp₂ primrec₂.right primrec₂.left theorem nat_iff {f : α → β → σ} : primrec₂ f ↔ nat.primrec (nat.unpaired $ λ m n : ℕ, encode $ (decode α m).bind $ λ a, (decode β n).map (f a)) := have ∀ (a : option α) (b : option β), option.map (λ (p : α × β), f p.1 p.2) (option.bind a (λ (a : α), option.map (prod.mk a) b)) = option.bind a (λ a, option.map (f a) b), by intros; cases a; [refl, {cases b; refl}], by simp [primrec₂, primrec, this] theorem nat_iff' {f : α → β → σ} : primrec₂ f ↔ primrec₂ (λ m n : ℕ, option.bind (decode α m) (λ a, option.map (f a) (decode β n))) := nat_iff.trans $ unpaired'.trans encode_iff end primrec₂ namespace primrec variables {α : Type*} {β : Type*} {γ : Type*} {δ : Type*} {σ : Type*} variables [primcodable α] [primcodable β] [primcodable γ] [primcodable δ] [primcodable σ] theorem to₂ {f : α × β → σ} (hf : primrec f) : primrec₂ (λ a b, f (a, b)) := hf.of_eq $ λ ⟨a, b⟩, rfl theorem nat_elim {f : α → β} {g : α → ℕ × β → β} (hf : primrec f) (hg : primrec₂ g) : primrec₂ (λ a (n : ℕ), n.elim (f a) (λ n IH, g a (n, IH))) := primrec₂.nat_iff.2 $ ((nat.primrec.cases nat.primrec.zero $ (nat.primrec.prec hf $ nat.primrec.comp hg $ nat.primrec.left.pair $ (nat.primrec.left.comp nat.primrec.right).pair $ nat.primrec.pred.comp $ nat.primrec.right.comp nat.primrec.right).comp $ nat.primrec.right.pair $ nat.primrec.right.comp nat.primrec.left).comp $ nat.primrec.id.pair $ (primcodable.prim α).comp nat.primrec.left).of_eq $ λ n, begin simp, cases decode α n.unpair.1 with a, {refl}, simp [encodek], induction n.unpair.2 with m; simp [encodek], simp [ih, encodek] end theorem nat_elim' {f : α → ℕ} {g : α → β} {h : α → ℕ × β → β} (hf : primrec f) (hg : primrec g) (hh : primrec₂ h) : primrec (λ a, (f a).elim (g a) (λ n IH, h a (n, IH))) := (nat_elim hg hh).comp primrec.id hf theorem nat_elim₁ {f : ℕ → α → α} (a : α) (hf : primrec₂ f) : primrec (nat.elim a f) := nat_elim' primrec.id (const a) $ comp₂ hf primrec₂.right theorem nat_cases' {f : α → β} {g : α → ℕ → β} (hf : primrec f) (hg : primrec₂ g) : primrec₂ (λ a, nat.cases (f a) (g a)) := nat_elim hf $ hg.comp₂ primrec₂.left $ comp₂ fst primrec₂.right theorem nat_cases {f : α → ℕ} {g : α → β} {h : α → ℕ → β} (hf : primrec f) (hg : primrec g) (hh : primrec₂ h) : primrec (λ a, (f a).cases (g a) (h a)) := (nat_cases' hg hh).comp primrec.id hf theorem nat_cases₁ {f : ℕ → α} (a : α) (hf : primrec f) : primrec (nat.cases a f) := nat_cases primrec.id (const a) (comp₂ hf primrec₂.right) theorem nat_iterate {f : α → ℕ} {g : α → β} {h : α → β → β} (hf : primrec f) (hg : primrec g) (hh : primrec₂ h) : primrec (λ a, (h a)^[f a] (g a)) := (nat_elim' hf hg (hh.comp₂ primrec₂.left $ snd.comp₂ primrec₂.right)).of_eq $ λ a, by induction f a; simp [*, function.iterate_succ'] theorem option_cases {o : α → option β} {f : α → σ} {g : α → β → σ} (ho : primrec o) (hf : primrec f) (hg : primrec₂ g) : @primrec _ σ _ _ (λ a, option.cases_on (o a) (f a) (g a)) := encode_iff.1 $ (nat_cases (encode_iff.2 ho) (encode_iff.2 hf) $ pred.comp₂ $ primrec₂.encode_iff.2 $ (primrec₂.nat_iff'.1 hg).comp₂ ((@primrec.encode α _).comp fst).to₂ primrec₂.right).of_eq $ λ a, by cases o a with b; simp [encodek]; refl theorem option_bind {f : α → option β} {g : α → β → option σ} (hf : primrec f) (hg : primrec₂ g) : primrec (λ a, (f a).bind (g a)) := (option_cases hf (const none) hg).of_eq $ λ a, by cases f a; refl theorem option_bind₁ {f : α → option σ} (hf : primrec f) : primrec (λ o, option.bind o f) := option_bind primrec.id (hf.comp snd).to₂ theorem option_map {f : α → option β} {g : α → β → σ} (hf : primrec f) (hg : primrec₂ g) : primrec (λ a, (f a).map (g a)) := option_bind hf (option_some.comp₂ hg) theorem option_map₁ {f : α → σ} (hf : primrec f) : primrec (option.map f) := option_map primrec.id (hf.comp snd).to₂ theorem option_iget [inhabited α] : primrec (@option.iget α _) := (option_cases primrec.id (const $ @default α _) primrec₂.right).of_eq $ λ o, by cases o; refl theorem option_is_some : primrec (@option.is_some α) := (option_cases primrec.id (const ff) (const tt).to₂).of_eq $ λ o, by cases o; refl theorem option_get_or_else : primrec₂ (@option.get_or_else α) := primrec.of_eq (option_cases primrec₂.left primrec₂.right primrec₂.right) $ λ ⟨o, a⟩, by cases o; refl theorem bind_decode_iff {f : α → β → option σ} : primrec₂ (λ a n, (decode β n).bind (f a)) ↔ primrec₂ f := ⟨λ h, by simpa [encodek] using h.comp fst ((@primrec.encode β _).comp snd), λ h, option_bind (primrec.decode.comp snd) $ h.comp (fst.comp fst) snd⟩ theorem map_decode_iff {f : α → β → σ} : primrec₂ (λ a n, (decode β n).map (f a)) ↔ primrec₂ f := bind_decode_iff.trans primrec₂.option_some_iff theorem nat_add : primrec₂ ((+) : ℕ → ℕ → ℕ) := primrec₂.unpaired'.1 nat.primrec.add theorem nat_sub : primrec₂ (has_sub.sub : ℕ → ℕ → ℕ) := primrec₂.unpaired'.1 nat.primrec.sub theorem nat_mul : primrec₂ ((*) : ℕ → ℕ → ℕ) := primrec₂.unpaired'.1 nat.primrec.mul theorem cond {c : α → bool} {f : α → σ} {g : α → σ} (hc : primrec c) (hf : primrec f) (hg : primrec g) : primrec (λ a, cond (c a) (f a) (g a)) := (nat_cases (encode_iff.2 hc) hg (hf.comp fst).to₂).of_eq $ λ a, by cases c a; refl theorem ite {c : α → Prop} [decidable_pred c] {f : α → σ} {g : α → σ} (hc : primrec_pred c) (hf : primrec f) (hg : primrec g) : primrec (λ a, if c a then f a else g a) := by simpa using cond hc hf hg theorem nat_le : primrec_rel ((≤) : ℕ → ℕ → Prop) := (nat_cases nat_sub (const tt) (const ff).to₂).of_eq $ λ p, begin dsimp [swap], cases e : p.1 - p.2 with n, { simp [tsub_eq_zero_iff_le.1 e] }, { simp [not_le.2 (nat.lt_of_sub_eq_succ e)] } end theorem nat_min : primrec₂ (@min ℕ _) := ite nat_le fst snd theorem nat_max : primrec₂ (@max ℕ _) := ite (nat_le.comp primrec.snd primrec.fst) fst snd theorem dom_bool (f : bool → α) : primrec f := (cond primrec.id (const (f tt)) (const (f ff))).of_eq $ λ b, by cases b; refl theorem dom_bool₂ (f : bool → bool → α) : primrec₂ f := (cond fst ((dom_bool (f tt)).comp snd) ((dom_bool (f ff)).comp snd)).of_eq $ λ ⟨a, b⟩, by cases a; refl protected theorem bnot : primrec bnot := dom_bool _ protected theorem band : primrec₂ band := dom_bool₂ _ protected theorem bor : primrec₂ bor := dom_bool₂ _ protected theorem not {p : α → Prop} [decidable_pred p] (hp : primrec_pred p) : primrec_pred (λ a, ¬ p a) := (primrec.bnot.comp hp).of_eq $ λ n, by simp protected theorem and {p q : α → Prop} [decidable_pred p] [decidable_pred q] (hp : primrec_pred p) (hq : primrec_pred q) : primrec_pred (λ a, p a ∧ q a) := (primrec.band.comp hp hq).of_eq $ λ n, by simp protected theorem or {p q : α → Prop} [decidable_pred p] [decidable_pred q] (hp : primrec_pred p) (hq : primrec_pred q) : primrec_pred (λ a, p a ∨ q a) := (primrec.bor.comp hp hq).of_eq $ λ n, by simp protected theorem eq [decidable_eq α] : primrec_rel (@eq α) := have primrec_rel (λ a b : ℕ, a = b), from (primrec.and nat_le nat_le.swap).of_eq $ λ a, by simp [le_antisymm_iff], (this.comp₂ (primrec.encode.comp₂ primrec₂.left) (primrec.encode.comp₂ primrec₂.right)).of_eq $ λ a b, encode_injective.eq_iff theorem nat_lt : primrec_rel ((<) : ℕ → ℕ → Prop) := (nat_le.comp snd fst).not.of_eq $ λ p, by simp theorem option_guard {p : α → β → Prop} [∀ a b, decidable (p a b)] (hp : primrec_rel p) {f : α → β} (hf : primrec f) : primrec (λ a, option.guard (p a) (f a)) := ite (hp.comp primrec.id hf) (option_some_iff.2 hf) (const none) theorem option_orelse : primrec₂ ((<|>) : option α → option α → option α) := (option_cases fst snd (fst.comp fst).to₂).of_eq $ λ ⟨o₁, o₂⟩, by cases o₁; cases o₂; refl protected theorem decode₂ : primrec (decode₂ α) := option_bind primrec.decode $ option_guard ((@primrec.eq _ _ nat.decidable_eq).comp (encode_iff.2 snd) (fst.comp fst)) snd theorem list_find_index₁ {p : α → β → Prop} [∀ a b, decidable (p a b)] (hp : primrec_rel p) : ∀ (l : list β), primrec (λ a, l.find_index (p a)) | [] := const 0 | (a::l) := ite (hp.comp primrec.id (const a)) (const 0) (succ.comp (list_find_index₁ l)) theorem list_index_of₁ [decidable_eq α] (l : list α) : primrec (λ a, l.index_of a) := list_find_index₁ primrec.eq l theorem dom_fintype [fintype α] (f : α → σ) : primrec f := let ⟨l, nd, m⟩ := fintype.exists_univ_list α in option_some_iff.1 $ begin haveI := decidable_eq_of_encodable α, refine ((list_nth₁ (l.map f)).comp (list_index_of₁ l)).of_eq (λ a, _), rw [list.nth_map, list.nth_le_nth (list.index_of_lt_length.2 (m _)), list.index_of_nth_le]; refl end theorem nat_bodd_div2 : primrec nat.bodd_div2 := (nat_elim' primrec.id (const (ff, 0)) (((cond fst (pair (const ff) (succ.comp snd)) (pair (const tt) snd)).comp snd).comp snd).to₂).of_eq $ λ n, begin simp [-nat.bodd_div2_eq], induction n with n IH, {refl}, simp [-nat.bodd_div2_eq, nat.bodd_div2, *], rcases nat.bodd_div2 n with ⟨_|_, m⟩; simp [nat.bodd_div2] end theorem nat_bodd : primrec nat.bodd := fst.comp nat_bodd_div2 theorem nat_div2 : primrec nat.div2 := snd.comp nat_bodd_div2 theorem nat_bit0 : primrec (@bit0 ℕ _) := nat_add.comp primrec.id primrec.id theorem nat_bit1 : primrec (@bit1 ℕ _ _) := nat_add.comp nat_bit0 (const 1) theorem nat_bit : primrec₂ nat.bit := (cond primrec.fst (nat_bit1.comp primrec.snd) (nat_bit0.comp primrec.snd)).of_eq $ λ n, by cases n.1; refl theorem nat_div_mod : primrec₂ (λ n k : ℕ, (n / k, n % k)) := let f (a : ℕ × ℕ) : ℕ × ℕ := a.1.elim (0, 0) (λ _ IH, if nat.succ IH.2 = a.2 then (nat.succ IH.1, 0) else (IH.1, nat.succ IH.2)) in have hf : primrec f, from nat_elim' fst (const (0, 0)) $ ((ite ((@primrec.eq ℕ _ _).comp (succ.comp $ snd.comp snd) fst) (pair (succ.comp $ fst.comp snd) (const 0)) (pair (fst.comp snd) (succ.comp $ snd.comp snd))) .comp (pair (snd.comp fst) (snd.comp snd))).to₂, suffices ∀ k n, (n / k, n % k) = f (n, k), from hf.of_eq $ λ ⟨m, n⟩, by simp [this], λ k n, begin have : (f (n, k)).2 + k * (f (n, k)).1 = n ∧ (0 < k → (f (n, k)).2 < k) ∧ (k = 0 → (f (n, k)).1 = 0), { induction n with n IH, {exact ⟨rfl, id, λ _, rfl⟩}, rw [λ n:ℕ, show f (n.succ, k) = _root_.ite ((f (n, k)).2.succ = k) (nat.succ (f (n, k)).1, 0) ((f (n, k)).1, (f (n, k)).2.succ), from rfl], by_cases h : (f (n, k)).2.succ = k; simp [h], { have := congr_arg nat.succ IH.1, refine ⟨_, λ k0, nat.no_confusion (h.trans k0)⟩, rwa [← nat.succ_add, h, add_comm, ← nat.mul_succ] at this }, { exact ⟨by rw [nat.succ_add, IH.1], λ k0, lt_of_le_of_ne (IH.2.1 k0) h, IH.2.2⟩ } }, revert this, cases f (n, k) with D M, simp, intros h₁ h₂ h₃, cases nat.eq_zero_or_pos k, { simp [h, h₃ h] at h₁ ⊢, simp [h₁] }, { exact (nat.div_mod_unique h).2 ⟨h₁, h₂ h⟩ } end theorem nat_div : primrec₂ ((/) : ℕ → ℕ → ℕ) := fst.comp₂ nat_div_mod theorem nat_mod : primrec₂ ((%) : ℕ → ℕ → ℕ) := snd.comp₂ nat_div_mod end primrec section variables {α : Type*} {β : Type*} {σ : Type*} variables [primcodable α] [primcodable β] [primcodable σ] variable (H : nat.primrec (λ n, encodable.encode (decode (list β) n))) include H open primrec private def prim : primcodable (list β) := ⟨H⟩ private lemma list_cases' {f : α → list β} {g : α → σ} {h : α → β × list β → σ} (hf : by haveI := prim H; exact primrec f) (hg : primrec g) (hh : by haveI := prim H; exact primrec₂ h) : @primrec _ σ _ _ (λ a, list.cases_on (f a) (g a) (λ b l, h a (b, l))) := by letI := prim H; exact have @primrec _ (option σ) _ _ (λ a, (decode (option (β × list β)) (encode (f a))).map (λ o, option.cases_on o (g a) (h a))), from ((@map_decode_iff _ (option (β × list β)) _ _ _ _ _).2 $ to₂ $ option_cases snd (hg.comp fst) (hh.comp₂ (fst.comp₂ primrec₂.left) primrec₂.right)) .comp primrec.id (encode_iff.2 hf), option_some_iff.1 $ this.of_eq $ λ a, by cases f a with b l; simp [encodek]; refl private lemma list_foldl' {f : α → list β} {g : α → σ} {h : α → σ × β → σ} (hf : by haveI := prim H; exact primrec f) (hg : primrec g) (hh : by haveI := prim H; exact primrec₂ h) : primrec (λ a, (f a).foldl (λ s b, h a (s, b)) (g a)) := by letI := prim H; exact let G (a : α) (IH : σ × list β) : σ × list β := list.cases_on IH.2 IH (λ b l, (h a (IH.1, b), l)) in let F (a : α) (n : ℕ) := (G a)^[n] (g a, f a) in have primrec (λ a, (F a (encode (f a))).1), from fst.comp $ nat_iterate (encode_iff.2 hf) (pair hg hf) $ list_cases' H (snd.comp snd) snd $ to₂ $ pair (hh.comp (fst.comp fst) $ pair ((fst.comp snd).comp fst) (fst.comp snd)) (snd.comp snd), this.of_eq $ λ a, begin have : ∀ n, F a n = ((list.take n (f a)).foldl (λ s b, h a (s, b)) (g a), list.drop n (f a)), { intro, simp [F], generalize : f a = l, generalize : g a = x, induction n with n IH generalizing l x, {refl}, simp, cases l with b l; simp [IH] }, rw [this, list.take_all_of_le (length_le_encode _)] end private lemma list_cons' : by haveI := prim H; exact primrec₂ (@list.cons β) := by letI := prim H; exact encode_iff.1 (succ.comp $ primrec₂.mkpair.comp (encode_iff.2 fst) (encode_iff.2 snd)) private lemma list_reverse' : by haveI := prim H; exact primrec (@list.reverse β) := by letI := prim H; exact (list_foldl' H primrec.id (const []) $ to₂ $ ((list_cons' H).comp snd fst).comp snd).of_eq (suffices ∀ l r, list.foldl (λ (s : list β) (b : β), b :: s) r l = list.reverse_core l r, from λ l, this l [], λ l, by induction l; simp [*, list.reverse_core]) end namespace primcodable variables {α : Type*} {β : Type*} variables [primcodable α] [primcodable β] open primrec instance sum : primcodable (α ⊕ β) := ⟨primrec.nat_iff.1 $ (encode_iff.2 (cond nat_bodd (((@primrec.decode β _).comp nat_div2).option_map $ to₂ $ nat_bit.comp (const tt) (primrec.encode.comp snd)) (((@primrec.decode α _).comp nat_div2).option_map $ to₂ $ nat_bit.comp (const ff) (primrec.encode.comp snd)))).of_eq $ λ n, show _ = encode (decode_sum n), begin simp [decode_sum], cases nat.bodd n; simp [decode_sum], { cases decode α n.div2; refl }, { cases decode β n.div2; refl } end⟩ instance list : primcodable (list α) := ⟨ by letI H := primcodable.prim (list ℕ); exact have primrec₂ (λ (a : α) (o : option (list ℕ)), o.map (list.cons (encode a))), from option_map snd $ (list_cons' H).comp ((@primrec.encode α _).comp (fst.comp fst)) snd, have primrec (λ n, (of_nat (list ℕ) n).reverse.foldl (λ o m, (decode α m).bind (λ a, o.map (list.cons (encode a)))) (some [])), from list_foldl' H ((list_reverse' H).comp (primrec.of_nat (list ℕ))) (const (some [])) (primrec.comp₂ (bind_decode_iff.2 $ primrec₂.swap this) primrec₂.right), nat_iff.1 $ (encode_iff.2 this).of_eq $ λ n, begin rw list.foldl_reverse, apply nat.case_strong_induction_on n, { simp }, intros n IH, simp, cases decode α n.unpair.1 with a, {refl}, simp, suffices : ∀ (o : option (list ℕ)) p (_ : encode o = encode p), encode (option.map (list.cons (encode a)) o) = encode (option.map (list.cons a) p), from this _ _ (IH _ (nat.unpair_right_le n)), intros o p IH, cases o; cases p; injection IH with h, exact congr_arg (λ k, (nat.mkpair (encode a) k).succ.succ) h end⟩ end primcodable namespace primrec variables {α : Type*} {β : Type*} {γ : Type*} {σ : Type*} variables [primcodable α] [primcodable β] [primcodable γ] [primcodable σ] theorem sum_inl : primrec (@sum.inl α β) := encode_iff.1 $ nat_bit0.comp primrec.encode theorem sum_inr : primrec (@sum.inr α β) := encode_iff.1 $ nat_bit1.comp primrec.encode theorem sum_cases {f : α → β ⊕ γ} {g : α → β → σ} {h : α → γ → σ} (hf : primrec f) (hg : primrec₂ g) (hh : primrec₂ h) : @primrec _ σ _ _ (λ a, sum.cases_on (f a) (g a) (h a)) := option_some_iff.1 $ (cond (nat_bodd.comp $ encode_iff.2 hf) (option_map (primrec.decode.comp $ nat_div2.comp $ encode_iff.2 hf) hh) (option_map (primrec.decode.comp $ nat_div2.comp $ encode_iff.2 hf) hg)).of_eq $ λ a, by cases f a with b c; simp [nat.div2_bit, nat.bodd_bit, encodek]; refl theorem list_cons : primrec₂ (@list.cons α) := list_cons' (primcodable.prim _) theorem list_cases {f : α → list β} {g : α → σ} {h : α → β × list β → σ} : primrec f → primrec g → primrec₂ h → @primrec _ σ _ _ (λ a, list.cases_on (f a) (g a) (λ b l, h a (b, l))) := list_cases' (primcodable.prim _) theorem list_foldl {f : α → list β} {g : α → σ} {h : α → σ × β → σ} : primrec f → primrec g → primrec₂ h → primrec (λ a, (f a).foldl (λ s b, h a (s, b)) (g a)) := list_foldl' (primcodable.prim _) theorem list_reverse : primrec (@list.reverse α) := list_reverse' (primcodable.prim _) theorem list_foldr {f : α → list β} {g : α → σ} {h : α → β × σ → σ} (hf : primrec f) (hg : primrec g) (hh : primrec₂ h) : primrec (λ a, (f a).foldr (λ b s, h a (b, s)) (g a)) := (list_foldl (list_reverse.comp hf) hg $ to₂ $ hh.comp fst $ (pair snd fst).comp snd).of_eq $ λ a, by simp [list.foldl_reverse] theorem list_head' : primrec (@list.head' α) := (list_cases primrec.id (const none) (option_some_iff.2 $ (fst.comp snd)).to₂).of_eq $ λ l, by cases l; refl theorem list_head [inhabited α] : primrec (@list.head α _) := (option_iget.comp list_head').of_eq $ λ l, l.head_eq_head'.symm theorem list_tail : primrec (@list.tail α) := (list_cases primrec.id (const []) (snd.comp snd).to₂).of_eq $ λ l, by cases l; refl theorem list_rec {f : α → list β} {g : α → σ} {h : α → β × list β × σ → σ} (hf : primrec f) (hg : primrec g) (hh : primrec₂ h) : @primrec _ σ _ _ (λ a, list.rec_on (f a) (g a) (λ b l IH, h a (b, l, IH))) := let F (a : α) := (f a).foldr (λ (b : β) (s : list β × σ), (b :: s.1, h a (b, s))) ([], g a) in have primrec F, from list_foldr hf (pair (const []) hg) $ to₂ $ pair ((list_cons.comp fst (fst.comp snd)).comp snd) hh, (snd.comp this).of_eq $ λ a, begin suffices : F a = (f a, list.rec_on (f a) (g a) (λ b l IH, h a (b, l, IH))), {rw this}, simp [F], induction f a with b l IH; simp * end theorem list_nth : primrec₂ (@list.nth α) := let F (l : list α) (n : ℕ) := l.foldl (λ (s : ℕ ⊕ α) (a : α), sum.cases_on s (@nat.cases (ℕ ⊕ α) (sum.inr a) sum.inl) sum.inr) (sum.inl n) in have hF : primrec₂ F, from list_foldl fst (sum_inl.comp snd) ((sum_cases fst (nat_cases snd (sum_inr.comp $ snd.comp fst) (sum_inl.comp snd).to₂).to₂ (sum_inr.comp snd).to₂).comp snd).to₂, have @primrec _ (option α) _ _ (λ p : list α × ℕ, sum.cases_on (F p.1 p.2) (λ _, none) some), from sum_cases hF (const none).to₂ (option_some.comp snd).to₂, this.to₂.of_eq $ λ l n, begin dsimp, symmetry, induction l with a l IH generalizing n, {refl}, cases n with n, { rw [(_ : F (a :: l) 0 = sum.inr a)], {refl}, clear IH, dsimp [F], induction l with b l IH; simp * }, { apply IH } end theorem list_nthd (d : α) : primrec₂ (list.nthd d) := begin suffices : list.nthd d = λ l n, (list.nth l n).get_or_else d, { rw this, exact option_get_or_else.comp₂ list_nth (const _) }, funext, exact list.nthd_eq_get_or_else_nth _ _ _ end theorem list_inth [inhabited α] : primrec₂ (@list.inth α _) := list_nthd _ theorem list_append : primrec₂ ((++) : list α → list α → list α) := (list_foldr fst snd $ to₂ $ comp (@list_cons α _) snd).to₂.of_eq $ λ l₁ l₂, by induction l₁; simp * theorem list_concat : primrec₂ (λ l (a:α), l ++ [a]) := list_append.comp fst (list_cons.comp snd (const [])) theorem list_map {f : α → list β} {g : α → β → σ} (hf : primrec f) (hg : primrec₂ g) : primrec (λ a, (f a).map (g a)) := (list_foldr hf (const []) $ to₂ $ list_cons.comp (hg.comp fst (fst.comp snd)) (snd.comp snd)).of_eq $ λ a, by induction f a; simp * theorem list_range : primrec list.range := (nat_elim' primrec.id (const []) ((list_concat.comp snd fst).comp snd).to₂).of_eq $ λ n, by simp; induction n; simp [*, list.range_succ]; refl theorem list_join : primrec (@list.join α) := (list_foldr primrec.id (const []) $ to₂ $ comp (@list_append α _) snd).of_eq $ λ l, by dsimp; induction l; simp * theorem list_length : primrec (@list.length α) := (list_foldr (@primrec.id (list α) _) (const 0) $ to₂ $ (succ.comp $ snd.comp snd).to₂).of_eq $ λ l, by dsimp; induction l; simp [*, -add_comm] theorem list_find_index {f : α → list β} {p : α → β → Prop} [∀ a b, decidable (p a b)] (hf : primrec f) (hp : primrec_rel p) : primrec (λ a, (f a).find_index (p a)) := (list_foldr hf (const 0) $ to₂ $ ite (hp.comp fst $ fst.comp snd) (const 0) (succ.comp $ snd.comp snd)).of_eq $ λ a, eq.symm $ by dsimp; induction f a with b l; [refl, simp [*, list.find_index]] theorem list_index_of [decidable_eq α] : primrec₂ (@list.index_of α _) := to₂ $ list_find_index snd $ primrec.eq.comp₂ (fst.comp fst).to₂ snd.to₂ theorem nat_strong_rec (f : α → ℕ → σ) {g : α → list σ → option σ} (hg : primrec₂ g) (H : ∀ a n, g a ((list.range n).map (f a)) = some (f a n)) : primrec₂ f := suffices primrec₂ (λ a n, (list.range n).map (f a)), from primrec₂.option_some_iff.1 $ (list_nth.comp (this.comp fst (succ.comp snd)) snd).to₂.of_eq $ λ a n, by simp [list.nth_range (nat.lt_succ_self n)]; refl, primrec₂.option_some_iff.1 $ (nat_elim (const (some [])) (to₂ $ option_bind (snd.comp snd) $ to₂ $ option_map (hg.comp (fst.comp fst) snd) (to₂ $ list_concat.comp (snd.comp fst) snd))).of_eq $ λ a n, begin simp, induction n with n IH, {refl}, simp [IH, H, list.range_succ] end end primrec namespace primcodable variables {α : Type*} {β : Type*} variables [primcodable α] [primcodable β] open primrec def subtype {p : α → Prop} [decidable_pred p] (hp : primrec_pred p) : primcodable (subtype p) := ⟨have primrec (λ n, (decode α n).bind (λ a, option.guard p a)), from option_bind primrec.decode (option_guard (hp.comp snd) snd), nat_iff.1 $ (encode_iff.2 this).of_eq $ λ n, show _ = encode ((decode α n).bind (λ a, _)), begin cases decode α n with a, {refl}, dsimp [option.guard], by_cases h : p a; simp [h]; refl end⟩ instance fin {n} : primcodable (fin n) := @of_equiv _ _ (subtype $ nat_lt.comp primrec.id (const n)) (equiv.refl _) instance vector {n} : primcodable (vector α n) := subtype ((@primrec.eq _ _ nat.decidable_eq).comp list_length (const _)) instance fin_arrow {n} : primcodable (fin n → α) := of_equiv _ (equiv.vector_equiv_fin _ _).symm instance array {n} : primcodable (array n α) := of_equiv _ (equiv.array_equiv_fin _ _) section ulower local attribute [instance, priority 100] encodable.decidable_range_encode encodable.decidable_eq_of_encodable instance ulower : primcodable (ulower α) := have primrec_pred (λ n, encodable.decode₂ α n ≠ none), from primrec.not (primrec.eq.comp (primrec.option_bind primrec.decode (primrec.ite (primrec.eq.comp (primrec.encode.comp primrec.snd) primrec.fst) (primrec.option_some.comp primrec.snd) (primrec.const _))) (primrec.const _)), primcodable.subtype $ primrec_pred.of_eq this (λ n, decode₂_ne_none_iff) end ulower end primcodable namespace primrec variables {α : Type*} {β : Type*} {γ : Type*} {σ : Type*} variables [primcodable α] [primcodable β] [primcodable γ] [primcodable σ] theorem subtype_val {p : α → Prop} [decidable_pred p] {hp : primrec_pred p} : by haveI := primcodable.subtype hp; exact primrec (@subtype.val α p) := begin letI := primcodable.subtype hp, refine (primcodable.prim (subtype p)).of_eq (λ n, _), rcases decode (subtype p) n with _|⟨a,h⟩; refl end theorem subtype_val_iff {p : β → Prop} [decidable_pred p] {hp : primrec_pred p} {f : α → subtype p} : by haveI := primcodable.subtype hp; exact primrec (λ a, (f a).1) ↔ primrec f := begin letI := primcodable.subtype hp, refine ⟨λ h, _, λ hf, subtype_val.comp hf⟩, refine nat.primrec.of_eq h (λ n, _), cases decode α n with a, {refl}, simp, cases f a; refl end theorem subtype_mk {p : β → Prop} [decidable_pred p] {hp : primrec_pred p} {f : α → β} {h : ∀ a, p (f a)} (hf : primrec f) : by haveI := primcodable.subtype hp; exact primrec (λ a, @subtype.mk β p (f a) (h a)) := subtype_val_iff.1 hf theorem option_get {f : α → option β} {h : ∀ a, (f a).is_some} : primrec f → primrec (λ a, option.get (h a)) := begin intro hf, refine (nat.primrec.pred.comp hf).of_eq (λ n, _), generalize hx : decode α n = x, cases x; simp end theorem ulower_down : primrec (ulower.down : α → ulower α) := by letI : ∀ a, decidable (a ∈ set.range (encode : α → ℕ)) := decidable_range_encode _; exact subtype_mk primrec.encode theorem ulower_up : primrec (ulower.up : ulower α → α) := by letI : ∀ a, decidable (a ∈ set.range (encode : α → ℕ)) := decidable_range_encode _; exact option_get (primrec.decode₂.comp subtype_val) theorem fin_val_iff {n} {f : α → fin n} : primrec (λ a, (f a).1) ↔ primrec f := begin let : primcodable {a//id a